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ABSTRACT In disaster scenarios where communication networks have broken down, it is important to
ensure a reliable data delivery from an emergency operations center to the local target nodes within its
effective time limit. We propose a hybrid data delivery mechanism that exploits the load-carry-and-delivery
by UAVs with a mixture of localized ad-hoc routing over partially connected terrestrial networks. We aim
to achieve reliable on-time data delivery to the target nodes, while preserving the low routing cost. Our
proposed routing methodology consists of three steps: 1) localized network construction, 2) network probing
by UAVs, and 3) localized ad-hoc routing based on a dynamic depth routing tree depending on the data
urgency. Here, we present an innovative cost-effective local data sharing structure called localized minimal
routing tree that balances with the direct data delivery by UAVs. After the initial network setup and probing
procedure, each UAV makes a series of near-optimal decisions of which grid points to visit considering its
localized network topology and data urgency. Our time-dependent routing mechanism dynamically decides
data recipient nodes to serve more urgent data delivery with a higher priority at a time. The simulation
experiments validated our combined path planning and routing approach, achieving 71% higher reliability
than the best possible performance by using only the network nodes and consuming 20% lower energy
than the UAV-only approach, while maintaining high reliability. Thus, our work makes a strong case for
systematically combining the two approaches.

INDEX TERMS Time-Dependent Routing, Delay Constraints, Load-Carry-and-Delivery, Vehicular Ad-
hoc Networks, Unmanned Aerial Vehicles, Ad-hoc Data Delivery

I. INTRODUCTION
Emergency preparedness against the event of natural or man-
made disasters has increasingly become one of the vital
prerequisites for protecting civilian lives and urban facili-
ties. Under these disaster situations, the telecommunications
infrastructure is likely to have broken down because of the
physical destruction of the network devices or network con-
gestion [1]. The dynamically changing status or disaster re-
sponse information tends to be both time-wise and location-
wise sensitive. For example, the information for a highly
damaged area needs to be delivered within a relatively tight
deadline. With only the partially or completely collapsed
network infrastructure, the distribution of critical information
to users is a considerably challenging task with severely

degraded node reachability.
To tackle this challenge, unmanned aerial vehicles (UAVs)

can be leveraged as extraordinary information messengers,
delivering data from an emergency operations center to the
affected areas or users in isolated ad-hoc networks. In catas-
trophic disaster situations, where the timely data delivery
should be reliable and stable, UAVs can contribute to relaying
packets while constructing a flying ad-hoc network them-
selves [2], [3]. Moreover, UAVs can assist the existing ground
networks as a substitute network on top of sparsely connected
networks [4], [5]. Depending on the urgency degree and the
location of the data to be delivered by a UAV, it can change
its own navigation priority to maximize the percentage of
successful data delivery given each distinct time constraint,
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across a certain region of interest (RoI).
Regarding the utilization of UAVs as an additional network

tier, several interesting works [6]–[8] have been proposed.
The prior works consider UAVs as data ferries in a load-
carry-and-delivery manner [9], [10]. By controlling their
mobility to determine an efficient navigation path, they aim to
deliver data to the corresponding targets at a reduced routing
cost and with increased throughput. Although the load-carry-
and-delivery paradigm frames the problem of data routing as
path planning, it relies heavily on the direct data delivery
from the UAVs to the local nodes, not fully utilizing the
partially connected networks.

In this paper, we present a hybrid data delivery approach
that not only considers the direct UAV data delivery but also
takes advantage of the ad-hoc routing strategy in the locally
connected networks. In a situation wherein various data need
to be delivered from an emergency operations center to the
designated target nodes within each distinct deadline, we aim
to maximize the successful on-time data delivery rate to the
local nodes, while preserving the low routing cost.

Without using any prior knowledge of the network topol-
ogy over RoI, the proposed approach consists of two phases:
1) initial network probing and local routing tree construc-
tion, and 2) time-dependent routing execution. We let both
the UAVs and the ad-hoc nodes perform the punctual data
delivery task in a collaborative fashion. Thus, the UAVs can
sparsely navigate the RoI area to drop off the data packets
only to certain selected delegate nodes, which will be in
charge of the local ad-hoc data delivery by using partially
connected static networks.

The advantages of the proposed approach are two-fold:
First, by decreasing the number of visiting places, the UAVs
can reduce the data carrying (traveling) time, eventually earn-
ing more time to perform more urgent data delivery to other
terrestrial nodes in need. Second, by using a time-dependent
and cost-effective local data sharing structure called localized
minimal routing tree, the chances of on-time data delivery to
a designated target node would increase because of benefiting
from the low network latency as compared to that in the case
of direct node-to-node delivery.

During the initial setup phase, the terrestrial nodes con-
struct their own neighbor node list by sending periodic or
aperiodic broadcast packets. We extract the strongly con-
nected nodes and group them as a virtual node called a
minimal graph by using a graph coarsening procedure. After
sharing each minimal graph with the neighboring minimal
graphs up to M hops, we ensure that each node obtains an
M -hop local network and finally builds anM -depth shortest-
path tree having a minimal graph of the node as a root.

The UAVs initiate network probing to acquire all the
possible localized M -depth trees from the terrestrial nodes
via certain grid points by navigating over the grid-based RoI,
instead of visiting each individual node. A UAV records the
communicable nodes within its radio range at each visited
grid point along with its own localized M -depth tree. To
quickly complete the network probing with multiple UAVs,

we perform an almost equal distribution of the grid points to
visit according to the number of UAVs. We apply the m-TSP
genetic algorithm (mTSP-GA) [11] with some improvements
to find each optimal fair path among multiple agents by
iteratively trying out various path evolutions.

After the initial network probing, the proposed approach
begins the routing execution where the UAVs deliver data
with time constraints from an emergency operations center.
Each UAV makes intelligent decisions of which grid points to
visit considering the data urgency and the localized network
topology to maximize the on-time data delivery in a fully
distributed manner. When the UAV decides to visit a certain
grid point, it composes the data that can be delivered via
the communicable delegate nodes by using their localized
tree. A delegate node constructs the localized routing tree by
dynamically cutting some leaf or branch minimal graphs with
a relatively large packet deadline to reduce the unnecessary
data delivery with less urgency. The delegate node sends the
node list on the finalized routing tree that will be served at this
time back to the UAV so that it can reschedule the postponed
data delivery for the nodes cut from the original M -depth
tree, later through another delegate node at a future grid point
visit.

Although UAV-based data delivery and ad-hoc routing
were previously explored separately to improve data delivery
in disrupted networks, the extent to which their simultane-
ous use improves the networking performance is unknown;
however, the design of algorithms to systematically com-
bine these two approaches is now feasible. To the best of
our knowledge, this study is the first to exploit both the
mobility of UAVs and the localized routing structure under
time constraints for the problem of data delivery from UAVs.
The proposed approach achieved 71% higher reliability than
the best possible performance by using only the network
nodes and consumed 20% lower energy than the UAV-only
approach, while maintaining high reliability. Naive ways of
combining the two approaches would result in a far lower
gain as shown by our work. Thus, our work makes a strong
case for systematically combining the two approaches.

