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ABSTRACT

Until now, green computing research has largely relied
on few, short-term power measurements to characterize the
energy use of enterprise computing. This paper brings new
and comprehensive power datasets through Powernet, a hy-
brid sensor network that monitors the power and utilization
of the IT systems in a large academic building. Over more
than two years, we have collected power data from 250+
individual computing devices and have monitored a subset
of CPU and network loads. This dense, long-term monitoring
allows us to extrapolate the data to a detailed breakdown of
electricity use across the building’s computing systems.

Our datasets provide an opportunity to examine assump-
tions commonly made in green computing. We show that
power variability both between similar devices and over time
for a single device can lead to cost or savings estimates
that are off by 15-20%. Extending the coverage of measured
devices and the duration (to at least one month) significantly
reduces errors. Lastly, our experiences with collecting data
and the subsequent analysis lead to a better understanding
of how one should go about power characterization studies.
We provide several methodology guidelines for future green
computing research.

I. INTRODUCTION

Common sense tells us that there are opportunities to
reduce the energy waste of computing systems. For exam-
ple, many people leave their computers on overnight, even
when they are not needed, or have power-hungry PCs for
undemanding tasks such as document-processing and web
browsing. Observations like these have motivated recent
research into green computing work [8], [13], [19].

Unfortunately, the data to support and evaluate new green
computing solutions remains vastly anecdotal. Until now,
power characterization studies have either collected data at
the macro scale of a whole building [9], lumping all plug
loads into one number, or at the micro scale from a handful
of computers and LCD monitors [16]. Data at the macro
scale is informative but difficult to act upon – it does not
provide visibility into the computing components that can be
made more energy efficient. Power data at the micro scale is
great at providing a detailed characterization of single device

but fail to show how the individual datapoint relates to the
full building energy use.

The green computing research community can benefit
from the availability of more extensive power measure-
ments. For example, a single PC power measurement from
2004 [12] has been used in papers as recent as 2010, citing
it as a representative value. The aforementioned paper gives
the power draw of a 2002 Dell 2350 1.8 Ghz computer as
60 to 85 watts. A 2009 paper [7] measured two desktops
(102 and 72 watts, respectively) and said their measurements
were consistent with prior data, citing [12]. Later the same
year, a characterization study [9] used 100 watts per desktop
plus LCD for some of its calculations, citing [7]. In 2010,
LiteGreen [13] also referenced [7], stating that the typical
PC draws 80–100 watts when active. The paper goes on
to measure one PC (95W active) and uses it to calculate
potential energy savings of their proposed solution.

If we were to continue on citation trails like the one above,
we risk using limited and possibly outdated data for new
systems’ evaluation. Fast-paced improvements in personal
computing mean that some newer, more powerful PCs are
also more power-hungry than the 60- to 100-watt range. In
addition, enterprise environments are often heterogeneous
and it is beneficial to have power measurements from a larger
selection of devices.

This paper helps fill the power data gap by characterizing
energy data at the individual– and the building–scale levels.
Every month, Stanford’s computer science department’s pays
a $40,000 (330,000 kWh) electricity bill but there is no visi-
bility into exactly where this energy is going and how much
of it is spent on wasteful computing systems. This problem
has much greater implications than a single department’s
budget. When one considers the problem at scale, computing
infrastructures add up to billions of dollars. According to the
latest Department of Energy “Annual Energy Review” 1, in
2003, computing in education and office buildings consumed
66 billion kilowatt-hours of electricity [2]. This is 2% of
all US electricity consumption and, as with data centers, is
increasing.

This paper presents Powernet, a multi-year study on the
computing infrastructure in our department. Over two years,
we have measured plug loads from over 250 devices as

1Released in October of 2011
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well as utilization rates of a subset of the computers and
networking equipment. The data from the deployment is
available at http://sing.stanford.edu/maria/powernet. The
measurement points were selected carefully instead of being
a uniform, random sample. Since power does not necessarily
follow a simple distribution over device type, outliers may
be extremely important yet difficult to capture with a random
sample.

Measuring over a long term allows us to quantify mea-
surement errors over shorter durations. Measuring a large
and diverse number of devices allows us to characterize
the variation of power draw and utilization across and
within device types. We augment our datasets with metadata
including network device registrations and explicit equip-
ment inventories. The combination of power data, utilization
statistics, and metadata allows us to answer several open
questions about green computing:

• What is the contribution of computing systems to an
enterprise’s overall electricity consumption and waste,
and how is this cost distributed across different com-
ponents of the computing infrastructure?

• Recent green computing research makes assumptions
about the power draw and utilization of computing
devices, often based on isolated research lab measure-
ments: which of these assumptions hold in a larger
enterprise setting and which do not?

• We heavily instrumented our infrastructure because we
did not know what we would find; now that we have
an understanding of the data, how would one design
a measurement infrastructure to achieve good accuracy
with the least effort?

