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Abstract—Understanding human mobility in an environment

can be approached in many forms, one of which is to recover

the underlying structure of user movement. In our work, we

show that we can use a network of binary proximity sensors

to detect paths between nodes and also extract highly popular

trajectories users take. We show that with sufficient amount of

these binary data, even with no prior knowledge of the location of

these sensors, we can capture a correlation between the detection

timestamps in the case where a physical path exists between

any two nodes. Our algorithm also generates characteristics

of the path, such as the distribution of transition times and

volume. We further show that with sampling techniques we

can estimate the underlying trajectories that generated the time

stamps. We have tested our algorithm on a simulator and two

sensor network deployments. We found that, despite the lack of

position information about the sensor nodes, with timestamps

alone our algorithm can accurately detect the trajectories and is

robust enough to use in a real-world office building.

I. INTRODUCTION

A network of binary proximity sensors has been shown to
successfully track one or multiple targets. In these networks,
the sensors report the time when they detect the mobile
targets in their vicinity and using a centralized or a distributed
algorithm estimate the current position of the target [1], [2],
[3], [4].

The focus of our work is to infer higher order patterns in
mobility in the network. Given the network, can we estimate
the most popular routes the users take? We are interested in
finding the mobility patterns, which we interchangeably call
mobility structure, that emerge over much larger time scales
(e.g., days or weeks) than what is typically considered in
traditional target tracking.

Understanding and characterizing the long-term movement
patterns has various applications. In the physical world, the
movement of agents is limited by physical or social con-
straints. We can discover the extent to which those constraints
influence the mobility at large. Such high level mobility pat-
terns are also useful in wildlife monitoring or traffic modeling
because they allow us to infer the salient flows in the network.
The learned mobility patterns can help in solving optimization
problems involving mobility, such as the layout of shopping
malls and road networks, and the emergency exit locations.

One of the challenges in inferring long-term mobility pat-
terns, or instances of trajectories in the short term as in

target tracking, is the localization of the sensor nodes. The
position of the mobile node is typically estimated with respect
to the known position of the proximity sensors. GPS might
not provide enough accuracy indoors and although there is
a vast body of work in node localization (e.g. [5], [6]), it
adds complexity to the software on the nodes. In this paper,
we develop an algorithm that allows us to infer the long-
term mobility patterns without the position information of the
binary proximity sensors.

Furthermore, we infer the long-term mobility patterns with
the additional constraint of unlabeled proximity sensor data. If
the timestamps reported by the sensors also have a label that
identifies the mobile agent, we can leverage the established
body of work in recovering mobility pattern from labeled
sensor data. Unfortunately, labeling the proximity timestamps
with the identity of the mobile agent introduces complexity in
the sensor network. The mobile agent would have to transmit
or disclose its identity so the sensors can label the timestamps.
Alternatively, the nodes can employ higher fidelity sensors
such as cameras and use computer vision to identify the mobile
agent and label the sensor data appropriately. In addition to the
technical complexity, such approaches to sensor data labeling
can also introduce privacy concerns.

We design an algorithm that can extract mobility structure
and infer the specific user trajectories from sensor data that
is not labeled. Our algorithm first detects link information
between sensors by capturing the pairwise correlation of
timestamps between nodes. It computes which pairs of nodes
are connected by a path with high probability. Given the link
information, the algorithm then recovers individual trajectories
from the data using a Markov chain Monte Carlo (MCMC)
sampling method. One of the most attractive features of our
method is that the algorithm does not rely on any specific
type of data. It can use timestamp data from any source,
including data collections not initially designed to deliver
mobility information, such as many legacy security systems.

With this approach, we have found that we can accurately
extract mobility structure despite the lack of labels by an-
alyzing a large number of observations. Our probabilistic
framework allows us to extract detailed information about
the mobility from previously unusable data. Despite the lack
of any prior knowledge about the deployment setup of the



sensor network or the node positions, we can recover the
mobility structure by capturing the trajectories at a high level
of accuracy.

We validate the performance of our algorithm by using
simulations and two sensor network deployments. We found
that the likely trajectories and mobility patterns suggested by
our algorithm matches the ground truth in the simulator and
the mobility patterns we observe in our deployments.