Our main contributions can be summarized as follows:
• We introduce network graph coarsening to effectively

extract the underlying routing skeletons from localized
ad-hoc networks and generate a localized tree structure
network for routing efficiency.

• We propose a novel routing framework such that UAVs
only need to deliver data to a root node of the localized
tree structure network, and then, the data can be effec-
tively spread from the root node to its leaf nodes, instead
of direct delivery to each node.

• We present a time-dependent ad-hoc routing structure
that dynamically decides whom to be transferred and
whom to be cut from a localized routing tree, depending
on the data urgency for punctual data delivery over the
network.

• Both UAV operations and communication require en-
ergy. We evaluated the tradeoffs between these two
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Perspective Reference Problem Method and Contribution

Ad-Hoc
Routing

Gnawali et al. [12] Design a routing layer to remain efficient, robust, and reliable
in highly dynamic network topologies

Collection Tree Protocol (CTP): dynamically probes
and validates the routing topology using data packets

with fast recovery when the datapath finds a possible problem

Xu et al. [13]
Design self-configuring networks that exploit redundancy

to reduce energy consumption while preserving the fidelity
in ad-hoc wireless networks

Geographical Adaptive Fidelity (GAF)
: uses node deployment density and routing redundancy

to increase the node duty cycle and to extend the network lifetime

Taha et al. [14]
Highlight the energy consumption in MANET

by applying the fitness function technique
to optimize the energy consumption in AOMDV routing protocol

AOMDV with the fitness function (FF-AOMDV)
: the fitness function is used to find the optimal path

from source to destination
to reduce the energy consumption in the multipath routing

UAV
Message
Ferrying

Cheng et al. [9] Maximize throughput between two distant ground nodes
using UAVs as message relays

Load-Carry-and-Delivery (LCAD) paradigm
: UAV loads data from a source node, carries,

and delivers the data to a destination node

Oubbati et al. [15]
Detect incidents on the road, summon rescue team, and find

the fastest path with UAVs under the road constraints
A robust routing scheme considering both the mobility

and the energy constraints of UAVs

Oubbati et al. [16] Guarantee a communication stability
by balancing the energy consumption of UAVs

A robust route detection considers the energy balancing,
the link breakage prediction,

and the connectivity degree of the discovered paths

Harounabadi et al. [7]
Multiple mobile agents cooperate to deliver messages

for disconnected wireless static nodes
A multi-hop data delivery is designed

through efficient message forwarding and replication among UAVs

Harounabadi et al. [17]
Path planning of multiple UAVs to deliver messages

among isolated wireless nodes
The multiple TSP genetic algorithm optimizes

the average weighted delay of message delivery

Yoon et al. [8]
Find the optimal paths of UAVs to maximize the on-time data
delivery to static nodes within each designated packet deadline

A distributed path planning determines the next visiting point
considering travel time and remaining deadline,

and a task division mechanism collaboratively distributes
the unvisited grid points among encountered UAVs

Collaborative
Routing

with UAVs

Oubbati et al. [5]
Provide the reliable data delivery and guarantee paths by UAVs

to ensure a durable connectivity under sparse networks
A greedy forwarding in VANETs is implemented.

If disconnected, maintenance strategies using UAVs are employed

Park et al. [18]
Repair the severely collapsed network

by exploiting UAVs into the isolated ground networks
Perform a network probing to find out recovery points

and deploy UAVs as intermediate relays nodes

Ours Ensure a reliable data delivery to multiple target nodes, while
preserving the low routing cost under partially connected networks

A hybrid data delivery exploits the load-carry-and-delivery
by UAVs with a mixture of localized ad-hoc routing

TABLE 1. A comparison of data delivery mechanisms

sources of energy expenditure to achieve a reliable
delivery of data in disrupted networks.

II. RELATED WORK
The delay-sensitive data delivery problem in ad-hoc networks
consisting of both static and mobile nodes has been studied
mostly in two categories: by controlling the movement path
of the mobile nodes for data delivery in the wireless network-
ing community, or by finding efficient navigation paths of
mobile agents in the robotics community.

Prior works on mobility control for data delivery use the
message ferry paradigm [19], [20] that carries and directly
delivers data to the designated target nodes or collects data
from the local source nodes by finding optimal movement
paths in terms of the coverage efficiency. In particular, UAVs
have been used as flying message ferries based on load-carry-
and-delivery (LCAD) [8], [9]. LCAD aims to maximize the
throughput between two ground nodes by engaging UAVs
to relay messages [9]. Inspired by the LCAD paradigm, a
delay-sensitive data delivery to multiple targets using UAVs
is proposed [8]. However, these works rely only on the direct
door-to-door information delivery, lacking the possibility of
utilizing partially connected ad-hoc networks.

Recently, there have been some studies on UAV-assisted

routing [7], [10]. These works aim to solve the reliable
data delivery problem in the UAV-assisted ground networks.
Further, with an increasing interest in practical system issues,
recent works have considered restricted energy capacity of
UAVs [15], [16], [21].

The problem of finding the efficient navigation trajectories
of mobile agents has been investigated as path planning by
robotics and operation research communities [22]. Tradition-
ally, prior works have been studied under the context of the
traveling salesman problem (TSP) [23], [24] or the vehicle
routing problem (VRP) [25], [26]. More closely related to our
work requiring deadline constraints, deadline-TSP [27], [28]
and VRP with time windows [29], [30] have been proposed
by formulating the problem with time constraints into an
optimization problem. Furthermore, motivated by evolution-
ary biology, some generic algorithm-based path planning
mechanisms have been proposed in the UAV context [31],
[32]. Although these works have provided strong theoretical
results on space exploration, they may not be directly appli-
cable to the ad-hoc routing problem with UAVs, missing the
significant packet routing part.

However, not much work has been done on exploiting both
UAV data ferries and static ad-hoc networks for achieving
both routing agility and efficiency in the data delivery with
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time constraints. Our work provides a novel hybrid path
planning and routing strategy balancing between the load-
carry-and-delivery by UAVs and the ad-hoc delivery by static
nodes.

We summarize the problem and the methodology of previ-
ous approaches from the perspective of how much the UAV
delivery agent is engaged, as in Table 1. We divide the data
delivery schemes into three cases: 1) ad-hoc routing without
using any UAV delivery agent; 2) UAV message ferrying; and
3) collaborative ad-hoc routing with UAVs.

III. SYSTEM OVERVIEW
We design a routing framework such that UAVs and local ad-
hoc nodes collaborate with each other for ensuring on-time
data delivery from one source location (e.g., an emergency
operations center) to multiple nodes in the network. We
consider a scenario in which the network in the RoI is par-
tially connected, including numerous isolated sub-networks.
We assume that there are a significant number of broken
routing paths from one node to another in the terrestrial
ad-hoc networks unless additional network devices such as
UAVs are deployed. Under the severely disrupted networks,
there is a limit to data delivery only with node-to-node
routing strategies. The objective of utilizing UAVs under the
disrupted network environment is to deliver timely data to
target user without interruption. UAVs can be a way to deliver
any kind of time-sensitive service information (e.g., urgent
announcement with time expiry or evacuation plan in disaster
scenarios).