The answers to these questions form the fundamental
contributions of this paper:

• Detailed examination of where energy goes reveals that
over 50% of the electricity is spent on computing. PC’s
account for 17% of the bill despite the fact that their
utilization is very low. Networking equipment comes at
3.5% and shows no temporal changes despite variations
in traffic load.

• Data analysis shows that estimating savings based on
a few isolated desktop measurements is prone to errors
due to the wide spread of PC power draws. Assuming
that a day of power is representative and using it to
calculate yearly values can be off by as much as 20%.

• Our deployment and data studies expose the relative
importance of device coverage versus duration of de-
ployment. Once a deployment is past the first month
of data collection, one must prioritize the ‘what to
measure’ question over the time scale of the study.

The rest of this paper reviews the current state of green
computing data before diving into the analysis of the Power-
net datasets. Along the way, it confirms or refutes a number
of anecdotal observations, stressing the need for empirical

data. The paper closes with guidelines for the design of
future energy characterization studies.

II. BACKGROUND

Up until recently, the green computing community has
had to rely on limited energy datasets, requiring researchers
to make various explicit and implicit assumptions about the
energy behavior of computing systems.

This section discusses some of the different ways in which
related work has procured, used, and analyzed power data
in the context of evaluating systems’ research. At the end of
the section, we formulate four common assumptions made
in the context of green computing research.

In measuring only a small number of devices and gener-
alizing claims, there is an implicit assumption that instances
of the same equipment model or size have the same power
characteristics. For example, in [16], researchers measure an
individual desktop and LCD monitor and determine the ratio
of power use between the two. Then, they collect aggregate
data from a power strip that has another desktop and LCD
of the same size. Applying the pre-computed ratio on the
aggregate data leads to an estimate of the power draw of
the second set of devices. Even though both desktops might
have been Dells and both monitors 24-inch ones, we do not
know how much variation there is between the seemingly
identical devices.

A modeling approach that takes system subcomponents
into consideration was used in [20]. Instead of collecting
measurement with a meter, the authors use hardware com-
ponents power models and software counters to calculate the
power draw of a PC. This methodology was able to predict
the power use of one machine based on a different one with
20% accuracy, indicating that even more sophisticated tech-
niques that take device subcomponents into consideration
will show error in estimation when assuming that similar
equipment has similar power or usage behavior.

Prior works [8], [13], [16] have often based their analyses
on power data collected from a small number of desktop
measurements, 10 or fewer. In some cases, as shown in the
introduction, evaluations are based on one or two values
only. PCs are usually chosen based on convenience, i.e.
desktops in the lab where the research is done, instead of
using more deliberate samples.

Related work does not always indicate the duration over
which power data was collected. In some cases [9], [16]
power draw is shown over the course of a day or week,
but the rest of the time it is presented as a one-time,
instantaneous measurement. Despite the limited duration of
measurements, they are used in calculations of long-term
benefits of energy-saving techniques. Thus, in section VI
we explore the accuracy of using a day or month of data to
make full-year energy estimates.

The Energy Star program [3] establishes standards for
energy efficient consumer products, including computing



Device Type Count

Desktop 75
Monitor 70
Laptop 28
Network Switch 27
Printer 15
Server 36
Thin Clients 12
Misc 3

Total: 266

Table I
POWERNET COVERS A VARIETY OF DEVICES WHOSE POWER

MEASUREMENTS ENABLE A CHARACTERIZATION OF THE ENERGY
CONSUMPTION OF THE WHOLE BUILDING. SOME DEVICES ALSO HAVE

CPU UTILIZATION OR NETWORK TRAFFIC MONITORS.

Sensing Type Num. datapoints

Power Data 10 billion
CPU percent 400 million
User Processes 2 billion
Network Traffic 10 million

Total:

Table II
SUMMARY OF COLLECTED DATA, ORGANIZED BY TYPE OF

MEASUREMENT.

systems. As part of the process of obtaining an Energy Star
certification, manufacturers of PCs submit power data for
each of their devices. The result is an extensive database [6]
of computer models and their power draw.

The lack of substantial power datasets within our research
community means that it is not uncommon for academic
works [12], [19] to base their analyses on Energy Star data.
These data, however, are not representative of the real-world
power characteristics of machines.

The observations in this section lead us to extract four
assumptions:

• Devices of the same model or with the same specifica-
tions have low variation in power draw;

• Sampling a few devices in a class provides an accurate
average measurement;

• Short-term measurements accurately reflect long-term
power draw;

• Energy Star data is representative.
The rest of the paper analyzes a large power dataset

and uses it to evaluate these assumptions. It also provids
methodology guidlines for the future collection of energy
measurements.

