
Towards a Content-based Defense against Text
DDoS in 9-1-1 Emergency Systems

Bal Krishna Bal, Weidong Larry Shi, Shou-Hsuan Stephen Huang, Omprakash Gnawali
Department of Computer Science

University of Houston
{bbal, wshi3}@uh.edu, {gnawali, shuang}@cs.uh.edu

Abstract—Text messaging is getting increasingly popular
among all generations because it is built into the cellphone
carried by people all the time. People, including those
with speech and hearing disabilities, are starting to use
text messages in place of voice 9-1-1 calls to call for help
during emergencies and many 9-1-1 centers are starting
to support text messaging. Since text messages take less
bandwidth, it is more likely to be available in a major
disaster than voice calls. Text messages are also useful
in emergency situation such as a child hiding in a closet
during a home invasion. On the other hand, text message
system is also subject to abuse by hackers. In a recent
attack, a teenager was able to send voice calls from a large
number of smartphones to 9-1-1 call centers. That same
Distributed Denial of Services (DDoS) attack can happen
to text messages. While it does not fall under the policy
of the call centers to filter out the incoming messages, it
would be useful to do some preliminary analyses of the
text messages and based on the result of those analyses
determine the priority order for processing thereby helping
human operators to efficiently manage the messages. In
this work, we design and implement several new Natural
Language Processing (NLP) techniques to analyze the
contents of the incoming text messages to an emergency
call center to provide insights about potential spam or
DDoS attacks to 9-1-1 centers. Our preliminary results
show that the task of automatically analyzing the text to
determine if a text is part of an attack can be done with
reasonable accuracy.

I. INTRODUCTION

Text Messaging, which has already become a
prominent means of communication among people
of different walks of life has the potential of serving
as a life saver in emergency situations like disasters,
fire breakouts, medical emergencies or situations
where the help of law enforcement or emergency
response bodies is required. It becomes particularly
useful when the voice network is too busy or when
people are not in a position to make a call either

because they are physically unable to do so or the
prevailing circumstances are too risky to make a
call. According to a recent report [1], there are
more than 37 million people in the United States
having speech and hearing disabilities. 83% of the
American adults (age 18-24) own cellphones and
about 73% send and receive text messages [2].
Among these 73%, 31% prefer text to talking over
the phone. The survey further revealed that cell
owners of the aforementioned age group send and
receive on an average of 41.5 messages daily. These
facts alone justify the need and application of text
messaging systems at crucial times of life and death.

Unfortunately, it is quite likely that text messages
could be abused or even attacked by attackers with
malicious intentions of disrupting the 9-1-1 emer-
gency call centers by sending a large volume of text
messages. In a typical attack scenario or at times of
natural disaster, the volume of text messages could
be significantly higher than the number of available
human operators to handle them, thus resulting in
the denial of service to genuine help seekers. While
it does not fall under the policy of the emergency
call centers to filter out the incoming messages, it
certainly would be useful to do some preliminary
analyses on the contents of the messages and based
on the results of those analyses, set some priorities
and provide additional contextual information about
the messages so that the human operators could
efficiently manage the messages.

In this work, we propose a general framework
of a Text Analysis Engine, whose main objec-
tive is to do some pre-analysis of the incoming
messages, such as determining whether it contains
an address, whether the same or similar messages
have been received earlier, whether the message(s)

is/are garbage or nonsensical, whether the texts have
typos, classification of the texts into Emergency or
Non-Emergency categories, and finally, the catego-
rization of the text into one of the three emergency
types − Medical, Police or Fire. We evaluate the
system on a dataset of real text messages sent to 9-
1-1 centers and find that the proposed system pro-
vides reasonable accuracy in automatically flagging
malicious text activities.

