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ABSTRACT
Multihop wireless networks, such as sensor-, ad hoc- and
mesh-networks, although different share some common char-
acteristics. All these networks exhibit link dynamics. Pro-
tocols designed for these wireless networks must overcome
the challenge of link dynamics and the resulting churn in
network topology. Due to structural and topological sim-
ilarities, protocols developed for one class of wireless net-
work should also be applicable in the other classes. How-
ever, network-layer protocols are usually developed for and
tested in only one class of wireless network due to the lack
of a platform that allows testing of protocols across different
classes of networks. As a result, we unnecessarily constrain
the range of settings and scenarios in which we test network
protocols.

In this paper, we present TinyWifi, a platform for exe-
cuting native sensornet protocols on Linux-driven wireless
devices. TinyWifi builds on nesC code base that abstracts
from TinyOS and enables the execution of nesC-based pro-
tocols in Linux. Using this abstraction, we expand the ap-
plicability and means of protocol execution from one class
of wireless network to another without re-implementation.
We demonstrate the generality of TinyWifi by evaluating
four well-established protocols on IEEE 802.11 and 802.15.4
based testbeds using a single implementation.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Network operating systems; C.2.2 [Computer-
Communication Networks]: Network Protocols—Rout-
ing protocols

General Terms
Design, Experimentation, Measurement, Performance

Keywords
TinyOS, Linux Nodes, Wireless Mesh Networks, Network
Protocols, Protocol Evaluation
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1. INTRODUCTION
Sensor-, ad hoc-, and mesh-nets, represent vastly differ-

ent classes of wireless networks. They not only use different
types of radios and link layers but also OS, hardware plat-
form, programming/runtime environment, and application
scenarios. While different, they also share some commonali-
ties: (1) dynamic and bursty links due to radio interference
and other physical influences, (2) use of multihop protocols
to reach nodes not within radio range, (3) the intended use
cases demand a reliable and scalable communication infras-
tructure, and (4) they are self-organizing in arbitrary and
temporary network topologies.

These similarities lead to an important question: How well
can the algorithmic concepts, proven methods, and proto-
cols from one class of wireless network be adapted to the
other classes of wireless networks? In general, research ef-
forts, such as on link estimation [7, 8], routing [18, 19] and
addressing [3,8], explore the feasibility of these protocols in
one class of networks and implicitly assume their applica-
bility in the other, based on the above mentioned similar-
ities. This assumption is rarely validated due to the lack
of a common development platform that allows us to test
the protocols across the vastly different classes of wireless
networks.

To understand the performance of the protocols and their
applicability across multiple wireless network classes, a com-
mon programming environment and a runtime platform is
essential. It is well understood that incompatible applica-
tion requirements and unequal resource constraints make
for a significant diversity among these different classes of
networks. However, this diversity, in most cases, only de-
mands appropriate adaptations in operational parameters
of the underlying protocols while the core mechanisms still
remain the same [2, 7, 21]. For example, to account for the
underlying resource availability in different networks, rout-
ing protocol configurations may only need to adjust param-
eters such as routing table sizes and the frequency of routing
updates. Nonetheless, the metrics used to select a next hop
and establish routing paths - the core and the most complex
mechanisms of a routing protocol mechanism - remain the
same: ETX (expected transmission count) [5] is the most
prevalent routing and link metric both in sensornets and
meshnets [21]. Moreover, a common development platform
will help determining the impact of lower layer technologies,
such as medium access, coding, and modulation schemes,
which are different in IEEE 802.11 and 802.15.4 standards,
on the performance of these core protocol mechanisms.
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As a first step towards such a platform, we introduce Tiny-
Wifi, a TinyOS platform supporting Linux driven devices
and thereby the IEEE 802.11 based Wi-Fi standard. The
utility of TinyWifi is twofold: (1) It is a runtime platform
that allows direct execution of protocol libraries in three dif-
ferent network classes. (2) It makes the very rich and mature
protocol repository of TinyOS available for broader wireless
research. TinyWifi supports a wide variety of Linux kernel
derivatives representing all major Linux distributions such
as OpenWRT, Debian, Slackware and Ubuntu. We (and a
few other research groups) are using TinyWifi1 to run nesC
protocols in meshnets.