III. DATA COLLECTION

The initial requirement for the Powernet deployment
was the ability to sense individual computing devices.
Commercially-available Watts Up .NET meters [5] were
easy to obtain and became the first power sensor to be
deployed. These meters were a useful first step in gathering

power data, but had many practical issues. The closed nature
of the firmware meant that we had no control over bugs and
undesirable behavior (e.g., DNS lookup storms.)

The issues of scaling to hundreds of devices (Ethernet
port availability and cable mess), high cost, and proprietary
software hindered further deployment. By now many of the
meters have either failed or have been upgraded. About 30
nodes remain active, in a sparse deployment around the
building.

To scale the power-monitoring deployment, we designed
custom wireless plug-level sensors. The sensing portion
of these meters includes current and voltage sensors, plus
a digital power meter chip that gives an instantaneous
power reading [1]. The communications portion includes
a low-power processor, a radio (2.4 Ghz, 802.15.4-based),
and an integrated antenna. The meter software, built on
TinyOS [18], includes sampling, routing [4] and dissemina-
tion [15] capabilities. The top-level application reads power
draw every second and sends a data packet after buffering
ten samples. The meters collect data via an ad-hoc multihop
network using the Collection Tree Protocol [4]. The wireless
power meters cost about $110 apiece.

The current board , similar to the ACme [16], has been
extensively tested and calibrated. We use a WattsUp meter
in line with our power meters to calibrate them at different
points between 0 and 300-watt loads. We find that raw meter
values exhibit linear behavior with an r-squared of 0.99 or
above for all meters. Of course, our calibration is limited
to the accuracy of the WattsUp meters. Complementary to
our work, [14] have designed a calibration method that can
achieve utility-grade accuracy.

Instrumenting the entire Gates building was not feasible
due to the costs and practical challenges associated with
monitoring over 2000 devices. Yet, we wanted detailed-
enough data to understand where in the building energy is
spent and wasted. Several consideration went into deciding
what to instrument. We focused our efforts on one of the
two building wings, considering it representative of both
wings in terms of types of devices and usage cases. Further,
we were only interested in computing equipment, therefore
we did not include miscellaneous electric loads such as
staplers, fridges, coffee makers. or lights and HVAC. This
is in contrast to the @Scale deployment [10], [14] which
adopted a stratified sampling approach in order to avoid a
random sample overwhelmed by small, insignificant loads.
The main goal of Powernet’s samples was to measure a
wide variety of equipment to maximize the new information
we gain. We did partially follow the stratified approach in
allocating meters to go to different device categories such
as servers and networking equipment.

Powernet takes a unique perspective on green computing
by measuring not only device power draw but also device
usage. We deploy a number of software sensor that collect
utilization statistics in the form of CPU, active processes,



Type/Count Observed Estimated Total
in ‘whois’ by scaling

Laptops 47 29 76
Low-end PC 43 27 70
High-end PC 366 230 596

Total 456 286 742

Table IV
PERSONAL COMPUTERS ARE BINNED INTO THREE CATEGORIES, AND

UNIVERSITY DATABASES AND ACTIVE NETWORK NODE COUNTS ALLOW
US TO EXTRAPOLATE TO THE WHOLE BUILDING.

and network traffic. This utilization data is key for deter-
mining energy waste – the cases in which power is drawn
but no useful work is done.

Tables I and II summarizes the different types of devices
that our sensing infrastructure measures as well as the total
number of datapoints for different sensing categories.

IV. ENERGY CONSUMPTION

This section tackles the problem of extrapolating indi-
vidual Powernet measurements to the whole building. We
divide computing devices into four classes: LCD screen,
PCs, networking equipment, and servers. Then, we combine
power data with network activity logs, device registration
databases, and a survey of building occupants to extend our
observation to an energy picture of the full IT system.

We find that computing systems draw between 210 and
259 kilowatts, depending on the time of day, or 47% to 58%
of the building’s 445 kilowatt load. This aggregate power
draw translates to 170,000 kilowatt-hours, or 50% of the
building’s monthly electricity usage.

Table III and Figure 1 summarize our extrapolation
methodology and resulting breakdown. Ground truth is pro-
vided by aggregate measurements from outside the building,
logged every 15 minutes by campus services. The top curve
in Figure 1 shows one week of this data.

A. Personal Computers

Personal computers are the second largest contributor to
the energy consumption of computing systems, after servers.
According to the department’s database of registered devices
there are about 1250 machines in the building that are
actively observed on the network. Of those, roughly 740
are PCs.

In order to extrapolate to the whole building we bin PCs
in three classes – laptops, low-end desktops, and high-end
desktops. Low-end PCs are those with average power of
80 watts or less and include machines such a Mac Minis,
Shuttle PCs, Dell Optiplex. Full-size desktops like the Dell
Precision are considered high-end machines.