Our contributions are:
• We design an algorithm to infer mobility patterns using

a network of binary proximity sensors. The algorithm
does not require the position of the sensors and works
on unlabeled proximity sensor data.

• We show that the algorithm accurately recovers the
mobility patterns using a variety of scenarios in the
simulation.

• We deploy two sensor networks in office buildings and
demonstrate that the algorithm is robust enough to infer
the mobility patterns even in noisy real-world settings.

II. RELATED WORK

Mobility patterns can be represented using geometric infor-
mation, for example using clusters of free-form trajectories [7],
[8]. Topological methods instead try to recover the topology
of an embedding space [9], [10]. The latter assumes stronger
constraints on the movement of agents, but can provide us with
a higher level understanding on the structure of movements in
the environment. While our method of finding links between
nodes by correlation implicitly assumes geometric information
(distances between nodes), our output in our link detection
stage is purely topological: a graph encoding the physical
connectivity between nodes.

Finding correspondence between sensors with limited infor-
mation have been approached in various ways. Makris et al.,
[11], proposed a method to find connectivity between camera
nodes by observing the correlation of event detections at each
node. They define exit/entry zones in a field of view of each
camera and then processes the information observed in the
network to find connectivity between these zones. Their work
provides an intuitive setup on finding correlation between
nodes using the time stamps of observations. However, the
use of an empirical threshold for accepting links can induce
problems when the noise level is unpredictable. They also
focus on capturing the correlation on the links independently,
and do not extend their work in providing inference on the
overall structure.

Non-parametric approaches have also been considered by
Tieu et al., [12], where estimates are based on statistical
dependence between camera sensor nodes. Statistical depen-
dence is characterized by measures such as the internode
transition times and the color histogram of objects. Tieu
et al., show promising results on both simulated and real
road networks. However, their algorithm depends on color
histograms providing a weak labeling of the events.

Marinakis et al. have worked extensively on the problem of
recovering topological information using binary sensor data

[3], [4]. Their approach is to iteratively update a Markov net-
work with trajectories sampled using the transition probabili-
ties of the Markov model. A global iteration process optimizes
parameters used in the Markov models while minimizing the
complexity of the network model.

Although the basic setup is similar, the goal and approach is
different from our work. Marinakis et al. focuses on recovering
the underlying mobile topology of a sensor network, whereas
our work focuses on estimating the actual trajectories the
users take in the environment. Unlike Marinakis, we separate
our algorithm into two steps where we first recover the
link probabilities between sensors and use this information
to assign trajectories on our time stamped data. We show
that capturing characteristics of a link and exploiting this
information frees us from having unnecessary assumptions
about the number of users or a specific user behavior which
is implied in Marinakis’s work.

There is also a large field of work on target tracking
using binary sensors, in which an accurate estimation of a
user location is challenged by sparse sensor deployments and
high mobility of the users [1], [2]. Problems with identity
management also becomes a problem when multiple users are
in the network [13], [14]. However, we emphasize that our
work differs from general tracking problems in the sense that
the objectives are different. We aim to extract the underlying
mobility patterns of an environment by identifying the major
user trajectories, while target tracking focuses on localizing
a user’s position by following and keeping track of a user’s
trajectory.

III. PROBLEM OVERVIEW

We intend to understand the mobility of our environment
given the sequence of timestamps at each sensor. A timestamp
at a sensor indicates the time a user passed by the sensor.
Thus our input is a 2-tuple, (t, n), where t is the time and n

is the sensor node ID. With these input observations our ob-
jective is to identify the actual trajectories that generated these
timestamps and assign a trajectory ID for each timestamp. We
follow a two step procedure to accomplish this.

The first step is to identify links and its weights between
nodes. The existence of a link indicates that a physical path
exists between two nodes such that a user can walk between
the nodes. The weight of a link, wij , is a multidimensional
vector that expresses the characteristics of the physical path
between the two nodes. Specifically, w = (µ, σ2, v, π). µ is
the average transition time users take to move between the two
nodes, and σ2 is the variance of the transition times. v is the
volume: the number of times any user pass between the two
nodes. π are the coefficients of the link signal and noise signal
calculated by our mixture model. This is described in detail
in Sec. IV. We measure the likelihood of the events given that
a link actually exists, and show that with proper priors the
actual probability of the link’s existence can be calculated.