We evaluate the correctness of our TinyWifi implementa-
tion by comparing two different implementations of the Col-
lection Tree Protocol (CTP) [12], one in nesC and the other
in Click [15]. Our comparison proves the equality of these
two implementations and demonstrates the utility of Tiny-
Wifi as a customary wireless research and runtime platform.
We then evaluate three routing protocols - BVR [8], S4 [18],
PAD [3] - both in sensornets and meshnets and analyze the
respective performance. During our evaluation on an IEEE
802.11 based testbed, we observed that TinyWifi is particu-
lary useful for (1) evaluating prototypes, (2) fine-tuning pro-
tocol parameters and (3) establishing multiple performance
metrics in different classes of wireless networks without re-
implementation.

The rest of this paper is structured as follows: We briefly
discuss the overall design and key features of TinyWifi in
Section 2. The detailed architecture is discussed in Section 3.
Section 4 presents evaluation results. We discuss limitations
in Section 5 and related work in Section 6 before we conclude
with Section 7.

2. PRELIMINARIES
We first provide necessary background by briefly introduc-

ing TinyOS. Then, we present the overall design of TinyWifi.
Finally, we highlight the key features of our TinyWifi imple-
mentation.

2.1 TinyOS
TinyOS is the de facto standard operating system for sen-

sornets. It has an event driven architecture which enables
development of energy-efficient sensornet applications. It
has been in active research and development over the past
decade and its novel protocol mechanisms, such as in link es-
timation, routing and addressing, are developed and actively
used worldwide. Applications and protocols in TinyOS are
written in nesC [10], a modular extension of the C program-
ming language specifically designed to support the execu-
tion model and structuring concept of TinyOS. nesC pro-
vides interfaces to develop modules that are wired together
to achieve the desired functionality.

The architecture of TinyOS is divided in three abstraction
layers [13]: Hardware Presentation Layer (HPL), Hardware
Abstraction Layer (HAL), and Hardware Independent Layer
(HIL). The modules at HPL are hardware-dependent and
present the capabilities of the underlying hardware while
hiding its intricacies. In contrast, the modules at HAL and
HIL are platform independent and can be used across dif-

1The source code of TinyWifi is available
for download at http://www.comsys.rwth-
aachen.de/research/projects/tinywifi/.
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Figure 1: TinyWifi Architecture
The hardware abstraction layer (HAL) translates hardware
independent functionality (HIL) to the device specific mod-
ules of the hardware presentation layer (HPL). TinyWifi re-
places the hardware dependant modules at the HPL layer
with its corresponding Linux based implementation of HPL
components.

ferent hardware platforms. Protocols and applications are
built on top of HAL and HIL. TinyOS can be extended
to new hardware platforms by providing the corresponding
HPL support for that platform.

TinyOS owns a very rich protocol repository for IEEE
802.15.4 based networks. Among the most prominent proto-
cols developed for TinyOS are CTP [12], 4BLE [7], BVR [8],
S4 [18], BCP [19], and PAD [3]. Supporting flexible network-
ing structures and achieving reliable and energy-efficient mul-
tihop communications drives the design philosophy of these
protocols.

2.2 Design Overview
TinyWifi enables the execution of protocols developed in

nesC (i.e. for TinyOS) on Linux based Wi-Fi devices, i.e.,
nodes in meshnets. The key idea is to exploit the modularity
of the TinyOS hardware abstraction architecture: TinyWifi
replaces the existing TinyOS core at HPL to provide the
exact same hardware independent functionality and inter-
faces as a regular sensor node platform (cf. Figure 1). For
example, the active messaging interface for IEEE 802.15.4
based CC2420 chips is replaced with a socket based commu-
nication interface for Linux networking. Similarly, hardware
timers are replaced with Linux timers.

This seamless integration enables TinyWifi to export the
resources of typical Linux network devices such as large
memory, more processing power, and higher communication
bandwidth to the sensornet protocols developed in nesC.
However, this transition from mote-class devices to Linux-
driven nodes at HPL is not straight forward [1]. Apart from
handling hugely different link layers, TinyWifi has to deal
with completely different hardware platforms, programming
and runtime environments, and computational resources as
discussed in Section 3.