II. RELATED WORK

To the best of our knowledge, there is no prior
work that performs early detection and mitigation
of cybersecurity threat in the context of 9-1-1
emergency texts. However, there are prior work
dealing with text analytics and the application of
Natural Language Processing and Machine Learning
tools and techniques for cybersecurity in general.
Researchers have developed an initial corpus of text
message data and applied simple bi-gram feature
extraction methodology to classify each text mes-
sage as drug-related or neutral [3]. There is also
prior work on framework for information extraction
to extract cybersecurity-relevant entities, terms and
concepts from the National Vulnerability Database
(NVD) and from unstructured text [4]. The extracted
concepts are then mapped and linked to related
resources on the web using an OWL ontology
language and represented as RDF linked available
data. The authors claim that their efforts can be use-
ful in driving applications such as situation aware
intrusion detection system. Researchers have also
developed a precise method to automatically label
text from several data sources by leveraging related,
domain-specific, structured data and provide public
access to a corpus annotated with cybersecurity
entities [5]. Other approaches include following
semi-supervised Natural Language Processing tech-
niques to implement a bootstrapping algorithm to
extract security entities and their relationships from
text [6]. There is also existing work that proposes an
early intrusion detection system based on structural
modeling of cyber attack behavior [7]. The authors
report F1 scores of 0.9 for early detection of net-
work attacks in the KDD99 dataset within windows
of certain sizes.

III. SYSTEM ARCHITECTURE OF THE TEXT
ANALYSIS ENGINE

The Text Analysis Engine analyzes the incoming
text messages to a 9−1−1 system and provides
output with attributes extracted from the text and
probability of the text being a part of an attack.
The Text Analysis engine comprises the following
sub-modules:

• Random Words Checking Module
• Emergency Non-Emergency Classification

Module
• Address Checking Module
• Typo Checking Module
• Duplicate Checking Module
• Near-Duplicate Checking Module
• Address Checking Module
Architecture: The input to the engine is text

messages arriving at the 9−1−1 center. The engine
is integrated to the 9−1−1 as a passive listener so
as not to disrupt the usual call and text handling
workflow in place at 9−1−1 center. The goal is
to provide additional context and decision support
information to the 9−1−1 operator along with the
text. Thus the output of the analysis done by the
engine is attribute, context, and risk analysis score
of the incoming text provided to the 9−1−1 op-
erator dashboard or the supervisor dashboard. The
analysis results are also stored in a local database
for cross-referencing and forensics in the future.
Each module operates independently and produces
its own output, which is provided to the decision
aggregation module. Different 9−1−1 centers may
wish to utilize different modules, hence our modular
design can accommodate different legal or techni-
cal needs of different centers. Figure 1 shows the
overall architecture of the engine.

IV. COMPONENT DESIGN

In this section, we describe the components of
the text analysis engine.

A. Random Words Checking Module

Text-based attacks to the 9−1−1 centers may
contain many random characters or words that do
not make sense to a human. Such random words
may occur in the attack text due to unsophisticated
attackers not being able to create coherent words

Incoming
Text

Random	Word	
Checking

Emergency	Non-
Emergency	Checking

Address	 Parsing

Address	Validation

Typo	Checking

Duplicate	Words	
Checking

Near-Duplicate	
Words	 Checking

Emergency	Type	
Categorization

Random	Word	
Count

Emergency	or	
Non-Emergency

Parsed	Address

Address	 valid	or	
Not	Valid

Typo	Count

Duplicate	Word	
Count

Near-Duplicate	
Word	Count

Emergency	Type

Aggregate	
Analysis	 of	
Messages

Fig. 1. Work Flow of the Text Analysis Engine.

or sentences automatically, adversarial text with
an intention to thwart human cognition or algo-
rithmic processing, or encrypted data for attacks.
This module tries to detect such random words in
text messages as a potential indicator of an attack.
However, such random words or characters could
also be due to typos on the text sent by people
asking for help through the 9−1−1 system. Thus,
the existence of random words or characters alone
is not sufficient to flag a text as an attack. The
Random Words Checking Module, which is based
on the PyEnchant package [8], determines if the
text message contains some combination of random
characters, and thus is non-sense or garbage. This
module consults a dictionary of English words and
uses the criteria that 20% of the words from the
message must exist in the dictionary file, and 85%
of all the characters in the message must be letters
and spaces, rather than punctuation or numbers in
order for the text to be considered as sensible.