Our second step is to fit trajectories to our observed times-
tamps, i.e., to predict the underlying user trajectories that
generated the timestamps at each sensor. We extend our input



2-tuple to a 3-tuple, (t, n, s), where s is the trajectory ID.
For example, if we predict a user moved from node 1, 2,
and 4 at times 10, 13, 18 respectively, we can assign this
trajectory with an ID, i, and include (10,1,i), (13,2,i), and
(18,4,i) in our 3-tuple. One benefit of our mixture model in
the previous step is that it also provides the probability that
a pair of timestamps between two sensors was generated by
the same user trajectory. Thus using the previous step, we can
measure the likelihood of a specific trajectory assignment on
the timestamp observations. Due to the large combination of
trajectory assignments possible, we use Markov Chain Monte
Carlo (MCMC) sampling to search the optimal trajectory
assignment on our observation.

IV. LINK DETECTION

The first step in understanding the mobility of our environ-
ment is to find the correlation, if any, between the timestamps
generated on a pair of nodes. For each node we have a signal
corresponding to the time stamps of users passing by the
specific node. Then, for each pair of nodes we generate a
cross correlation histogram of the timestamp signals collected
at each node. This histogram corresponds to the relative time
difference of timestamp pairs between the two nodes. If a
link exists, we can expect to find a correlated signal with an
underlying distribution given by the transition times of mobile
users passing by the two nodes.

A. Capturing correlation using a mixture model

Fig. 1a shows a cross correlated histogram of the timestamps
between a sensor node pair. It can be seen there is a strong
correlation around 5 seconds and another at 13. Our objective
is to be able to capture these two correlations properly. Before
we aim to do so we apply a simple window smoothing filter
to smooth the cross correlated signal.

A correlation of timestamps is generally composed of two
signals. One is the actual timestamp pairs that are generated by
a user moving by the two nodes, which we from now on will
refer to as link signals. The other is the noise signal, caused
by a pairing of two timestamps on different user trajectories.
For example in our correlation in Fig. 1a, a user A can pass by
node 1 and 5 seconds later a user B can coincidently pass by
node 2. The timestamp pair of these two events is accounted
as noise in the histogram and should therefore be separated
from the peaked link signal at 5 seconds. The level of noise
in the correlated timestamps is dependent on the amount of
simultaneous users in the environment. We show the effect of
the noise level on the performance of our algorithm in Sec.
VI.

We assume the transition time distributions to be normally
distributed [11] and we use a variation of the well know
Gaussian mixture model [15] to capture this correlation. For
cases where the sensors are set far apart the transition time dis-
tribution has a longer tail and can be fitted with a more general
Gamma distribution [12]. However, we find from our sensor
deployment in two different office building settings (Sec. VI),

that the Gaussian distribution is sufficient in capturing the
correlation properly.

A naive fitting of the Gaussian mixture model, would easily
fail in cases of high noise levels. We thus modify the model
by fitting a combination of Gaussian distributions, N (·), to
capture the link signals and a uniform distribution, U(·), to
capture the noise signal. Eq. 1 shows the formulation of our
model and we follow the standard method of fitting a mixture
model by using Expectation Maximization (EM) to iteratively
update the objective function and the parameters.

P (τ | µ, σ2
, π) =

N�

i=1

πiN (τ | µi, σ
2
i ) + πN+1U(τ) (1)

Here, the objective functions shows N Gaussian distribu-
tions corresponding to each link signal in the histogram, and
the uniform distribution that captures the noise. τ corresponds
to the time difference of a timestamp pair between two nodes,
µi and σ2

i
corresponds to the mean and variance in transition

time of the i’th link signal. πi, i = 1, ..., N + 1 are the
coefficients of the link signals and the noise signal. These
coefficients define how strong a link signal is in comparison
to the noise signal. We can also estimate the volume v of a link
signal, i.e., the number of times users pass by these two nodes,
by integrating the link signal. We can get a better estimation
of the volume by trajectory fitting which is described later in
detail (Sec. V).