TinyWifi runs as a Linux user space process. It is easy
to use and provides simple command-line primitives such as
make linux and make linux run for compiling and executing
protocols. The TinyWifi specific code integrates seamlessly
into the existing TinyOS source tree. Using TinyWifi as a
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Figure 2: Split-phase operation
Using two parallel threads, e.g. a sender and a receiver in
the case of radio communication, we achieve the split-phase
functionality of TinyOS in TinyWifi.

development platform, any protocol that is written in C or
nesC language can be executed both in IEEE 802.11 and
802.15.4 based networks.

2.3 Key Features
TinyWifi is centered around four design features:

Transparency: Existing sensornet protocols and algorithms
developed in nesC shall not break when we run them on
Linux based platforms despite the change in the underlying
platform characteristics, such as medium access technologies
and hardware capabilities.
Versatility: The implementation should be adaptable to
the characteristics of the target platform, for example, wether
to encapsulate TinyOS packets in UDP datagrams or bypass
the network stack and send them directly over the wireless
interface.
Usability: No modifications should be necessary for nesC
protocols and the target platform (i.e. Linux) to function.
In other words, TinyWifi should be directly deployable in
any network that supports Linux based nodes.
Adaptability: TinyWifi should expose the additional ca-
pabilities, such as larger memory and processing power, of
the Linux platform to the TinyOS protocols.

3. DETAILED ARCHITECTURE
We now describe the detailed architecture of each compo-

nent in TinyWifi.

3.1 Radio Communication
Radio communication is the most vital service and the

pivotal difference between sensornets and meshnets at the
MAC and PHY layers. TinyOS provides an active messaging
service [14] on top of a mote’s low-power radio chip such
as CC1000, CC2420 etc. An active message contains the
identification number of the user-level handler, and the data
payload is passed as arguments. The network is modeled as
a pipeline and there are no additional buffers used to store
messages. Therefore, the handler is responsible for accepting
the message from the network and processing it quickly to
be able to receive the next message. TinyWifi replaces this
active messaging layer with its own communication service.
It provides two flavors of communication services on top

of the IEEE 802.11 based network interface: UDP based
overlay and direct MAC access.

In UDP based overlay communication, we encapsulate
TinyOS messages in UDP packets using datagram sockets.
We broadcast UDP packets but suppress routing by adjust-
ing the TTL-field so that packets are only received by Tiny-
Wifi nodes within the radio range. This flavor of commu-
nication has four key advantages: (1) It is simple to imple-
ment and very useful for initial debugging and testing, (2)
it maximizes portability, (3) it minimizes interference with
different applications on the network, and (4) it allows di-
rect execution of TinyWifi without negotiating special kernel
level privileges.

However, UDP based communication has two main disad-
vantages: (1) It introduces significant processing overhead
in processing each packet at the IP and UDP layers which
is irrelevant for TinyWifi, and (2) it does not provide direct
access to the wireless interface to utilize important infor-
mation, such as RSSI and LQI, which might sometimes be
essential for higher layer protocols. For this reason, we pro-
vide an interface that utilizes raw sockets to enable direct
access to the underlying wireless interface. In the current
TinyWifi implementation, this interface is the default com-
munication device.

3.2 Split-Phase Operation
TinyOS employs split-phase operations [9] for system calls,

which is a significant departure from how Linux handles its
system calls. The key idea of a split-phase operation is to ac-
count for the mote’s concurrency and avoid blocking-calls in
the system. Many system services, such as sending/receiv-
ing a packet, are completed in two phases. A command that
starts a system service returns immediately while the com-
pletion of that service is signaled later via a callback event.
This mode of operation allows TinyOS to process multiple
services and the main program in parallel using concurrent
processing hardware.

TinyWifi supports both blocking system calls and split-
phase operations. The support for blocking system-calls in
Linux is trivial (i.e., it is built on native blocking calls).
However, to mimic the split-phase programming and run-
time operation of TinyOS, we use threads to monitor I/O
related operations that run in parallel with the CPU, for ex-
ample on network cards. When an application module needs
to perform an I/O operation, the corresponding thread is ac-
tivated and the application continues with its own execution.
The completion of these parallel processing threads is then
indicated via a Linux signal, which in turn triggers the main
TinyOS thread.