We do not assume any prior knowledge of the network over
the RoI, such as the node locations and the connection status
with the neighbor nodes. We assume that the customized data
for each node with its specific delivery deadline is ready to
be picked up by the UAVs from a source node in one delivery
round and that the packet deadline can range from tens of
seconds to several minutes.

Both UAVs and target nodes are assumed to be equipped
with the same wireless radio interface as the terrestrial ad-
hoc nodes (e.g., 802.11 or 802.15.4) and the same wireless
band or channel; therefore, a UAV can communicate with
another UAV or the terrestrial ad-hoc nodes within its radio
range. The UAVs can fly over a virtual grid topology on the
RoI without experiencing any physical interference with the
environments or other objects including other UAVs. Fur-
thermore, we assume that a UAV is installed with a storage
device sufficiently large to load the data for the terrestrial
nodes in the RoI from the emergency operations center. Al-
though UAV control-related issues such as obstacle, collision
avoidance, or skewed movement are important factors and
investigated [33]–[35], they are not mainly focused on, and
out of scope in this paper.

Our goal is to find the optimal navigation trajectory of each
UAV that maximizes the number of nodes with successful
on-time data reception by reducing the duplicate coverage
among the UAVs. From the network perspective, we aim to
design a simple localized yet efficient routing structure that

Emergency
Operations Center

Minimal
Graph

Root

2) Network Probing

Each UAV traverses
a given path and collects
local network information

1) Local Network Setup

Each node monitors its
locally connected network

4) UAV Routing Execution

Time-dependent
ad-hoc routing with
path planning of UAVs

3) Topology Merging 

At base station, all UAVs 
exchange the collected 
topology information

Data Delivery Phase

Initial Setup Phase

FIGURE 1. Overview of our time-dependent ad-hoc routing using UAVs

can reduce the overall delivery cost. The problem of data
delivery that we aim to solve is to find which grid points to
visit and then drop off a set of data that are supposed to be
delivered to the selected target nodes within the local routing
range, maximizing the punctual delivery rate. To this end,
we seek a balanced routing decision between the direct UAV
delivery and the network delivery with an optimized mixture
under time constraints.

A. PROCEDURE
The proposed data delivery scheme using UAVs consists of
three phases: local network setup, network probing, and UAV
routing execution. A high-level illustration is provided in
Figure 1.

1) Local Network Setup
During this setup process, each ad-hoc node constructs a
brief neighborhood network by extracting groups of strongly
connected nodes. First, on the basis of regular beaconing,
each ad-hoc node maintains a neighbor node list where the
node beyond a certain link quality threshold is considered a
neighbor node. Second, a set of nodes with strong link quality
is considered a single virtual node called the minimal graph,
which is a fundamental routing skeleton. Third, each ad-hoc
node shares its belonging minimal graph with its neighbors
up to M hops and receives the neighboring nodes’ minimal
graphs from them. It finally forms its localized M -depth
graph and tree structure as the root itself. In this procedure,
each ad-hoc node maintains a simplified yet communication-
wise and computation-wise efficient graph for effective data
distribution toward its leaf nodes upon receiving the data
from a UAV. More details can be found in Section IV-A.

2) Network Probing
In order for UAVs to collect the child node list at each local
ad-hoc node and exploit it for effective path planning and
the resulting data delivery, UAVs probe a given network by
navigating a virtual grid topology. Upon visiting a specific
grid point, a UAV records the connectable nodes and their
own localized network information. All of the possible UAVs
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start their own probing procedure from a center after being
assigned the grid points to visit. To equally distribute the
exploration area, a partitioning algorithm is executed to make
all of the UAVs complete the data delivery mission as soon
as possible. Refer to the detailed probing procedure in Sec-
tion IV-B.

3) UAV Routing Execution
After the initial setup by the UAVs and the terrestrial ad-hoc
nodes, the entire network can gain the benefit of the data
delivery punctuality and efficiency from the collected local
network information. All of the UAVs share the collected
information about the communicable nodes at a grid point
and their localized routing tree before starting the routing
execution phase. Given this information, a UAV performs its
own distributed navigation decision of which grid point to
visit at a time for maximizing the on-time delivery service
rate for all the target nodes. As a UAV cannot be aware of the
progress status of the other UAVs unless they are encountered
within the radio range, it makes its best effort to reduce
duplicate coverage. Upon an encounter with another UAV,
it shares the visited grid point list and performs collaborative
task division for quick completion.

Once a UAV visits a specific grid point, it compiles all
of the data that can be delivered via the grid point by
checking the localized routing tree of the communicable
(delegate) nodes and broadcasts them with one packet. Then,
the delegate nodes run their own localized M -depth routing
tree and dynamically trim certain nodes or branches over
the routing path depending on the remaining delivery time.
For example, if there exists a target node with a relatively
large remaining packet delivery time, the current delegate
node cuts the node from its routing tree at that time. There
should be an opportunity later through another delegate node
when its data delivery has become a little more urgent with
lesser remaining time. The detailed procedure is presented in
Section V.

Note that once the initial setup phase of the local network
setup, network probing, and topology merging is executed, it
does not necessarily take place again nor always with UAV
routing, depending on the network dynamics.

IV. LOCALIZED ROUTING TREE WITH UAV PROBING
In an emergency situation where the communication network
has (partially) collapsed, it is important to ensure a reliable
communication channel from an emergency operations cen-
ter to the target nodes in the affected areas. The information
would likely be time-sensitive and location-sensitive: Each
target node would need to receive the location-dependent
data created at the center before the current information
becomes outdated.

Direct data delivery from the center to the target nodes (or
the nearby grid points) can reduce the energy consumption
at the terrestrial ad-hoc nodes, while incurring high packet
delivery time and possibly missing its deadline for the navi-
gation.

We attempt to leverage the partially connected local net-
works with the UAV delivery at a few selected grid points.
The use of local networks for data delivery may incur a
slightly higher routing cost but improve the on-time packet
delivery performance by reducing the number of visit points.
We use this tradeoff relationship between the routing cost and
the routing reliability in the problem of UAV data delivery.

In this section, we present the initial setup procedures for
the local nodes and the UAVs. Each ad-hoc node builds a
lightweight yet efficient local routing tree as the root based
on its neighbor table sharing with its neighbors. UAVs per-
form network probing to capture the local network topology
information of the connectable node list at each given grid
point and the local routing trees for the nodes as the root. To
quickly complete the probing with multiple UAVs, we want
to almost equally partition the probing area into multiple sub-
areas so that a UAV becomes in charge of an assigned sub-
area.

A. LOCAL ROUTING TREE CONSTRUCTION

We construct a localized routing tree at each ad-hoc node that
captures the essential skeletons of the routing topology. Each
ad-hoc node monitors its vicinity by beaconing and discovers
its connectable neighbor nodes that satisfy the minimum link
quality threshold in terms of the packet reception ratio (PRR).
The high-level representation of neighborhood connectivity
can be illustrated as a graph as in Figure 2(a).