Fig. 1b shows the result of our algorithm capturing two
link signals and the noise signal correctly. One benefit of
our model is that it can capture multi-modal distribution of
a link. This is extremely useful in scenarios such as a city
street deployment, where a clear bimodal distribution on the
roads exist: pedestrians and cars. In general, for deployments
inside a building, we only require one link signal to capture the
transition times between two nodes. We continue to apply our
mixture model on all pairs of nodes and find any correlation
between them if they exist. It is important to note that a link
does not necessarily indicate a direct path between the two
nodes. Nodes A and C can be linked together by a node B in
between, in which case our mixture model will still capture a
correlation between A and C if a lot of users follow a trajectory
A-B-C. More detail on how this impacts the accuracy of our
trajectory assignments is discussed in Sec. V.

B. Link confidence

Although we now have a method to extract correlation
between nodes, we still require a metric to evaluate our confi-
dence on the link. One metric can be calculated by analyzing
the strength of the link and noise signals. For example, if
there is a link that only a few people traverse compared to
the overall noise level, we would expect the peaks to be
small in our cross correlated histograms. We need a method
to evaluate the posterior probability of a link’s existence given
such observations. We apply Bayesian model comparison to
compare our observations on two models: a model with a link
signal ML and a model without one MNL. Here ML refers to
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Fig. 1: The histogram of cross correlated timestamps between two nodes before (a), and after filtering (b). (b) shows the
mixture model fit on top of the cross correlated histogram. The green line corresponds to the individual link and noise signals,
and the red line corresponds to the combined signal. The mixture model gives the probability that a timestamp with τ (=6)
second time difference comes from a user trajectory (c).

a link model where the distribution characteristics are specific
to the one captured by our mixture model. Eq. (2) shows the
Bayes factor between two models, where O is the total set of
timestamp pairs between the two nodes.

K =
P (O|ML)

P (O|MNL)
=

�N

i=1 P (τi|ML)�N

i=1 P (τi|MNL)
(2)

P (O|MNL) can be calculated by the uniform distribution
and P (O|ML) by the combined uniform and gaussian distri-
bution fitted by our model.

The Bayes Factor K gives us a measure on how strong
one model is over the other, and the higher this value is the
more strongly the algorithm favors a model with a link over
a model with no link. This metric is used later to evaluate
the performance of our algorithm. We show in Sec. VI by
introducing priors on ML and MNL we can also calculate
the posterior probabilities of a link existence between two
nodes. However, we have refrained from emphasizing too
much on this because introducing these priors requires some
prior knowledge of the network, and the overall posterior
would be sensitive to these priors. In an event where we do
have prior knowledge on our network, it is perfectly fine to
multiply the additional prior ratio to give us an informative
probabilistic score of a link.

C. Probability measure for trajectory fitting

A benefit of our mixture model is that it generates a
method to calculate the actual probability a timestamp pair is
associated with a link signal as opposed to a noise signal. Fig.
1c shows us how we can calculate the probability a timestamp
pair with time difference 6 seconds is part of a link signal,
i.e., generated by a user moving pass these two nodes. The
probability will simply be the ratio of the link signal over
the combined signal at τ=6 seconds. Thus the probability
a timestamp pair at node i and j, with time difference τ ,
is generated by a specific user trajectory can generally be
expressed as shown in Eq. (3).
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(d) Split

Fig. 2: Two trajectories generated by users in a 4 node network
(a), and the ground truth trajectory assignment (b). (c) shows
a switch move made on timestamp D, and (d) shows a split
move made on time stamp C.

pij(τ) =
Nij(τ)

Nij(τ) + Uij(τ)
(3)

V. TRAJECTORY FITTING

The idea of fitting trajectories on a sequence of observa-
tions has been discussed previously in literature [16], [4].
We propose a similar method extending on the probability
measures found in our previous step (Sec. IV). Assuming
we have N timestamps, we have a sequence of trajectory
assignments s = {s1, s2, ..., sN} and a sequence of node
assignments n = {n1, n2, ..., nN} for the sequence of times-
tamps t = {t1, t2, ..., tN}. For example, the assignment in Fig.
2b will have a trajectory assignment of {‘1’, ‘1’, ‘1’, ‘1’, ‘2’,
‘2’}, and a node assignment of {1, 2, 3, 4, 3, 1} where ‘1’



is the first trajectory moving through nodes 1-2-3-4 and ‘2’ is
the second trajectory moving through nodes 3-1.

