
A Bloom Filter Hierarchy for Non-key Search in
Key-Value Stores

Wojciech Macyna
Wroclaw University of Technology

Poland

Carlos Ordonez
University of Houston

USA

Abstract—Key-value stores are a well-established technology
for big data management, with many leveraging the Log-
Structured Merge (LSM) tree for its high write throughput and
efficient primary key lookups. However, searching for non-key
values in LSM trees is slow, as it typically requires scanning all
LSM tree files. Secondary indexes are a common solution, but
they typically require rebuilding the entire LSM tree and involve
a challenging selection of indexing attribute(s). To overcome these
limitations, we propose a Bloom filter hierarchy to accelerate
searching for non-key values in LSM trees. In a nutshell, a
Bloom filter is built for each data file in the LSM tree, and
then a hierarchy (another tree) of these Bloom filters is created.
Experiments show our new indexing mechanism outperforms
existing LSM methods by 80% with a small space overhead.

I. INTRODUCTION

Key-value stores, a class of NoSQL databases, have gained
significant popularity in big data applications due to their
scalability, simplicity, and flexibility. Nowadays, they are used
in various areas such as social networks, sensor networks,
and other big data applications. Some popular data stores
include HBase [5], MongoDB [2], LevelDB [6], and Cassandra
[7]. Key-value stores typically maintain data in a key-value
format using a Log-Structured Merge (LSM) tree [10]. In
general, LSM-based stores offer high write throughput and
rapid lookups of primary keys. This capability, though, is
insufficient to support query processing on non-key attributes.

The efficient secondary index management in key-value
stores is a hot research topic (see [4], [8], [9], [11]). However,
all exisiting approaches require reloading all stored entries and
constructing a storage data structure containing entries in the
form e =< value, key >. This process creates a secondary
index, where entries are sorted by value.

A. Motivating Example

Consider a Twitter database, a representative example of
a NoSQL system. Each tweet is represented as e =<
id, {user, text} >, denoting that a user posted a tweet with
the content text and assigned identifier id. Here, id serves as
the key for entry e, but user and text are non-key values. In
that case, searching a tweet e with the specific id is very easy
and fast. Let us consider the following SQL query:

SELECT * FROM e
WHERE user = ’Smith’;

Unfortunately, finding all tweets of the user ”Smith” entails
scanning the entire LSM tree, which is slow. Implementing
a secondary index on the user attribute would significantly
improve query efficiency. On the other hand, a secondary
index eu =< user, id > could significantly improve lookup
performance for queries on user, but it would not accelerate
queries with a predicate on text. To address this limitation,
an additional secondary index et =< text, id > would also
need to be created.

B. Contributions

To address the non-key search limitation introduced above,
we propose a Bloom filter hierarchy to accelerate the search
of non-key values, which allows a more efficient scanning of
LSM-tree stores with a small additional space overhead.

Our approach can be summarized as follows: whenever a
new data file is created in the LSM-tree, a corresponding
Bloom filter file is built. When evaluating a query searching for
a specific value, the Bloom filter is checked first. If the filter
indicates that the value may exist, then the corresponding data
file is scanned.

We construct a Bloom filter hierarchy similar to a B+-tree.
In this hierarchy, leaf nodes correspond to the Bloom filter files
associated with the data files, whereas the intermediate nodes
are created by performing a bitwise ”or” operation on their
child nodes. Since Bloom filters are bit arrays of a fixed length,
the bitwise ”or” operation on these bit arrays is straightforward
to perform. This approach allows us to start the lookup at
the root node, thereby avoiding unnecessary checks on many
Bloom filter files and, consequently, reducing the need to scan
numerous data files. We utilize a Bloom filter hierarchy as
a mechanism to accelerate the search of non-key values. To
validate our proposed indexing data structure, we implemented
the proposed method and integrated it into LevelDB (see [6]),
a widely-used key-value store. We chose LevelDB due to its
popularity in commercial applications and ease of implementa-
tion in C++. We conducted preliminary experiments on large
synthetic files to validate the effectiveness of the proposed
method.

II. BACKGROUND

In this section, we outline the core concepts discussed in the
paper. We begin by elucidating the data management principles
within the LSM-tree store. Following this, we provide a brief



overview of the fundamental assumptions and algorithms un-
derlying Bloom filters. Lastly, we offer a conceptual depiction
of Bloom filter hierarchy, highlighting its organizational data
structure and functionality.