Figure 2 shows the split-phase operation of TinyWifi for
radio send and receive primitives. A sender and a receiver
thread are responsible to handle the respective requests from
applications and later signal their completion. The provision
of both, the blocking system calls and the split-phase opera-
tions, in TinyWifi allows developers to choose a mechanism
appropriate for their protocols and applications.

3.3 Timers
The accuracy of timer operation is critical for the func-

tioning of protocols and time synchronization mechanisms.
On the sensor-motes, protocols can directly access hardware
counters and timers but this is generally not done by the
protocols on Linux based network devices.
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Figure 3: Timers
The TinyWifi timer implementation provides several in-
stances of alarms and timers because Linux only provides
a single realtime timer per process.

The TinyOS timing functionality is based on the hard-
ware timers present in microcontrollers. A sensor-node plat-
form provides multiple realtime hardware timers to specific
TinyOS components at the HAL layer - such as alarms,
counters, and virtualization. Once configured, these timers
trigger an interrupt in the future without the need for con-
tinuous monitoring.

Although our target devices provide hardware timers as
well, user space applications have no access to them. There-
fore, we use Linux’s itimer library. This library only pro-
vides a single realtime timer to each process running on a
Linux kernel. However, TinyWifi requires multiple timers
to cater the needs of multiple protocols running inside one
TinyWifi process, such as link estimators and routing. There-
fore, we introduce a new VirtualizeLinuxTimer component
that virtualizes a single itimer. This component provides
multiple instances of the new LinuxTimer module. Figure
3 shows the concept of virtual timers and alarms on top of
a single itimer that replaces the hardware timers of a mote.
This virtualization of a single timer is achieved by main-
taining a delta-queue, sorted in the order of time, of the
registered timer events. The itimer is then rescheduled to
the most significant event in the queue, i.e., the event at
the front end of the queue. This way, we provide timing
functionality analogous to typical mote platforms.

3.4 Miscellaneous Services
Radio communication, split-phase operation and timers

make up the major pieces of our design. However, there are
certain functionalities, e.g. serial communication and debug-
ging support, peculiar to motes that are used by the majority
of sensornet applications. TinyWifi also provides these func-
tionalities to (i) enhance usability by enabling full fledged
TinyOS support in meshnets, and (ii) to ensure a transpar-
ent application transition between TinyWifi and TinyOS.

3.4.1 Serial Communication
The majority of TinyOS applications uses the serial com-

munication for mote-to-PC data exchange. In order to pro-
vide a similar functionality, i.e., serial active messaging on
a TinyWifi device, TinyWifi uses a Linux pseudo terminal.
As with typical motes, an unaltered serial forwarder based
on the C programming language connected to the pseudo
terminal allows for sending and receiving serial data to and
from a TinyWifi node.

Testbed Available Node Radio Path
Nodes Degree Stretch

UMIC 35 4 802.11 ∽ 3
Indriya 125 18 802.15.4 ∽ 3

Table 1: Testbed Characteristics
UMIC is an IEEE 802.11 based meshnet while Indriya is a
TinyOS based sensornet. Node Degree refers to the average
number of one-hop neighbors. Path Stretch refers to the av-
erage number of hops between two non neighboring nodes,
derived from the connectivity graphs.

3.4.2 Sensing and Debugging
Since our focus is network protocol testing, sensing is a

subordinate issue. Nevertheless, we do supply dummy sen-
sor implementations to allow for TinyWifi to be used out of
the box.

In addition to the printf library to output debugging in-
formation through the serial interface to an attached PC
and displayed in a human readable manner, TinyOS pro-
vides dbg functions to print additional information. In the
TinyWifi implementation, we print those messages directly
to the standard output. Similarly, to indicate the status of
a physical mote to a developer, motes are equipped with
LEDs. TinyWifi provides pseudo-LEDs: Messages are sent
to standard output similar to the debugging mechanism of
the TOSSIM [17] simulator.