Data delivery based on the original connectivity graph
often includes very detailed information and incurs a high
computation and communication cost in the ad-hoc sensor
networks.

To address this scalability issue, we abstract the original
connectivity graph into a logically condensed graph called
the coarsened graph. During this coarsening procedure, we
apply a pioneering theoretical work of the multi-level parti-
tioning algorithm [36] with some modifications in the edge
cost calculation.

First, each node calculates the PRR of the communicable
nodes. We denote PRRNi→Nj

as the PRR of the link from
node i to node j. The directional link with a PRR value larger
than or equal to the minimal threshold θLK is considered a
valid communication link.

Second, we perform a graph coarsening procedure. Among
the nodes, as shown in Figure 2(a), we partition a set of nodes
that have the PRRs of both bi-directional links larger than or
equal to θMG into one virtual node, called the minimal graph.
The nodes belonging to a minimal graph can be considered
as the strongly connected nodes. We denote MGNi

as the
minimal graph to which node i belongs, and ηMGNi

as a
set of nodes belonging to the minimal graph as node i.
For example, ηMGNn1

= {Nn1 , Nn2 , . . . , Nnl
} means that

nodes n1, n2, . . ., and nl belong to the same minimal graph
MGNn1

(or MGNn2
, etc.). If a node does not have any other

strongly connected nodes, its minimal graph only embeds
itself.
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FIGURE 2. Network graph coarsening from an original graph to its coarsened
graph consisting of minimal graphs (where θLK = 0.5 and θMG = 0.95)

To determine the link status between the minimal graphs,
we take the maximum PRR among the multiple directional
links toward one minimal graph. For example, an original
graph (Figure 2(a)) can be simplified as a coarsened graph
consisting of minimal graphs in Figure 2(b).

Once each ad-hoc node constructs its minimal graph with
the neighbor nodes, the minimal graph is propagated up to
M hops (on the virtual node basis). After the constructed
minimal graphs are shared among the other minimal graphs,
node i that belongs to its minimal graph MGNi maintains
an M -depth graph denoted as MDG(MGNi

), which is a
localized network of minimal graphs.

Finally, each ad-hoc node transforms its M -depth graph
into a shortest-path tree by having itself as the root. We
use the expected number of transmissions, i.e., 1/PRR as
the weight of the directional edge. We complete the ad-
hoc network setup by having M -depth local routing tree
SPT (MGNi

) for node i.
The detailed local routing tree construction algorithm is

described in Algorithm 1. The complexity of coarsening a
network graph is O(|neighborNode(Nn)|) to find 1-hop
strongly connected neighbors at node n, and O(|ηMGNn

| ·
|neighborNode(Ns)|) to construct a 1-hop neighbor MG
set at each 1-hop strongly connected neighbor node Ns,
respectively.

Algorithm 1 Local Routing Tree Construction (by Each
Node)
1: Input: Its own node n, θLK , θMG, M -depth
2: Output: Local routing tree (having node n itself as root)

// I. Make 1-hop Neighbor Node List
3: neighborNode(Nn) = ∅; // 1-hop neighbor node set of node n
4: for node i that has ever sent ACK back do
5: if PRRNn→Ni

≥ θLK then
6: neighborNode(Nn) = {Ni} ∪ neighborNode(Nn);
7: end if
8: end for

// II. Coarsen network graph
9: ηMGNn

= {Nn}; // Initialize a minimal graph including itself
10: for node i ∈ neighborNode(Nn) do
11: if PRRNn→Ni

≥ θMG && PRRNi→Nn ≥ θMG then
12: ηMGNn

= ηMGNi
∪ ηMGNn

;
13: end if
14: end for
15: neighborMG(MGNn ) = ∅ ; // 1-hop neighbor MG set of MGNn

16: for node s ∈ ηMGNn
do

17: for node t ∈ neighborNode(Ns) do
18: if MGNs 6= MGNt then
19: neighborMG(MGNn )

= MGNt ∪ neighborMG(MGNn );
20: PRRMGNn→MGNt

= maxNi∈ηMGNn
,Nj∈ηMGNt

PRRNi→Nj
;

21: end if
22: WeightMGs→MGt = 1/PRRMGs→MGt ;
23: end for
24: end for

// III. Construct M -depth network and its shortest-path tree
25: localNet(MGNn ) = neighborMG(MGNn );
26: for M -1 times do
27: Send localNet(MGNn ) to MGm ∈ neighborMG(MGNn );
28: Receive all localNet(MGm) from neighbor MGs and merge them;
29: end for
30: Make its own shortest-path tree SPT (MGNn ) with MGNn as root

from M -depth network;

B. NETWORK PROBING BY UAVS

Multiple UAVs collect the local connectivity information
over terrestrial ad-hoc networks through network probing
over the RoI. This network probing requires three steps: 1)
partitioning the probing area, 2) detecting the local networks,
and 3) merging the localized topology from all the UAVs into
a complete network topology.

To quickly explore the terrestrial ad-hoc networks by
using multiple UAVs, we partition all the grid points by
the number of UAVs and assign each partitioned grid point
list to a UAV. We apply mTSP-GA [11] to find the near-
optimal shortest path for each UAV. The mTSP-GA tries out
various path transitions such as flip, swap, or slide to find
the most efficient path. We improve the original algorithm by
replacing its randomly selected initial path with a zigzag path
via K-means [37] and balanced K-means clustering [38].
For example, the network probing paths for five UAVs are
initiated with K-means, as shown in Figure 4(b).

Once a UAV has its shortest grid point visit path after
partitioning the probing area, it continues to visit each grid
point from the path one by one. When the UAV visits a grid
point, it broadcasts its presence towards the communicable
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nodes for detecting the local networks. A node that receives
the broadcast packet sends an ACK packet with its localized
M -depth routing tree back to the UAV. The UAV calculates
the PRR for the acknowledged nodes and records a set of
nodes ∀j with PRRGi→Nj greater than or equal to θLK into
its neighbor node list at grid point i denoted as Gi.

After all of the UAVs return to the starting point, which
is the original source center, they share all the grid point-to-
neighbor node lists and the collected localizedM -depth child
node list of each root node. Finally, all of the UAVs retain
complete network connectivity by merging the partial local
network topology.

The detailed network probing procedure by UAVs is de-
scribed in Algorithm 2. The computation complexity of find-
ing a grid point visiting path with mTSP-GA isO(L ·S ·N2),
where L is the number of iterations, S is the population
size at each generation, and N is the number of UAVs. This
network probing procedure can be performed in a periodic or
aperiodic manner to reflect the up-to-date network dynamics.