A. Data Management with LSM Tree

The LSM tree [10] is a data structure used in many database
systems. It is designed to efficiently manage data storage
and retrieval, particularly in scenarios involving high write
throughput and large volumes of data. The data, typically key-
value entries, are stored in distinct files known as SSTables
(Sorted String Tables). The size of each SSTable remains
relatively constant, typically around a few megabytes. The
LSM tree consists of k sorted levels (L0 to Lk) (see Fig. 1).
Each level encompasses a predetermined number of SSTables,
resulting in a size limit specific to each level.

The LSM tree is organized into multiple levels, each con-
taining numerous key-value entries sorted by key within that
level. The top level is typically stored in RAM, while the other
levels reside on disk. New entries are always inserted into the
top level. When the number of entries in a level exceeds its
predefined limit, that level is merged with the level below.

The insert operation proceeds as follows. Initially, key-
value entry e =< k, v > are written into L0, which is referred
to as the MemTable and resides in main memory. If L0 exceeds
the size limit, the data are flushed to the first on-disk level
L1. When L1 exceeds its size limit, it is merged with L2.
This process involves fetching all entries from L1 and L2,
sorting them by key k, and writing the sorted entries back
to L2. Notably, when the capacity of L2 is surpassed, it is
merged with L3, and so forth. Consequently, the levels expand,
resulting in Li+1 being significantly larger than Li. The LSM
tree prioritizes write operations, as updates are confined to the
in-memory level L0. The LSM tree’s optimization for writes
involves updating only the in-memory level L0.

A search on key in the LSM-tree begins at L0 and pro-
gresses through L1, L2, and so on, until the required entry is
located. This ensures retrieval of the most recent version of
the entry, meaning the latest updated version is found first. If
the required entry has been deleted, the tombstone entry ed
is encountered first, and the search stops. Looking up a key
in the LSM-tree is very fast. Since each level is sorted by
key, efficient binary search can be applied. Hence, the search
is performed in O(logN) time, where N is the number of
entries in the LSM tree. Additionally, each SSTable contains
a key range known as a zone map, which allows the required
key to be quickly located in the appropriate SSTable. Then,
the search is performed in O(log n) time, where n denotes the
number of entries in the SSTable.

We now discuss less frequent, but still important, delete
and update operations. The delete operation in the LSM-tree
is performed as follows. When an entry e =< k, v > is
deleted, a tombstone entry ed =< k, null > is inserted into the
MemTable (L0). The tombstone is then propagated through the
levels by the merge process until it reaches the level containing

Fig. 1: LSM Tree.

the original entry. At that point, both the tombstone and the
original entry are removed from the LSM-tree.

An update is performed in a similar way. When the entry
e =< k, v > is updated in the LSM key-value storage, a new
entry e′ =< k, v′ > is inserted into the MemTable. In such
cases, the ”newest” entry always resides higher in the LSM-
tree than the old one.

B. Bloom filter

A Bloom filter [1] is a space-efficient data structure to
answer membership queries on a set of elements. Let S be
a set of n elements: S = {s1, s2, ..., sn}. A Bloom filter
is an array of m bits initialized to 0. It uses r independent
hash functions: h1, h2, ..., hr with range {1...m}. For each
element sj ∈ S, the bits hi(sj) are set to 1 for 1 ≤ i ≤ r. To
check if x ∈ S, we compute hi(x), which takes time O(1).
The filter checks if all the positions generated by the hash
functions hi(x) are set to 1. If at least one of them is set
to 0, it means that x /∈ S (no false negatives). Otherwise,
we assume that x ∈ S although it may be wrong with a
small probability. Such probability is called a false positive
rate and it is estimated as: p ≈

(
1− e−

r∗n
m

)r
. The probability

is minimal when r = ⌈m/n log 2⌉ and can be lowered by
increasing the size m of the Bloom filter. Typical false positive
rates for Bloom filters are very low, generally below 1% and
even 0.1%, making them attractive for applications where a
small probability of false positives is acceptable.

In our approach, a separate Bloom filter is created for
each SSTable. The detailed description of this integration is
presented in Section III.

C. Bloom filter hierarchy

The Bloom filter hierarchy (see [3]) operates on the princi-
ple of constructing a tree data structure (see Figure 2). In this
tree, the leaves represent the individual Bloom filters associ-
ated with the SSTables, while the parent nodes are Bloom
filters constructed by performing a bitwise ”or” operation
on their child nodes. This process continues bottom-up until
reaching the root of the tree. Each bloom filter within the
hierarchy should possess identical parameters, including the
same number of bits and utilize identical hash functions. We
define an order parameter d. Each non-leaf node maintains f
child pointers, where d ≤ f ≤ 2d for all non-root nodes, and



Fig. 2: Bloom filter hierarchy (m=4, d=2).