4. EVALUATION
Our evaluation of TinyWifi focuses on the correctness

of TinyWifi implementation by observing link and network
layer behavior. We also show the utility of TinyWifi as a
customary wireless evaluation platform by evaluating three
point-to-point routing protocols on an IEEE 802.11 testbed
and comparing them to the results of evaluation on IEEE
802.15.4 testbed. We note that a single implementation of
the protocol was used for these evaluations on IEEE 802.11
and 802.15.4 testbeds. These protocols are only implemented
in nesC for TinyOS. Our evaluation aspects aim to demon-
strate the correctness and versatility of TinyWifi rather than
stress-testing the employed protocols or platforms.

We evaluate TinyWifi on UMIC [22] and Indriya [6] testbeds.
UMIC is a Linux based meshnet deployed at RWTH Aachen
University. It consists of 51 IEEE 802.11a/b/g based mesh-
routers2 located in various rooms at the department of com-
puter science. Each node has a 500 MHz CPU and 256 MB
of RAM. Indriya is a sensornet deployed at National Uni-
versity of Singapore. There are 127 nodes on Indriya. Each
node on Indriya has an MSP430 CPU with 10 KB of RAM
and a low power CC2420 radio, which can run IEEE 802.15.4
protocols. The major characteristics3 of these testbeds are
shown in Table 1.

4.1 Evaluating TinyWifi Implementation
In the following we evaluate the correctness and applica-

bility of TinyWifi both at the link and network layers and
through the behavior of native TinyOS protocols in an IEEE
802.11 testbed.

2Only 35 were available for our experiments
3We refer readers to the respective testbed web-
sites for connectivity graphs and further information:
http://www.umic-mesh.net/meshconf/#geographical and
http://indriya.comp.nus.edu.sg/motelab/html/index.php
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Figure 4: Packet Reception Rates
PRR comparison between TinyWifi and Linux on IEEE 802.11. Each link PRR is estimated using a native Linux socket
protocol as well as TinyWifi protocol. If both the protocols estimated that a given link is of the same quality, the point would
lie on the 45 degree line. There are a total of 1226 points representing the PRR of each link in the network. Overall, TinyWifi
and Linux native link estimation agree, hence most of the points are near the 45 degree line.

4.1.1 Link Layer
We first show that the communication service of TinyWifi

does not impact the behavior of the underlying link layer
when compared to the native platform. To this end, we
correlate the Packet Reception Rates (PRR) of nodes using
both TinyWifi and the native platform, i.e., Linux. Ideally,
in the scatter-plot representation of such a correlation, every
single data point should lie on the 45 degree line. However,
this is not even achieved in back-to-back experiments on the
native Linux platform as shown in Figure 4(a). This is due
to the unpredictable and highly dynamic nature of the wire-
less medium. Figure 4(b) depicts the correlation between
PRRs of TinyWifi and Linux platforms. We can clearly ob-
serve the strong similarity between Figures 4(a) and 4(b).
Hence, we conclude that the (user-space) implementation of
TinyWifi does not adversely affect the link level behavior of
the underlying radio technology.

4.1.2 Network Layer
To evaluate the correctness of TinyWifi on the network

layer, we compare the behavior of a native TinyOS protocol
in TinyWifi with the behavior of a Linux-native implemen-
tation of the same protocol. We show that the nesC imple-
mentation of a protocol for TinyOS, when evaluated using
TinyWifi, is commensurate with its native counterpart. To
this end, we evaluate the behavior of the Collection Tree
Protocol (CTP) in both its nesC and Click [15] implementa-
tions. Click is a highly recognized software architecture for
building modular and configurable protocols.

Our comparative analysis uses the CTP protocol for sev-
eral reasons: CTP has become a de-facto standard in col-
lection routing in sensornets. It has also been implemented
in various languages to support different OS and simulation
platforms, such as Mantis OS, Contiki OS, Sun SPOTs, and
Castalia Simulation. It has been thoroughly tested using six
different MAC layers. The mechanisms used in CTP have
also been incorporated in IETF RPL - the IPv6 protocol
for low-power and lossy networks. Recognizing its highly

efficient and reliable delivery in networks with lossy links,
CTP has been extended for point-to-point communications
in meshnets.