Algorithm 2 Network Probing
1: Input: grid topology, # of UAVs: N , θLK
2: Output: grid point-to-neighbor node list, localized routing tree

// I. Find the grid point visiting path with mTSP-GA
3: [probing path for each UAV] = mTSP-GA(grid topology, N )

// II. Network Detection
4: for UAV u = 1 to N do
5: networkInfo(u) = ∅;
6: for each grid point Gi in a given probing path do
7: UAV u sends hello packets;
8: for node j that has ever sent ACK back do
9: if PRRGi→Nj

≥ θLK then
10: networkInfo(u)

= {(Gi, Nj , localNet(MGNj
))} ∪ networkInfo(u);

11: end if
12: end for
13: end for
14: end for

15: while any of UAV still probing do
16: Wait until all of UAVs finish and return back to the center;
17: end while
18: Merge all the collected local network information into networkInfo;

V. TIME-DEPENDENT AD-HOC ROUTING WITH UAVS
After the initial network setup and probing phase, UAVs
become aware of a complete network snapshot that has
been stitched with all the collected partial localized net-
work topologies from the perspective of some representative
ad-hoc nodes at certain grid points. This means that the
UAVs can recognize all the possible delivery path candidates
through a series of a certain grid point, its connectable
delegate node, and the node’s local routing tree that includes
the target node.

We consider a scenario in which the UAVs need to even-
tually deliver all the different data to the corresponding ad-
hoc nodes within the designated deadline. We assume that
a certain data item that is collected and created only for a
specific node has an effective time limit, e.g., some urgent
evacuation information on a certain node location for the next

10 min. In the situation of data delivery toward numerous
target nodes, the UAVs need to make intelligent path planning
decisions for achieving reliable on-time delivery to as many
destination nodes as possible.

As the data deadline range that we consider is not too tight
but is comparable to the UAV traveling time, e.g., from tens
of seconds to several minutes, the duplicate coverage over
the grid points by multiple UAVs harms the on-time delivery
performance for some parts of the target nodes and possibly
the entire network. Moreover, a very large number of grid
point visits by one UAV would lead to numerous out-of-time
delivery outcomes. Therefore, the three elements of efficient
path planning, fair (or collaborative) task division among
UAVs, and some wise usage of locally connected networks
along with the direct UAV delivery can contribute to maxi-
mizing the on-time data delivery performance. If a sufficient
number of UAVs are used, we would rather rely more on
the direct UAV delivery to reduce the network overhead for
engaging local networks. If only some partial number of
UAVs are available to serve the punctual delivery service, on
the other hand, we want to push some responsibilities of the
direct UAV delivery to the local ad-hoc routing.

We present a distributed UAV path planning algorithm for
a UAV to determine the next grid point to visit on the basis of
the data urgency and the local routing information collected
at the grid points. With our path planning, the encountered
UAVs within the radio range perform collaborative task divi-
sion so that the remaining grid points to visit are distributed
to them, and accordingly, each UAV ends up with an almost
similar travel time. In our algorithm, a path planning and
routing decision is not determined all at once, and rather at
each time, a custodian UAV continues to make each moving
decision online dynamically over time. This can help UAVs
to compensate for some previous unexpected path visits (e.g.,
due to UAV control issues) in the middle of their mission.

Once a UAV visits a grid point to deliver data through its
connectable delegate nodes, it compiles all the relevant data
destined to all the target nodes deliverable via the delegate
nodes into a packet, and broadcasts it toward the delegate
nodes. To improve the broadcast packet delivery rate, our
protocol allows the transmission of up to TX times until
an acknowledgment is received. The minimal graph that a
delegate node belongs to builds a dynamic depth routing
tree from its local shortest-path tree on the basis of the
remaining packet deadline for each target node. The root
minimal graph and a series of intermediate minimal graphs
on the tree determine whether to keep transferring data to the
child minimal graphs or not, by checking the data urgency,
data expiry, and duplicated delivery.

A. UAV PATH PLANNING WITH COLLABORATIVE TASK
DIVISION
Our distributed path planning algorithm aims to minimize
the traversal time of UAVs for packet delivery by visiting
grid points and eventually maximize the on-time delivery
service rate. At the same time, we exploit some available
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local terrestrial ad-hoc networks at an increased routing cost
to reduce the direct UAV data delivery time.

We consider three crucial parameters for designing an
efficient path planning algorithm: 1) the travel time to a
possible next grid point from the current one, 2) the number
of target nodes serviceable through the delegate nodes at
a grid point, and 3) the estimated data expiry status upon
visiting a grid point. We extend an existing path planning
algorithm called Myopic [8], [39] by harnessing our local
network reachability via a grid point.

We quantify the weighted sum measure considering the
three aforementioned factors as visit urgency with respect
to each future grid point to visit. In case a UAV visits grid
point i later, we preprocess its measure beforehand. We list
all the possible deliverable nodes set at grid point i on the
basis of its directly communicable delegate nodes, denoted
as ηGi

= {Nn1
, Nn2

, . . . , Nnl
}, where Nni

is a node whose
data have not yet expired. Note that there exist certain nodes
that are reachable via multiple grid points.

The visit urgency for all the remaining grid points to visit
with respect to a grid point-to-node pair is calculated as
follows:

w(Gi, Nj) = α ·TNj
+ (1−α) · d(Gcurrent, Gi)/v̄uav (1)

where Gcurrent is the grid point where the UAV is currently
visiting, Gi is future grid point candidate i with Nj ∈ ηGi , α
is a tuning parameter depending on how much data urgency
is stressed out compared to the UAV travel time, TNj

is the
estimated remaining data delivery time at the time of visiting
grid point i, d(Ga, Gb) is the physical distance between grid
points a and b, and v̄uav is the average UAV flying speed.

On the basis of the obtained visit urgency measure, the
UAV selects k grid points with the k lowest values as the
possible future grid points to visit. In case there are some
candidates with the minimum value, we select the grid point
closest to the current grid point. When these criteria do
not rule out the ambiguities, we check the number of all
the reachable nodes with a valid deadline at a grid point.
Lastly, we use random selection and obtain k future grid point
candidates.

To find the most efficient future trajectory from the set of k
selected grid points, we try out all the possible k! permutation
paths and find the best trajectory according to the number of
serviceable nodes normalized with the routing cost. This cri-
terion implies the cost-effective number of serviceable nodes
for the decision. If there still remain multiple candidates
even after this criterion, we perform the following priorities
of the estimated travel time over the trajectory, the closest
first visiting grid point from the current one, and the number
of serviceable nodes, which is defined above, of the first
visiting grid point. If these priorities can still not rule out the
ambiguities, we randomly select one out of the k trajectories.

Each UAV continues to determine the next grid point to
visit according to the above procedure until there exists no
remaining node to service. Upon encountering another UAV
on the fly within the radio range, the UAVs exchange their
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FIGURE 3. Constructing a dynamic depth tree from the M -depth coarsened
graph marked with (MG ID, remaining deadline) for each MG (where δ = 3)

already-visited grid point list and update their remaining grid
points to visit. To fairly distribute the grid points to visit ac-
cording to the geographical distribution of the remaining grid
points and quickly complete the entire data delivery mission,
we use the well-known existing clustering techniques such as
K-means clustering and balanced K-means clustering.