We defined the probability that a pair of timestamps at
node i, j is part of a link signal, pij , in Eq. (3). We can
find the probability of a trajectory assignment by multiplying
the probability that it is a link signal, pij , if timestamps are
assigned the same trajectory, and multiplying the probability
that it is a noise signal, 1− pij , if timestamps are assigned a
different trajectory. Eq. (4) shows the probability of a certain
trajectory assignment on N timestamps.

P (s1, s2, ..., sN ) =
N�

i=1

N�

j=1,j �=i

Q(si, sj) (4)

where,

Q(si, sj) =






pninj , if si = sj

1− pninj , otherwise

Here we are implying independence on the link probabilities
over multiple trajectories. Although this is not necessarily true,
we show that this simple model is capable of extracting trajec-
tories at a high level of accuracy. Details on the performance
are shown in the experiment section (Sec. VI).

A. Sampling trajectory assignments

The possible number of trajectories assignments is too large
for us to directly search for the optimal trajectory assignment.
We use a Markov Chain Monte Carlo(MCMC) sampling
method to sample trajectory assignments according to the
underlying distribution. We initially start with each timestamp
having its own trajectory ID. Then at each sample step we
randomly select a timestamp and define two possible moves
that alter from the current trajectory assignment: switch and
split.

A switch move is when a trajectory assignment si changes
to either its previous or next trajectory. For example, in Fig. 2c
the trajectory assignment, sD, is switched from trajectory ‘1’
to trajectory ‘2’. A split move is when a trajectory is split into
two or three trajectories. For example, Fig. 2d shows the 1st
trajectory split into two trajectories, where the timestamp D is
assigned a new independent trajectory. After this step sA =
sB = sC =‘1’, sE = sF =‘2’, and sD =‘3’. A trajectory
would split into 3 trajectories if the selected timestamp was
in the middle of a trajectory.

For each new trajectory assignment, P (s�1, s
�
2, ..., s

�
M
), we

use the Metropolis-Hastings algorithm [17], a method of
MCMC sampling, and accept the sample according to an
acceptance probability α.

α = min

�
1,

P (s�1, s
�
2, ..., s

�
M
)

P (s1, s2, ..., sM )

�
(5)

The calculation for Eq. (5) can be greatly simplified since
the components Q(si, sj) only change where a trajectory
assignment has changed. For example, in case of the switch
move in Fig. 2c, the probability ratio in Eq. (5) simplifies to

(1−p34)p43

p34(1−p43)
, since all other terms not related with timestamp C,

D and E directly, will cancel out.
We keep track of the trajectory assignment that has the max-

imum assignment likelihood, PMAX(s1, s2, ..., sN ), and stop
the sampling process if there is no change in the maximum
trajectory assignment after a significant number of sample
steps. This stopping criteria will depend on the size of our
time sequence. In general, we find that 50,000 steps with
no change is sufficient to find a near optimal assignment
on a sequence of 10,000 timestamps. When the number of
timestamps exceeds this, we divide the sequence into multiple
sets and fit trajectories within each set separately. The fact that
our algorithm is easily parallelized is a significant advantage
for computational reasons. The fact that the algorithm can be
divided into smaller sets is also beneficial in that the search
for an optimal trajectory assignment can easily stop at a local
minimum when the number of timestamps get large, and we
are more likely to find a near optimal solution if the size of a
set is smaller.

B. Increasing accuracy

We show later in our evaluation section that the algorithm
performs at a surprising level of accuracy in estimating the
trajectories, considering the lack of information we have for
our inputs. We nonetheless discuss here, some of the reasons
a false trajectory assignment can occur, and provide methods
to overcome such faults.

False trajectory assignment occurs when there are a large
number of simultaneous users in the environment. The
clumped sequence of timestamp data can confuse the al-
gorithm from choosing the optimal trajectory assignment.
Moreover, since multiple users could be moving back to back
on a similar trajectory, it might be insufficient to simply check
the previous and next trajectory for our switch move. By
exploring multiple trajectory candidates ahead and after the
current selected trajectory it is more likely to search and
find the optimal trajectory assignments on the timestamps.
However, there is a tradeoff for this exploration in that the
convergence time of our sampling procedure will increase.