Delivery rate is a metric commonly used in evaluating
sensornet protocols. It is equivalent to the average end-to-
end reliability between sensor nodes and the receiver that
receives the sensor data using multihop routing. Our key
evaluation metric is the delivery rate for two reasons: (1)
The current TinyWifi implementation is not optimized for
throughput evaluations, and (2) the default operational pa-
rameters, such as buffer sizes, of the protocols and the plat-
forms under consideration are different. To establish a fair
comparison base for other performance benchmarks, such
as throughput and jitter, we need to modify these parame-
ters. However, this is beyond the scope of our contribution
in this paper. In our experiment on UMIC testbed, we used
one node as the destination in the network. All other nodes
send a burst of 100 packets, one at a time to the single des-
tination. The receiver node simply logs the received packets
identified by a unique sequence number and a sender ID. To
establish a baseline and to enable better understanding of
the results, we also compare CTP with OLSR, a standard
routing protocol for meshnets. Figure 5 shows the cumu-
lative distribution of the delivery rates for both implemen-
tations of CTP and OLSR. Figure 6 displays the pairwise
delivery rates for each node pair in detail. These results
show that the performance of Linux native CTP (which re-
quired reimplementation) is similar to the TinyWifi version
of CTP.

Overall, these results conclude that TinyWifi enables the
direct and unaltered execution of nesC protocols in IEEE
802.11 based networks. The implementation overhead of
TinyWifi modules does not influence protocol performance
as shown in the case of CTP. The minor difference in the
results (i.e., 1%) could be due to the varying link qualities
across the experiments. This means that using TinyWifi,
the implementation effort for the Click implementation of
CTP [4] (i.e., approx. 7000 lines of codes excluding Click
libraries) could be saved.
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The performance of CTP under TinyWifi and Click is very
comparable. The average delivery rate of CTP TinyWifi is
0.81, CTP Click achieves 0.82 and OLSR 0.85.

4.2 Protocol Evaluation
After evaluating TinyWifi implementation, we now demon-

strate its utility as an efficient evaluation and runtime plat-
form. To this end, we evaluate three well-established rout-
ing protocols - namely BVR [8], PAD [3] and S4 [18] - in
two different classes of networks. These protocols are na-
tive to sensornets (IEEE 802.15.4) but their mechanisms
are believed to be equally relevant for meshnets and ad-hoc
networks (IEEE 802.11) [1, 18]. TinyWifi enables evalua-
tion of these protocols in IEEE 802.11 networks and thus
provides a deeper insight into their behavior without re-
implementation. In the following, we briefly describe these
protocols.
Beacon Vector Routing (BVR) is a scalable point-to-point
routing protocol for wireless networks. In BVR, a node ad-
dress reflects the hop count from this node to a small set of
designated nodes (landmarks) in the network. At each hop,
the best next hop distance-wise is selected.

Small Stretch and Small State Routing (S4) is a cluster
based extension of BVR. In S4, a node is identified by the
landmark node closest to the destination instead of its vir-
tual coordinates. S4 aims at reducing the routing stretch of
BVR at the cost of higher state maintenance, i.e., each node
additionally maintains a local cluster of neighboring nodes.

Probabilistic Addressing (PAD) is an extension of BVR
for unstable networking conditions. It assigns probabilistic
address to nodes instead of sharp virtual coordinates and
thus achieves a significant reduction in address updates. The
routing mechanism of PAD is similar to BVR.