B. TIME-DEPENDENT ROUTING IN LOCAL AD-HOC
NETWORKS
When a UAV visits a grid point, it informs the data deadline
for the reachable target nodes of its connectable delegate
nodes. Using this information, each root minimal graph
to which a delegate node belongs builds a dynamic depth
tree from its shortest-path tree by cutting the leaf nodes or
branches with a relatively large remaining time or with data
that have already expired.

Each minimal graph m calculates its representative re-
maining delivery time TMGm by taking the minimum value
among all the remaining time values for its nodes. If
the root minimal graph receives data from the UAV, it
checks whether the remaining delivery time for any child
minimal graphs is not too high or larger than a certain
threshold, which is TMGroot + δ (where δ = |median
∀MGi∈localNet(MGroot)(TMGi − TMGroot)|, as a minimal
margin). For the child minimal graphs that have lesser re-
maining delivery time than the threshold, the root minimal
graph distributes the data down to its child minimal graphs.
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Algorithm 3 Time-Dependent Ad-Hoc Routing with UAVs
1: while there exist new data at data center do
2: Retrieve target node and their deadline list {Ni, TNi

};
3: ∆ = 0; // Reset relative time clock

4: while there exist feasible nodes do
5: // I. Path planning of UAV
6: Select k candidate grid points according to criteria;
7: Find the best trajectory out of k! permutations of k grid points;
8: Move to the next grid point of the trajectory;

9: // II. Time-dependent ad-hoc routing
10: for node i s.t. {Gcur, Ni} ∈ networkInfo do
11: childNodeList

= time-dependent-routing(MGNi
, TMGNi

−∆);
12: Delete all Ni ∈ childNodeList from target node list;
13: end for

14: // III. Task division among multiple UAVs
15: if multiple UAVs encountered then
16: Exchange their own visited grid point list;
17: Perform task division for the remaining grid points;
18: end if
19: end while
20: Go back to the data center;
21: end while

22: Function time-dependent-routing(MGroot, TMGroot )
23: Initialize dynamic depth tree DDT (MGroot) = SPT (MGroot);
24: for MGm ∈ localNet(MGroot) do
25: Define TMGm = minNi∈ηMGm

TNi
as deadline of MGm;

26: if TMGm > TMGroot + δ then
27: Remove MGm from DDT (MGroot);
28: end if
29: if any descendant of MGm included in DDT (MGroot) then
30: Insert MGm and all upward parent MGs into

DDT (MGroot);
31: end if
32: end for
33: end Function

Otherwise, the child minimal graphs that have a larger
deadline than the threshold are discarded from the routing
tree. The minimal graph cut from the routing tree still has
a chance to receive its data later through the UAV’s future
grid point visit and one of its delegate node as long as
the corresponding codes are still in the UAV’s to-do-list.
However, in case a minimal graph needs to be cut on the
basis of this remaining time threshold, but its downward
child minimal graph has satisfied the threshold condition, we
do not cut the branch including the original minimal graph
that violated the condition from the routing tree for on-time
delivery to the child minimal graph in need.

For example, as illustrated in Figure 3(a), we obtain the
shortest-path tree from the M -depth coarsened graph. Then,
we extract the dynamic depth tree from the shortest-path tree
by cutting the nodes (e.g., nodes 5 and 11), whose deadline
is greater than TMGroot

+ δ = 10 s + 3 s = 13 s, as
shown in Figure 3(b). Although node 7 also fails to meet
the condition, like nodes 5 and 11, we let node 7 remain
in the dynamic depth tree because it includes one of its
child minimal graphs, node 12, whose deadline is within the
threshold.

Once the root minimal graph finalizes its dynamic depth
tree by trimming the unnecessary minimal graphs and their
branches, it reports the valid target node list that is supposed

to be delivered in this round through the tree back to the UAV.
The UAV erases the target nodes from its remaining target
node list to deliver the data. On the basis of the remaining
target node list to deliver the data, the UAV runs its path
planning algorithm to determine which next grid point to
move to and moves to this point.

The detailed routing steps are described in Algorithm 3.
Regarding the computation complexity of the path planning,
it takes O(n · log(n)) to sort the n remaining target grid
points, and select the top k candidate grid points. To find
out the best trajectory based on the selected k candidate grid
points, it takes O(k! · k), where O(k!) is to find all possible
permutation order among the k candidates, and O(k) is to
traverse over the k grid points.

VI. EVALUATION
We validated the proposed scheme in a simulated network of
300 randomly distributed nodes over the RoI of 300 m ×
300 m with a 16 × 16 virtual grid topology, as shown in
Figure 4(a). This is the network size where a single UAV
takes 441 s for visiting all the grid points along one of the
most efficient paths based on mTSP-GA. We simulated a
damaged network where 83.4% of the src-to-dst pairs had
no valid routes. We implemented a packet-level simulator
in MATLAB for the algorithm-level validation. As a radio
propagation model, we used a combined path-loss shadowing
model with a path-loss exponent of 4, a reference loss of
46.68 dB, and an additive white Gaussian noise N(0, 52)
in decibels. In our experiments, we calculated the PRR by
taking the average rate over past 50 transmissions. We used
the PRR values of 0.5 and 0.95 for the valid link and minimal
graph requirements. Next, we chose a suitable grid size
smaller than the communication range. The parameters used
in the simulation are listed in Table 2.

We randomly generated the uniformly distributed packet
delivery deadline for each distinct node with the interval of
[120 s, 180 s] for an urgent scenario. The flying speed v̄uav
of the UAVs was set to 12m/s. The packet transmission time
was negligible as compared to the UAV traveling time. The
UAVs initiated and ended their network probing and data
delivery services at a data center, currently located at the
center of the RoI.

We evaluated our data delivery performance in terms of the
on-time serviced node percentage as the routing reliability,
transmission cost as the routing efficiency, and the travel time
of the UAVs as the path planning efficiency. We measured
the on-time serviced node percentage as the target node
percentage of the successfully received corresponding data
from the center node. We quantified the transmission cost
as the sum cost of the expected number of transmissions for
each link with PRR for all the broadcast and ACK packets.
Our time-dependent routing used up to five transmissions. We
showed the travel time of the UAVs by taking the average
values among all the used UAVs for a complete traversal
over the grid points. We run 10 different experiments with
randomly distributed time deadlines destined to all the nodes
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(a) Network topology

(b) Network probing paths

(c) Data delivery paths

FIGURE 4. Simulated network topology with 83.4% of the
source-to-destination pairs having no valid route (a solid line denotes a
strongly connected link, and a dotted line represents a neighbor link) and
16× 16 grid points (with a gray “+” marker) and an example of the network
probing paths using balanced K-means clustering and the data delivery paths
with five UAVs over the network area

Simulation Environment

Territory area 300m× 300m

# of nodes 300
Grid size 20m

Packet delivery deadline 0 ∼ 530 s

UAV speed 12m/s
UAV flying height 7m

Radio Propagation Model

Path-loss exponent 4
Reference loss 46.68 dB

Additive white Gaussian noise N(0, 52) in dB

Simulation Parameter

# of UAV 1 ∼ 6

Weight parameter α 0.2
Permutation parameter k 2

Valid link PRR θLK 0.5
Strongly connected link PRR θMG 0.95

TABLE 2. Simulation environment and parameters

and reported the average values with the standard deviation.
Initially, one UAV was used to purely validate the routing
performance, while avoiding the task division effect on the
path planning. The weight parameter α = 0.2 and the
permutation parameter k = 2 for the UAV path planning
were tuned during the experiments, as in [8]. The maximum
depthM = 3 for a dynamic depth tree and the deadline range
of [120 s, 180 s] for on-time delivery to the target nodes were
used, unless otherwise noted.