Another scenario of false trajectory assignment can occur
when a trajectory is assigned to two nodes that have an evident
link signal, but is not necessary a direct link. For example
nodes A and B can have a link but this does not necessarily
mean there is a direct physical path connecting the two. Nodes
A and B can be linked by another node C in between and not
be connected directly, but still have a strong link if a lot of
the users follow the trajectory A-B-C.

To overcome this situation, we can backtrack our fitted
trajectories and eliminate any observations that are indirect
links and redo our link detection. For example, for every
trajectory A-B-C we fit, we can eliminate the observations
between nodes A and C, and recalculate the signal and noise
levels, π, from our mixture model. This updated probability
measure will give us a more accurate estimate of when two
timestamps can be directly linked as a sequence in a trajectory.
We can update the trajectory assignments using these new set



of parameters, and the accuracy can be increased by iteratively
repeating this step, which is sacrificed by the additional
computation time.

VI. EVALUATION

A. Evaluation Metric

In this section, we describe the metrics used to assess
the performance of our algorithm. Since our algorithm is
composed of two steps, we provide two metrics that evaluates
the success at each step respectively.

1) Graph link detection: The purpose of using our mixture
model on the cross correlated timestamps is two fold: to
discover links between nodes, if they exist, along with its
corresponding weights, and to find the probability that any
pair of timestamps between two nodes are caused by a certain
user trajectory. The later can be evaluated by assessing the
quality of trajectory fitting. First, we focus on how well the
algorithm can identify existing links, and predict the average
transition time users take to traverse between two nodes.

The Bayes Factor, K = P (O|ML)
P (O|MNL) , described in Sec. IV is

a confidence indicator on the existence of a link between two
nodes. In general, if a link does indeed exist one would expect
the algorithm to assign a higher K value and thus weigh more
towards the model with a link, ML. We calculate the average
K values over all the direct links on the ground truth graph
to assess the algorithm’s confidence towards predicting links
where they do indeed exist.

Our evaluation metric is geared towards avoiding any re-
quirement of prior knowledge on the environment, but we can
calculate the probability ratio on the existence of a link if we
have prior knowledge on the ratio between the models. Since
K is the likelihood ratio of our observations on the model
with a link, ML, and without, MNL, we can estimate the
posterior ratios of these two models if we have knowledge on
the model priors.

P (ML|O)

P (MNL|O)
= K · P (ML)

P (MNL)
(6)

The other metric for link detection is how accurately the
algorithm detects the average transition times between nodes.
To quantify this accuracy, we measure the mean squared error
between the actual average transition time of users and the
predicted one from our mixture model.

2) Trajectory fitting: We can assess the quality of our
trajectories by identifying how many of the ground truth
trajectories were correctly assigned by the algorithm. We
can also weight the trajectories and give partial credits to a
trajectory assignment by counting the overlap. For example, if
2/3 of the trajectory was properly assigned, the score would be
2/3 for that trajectory. Assuming N ground truth trajectories,
a naive measure could be the following:

Snaive =
1

N

N�

i=1

max
j

L(sfit
j

∩ si)

L(si)
(7)

Here, si is the i’th ground truth trajectory, sfit
j

is the j’th
fitted trajectory from our algorithm, and L(·) is the length
of a trajectory. We retrieve the j’th fitted trajectory that has
most overlap on the i’th ground truth trajectory since the
algorithm can assign multiple trajectories on a single ground
truth trajectory.

However, we see that this measure gives a perfect score
on an assignment that fits a single trajectory to all the
observations. Thus, we have a score that penalizes trajectory
assignments that are longer.

Straj =
1

N

N�

i=1

max
j

L(sfit
j

∩ si)

max(L(sfit
j

),L(si))
(8)

B. Simulation Experiments

To assess the performance of our algorithm on ground
truth data, we generated random planar graphs and collected
timestamps at each node when a simulated user passes near
the node. A user follows a modified random waypoint mobility
model on the generated planar graph. We restrict the naive
random waypoint model by not allowing agents to revisit its
previous node by turning around. This is to prevent unlikely
mobile behavior where a user can move back and forth in
a corridor. Different users move at different speeds within a
fixed range. A user continuously moves on the graph passing
on average 3 to 4 nodes before pausing to indicate a single
trajectory. After a pause of random length, the user begins
another trajectory by randomly selecting a new node on the
graph. The parameters used in the simulator are the number of
nodes in the graph (N ), the number of simultaneous users in
the graph (P ) and the total number of simulated timestamps
(T ). We evaluate the dependency of these parameters on our
algorithm in the following sections.