B. Emergency Non-Emergency Classification Mod-
ule

One of the first tasks a 9−1−1 operator per-
forms when handling an incoming text message is

determine if it is a true emergency. Automatically
performing this task or at least providing context
to the operator to make this task easier to perform
more accurately would improve the performance of
the call centers. The Emergency Non-Emergency
Classification Module analyzes the text messages
and classifies them into either the Emergency or
the Non-Emergency category. We used the scikit-
learn platform [9], and the supervised learning
classifiers Multinomial Naive Bayes and Support
Vector Machine to implement this module. We used
five-fold cross-validation in which four sub-parts of
the data were used for training and the remaining
part was used for testing. We have used the Term
Frequency Inverse Document Frequency (TF-IDF)
as the feature to train the classifier. The TF-IDF
considers the frequency of the word in consideration
in the text message as well as occurrence of the
given term across a collection of multiple messages
in this case.

C. Address Checking Module

When citizens ask for help, they often need to
provide their physical address to which the center
can dispatch police, fire, or medical personnel. Thus,
the presence of address and the validity of ad-
dress can provide additional context to the 9−1−1
operator and also indicate the genuineness of the
emergency and if it is a duplicate reporting of an
emergency. The Address Checking Module has two
components:

1) Address Parsing: We first determine if there
is a physical address in the text. Address may be
present in many formats and abbreviations, espe-
cially when the citizens are in an emergency. Thus
we need a sophisticated address parsing so it is
robust against those variations. We use the usaddress
[10] python package to parse and extract the address
from the text.

2) Address Validation: Once we know there is
an address in the text, we need to determine if
it is a local and valid address. The reason is a
9−1−1 center can typically dispatch emergency to
only local and valid addresses under its jurisdiction.
If an address is detected, it is extracted from the
text, and then the module searches for the address
in the local database. If the address is found in the
local database, then the validity of the address is

confirmed. Alternatively, if the address is not found
in the local database, then a query about the address
is sent to geopy [11] and if geopy determines that
the address is valid, the located address is then saved
in the local data base. Currently, if the address is not
found even by geopy, we consider the address to be
invalid. At the end of this process, the address is
available in a structured format to the operator or
for other IT systems to directly utilize. If the address
is invalid or not local, the system or the operator can
prompt the user for additional information about the
location.

D. Typo Checking Module

The occurrence of typos in text could be an indi-
cation that the text was sent by a human, especially
when it is an emergency. Although the attackers can
design bots to also send text with typos, generally
we assume that at least in the near future, the
bots tend to try their best to send text with clean
grammar as they try to imitate humans in a natural
conversation in text. This module checks if there are
any typos in the text message, and their respective
counts. The module consults an English wordlist
[12] and looks for words in the text message that
do not match the words in the wordlist. Excluding
punctuation symbols and whitespace characters, all
words that do not match the English words are
returned as typos. In order to handle contracted
expressions like don’t, we have developed a list of
patterns, which when detected in the message, will
be expanded first before conducting the matching
search of the wordlist.

E. Duplicate Checking Module

A large-scale denial of service attack on a 9−1−1
center may include duplicate, often hundreds or
thousands of times, reporting of a single event.
This module determines whether an incoming text
message is identical to the one that already exists in
the database of the system. For this purpose, each
text message is treated as a record in the database,
and the contents of the record are hashed. To detect
if there is an identical text message, the hash value
of the text message is matched with the previously
computed and stored hash values of the existing text
messages in the database.

F. Near-Duplicate Checking Module

Multiple reporting, malicious or otherwise, of
the same event may not be an exact duplicate.
This module determines whether the incoming text
message is similar to the previously received text
messages in the database. We compute Jaccard
index or similarity coefficient for the messages in
consideration. This measurement is defined as the
size of an intersection divided by the size of the
union of the sample records:

J(A,B) =
|A ∩B|
|A| ∪ |B|

=
|A| ∩ |B|

|A|+ |B| − |A ∩B|
(1)

Where, notation-wise, given set A, the cardinality of
A, denoted by|A|, counts the number of elements
in A. The intersection of the two sets A and B,
denoted by A ∩ B, contains all of the items in A
and B. The union between the two sets A and B,
denoted by A ∪ B, contains all items which are in
either set. Items refer to words in the given context.
We employ the following steps to apply the above
equation to find near-duplicate content:

1) Remove stop words from both messages
2) Tag the remaining words in the text with their

respective parts of speech
3) Extract content words from the POS tagged

words, namely the adjectives, verbs, nouns
and adverbs, and extract their lemma or root
forms

4) For each of the lemma forms in the text mes-
sage pairs, compute the Jaccard coefficient
given by the equation above

We consider text messages with the Jaccard co-
efficient value greater than 70% as near-duplicate
messages.