In our proposed system, during the network probing phase,
the probing paths for N UAVs are generated at the source
center, and each UAV travels along the assigned path inde-
pendently, as shown in Figure 4(b) for an experiment with
five UAVs. We quantified the initial probing efficiency in
terms of the travel time of each UAV in Section VI-A. Once
the initial setup is completed, during the actual data routing
phase, all UAVs attempt to load data from the center and start
their data delivery tasks. Considering data urgency and travel
cost, each UAV consecutively runs its own path planning
to determine its next visiting grid point in a distributed
online manner, without any knowledge of other UAVs, as
shown in Figure 4(c) for an experiment with five UAVs. We
investigated the data delivery performance in Section VI-B.

A. INITIAL SETUP
During the initial setup, our scheme converted an original
network graph into its coarsened network graph (according
to Section IV-A). To check the coarsening outcome in this
simulation setup, we measured the number of vertices, edges,
and logical hops among all the connected vertex pairs for
each network graph. A vertex indicated an original node in
the original network graph, while indicating a minimal graph
in the coarsened one. The number of logical hops among
the nodes within the same minimal graph was counted as
0. After the coarsening procedure, the number of vertices
decreased from 300 to 140 with a 53.3% reduction, the
number of edges decreased from 1,125 to 265 with a 76.4%
reduction, and the number of logical hops decreased from
141,684 to 86,466 with a 61.03% reduction. This implied
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FIGURE 5. Travel time of UAVs according to our network probing path
generation with respect to the number of UAVs

that the network coarsening helped to reduce the unnecessary
computation and communication overhead on both the UAV
and the node tiers.

We investigated the initial network probing efficiency in
terms of the travel time of the UAVs, as shown in Figure 5.
We compared three cases that we used as the initial values
for the iterations: 1) the original random values, 2) K-
means clustering, and 3) balanced K-means clustering. We
measured the minimum, the average, and the maximum travel
time among the UAVs. As the number of UAVs increased,
the travel time for all the cases decreased as expected. The
usage of the initial values obtained after both K-means and
balanced K-means algorithms generated the most efficient
paths with up to 36% reduced travel time. Further, regarding
the time gap between the first completed UAV and the last
completed UAV, the original case had a time gap of up to 22 s,
whereasK-means and balancedK-means clustering resulted
in a time gap of at most 3 s and 4 s, respectively. This result
implied that the use of efficient initial paths on the basis of
the clustering techniques led to a relatively large number of
global optimal points for generating more equally distributed
paths of multiple UAVs in the initial network setup.

B. TIME-DEPENDENT ROUTING STRUCTURE
We examined our time-dependent routing performance in the
routing execution phase. To understand how the parameter
selection of the maximum depth M in our M -depth local
routing tree and the delay margin threshold δ for the dynamic
depth tree affected the routing efficiency as well as the
routing overhead, we varied M and the delay threshold, as
shown in Figure 6.

We first investigated how the maximum depth M affected
the performance by using a single UAV, as shown in Fig-
ure 6(a). In a tight deadline case of [120 s, 180 s], the on-
time data delivery rate improved with an increase inM , while
increasing the network overhead as a tradeoff. This implied
that under very tight time constraints, the proposed algorithm
found a cost-effective way (e.g., using the M depth of 3)
for distributing time-sensitive data by utilizing some parts of
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FIGURE 6. On-time serviced node percentage and transmission cost with
respect to the maximum depth M and the deadline threshold of the dynamic
depth tree with the deadline of [120 s, 180 s] using one UAV

a local tree structure, thereby reducing the number of grid
points for a UAV to visit.

We validated our dynamic depth tree construction by
varying our internal delay margin threshold, as shown in
Figure 6(b). The use of a certain threshold margin δ upon
the formation of the final dynamic depth tree provided a
great balance point that had a high on-time serviced node
percentage of up to 88.8% with a relatively medium network
overhead. Our time-dependent routing scheme dynamically
changed a routing tree in accordance with the urgency of
packet delivery with high adaptability toward dynamic net-
works.

As the proposed approach co-optimized both the UAV path
planning and the local network resources, we compared each
component with other counterpart algorithms. To evaluate
our routing-based path planning called RT-Path, we com-
pared it against a method proposed in a previous study [8],
called Myopic, where UAVs collaboratively traverse grid
points and perform direct data delivery just to a 1-hop neigh-
bor node from a visiting grid point without using any locally
connected network.

To validate our time-dependent routing structure called TD
Routing, we compared it with a simple flooding mechanism
that broadcasts the information twice (resulting in a steady-
state delivery performance) with a duplicate check until all of
the connectable nodes are reached. We also compared it with

VOLUME 4, 2016 11



Yoon et al.: Time-Dependent Ad-Hoc Routing Structure for Delivering Delay-Sensitive Data Using UAVs

0 100 200 300 400 500

Service Deadline (sec)

0

20

40

60

80

100

O
n-

T
im

e 
S

er
vi

ce
d

N
od

e 
P

er
ce

nt
ag

e 
(%

)

RT-Path & TD-Routing (Ours)
RT-Path & Multicast
RT-Path & Flooding
Myopic & 1-hop Routing (UAV Delivery Only)

(a) On-time serviced node percentage

0 100 200 300 400 500

Service Deadline (sec)

0

10000

20000

30000

40000

50000

60000

T
ra

ns
m

is
si

on
 C

os
t (

pk
ts

)

(b) Transmission cost

FIGURE 7. On-time serviced node percentage and transmission cost with
respect to service deadline using one UAV with M = 3

Multicast along the shortest paths to multiple target nodes,
allowing the transmission of only up to five times until it
received ACK (which was optimized to reach the similar data
delivery performance to that of flooding).

We explicitly quantified the number of grid points that
a UAV visited according to our RT-Path and Myopic. Our
algorithm visited 63.0 grid points on average, while Myopic
visited 84.1 grid points. This implied that our algorithm
significantly reduced the number of visits by 25.1% with
an efficient exploitation of the local networks, contributing
to higher on-time delivery performance. We also measured
the travel distance between two consecutive grid points. A
UAV with our algorithm flew further (35.46 m) than that
with Myopic (26.54 m), on average. This showed that our
algorithm let the nearby local network involved with routing,
and made a UAV move away to a distant territory.