1) Number of simulated timestamps: Fig. 3 shows how
the performance metrics change depending on the number of
timestamps input in our algorithm. Fig. 3a shows the average
K values for different number of timestamps generated. Since
the Bayes Factor is the likelihood ratio of all the observations
on a link model, ML, to a no link model, MNL, the more
observations there are that fit the link model the greater the
Bayes Factor will be. We see also in Fig. 3b that the more
timestamps we have the better our algorithm becomes at
detecting links. We can also see that only a small number
of timestamps is required to achieve a very high accuracy in
detecting the transition times of a link. On average, we require
300 timestamp events per node to achieve a high quality
estimation for µ. We also assess the trajectory assignment
problem by varying the number of timestamps. Fig. 3c shows
we only require a few timestamps to quickly achieve a near
optimal score for trajectory fitting. This result demonstrates
that we do not need a large number of data to provide high
quality mobility inference. We later show in the results from
the real deployments that a collection over a 2-week period in
a normal office building environment is enough for accurate
trajectory assignment.
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Fig. 3: Algorithm performance with different the number of timestamps and number of nodes
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Fig. 4: Algorithm performance with different number of simultaneous users

2) Number of nodes: Fig. 3 also shows the evaluation of
our metric with different number of nodes in the network. We
can, in general, see that the number of required timestamps
increases for an accurate estimation, but the number of times-
tamps required per node is about the same. As long as there
is sufficient amount of data between two nodes so that we can
run the mixture model on a cross correlated timestamp data
the algorithm performs well.

3) Number of simultaneous users: To understand the impact
of the number of simultaneous users on link detection, we do
a simulation on a 10 node network. We can expect the quality
of link detection to drop as the level of noise will increase with
more simultaneous users. Fig. 4 shows the result. We can see
that the number of simultaneous users does not degrade link
detection performance, and even with 20 simultaneous users in
a 10 node network the link detection algorithm performs well,
showing high K values and small MSE measures in µ. The
number of simultaneous users, however, can have an effect
in trajectory fitting algorithm since there are more choices of
time stamps to choose from that have equally good fits. Fig.
4c shows that if there is less than one user for every two nodes
in the network, we can achieve a trajectory estimation score
of 0.8 and higher. This user density is much higher than a
normal office environment, and we can add additional sensors
if the building has a high user density.

C. Deployment Experiments

In this section, we describe the setup of our sensor network
deployments in two office buildings and discuss the results.

1) Hardware: We modified the TelosB [18] nodes by
adding a low power Panasonic AMN41121 Passive Infrared
(PIR) sensor to detect motion events. These sensors were
further modified to restrict their field of view to a few degrees
by using a tube with a non reflective coating. We mounted
the sensors at approximately waist height to capture motion
events when people walked past the PIR sensors. Since PIR
sensors are more sensitive to objects moving across their field
of view, we placed the sensors where people would more likely
move perpendicular to the field of view of the sensor. These
sensor motes were powered by a pair of high capacity lithium
AA batteries. By combining a passive low power sensor, high
capacity batteries, and the appropriate software, we were able
to run our experiments for weeks at a time before having to
replace the batteries.

2) Software: We wrote all of our software on the
TinyOS [19] operating system. Our decision to use TinyOS
was primarily due to the availability of a robust and low power
networking stack. The motes use the CTP routing protocol
[20] to send the sensor readings to the sink. We need accurate
timestamps for the motion events, so we use the FTSP [21]
time synchronization protocol to synchronize the times on our
motes so that the timing error between the devices are kept
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Fig. 5: Deployment in Clark building with discovered top trajectories
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Fig. 6: Deployment in Gates building with discovered top trajectories

within a few milliseconds. Lastly, we use BoX-MAC [22], a
low power MAC for TinyOS. BoX-MAC puts the motes to
sleep whenever there is no data transmission or reception so
our devices predominately operate in an extremely low power
sleep mode unless either a motion event is detected, or 200ms
has elapsed since the mote was last awake. This combination
of software allows the motes to run for around 4 weeks without
changing the battery.