G. Emergency Categorization Module

The 9−1−1 operator needs to determine the type
of emergency corresponding to the incoming text
message. The Emergency Categorization Module
analyzes the text messages and categorizes them
into one of the emergency types: Medical, Police or
Fire. We use two approaches for the implementation
of this module: the WordNet-based approach and
the machine learning approach. In the WordNet-
based approach, we use the text relatedness measure
called vector-pairs in WordNet, available via the

WordNet::Similarity package [13]. For the machine
learning-based implementation, we use the scikit-
learn platform and the supervised learning classi-
fiers: Multinomial Naive Bayes and Support Vector
Machine. We use a five-fold cross-validation for
testing the performance of the classifiers. Similarly,
we use the TF-IDF as the training feature for the
classifiers.

V. DATASET FOR THE EXPERIMENTS

The 9-1-1 emergency text is not typically released
to the public by the 9−1−1 centers. Hence, for
experimental and evaluation purposes, we built a
dataset based on real 9-1-1 text messages and 9-
1-1 call transcripts available in the Internet. We
gathered a total of about 500 text messages out
of which 321 are Emergency messages whereas
179 are Non-Emergency messages. Our dataset has
163 messages belonging to the Police category, 100
messages belong to the Medical category and 58
messages belong to the Fire category. We manually
labeled these messages as Emergency and Non-
Emergency as well as the three Emergency Types,
respectively, Police, Medical and Fire. The labeled
messages have been used for training and testing
the classifiers.

VI. PERFORMANCE RESULTS

We evaluated each module of the text analysis
engine separately and as an integrated system, fo-
cusing on the accuracy as the performance metric.
The reported accuracy values are based on our
current dataset. The Word-Net based Emergency
Categorization module performs with an accuracy
of 65.85%. We present the results of the Machine
Learning based Emergency categorization module
in Table I.

We present the results of the Emergency Non-
Emergency Classification Module in Table II.

The results in Table 2 indicates that except for
recall, the Support Vector Machine clearly outper-
forms the Multinomial Nave Bayes classifier in
terms of performance. However, we should note that
in 9−1−1 emergency situations, it is permissible
to have a few false positives (non-emergency being
classified as emergency) but we cannot afford to
have false negatives (emergency being considered
as non-emergency). In this respect, it is desirable

TABLE I
PERFORMANCE OF THE MACHINE LEARNING BASED
CATEGORIZATION MODULE. ”P” IS POLICE, ”M” IS

MEDICAL,AND ”F” IS FIRE.

Feature Classifier Precision Recall F1-
Score

TF−IDF Multinom.
NB

P: 0.67
M: 0.85
F: 0.13

P: 0.99
M: 0.67
F: 0.08

P: 0.79
M: 0.71
F: 0.13

SVM
P: 0.79
M: 0.87
F: 0.9

P: 0.95
M: 0.73
F: 0.74

P: 0.86
M: 0.78
F: 0.74

TABLE II
PERFORMANCE OF THE MACHINE LEARNING BASED

CATEGORIZATION MODULE

Feature Class-
ifier

Preci-
sion

Recall F1-
Score

Accu-
racy

TF−IDF Multi-
nom.NB

0.77 1 0.86 0.79

SVM 0.90 0.98 0.94 0.92

to pick Multinomial Nave Bayes classifier instead
of the seemingly better performing Support Vector
Machine. Alternatively, we can further attempt to
enhance the performance of the Support Vector
Machine by fine tuning the penalty parameter that
helps in fitting the boundaries between classes more
smoothly and appropriately. With a larger dataset,
we can experiment on choosing appropriate kernel
function for the Support Vector Machine. This will
result in a better model fit and hence further con-
tribute to a higher precision and recall. We present
the summary of the performance of each module of
the text analysis engine in Table III which shows
that the different modules of the Text Analysis
Engine achieve reasonable accuracy.