Next, we take the 742 desktop MAC addresses from
the network database and cross-referenced them with the
university’s whois service. The whois metadata includes
node descriptions, such as PC model and OS, provided upon

Size Count Avg. Power

< 20” 42 30 W
20” to 22” 40 45 W
23” to 25” 84 63 W
26” to 27” 15 80 W
29” to 32” 44 120 W

Table V
A SURVEY SHOWS THAT MAJORITY OF BUILDING OCCUPANTS USE

MID-SIZED LCD DISPLAYS. THE NUMBER OF LARGE (30”) MONITORS
IS INCREASING AS EQUIPMENT IS UPGRADED.

network registration. Of the 742 nodes, 456 had description
that allowed us to classify them as laptops, low- or high-end
desktops.

Table IV shows the number of machines in each PC class;
nodes with available description are labeled as ‘observed’
and breakdown of the other 286 assumes that the observed
distribution is representative of the building. While there is
no good way of verifying this assumption, it is a straight-
forward way of filling the gaps in inventory information.

Based on Powernet measurements, the median power
draw for laptops is 26 watts, for low-end machines – 63
watts, and for high-end machines – 121 watts. This means
that the three categories of machines draw 2 kW, 4.4 kW,
and 72.1 kW respectively for a total of 78.5 kW a day or
58500 kilowatt-hours a month. The 742 personal computers
in the building account for about 17% of total electricity
consumption of the Gates building.

B. Computer Displays

Powernet’s measurements allow us to quantify the average
power draw of different size LCDs; extrapolating to whole-
building power draw requires the distribution of display
sizes. To obtain an estimate of this distribution, we use an
online survey asking occupants for the number, size, and
manufacturer of the computer screens they use. Table V
presents data from the 169 responses reporting 225 mon-
itors. These responses account for 28% of the building’s
occupants. The table also shows the power consumption of
different displays.

The cumulative power draw of the LCDs reported by users
is 15 kW. Scaling that to the whole building yields a power
draw of 52 kW or 12% of the building’s power demand
during daytime. Active duty cycling of screens reduces
the energy footprint. Powernet data over time shows that
displays are powered on 50 to 60 hours a week. Therefore,
over one month, LCD screens consume about 14,000 kWh,
or 4.2% of the monthly electricity budget.

C. Server Machines

Powernet monitors 32 of the 500 servers in Gates Hall.
Similar to desktops, servers exhibit varied power profiles.
For example, a standard 1U rackmount can have a power
draw anywhere between 95 and 275 watts. Unlike desktops,



Device Type Measured Total Extrapolated via Total Draw Uptime Monthly Energy Building Share

Switches 27 62 network admin records 15 kW 24 hrs/day 11,000 kWh 3.5%
Desktops/Laptops 83 742 whois, MAC registrations 80 kW 24 hrs/day 61,000 kWh 17%
LCD Displays 70 750 occupant survey 48 kW ≈8 hrs/day 14,400 kWh 4%
Servers 32 500 manual inspection 117 kW 24 hrs/day 86,000 kWh 26%

Table III
WE CROSS-CORRELATE POWERNET MEASUREMENTS WITH IT DATABASES TO EXTRAPOLATE THE ENERGY CONSUMPTION OF ALL COMPUTING

SYSTEMS IN THE BUILDING.
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Figure 1. Aggregate power draw for the entire Powernet building shows diurnal and weekday/weekend patterns. Computing systems account for 51% of
the total 445 kW. The given week of data is representative of the building, except for Monday, which was a university holiday (Feb 15).

the server population is much more homogeneous, e.g. 40
identical 1U machines in a single rack. Therefore, we spread
out our measurements to get maximum coverage, with
meters measuring identical devices for verification purposes.
The average power draw we calculated from the Powernet
measurements is 233 watts. With about 500 servers, the
aggregate draw is 117 kW – 26% of the total building energy
consumption per month. In the future, we hope extend the
set of server measurement in order to have a more precise
extrapolation.

D. Networking Equipment

The network backbone in the Gates building is provided
by 2 core switches located in the basement and 26 edge
switches spread across the five floors. There are also a
number of medium- and small-sized switches that have been
deployed on as-needed basis. We account for all major
switches and estimate the number of smaller ones with the
help IT staff. Table VI summarizes the types of networking
equipment together with their power draw. The power draw
of wireless access points is folded into the switch data since
they are Ethernet-powered.

Current networking hardware has constant power draw
per linecard of active ports, with small power variation
due to CPU load [17]. This observation together with the
relatively small number and homogeneity of devices, lends
well to a whole-building calculation. We use Powernet’s

measurements and inventory from Table VI to calculate
the daily power draw of all networking equipment, 15.4
kilowatts. This translates to 11,500 kWh per month or 3.5%
of the building’s total consumption.

E. Summary

This section presented a new methodology for character-
izing power data, using both plug-level empirical measure-
ments and device metadata, to create a detailed picture of
IT energy. We find that 50% of the building’s energy goes
to computing equipment: 26% goes to servers, 17% to PCs,
4% to displays, and 3.5% to networking.