3) Deployments: Our first deployment was at Clark build-
ing where we mounted the nodes along the hallway and
common area leading to the cubicles (Fig. 5). Our second
deployment was at the B wing of the third floor of Gates
building (Fig. 6). In this deployment, we mounted the nodes
along the hallways and common areas. We instrumented all
the entrances and exits from the deployment area so that
we capture all the ingress and egress trajectories. These two
deployments cover different hallway configuration and provide
diverse test cases for our algorithm. We found that a two week
period of data gathered on these networks were sufficient to
generate the top trajectories used within the buildings. For the
Clark building deployment we gathered a total of 7225 time
stamps over 8 nodes during a period of 10 days. For the Gates
building deployment we collected a total of 20969 time stamps
over 12 nodes during a period of 14 days.

4) Network Performance: The performance of the network
at Clark and Gates was similar so we only provide a summary
of network performance for Clark. The network at Clark
achieved an average delivery ratio of 91%, that is 91% of
the packets sent by the sensor nodes were received by the
sink and made available to the mobility inferencing algorithm.
This delivery ratio is consistent with previously reported CTP
results when it is run with a low power MAC. Because the
mobility inferencing algorithm is robust to packet losses, we
can still recover the trajectories reliably. The average path
length was 1.47 hops.

5) Results from the Clark deployment: Results in Fig.
5 show the mobility structure recovered by overlaying the
top trajectories fitted by our algorithm. Nodes 1 and 8 are
the main entrance of this building floor and we can see
the main trajectories start or end at these nodes. Each of
these links between sensors are weighted with parameters
w = (µ, σ2, v, π) providing the characteristics of each link.
Each link is a directed link, and we can see that the algorithm
properly detects the one way exits at node 2 and 7 (one can
open the door at these exits only from inside the building), by
only being able to find trajectories pointing outwards at these
nodes.

6) Results from the Gates deployment: We show a slightly
more complicated deployment in Fig. 6 where the main en-
trance/exit is at node 12, and there are back door entrance/exit
at node 6 and 5. Sensor node 9 is in front of an opening users
can traverse to get to the other side of the floor. We can see
that the algorithm properly captures all the movement through
this opening. The absence of trajectories from 10 and 9 can
be explained by users moving through another opening left to
node 9.

To evaluate the accuracy of our algorithm in a real office
environment, we generated ground truth trajectories at a time
when no one else was on the building floor. Three users moved
inside our deployment simultaneously following a sequence
of 20 predefined trajectories. These trajectories were 2-10
nodes in length. At the end of a trajectory, the user would
pause for approximately 10 seconds before starting a new
trajectory. We later applied our trajectory fitting algorithm and
measured how many of these trajectories the algorithm was
capable of detecting. We looked into the specific time when
we conducted our experiment within the 2 week period and
compared the trajectories extracted from our algorithm to the
actual trajectories the users took.

The main focus of this experiment was to evaluate the tra-



jectory fitting part of our algorithm, and to asses the accuracy
of fitting trajectories once the link and average transition times
were learned over some period of time, which was 2 weeks in
our setup. Following our metric discussed above we obtained a
trajectory score of Straj = 0.87. This shows that the algorithm
was accurate in trajectory fitting and is consistent with the
results from the simulations.

VII. CONCLUSION

We have shown that a large amount of information can be
extracted from extremely simple, unlabeled data. By analyzing
the correlation between sensor inputs, we can find not only
whether nodes are connected, but also information about the
transition time distribution, volume and level of noise. We
further use this to assign each timestamp with a trajectory
number and predict highly popular trajectories in the environ-
ment. We show from our simulation results that our algorithm
requires only a small amount of data to accurately predict
the trajectories. Moreover, the fact that our algorithm can be
easily parallelized benefits us with working on any additional
data we can accumulate from the sensors. We also showed
that the algorithm correctly predicts the trajectories in real
deployments with noisy sensor readings and multiple people
traversing the set of sensors.

In the future, we would like to explore the benefits of using
weakly labeled data in our framework, and see how a few
instances of labeled trajectories can increase our inference
on the mobility patterns. Moreover, we aim to extend our
framework to handle higher order probability models when
fitting trajectories on the timestamps.
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