VII. CONCLUSION AND FUTURE WORK

We presented a Text Analysis Engine which con-
sists of a set of modules working together to analyze
the incoming 9−1−1 texts. Our preliminary results
show that the text message analysis for prioritization
and classification can be done with reasonable ac-
curacy. The analyses returned by the engine can be
a first step towards early detection and mitigation of
cyber-attacks via 9−1−1 texts. To further improve
the accuracy, we plan to include more advanced

TABLE III
ACCURACY ACHIEVED BY EACH MODULE OF THE TEXT

ANALYSIS ENGINE

No. Module Name Accuracy
1 Random Words Checking Module 93%
2 Emergency Non-Emergency Classifi-

cation Module
92%

3 Address Checking Module (Parsing) 94%
4 Address Checking Module (Validation

- Local Database)
100%

5 Address Checking Module (Validation
- Global DB)

100%

6 Typo Checking Module 91%
7 Duplicate Checking Module 100%
8 Near−Duplicate Checking Module 91%
9 Emergency Type Categorization Mod-

ule
84%

10 Integrated Text Analysis Engine 90%

features or attributes associated with the texts, for
example, timestamps of submission of text(s), the
phone number of the incoming texts, submission
pattern of the texts (whether it is regular or not,
whether the texts are sent on week days/weekends,
normal or late hours) etc. The inclusion of these
features along with the current textual features will
likely improve the accuracy of the system. Further-
more, we intend to test our engine with improved
training over larger datasets in the future. With
machine learning algorithms trained on those larger
datasets, we expect the accuracy to increase for the
categorization and the classification tasks.

ACKNOWLEDGMENT

This Project is the result of funding provided
by the Science and Technology Directorate of the
United States Department of Homeland Security
under contract number D15PC00185. The views
and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements,
either expressed or implied of the Department of
Homeland Security or the U.S. Government.

REFERENCES

[1] “National organization on disability,” [Online]. Available:
https://www.nod.org/. [Accessed: October 29, 2017].

[2] “Pew research center, internet, science & tech.” [Online]. Avail-
able: http://pewinternet.org/.[Accessed: October 29, 2017].

[3] D. R. O’Day and R. A. Calix, “Text message corpus: Applying
natural language processing to mobile device forensics,” in
2013 IEEE International Conference on Multimedia and Expo
Workshops (ICMEW). ”IEEE”, July 2013.

[4] A. Joshi, R. Lal, T. Finin, and A. Joshi, “Extracting cyberse-
curity related linked data from text,” in Proceedings of the 7th
IEEE International Conference on Semantic Computing. IEEE
Computer Society Press, September 2013.

[5] R. A. Bridges, C. L. Jones, M. D. Iannacone, and J. R.
Goodall, “Automatic labeling for entity extraction in cyber
security,” CoRR, vol. abs/1308.4941, 2013. [Online]. Available:
http://arxiv.org/abs/1308.4941

[6] C. L. Jones, R. A. Bridges, K. M. T. Huffer, and J. R.
Goodall, “Towards a relation extraction framework for cyber-
security concepts,” CoRR, vol. abs/1504.04317, 2015. [Online].
Available: http://arxiv.org/abs/1504.04317

[7] X. Yan and J. Y. Zhang, “A early detection of cyber security
threats using structured behavior modeling,” 2013.

[8] “Pyenchant - a spellchecking library for python,” [Online].
Available: http://pythonhosted.org/pyenchant/.[Accessed: Octo-
ber 29, 2017].

[9] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller,
O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler,
R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux,
“API design for machine learning software: experiences from
the scikit-learn project,” CoRR, vol. abs/1309.0238, 2013.
[Online]. Available: http://arxiv.org/abs/1309.0238

[10] “usaddress 0.5.7,” [Online]. Available:
https://pypi.python.org/pypi/usaddress/.[Accessed: October
29, 2017].

[11] “geopy 1.11.0,” [Online]. Available:
https://pypi.python.org/pypi/geopy/.[Accessed: October 29,
2017].

[12] “Infochimps, compiler,” [Online]. Available:
https://github.com/dwyl/english-words/.[Accessed: October
29, 2017].

[13] T. Pedersen, S. Patwardhan, and J. Michelizzi,
“Wordnet::similarity: Measuring the relatedness of concepts,” in
Demonstration Papers at HLT-NAACL 2004, ser. HLT-NAACL–
Demonstrations ’04. Stroudsburg, PA, USA: Association
for Computational Linguistics, 2004, pp. 38–41. [Online].
Available: http://dl.acm.org/citation.cfm?id=1614025.1614037