Our data confirms prior observations and intuition that
PCs and servers are major contributors to the energy bill
of enterprise buildings [14]. The data also highlights that
smaller parts of IT, such as networks and LCD monitors,
account for almost 8% of the overall building’s electricity
use. We find that displays are responsible for 50% of
the building’s diurnal power draw variation and are the
only computing component that exhibits such patterns. This
confirms that there is room for improvement not only in the
IT infrastructure but also in the rest of the building.

V. UTILIZATION

While a breakdown of the electric bill is a useful first
step toward finding opportunities for savings, it is difficult
to identify specific failures in energy efficiency. Energy



Type # Count Power Draw
(watts)

HP 5406zl (6-slot) 20 325
HP 5412zl (12-slot) 8 500
HP 2724 2 100
Cisco Cat 6509 2 400
Cisco Cat 4000 2 600
Cisco Cat 3750G 2 160
Linksys 2 50
NEC (various) 5 100
Cisco (various) 5 100
Quanta (4-slot) 5 50
Misc (estimated) 100 10

Total major switches: 53

Table VI
SUMMARY OF SWITCH TYPES, QUANTITIES, AND AND ESTIMATED

INDIVIDUAL POWER CONSUMPTIONS. THIS INVENTORY INCLUDES ALL
MAJOR NETWORK SWITCHES AND EXCLUDES SMALL PER-ROOM

SWITCHES AND HUBS.

data alone is not enough, it is only meaningful if paired
with a characterization of systems’ utilization. This section
examines the workloads of computers and network switches
to determine what part of the energy is spent well and how
much is wasted.

A. Computers

Related work [7], [20] suggests that desktop machines
are rarely turned off when not in use, and Powernet power
measurements over a >1 year-long period support this claim.
So far, green computing research has focused on solving the
problem of idle PCs. Our utilization data sheds light on an
equally wasteful problem – power-hungry machine that even
when active, barely tax their resources.

Powernet collects data from both student and staff PCs
and since the computing needs of the two groups are likely
to differ, we consider them separately. Table VII shows the
CPU utilization of a number of desktops. Computer science
students use more of their available processing resources, but
even so, in many cases CPU usage is under 30% for 95%
of the time. The demand on administrative staff machines
is even lower. Since most of the measured computers were
left powered on at all times, the 50th-percentile data is not
surprising: machines are often idling. What is surprising
is that even when PCs are in use, the level of usage is
low. If desktops were power-proportional that would not be
an issue, but the current high baseline power draw means
that the energy cost for a PC that is running at 5-6% of
its capabilities is disproportionately high. In one extreme
case, measurements showed that the most power-hungry staff
desktop (quad-core Dell Dimensions 9200), drawing over
150 watts, has the lowest CPU utilization – 3.1% for 95%
of the time.

Another way of investigating whether utilization matches
the type of equipment we buy is to look at typical tasks
users perform. We focus on staff computing because it is

Percentile CPU
Machine Type 5th 50th 95th

Student PCs
Dell Precision T3400 0% 1% 7%
Dell Inspiron 530 1% 1% 8%
Dell Precision T3400 0% 1% 13%
HP Pavilion Elite m9250f 0% 0% 25%
Dell Precision T3400 0% 4% 29%
High-end custom-built 0% 1% 57%
Dell Optiplex 745 1% 9% 58%

Staff PCs
Dell Dimension 9200 0% 0.75% 3%
Dell Precision 690 0% 0.7% 4%
Dell OptiPlex 760 0% 0% 5.45%
Dell OptiPlex SX 280 0% 0.75% 5.5%
Dell Dimension 9200 0% 1.5% 8%
Dell OptiPlex 745 0% 1.5% 9%
Dell OptiPlex SX 280 0% 0% 10%
Dell OptiPlex 760 0% 1.55% 17%

Table VII
CPU UTILIZATION OF BOTH STUDENT AND ADMINISTRATIVE STAFF

MACHINES REVEALS THAT PROCESSING RESOURCES ARE ONLY
LIGHTLY TAXED. DATA WAS COLLECTED ONCE A SECOND FOR 11

MONTHS (STUDENTS) AND 1 MONTH (STAFF).

more representative of an enterprise computing environment.
Table VIII shows the most common workloads on admin-
istrative machines, excluding Windows services and virus
checks. The percentage of active time is calculated as the
cumulative time over one month that the process was run-
ning; the range of time captures the minimum and maximum
numbers over four computers. The workload data raises the
question of mismatched user needs and technology. There
is no reason why an entry level laptop or a Mac Mini
cannot perform the same basic tasks (document editing, web
browsing, PDF viewing) as a quad-core, 150-watt desktop.

Characterizing the utilization of computers has revealed
that there is a lot more waste than idle machines alone.
The baseline power draw of desktops, combined with low
use of system resources, means that there are energy-saving
opportunities even when PCs are actively used. Powernet’s
PC utilization data suggests that future green computing
research should tackle all PCs, not just idle ones.