The key performance metrics of these protocols considered
here include: (1) address stability, (2) average hop distance
from landmarks, and (3) the number of transmissions re-
quired for a packet to reach its destination. Our evaluation
for the first two metric compares PAD with BVR only. This
is because S4 shares the virtual coordinates establishment
with BVR.
Address Stability: Address updates are expensive in wire-
less networks where nodes have to determine their own ad-
dresses based on the underlying connectivity in the network.
In such virtual coordinates based protocols, addresses are
typically stored in a database. Frequent address changes
thus result in a significant overhead due to frequent updates
in the address database. Hence, address stability is one of
the key performance measures of virtual coordinates based
routing protocols. Figures 7(a) and 7(b) show the cumu-
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Figure 6: Delivery rates for each sender-receiver
pair using OLSR and two implementations of CTP.

lative distribution of address change rate in IEEE 802.11
(UMIC) and IEEE 802.15.4 (Indriya) networks, respectively.
The address change rate is defined as the share of routing
update intervals in which the nodes update their addresses.
These results clearly show that PAD performs better than
BVR in IEEE 802.11 networks. However, the magnitude of
improvement is smaller compared to what was observed in
IEEE 802.15.4 networks. This is due to the different node
degrees in the networks: PAD derives its addresses from mul-
tiple paths leading towards a landmark and tolerates link
quality changes along a specific path. Hence, in a sparse
network, such as UMIC, there is only a limited number of
unique paths that can be represented in a PAD address.
Hop Distance: The hop distance metric determines the
number of hops between a node and all landmarks in the net-
work. Figures 7(c) and 7(d) depict the CDF of hop distances
averaged over all landmark trees. It can be seen that PAD
achieves lower hop distances than BVR in both testbeds.
This is because PAD always enables shortest paths to dom-
inate its coordinate distributions [3]. Whereas, BVR only
selects good quality paths using PRR based link estimation.
Hence, due to the higher node degree in Indriya, the prob-
ability of the shortest path being different than the stable
path selected by BVR is much higher.
Routing Cost: Finally, we evaluate the routing cost, i.e.,
the average number of transmissions required for a packet to
reach its destination. Figure 8 shows that PAD outperforms
both S4 and BVR in the IEEE 802.15.4 network. However,
in the IEEE 802.11 network, PAD and BVR achieve similar
results while still performing better than S4. These results
show that S4’s performance is dependent upon dense deploy-
ments and a stable network topology.

Overall, these evaluation results indicate that TinyWifi
provides important hints about protocol performance on dif-
ferent link layers and in different network types. Hence, the
feasibility of a protocol in different classes of wireless net-
work cannot simply be assumed, it rather needs to be vali-
dated using platforms such as TinyWifi.

5. LIMITATIONS
In its current implementation, TinyWifi serves as a gen-

eral enabling platform for multiple link layers. Due to this
focus and our effort to keep a small code-base, TinyWifi does
not export specific link layer services of either the original
or the target OS. Currently, this means that TinyOS pro-
tocols that rely on a specific link-layer service which is not
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(a) Coordinate change rate on
802.11 testbed

(b) Coordinate change rate on
802.15.4 testbed

(c) Average hop distance from
landmarks on 802.11 testbed

(d) Average hop distance from
landmarks on 802.15.4 testbed

Figure 7: Addressing
Addressing results from IEEE 802.11 and 802.15.4 based testbeds. PAD maintains its superior performance in terms of address
stability across multiple wireless network classes.

provided by IEEE 802.11 link layers are not supported. As
one example, the MultihopLQI collection protocol (released
with TinyOS) heavily relies on link quality indicator (LQI)
information for establishing routing tables. Hence, Multi-
hopLQI will only be applicable in a meshnet if the corre-
sponding link-layer exports LQI information to higher layer
protocols.. The support of specific link layer services means
a tradeoff between the implementation complexity and the
usefulness and applicability of this service in the target do-
main.

Similarly, TinyWifi, at the moment, only focusses on en-
abling TinyOS routing protocols to run in Linux. We see
this as a first step towards a general platform for protocol
and application experimentation and evaluation. However,
some TinyOS characteristics, such as a one-packet outgoing
buffer, remain because TinyOS protocols rely on and are
designed for them. To make full use of a target platform’s
(additional) resources, we need a mechanism to allow proto-
cols and applications to capitalize on these resources as well
as they can.