We varied the service deadline from 30 s to 500 s with
the uniformly random range of ±30 s, as shown in Figure 7.
We combined our routing-dependent path planning algorithm
RT-Path with our own routing protocol TD-Routing and other
counterpart routing algorithms of Multicast and Flooding,
while also comparing it against Myopic. In the range of
service deadlines from 30 s to 210 s, which were relatively
tight, our path planning algorithm with all the routing algo-
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FIGURE 8. On-time serviced node percentage and transmission cost with
respect to the number of UAVs with the deadline of [60 s, 120 s] with M = 3

rithms started to achieve very high on-time serviced node
percentage as the service deadline was relaxed, while out-
performing Myopic and its one-hop routing algorithm. From
the perspective of the routing overhead, only the TD-Routing
algorithm among all the routing algorithms with RT-Path
maintained a very low transmission cost comparable to that
of only the 1-hop data sharing with Myopic. The proposed
path planning and its coupled routing algorithm provided a
very cost-effective performance, whereas Myopic & 1-hop
delivery scheme performed poorly, particularly especially
with some tight service deadline ranges. Myopic often misses
the service deadline for visiting more grid points because of
using only 1-hop transmission at a grid point without using
any local networks. Moreover, note that although Multicast
and Flooding exhibit high routing performance, their trans-
mission cost is significantly higher than that of the proposed
algorithm with a factor ranging from 2.7 (for Multicast) to
15.7 (for Flooding). This implied that a local routing strategy
coupled with its direct load-and-carry delivery strategy under
time constraints should be based not on a static routing
structure but on a dynamic one considering the up-to-date
packet urgency.

We examined how the routing accuracy and overhead
performance were affected by the number of UAVs in a tight
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FIGURE 10. On-time serviced node percentage w/ and w/o using UAVs under
severely disrupted networks with the deadline of [60 s, 120s] (3 UAVs and
M = 3 used in our algorithm)

deadline case of [60 s, 120 s], as shown in Figure 8. Our
path planning and routing algorithm, i.e., RT-Path and TD-
Routing, was compared against Myopic and 1-hop routing [8]
and mTSP-GA and Multicast. Our algorithm achieved the
highest on-time data delivery, while maintaining a lower
routing overhead than Multicast with mTSP-GA. Even under
scarce UAV resource with very few UAVs, our RT-Path
and TD-Routing kept relatively stable timely delivery perfor-
mance without much decline. It is due to the fact that UAVs
hover the RoI more extensively by effectively arranging
the given data delivery tasks to the local network routing
rather than missing the packet deadline. Upon comparing our
algorithm with the one without task division, we found that
collaborative task division among UAVs is a necessary step
to pre-plan their future visiting paths that can arrange more
urgent packet delivery with a higher priority, achieving up to
a 13% higher delivery rate. As the use of more UAV resources
means that each UAV has a relatively large deadline through
task division and the on-time data delivery performance
improves. Note that the optimal number of UAVs should be
selected considering both the network impairedness and the
delivery urgency.

We analyzed where the on-time data delivery failure came
from: 1) unvisited cell by UAV, 2) transmission failure, and
3) dynamic depth tree truncation. We counted the number
of failures belonging to each failure case. As more UAV
resources can be applied, the total number of delivery failures
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FIGURE 11. On-time serviced node percentage, transmission cost, and
energy consumption in various networks with the deadline of [60 s, 120 s],
M = 3, and 3 UAVs

significantly drops, as shown in Figure 9. It is interesting
to see that the dominant delivery failures come from UAV’s
unvisit to cells. This makes sense with our original hypothesis
that the use of mobile agents for solving the problem of on-
time data delivery can secure valid routing paths even under
critically damaged network environments. This implies that
as more UAVs divide cells to visit in a collaborative manner,
they are capable of using the saved time for on-time data
delivery to nodes with a higher priority.

We investigated how our algorithm based on a balanced
mixture of direct UAV data delivery and static ad-hoc routing
advanced the pure static ad-hoc routing without any UAVs
in severely disconnected networks. As shown in Figure 10,
we compared against Flooding considered the upper bound
static node-based routing scheme in terms of data delivery
reliability. As the network becomes very severely damaged,
the on-time data delivery performance of our algorithm is
well-sustained, whereas the routing-only scheme degrades
severely to a delivery ratio of only 9.6%. This means that in
a severely disrupted network situation, the use of controlled
mobile agents can considerably recover the node reachability.

We validated the resilience of our work under different
network environments with different network outage degrees,
as shown in Figure 11. For a different network environment,
we quantified the percentage of src-to-dst pairs with no
valid route. As shown in Figure 11(a), our routing protocol
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provides very stable routing reliability with at least 80.6%
(even under the worst network). One interesting observation
is that as the network gets more severely broken, the routing
overhead is rather significantly reduced. This is because the
depth of the localized network itself becomes lower because
of the more partitioned network status, and thus, the resulting
transmission cost over the static network becomes lower.

Lastly, we examined how much energy was consumed by
the three different operations: 1) UAV flight movement, 2)
UAV-to-node transmission, and 3) node-to-node transmis-
sion, as shown in Figure 11(b). We applied a real-world
drone energy consumption unit, which was 178.4 W as
per the DJI Phantom 4 Pro V2.0 specification for UAV
flight energy consumption [40]. The energy consumption
by wireless transmission was calculated on the basis of the
TelosB CC2420 specification with a maximum of 100- ms
transmission time per packet [41]. As the network got more
disconnected, UAVs played a more dominant role in door-
to-door data delivery and consumed more energy for UAV
flights with three orders of magnitude as compared to the
transmission energy consumption. With respect to the energy
consumption by wireless transmission, the energy consump-
tion by the node-to-node transmission decreased because of
the lower utilization of static nodes for routing, while the
UAV-to-node transmission consumed slightly more energy
for more active UAV utilization for routing. Thus, there was
an interesting tradeoff between energy consumption and on-
time data delivery performance.

VII. CONCLUSION
We have presented a time-dependent ad-hoc routing structure
for delivering delay-sensitive data using UAVs. The proposed
algorithm exploits an optimal mixture of direct UAV data
delivery to certain spots and a localized cost-effective data
sharing structure from there to the local nodes. Our work
uses a tradeoff relationship between routing reliability and
efficiency in the problem of data delivery using UAVs.

We have incorporated the minimal graph structure for ex-
tracting the strongly connected nodes via a graph coarsening
procedure. By preparing a localized cost-effective routing
structure at the terrestrial ad-hoc nodes, UAVs performed
their own distributed optimal path planning to determine the
grid points to visit on the basis of the data urgency and
the local network status. We have demonstrated that our
algorithm considerably improved the on-time data delivery
performance, while reducing the routing cost as compared to
some counterpart algorithms.

In the future, we may consider UAV data delivery sce-
narios from multiple data center locations to generalize path
planning and its dependent routing architecture. Moreover,
as the battery outage for traveling over a selected trajectory
may affect its original movement, it would be interesting
to optimize the UAV’s navigation path for visiting charging
stations. In case of having each different data value, its
corresponding priority should also be considered to select
next visiting points in the path planning phase.
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