B. Network Equipment

Section IV found that the networking infrastructure con-
sumes 3.5% of the building’s electricity monthly electricity.
This translates to a cost of $15,000 a year just for network-
ing. We also noted that switches consume a constant amount
of power due to their hardware design. If the network is
operating near capacity, then the 3.5% is energy spent well.
Otherwise, if we find that the network operates at, say, 10%
capacity even at peak, it means energy is wasted.

This prompts the questions of how much traffic is flowing
through the 60 or so switches in the building, and whether
smaller or fewer switches could more efficiently meet band-
width demands.



Process % of time active

Acrobat Professional 1% to 4%
Firefox 0.5% to 4%
Internet Explorer 0.3% to 2%
MS Excel 1% to 2%
Thunderbird 0.4% to 1.2%
MS Word 0.2% to 0.8%
Outlook 0.4%
Acrobat Reader 0.3%
Explorer 0.01% to 0.3%

Table VIII
THE MOST POPULAR WORKLOADS ON ADMINISTRATIVE COMPUTING

SYSTEMS ARE GENERAL OFFICE AND WEB APPLICATION. THESE
WORKLOADS IMPLY THAT A LAPTOP CAN BE A USED INSTEAD OF A

DESKTOP.
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Figure 2. CDF of traffic for seven switches over 6 months shows that
switches are operating well under capacity.

We begin by examining the traffic coming into one of
the four switches on the second floor of our building.
This is an HP Procurve switch with 96 1-gigabit active
ports, consuming 500 watts and serving 50+ people. Over
one week in March, bandwidth demand never exceeded
200 Mbps – an amount that could have been handled by
consolidating it to a single gigabit port and providing 8-port
switches (2 to 5 watts each) to users in individual offices.

To verify that this is not aberrant behavior, Figure 2 shows
the cumulative distribution of traffic for 7 building switches.
Note that the x-axis has a log scale. The number of ports
for different switches varies from 24 to 120 and the CDF
data was collected over 40 to 420-day periods.

Similarly to PCs, switches are highly underutilized.
For the equipment we measure, total network demand is
lower than 1000 Mbps 100% of the time. Network over-
provisioning is not a new concept or observation; it pro-
vides benefits, including higher throughput, lower loss, and
lower jitter. But when the average utilization is under one
hundredth of one percent, several questions are worth con-
sidering. Is the amount of over-provisioning unnecessarily
large? How can we take better advantage of the large amount
of bandwidth that today’s networks are ready to support?
Going forward, there are two ways to address the issue:

Device #1 #2 % diff

Optiplex 760 60W (9) 34W (24) 43%
Optiplex SX280 68W (12) 56W (8) 18%
Optiplex GX620 71W (8) 63W (13) 11%
Precision T3400 117W (17) 110W (10) 6%
HP 5400zl switch 467W (8) 463W (4) 0.01%

Table IX
AVERAGE POWER DRAW OF TWO DIFFERENT DEVICES WITH THE SAME

MODEL (STANDARD DEVIATION SHOWN IN PARENTHESES). TWO
DEVICES OF THE SAME MODEL CAN DIFFER BY AS MUCH AS 43%.

NETWORKING EQUIPMENT IS MORE UNIFORM THAN PCS.

consolidate equipment and make better purchasing decisions
in the future, or make use of the extra available bandwidth.

The story that network traffic tells is no different than
that of PC utilization – systems are heavily over-provisioned,
often with no regard of expected workloads, leading to large
energy wastes. Powernet’s contribution is in bringing such
utilization data to light and placing it in the context of green
computing.

VI. ASSUMPTIONS

The previous two sections revealed details about the
energy waste in an office computing infrastructure, while
Section II described some assumptions that have been made
in the past, due to lack of rich energy-efficiency datasets.
This section examines the validity of these assumptions in
the context of Powernet’s data. The hope is that future green
research will benefit from data and methodology studies like
this one and others [14].

A. Assumption 1: Devices of the same model or with the
same specifications have low variation in power draw.

Prior work has implicitly assumed that instances of the
same equipment model or specification have the same power
characteristics, simply because of the lack of better data.
Under this assumption, measurements taken from one or two
devices have been used to reason about other, unmonitored
pieces of equipment. Unfortunately, such methodology can
yield inaccurate results.

Powernet data reveals that some types of computing
systems can exhibit large variations even when comparing
two instances of the same device model. Table IX shows
five example devices – 4 Dell desktop models and 1 network
switch. The two Dell Optiplex 760 desktops have over 40%
difference in their average power draw. In contrast, the two
HP switches have almost identical power draw, as well as
very low standard deviation over time. In some cases, even
though the PCs appear to be the same on the surface, they
might have been upgraded with custom components, causing
a difference in power draw. Furthermore, while two devices
from the same type might have similar motherboards, power
supplies, and processors, they can differ in in the user
workloads they support, leading to different power profiles.
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Figure 3. Energy Star data is not representative of real-world PC power.
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Figure 4. Desktop diversity requires the measurement of a large sample of
the population. In this experiment, if only 5 desktops are used to estimate
the power of all 69, then the expected error is over 16%.