It is widely believed that network layer protocols such as
geographic routing, graph embedding [20], and AODV can
work on a variety of wireless networks. TinyWifi enables the
validation of such hypotheses. Our preliminary results sug-
gest that some protocols (e.g., routing) do work on vastly
different wireless networks - on radios that support a few
tens of Kbps to those that support tens of Mbps data rates.
However, we note that not all protocols can work in such
widely different platforms. The network protocols running
on IEEE 802.15.4 radios can assume constant bit rate while
the network protocols running on IEEE 802.11b radios can-
not make that assumption. Packet delivery takes a more pre-
dictable time on 802.15.4 radios compared to 802.11b radios
due to more complex OS kernel, NIC driver, and generally
higher level of programming interface. Some assumptions
about link layer properties, although ideally avoided, are
implicitly embedded in the network protocol design. Tiny-
Wifi helps us test the network protocols in vastly different
radio platforms and discover such implicit assumptions be-
hind network protocol design.

6. RELATED WORK
EmStar [11] and VIPE [16] are two notable related efforts

that enable network protocol execution across heterogenous
computation and communication platforms.

EmStar is a software environment for deploying complex
applications on heterogenous sensornet designs, incorporat-
ing a mixture of mote-class devices and Linux driven micro-

servers. The idea is to leverage the additional resources of a
distributed micro-server based network to improve robust-
ness and system visibility of sensornet deployments. EmStar
provides its own runtime environment, protocol execution
on different classes of devices is not a goal of this approach.
TinyWifi, on the other hand, aims at migrating the whole
protocol to a completely different class of wireless networks.

VIPE evolves the implementation of a protocol from its
design up to its deployment without re-implementation of
single parts. It provides an encapsulation of minimal core
functionality in small building blocks. These blocks may
then be used by a protocol on different platforms (i.e. sim-
ulation, emulation, testbeds, deployment). TinyWifi is sim-
ilar to VIPE in a sense that it provides a common service
architecture across multiple platforms. However, VIPE as-
sumes a common programming and runtime environment
across these platforms. Unlike TinyWifi, it does not ad-
dress the challenges associated with spanning a wider range
of platforms and thus would require existing IEEE 802.15.4
based protocols to be re-implemented using VIPE’s interface
abstractions.

Building protocols for multiple networking classes is a
common trade in today’s systems. For example, DHCP
operates on multiple link layers (e.g. Ethernet and WiFi)
as well as wireless cards from different vendors. However,
these link layers are highly standardized (with common in-
terfaces and runtime environments), and span resource-rich
platforms ranging from data centers to embedded systems.
Hence, existing cross-platform protocols are restricted to
very similar platforms. Besides saving re-implementation
effort, the distinctive feature of TinyWifi is that it enables
protocols to run across vastly different link layers (i.e. IEEE
802.11 and 802.15.4) with even wider ranges of device capa-
bilities: Going all the way from 8-bit micro-controllers, with
a few KB of memory and low-power radios capable of data
rates as low as a few tens of Kbps, to platforms with an
order of magnitude higher processing and storage capabil-
ities and equipped with radios that support data rates up
to few tens of Mbps. TinyWifi elegantly addresses the as-
sociated challenges, such as a different programming and
runtime environment, for bridging protocols between such a
wider range of platforms.

7. CONCLUSIONS AND FUTURE WORK
We presented TinyWifi, a network protocol evaluation

platform for diverse classes of wireless networks. Using Tiny-
Wifi, developers can evaluate a single implementation of
prototypes across multiple wireless network classes such as
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Figure 8: Routing
Routing results from IEEE 802.11 and 802.15.4 based
testbeds. The results show a similar trend in both domains:
S4’s cluster based approach struggles in sparse network en-
vironments.

sensornets and meshnets. We demonstrated the utility of
TinyWifi by evaluating four well known routing protocols in
two testbeds that make use of different radio technologies.
Our evaluation shows that TinyWifi allows us to better un-
derstand and reason about the performance characteristics
of protocols in different networking environments.

We are still in the initial phases of our work. Although
our protocol evaluation demonstrates the correctness of our
TinyWifi implementation, we still need to stress-test differ-
ent design components such as timers and split-phase oper-
ations. Besides using multi-hop routing protocols, we plan
to expand our work to evaluating and supporting dissemina-
tion and network time synchronization protocols. Finding
a well-balanced set of features that supports a multitude of
protocols and applications as well as better providing the re-
sources of the target platform to protocols are further steps
in the development of TinyWifi.
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