There is no single solution to error in estimating power,
when only partial measurements are available In the case of
desktops, it is not surprising that there is great variability, but
putting concrete numbers to it can help anticipate inaccura-
cies. Additionally, one could augment power measurements
with other data, such as PC utilization, to get more accurate
understanding of how equipment is used. In the cases when
variability is low (e.g. switches), data points from only one
or two devices can be treated as much more reliable.

B. Assumption 2: Sampling a few devices in a class provides
an accurate average measurement.

Figure 3, the Powernet curve, shows the wide distribution
of desktop power. It is worth considering what errors can be
expect if one were to sample only part of the PC population.

We use ground truth data from 69 desktops to show how
the expected error of average power draw changes if based
on random samples from the population. The average power
draw of the 69 desktops is 109 watts. We generate 1,000,000
random samples of size 5, 10, and 20, drawing from the lists
of 69 machines. Figure 4 shows the resulting histograms of
estimated average power. Samples of only 5 desktops can
have more than 16% error in estimating the mean power
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Figure 5. As the number of months of data increases, the standard deviation
of error in estimates decreases. Even if only one month of data is used over
16 desktop, the year approximation will be within 4% of the true value of
$1600.

draw. Increasing the sample size from 5 to 20 machines
cuts the error by more than a half.

The lesson is that when it comes to PCs, a small sample
is not desirable if trying to extrapolate to a large, hetero-
geneous set. Recently work [10] correctly brings attention
to the importance of complete device inventories in order
to understand how varied an environment is and targeting
measurement points accordingly.

C. Assumption 3: Short-term measurements accurately re-
flect long-term power draw

The Powernet datasets show that while the base load
of computing systems is consistently high, month-to-month
variations do exist. These changes result in slightly different
energy use throughout the month and year. For example, over
one year the monthly power draw average of one desktop
varied from 183W (min) to 293 (max), with 216-watt
average over the whole year. Another PC was consistently
between 247 and 257 watts. One question to tackle is ‘How
does the duration of power measurements affect a yearly
cost estimate for some set of devices?’

Our analysis uses data from 16 desktops; each PC was
monitored for one year, from May 2010 to April 2011. The
cumulative average power draw of the sixteen PCs is of
1524 watts ($1600 for the whole year, at $0.11 per kWh.)
Examining the monthly average power draw of each machine
reveals that no single month is representative of the whole
year. If we were to take one day or week or month data in
the hopes of estimating the yearly electricity cost, we should
expect to be off. But by how much?

Using a single day of data from the year-long trace
allows us to generate over 350 different estimates for the
yearly cost. Similarly, for one week or month of data, we
can compute multiple cost estimates. We can also repeat
the process using sliding windows with size of two to 11
months. Figure 5 summarizes the results. The x-axis shows



what duration of data was used for the estimate. The y-axis
shows the average and maximum error of the estimate as
percent of the real energy cost. In a worst case scenario,
measurements taken for less than a week can have error
of 15% or more. At the scale of a building IT systems,
such error in predicting costs can be thousands of dollars.
On the positive side, the analysis shows that collecting data
at the month timescale, as opposed to longer, could yield
data with an acceptable error. These results are in line with
concurrent work at Lawrence Berkeley National Labs [11]
who found that two months of data yields an acceptable
tradeoff between deployment effort and accuracy.

D. Assumption 4: Energy Star data is representative.

For a long time Energy Star was the only large openly
available computer power dataset and while this is changing,
it is worth to discuss why Energy Star data should be
used cautiously. It is composed entirely of devices that
have passed minimum energy efficiency requirements. It
does not reflect the distribution of devices sold and data is
self-reported. Furthermore, Energy Star measurements and
certification do not consider PCs under load – they only
deal with idle, sleep, and off states.

Figure 3 illustrates the divide between Energy Star data
and the real-world measurements collected by Powernet.
The differences are striking – close to 100% of the 4,000+
Energy Star desktops fall below the 100-watt cutoff. In
our measurements, that is the median PC power draw. The
Energy Star dataset has the benefit of a lot more data points
and real-world distributions might shift from building to
building. Using Energy Star in lieu of real measurements is
likely to underestimate energy costs in most contexts but can
be extremely useful in advocating lower-power machines.

VII. MEASURING COMPUTING POWER ACCURATELY

The prior section pointed out four common assumptions
in measuring computing power which can lead to inaccurate
results. The results from Powernet, however, represent only
one point in time. As computing continues to evolve, green
computing research will need to periodically re-measure
energy consumption and waste. This raises the follow-up
question: ‘Given limited time, money, and effort, how should
one measure computing system energy consumption in order
to minimize error? ’ This section presents methodology
considerations to guide future green computing research.

A. Step 1: Characterization

Not all device classes are equal: some require much more
effort to measure accurately than others. Table IX, for exam-
ple, showed a 43% variation in the power draw of Optiplex
760 PCs but a 0.01% variation in the power draw of HP
5400zl switches. An approximate ordering of the different
devices in terms of variability places desktops as the most
diverse, followed by servers, laptops, LCD monitors, and

lastly, switches. Rather than distribute measurement points
uniformly, one should measure the high variation device
classes more densely. But device classes change quickly:
Dell, for example, no longer sells Optiplex 760 PCs. Being
able to determine which device classes have significant
variation requires up-to-date, current measurements.

To understand where to measure, one first needs to know
which device classes are high variation and which are not.
This can be done quickly, as a series of point measurements
made over a day. For example, suppose that an enterprise has
a large number of a new Dell PC. One can randomly select
10 of these PCs and measure each of them booting. This
will provide a large dynamic range of power measurements
within the class as well as across the class. If the 10 show
significant differences, then they might need to be measured
densely. One can use the observed power draw distributions
and statistically compute what deployment of sensors will
lead to the lowest observed error.

These point measurements should use simple digital read-
outs (e.g., Watt’s Up or Kill-A-Watt meters) which a person
reads and writes down. Depending on a wireless mesh or
wired network ports is probably more trouble than it’s worth
(lack of connectivity, VLANs, etc.).

B. Step 2: Measurement

Once a short-term characterization study has provided
guidance on where to deploy sensors, they need to be de-
ployed for a sufficient duration. We were able to use custom
sensors and our own software to collect data over a wireless
mesh, but this technology is not commonly available. Our
experiences with Watt’s Up meters – coordination with IT
infrastructure, reconfiguration, failure etc. – was that they
are a poor choice for a very large, long-term deployment,
but are acceptable at smaller scale.

The results in Figure 5 showed that energy consumption,
especially for personal computing, changes significantly over
time. One should measure for at least a week, and preferably
for a month. After a month, expected error, even for high-
variation devices, drops to 4%.

Given the choice between breadth (number of devices
measured) and depth (length of measurement), greater
breadth generally leads to more accurate results. At the
extremes, it is better to gain a single point measurement
of every device than measure one device for a year.

One last knob to consider is the interval at which measure-
ments are taken. Wireless deployments often have limitations
to the amount of data the network can handle. Concurrent
work [11] found that 10-second intervals are a reasonable
choice, capturing power dynamics without overloading the
infrastructure. Our experiences showed that depending on
the task, different resolutions are desirable. For many practi-
cal uses – visualizing data, computing long-term estimates –
even 5-minute averages are useful. Higher-resolution data is
needed for correlating utilization metrics with power draw.
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Figure 6. Power data collected once a second reveals a misbehaving
PC. Earlier, 5-minute averages hid the anomaly. In certain use cases it is
beneficial to have high-resolution data.

In several cases, we found that Powernet’s 1-second data
can pinpoint misbehaving equipment. For example, Figure 6
shows the raw data trace for one desktop. Initial analysis was
using 5-minute averages and power draw appeared normal.
A second look of the original data uncovered an aberrant
behavior – a 30-watt spike once a minute – later discovered
to be due to a bug in the Linux wireless drivers.

While different deployments will have varying resources
and goals, experiences with Powernet teach us that having
high-resolution data can be valuable not only for energy
characterization but also for monitoring for unexpected
behavior.

C. Step 3: Extrapolation

The final step is to take the set of biased measurements
and extrapolate to whole system power. Our experiences
with Powernet have highlighted the need for data beyond
power and utilization measurements. If extrapolation is to be
successful, one also needs metadata in the form of equipment
inventories and descriptions. Surprisingly, such metadata is
not nearly as complete and readily available as we had
hoped. Rather, we had to resort to indirect sources such as
cross-correlating networked device registrations with active
IPs on the network.

In the future, green computing researchers should encour-
age IT personnel to keep updated and detailed records of
what equipment is added to a building.

VIII. CONCLUSION

Characterizing the energy use of enterprise computing
systems is the first step toward identifying opportunities for
improvement. Extensive, empirical data allow researchers
to better quantify the problems they are tackling and the
potential impact of their proposed solutions. Powernet has
provided such data and has shed light on some of the
assumptions that we make when faced with the lack of solid
measurements.

Despite our best attempts to cover as many computing
systems for as long as possible, the Powernet data remain
but a single study. While the exact breakdown of energy

use and waste might shift from building to building, the
overarching methodology and data analysis lessons remain.
Going forward, green computing research has not only a
reference dataset to use but also a blueprint for how to
characterize enterprise building power given limited time
and resources.
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