2 ≤ f ≤ 2d for the root. Figure 2 presents a Bloom filter
hierarchy with four leaf nodes, two non-leaf nodes and one
root. The size m of each Bloom filter is 4, and the order d is
2. The estimated depth of the Bloom filter hierarchy is logd B,
where B is the number of Bloom filters at the leaf level.
When the probability of false positives is low, the Bloom filter
hierarchy provides O(d logd B) search cost and O(B) storage
cost. The Bloom filter hierarchy can be modified either by
inserting or deleting the Bloom filter at the leaf level. In both
cases, the entire subhierarchy must be reconstructed.

The key property of this index is that each non-leaf Bloom
filter in the tree represents the union of the sets represented
by the Bloom filters in the subtree rooted at that node.
Consequently, if an object matches a Bloom filter at the leaf
level, it matches all Bloom filters along the path from that
leaf to the root. Conversely, if a specific Bloom filter does not
match an object, there is no match in the entire subtree rooted
at that node. In this case, searching the Bloom filters of this
subtree is not needed, which leads to pruning the search space.
This property is highly powerful and serves as the core of the
proposed method.

III. A BLOOM FILTER HIERARCHY IN THE LSM TREE

In this section we present our research contribution, assem-
bling together the components defined in Section II.

A. Integration of the Bloom filter hierarchy with LSM tree

We first present the integration of the Bloom filter hierarchy
with the LSM-tree stores.

Figure 3 shows the LSM-tree that consists of six SSTables
(s1 to s6) and one MemTable (s0). Each SSTable (si) is
paired with its own distinct Bloom filter (bi). As s0 resides
in the main memory, we do not create a Bloom filter for it.
Checking the Bloom filter (bi) makes it straightforward to
determine if the requested value is present in SSTable (si).
The Bloom filters (b1 to b6) paired with SSTables constitute
the leaf level of the Bloom filter hierarchy (see Fig. 4).
Bloom filters at the intermediate and root levels (b7 to b9)
are generated by performing bitwise ”or” operations on their
respective children.

Figure 5 provides a more detailed view of an LSM-tree with
the Bloom filter hierarchy shown in Figure 3. Each SSTable
(s1, s2, s3, s4, s5, and s6) contains six key-value entries. The
elements are sorted by the key within the level. Each SSTable
(si) is paired with a corresponding Bloom filter (bi).

Fig. 3: LSM-tree with Bloom filters.

Fig. 4: Bloom filter hierarchy for LSM-tree.

B. Maintaining the Bloom filter hierarchy in the LSM tree

In this subsection, we outline the basic operations of an
LSM-tree and their effect on the Bloom filter hierarchy.

LSM tree modifications. The LSM-tree can be modified
through the insertion, updating, and deletion of key-value
entries. All these operations are performed on s0 at level 0
(typically in batches). Since s0 resides in main memory and
does not have an associated Bloom filter, these operations do
not impact the Bloom filter hierarchy.

Level merging. Level merging is a fundamental operation
in the LSM tree. During a merge operation, two consecutive
LSM tree levels: Li and Li+1 are combined to create a new
level Lj . The algorithm works as follows.

• All key-value entries from Li and Li+1 are fetched and
sorted by the key.

• The sorted entries are inserted into SSTables at the new
level Lj . For each SSTable in Lj a new Bloom filter is
created.

• The Bloom filter hierarchy must be recreated.
• All SSTables and their corresponding Bloom filters in Li

and Li+1 are removed.

C. Searching a value in the LSM tree

During the search operation, the traversal of the Bloom filter
hierarchy begins at the root. If the required value v matches

Fig. 5: SSTable with the Bloom filter hierarchy.



the Bloom filter at the root, all its child Bloom filters must be
examined. Otherwise, none of the Bloom filters in the subtree
can yield a match. Once the leaf level of the Bloom filter
hierarchy is reached, the requested value v is searched in the
related SSTable. This approach allows for scanning the Bloom
filter hierarchy rather than traversing all SSTables or all Bloom
filters at the leaf level.

For example, when searching for the entry with value q, we
must obtain a positive result from b3 because the required entry
is in s3 (see Fig. 5). Consequently, all the Bloom filters above
it must also return positive results. We start the search from
the root node of the Bloom filter hierarchy (b9), which must
return a positive result for value q. We then check b7 and b8.
Since b7 must return a positive result, we proceed to check b1,
b2, and b3. On the other hand, b8 can return a negative result,
in which case we do not need to check its child nodes. The
leaf Bloom filter b3 must return a positive result, prompting
us to check s3. If either b1 or b2 returns a positive result,
we would also scan s1 or s2. In this case, a false positive
result would occur. If we aim to locate a value that does not
exist in the level, such as z, the Bloom filter in the root node
typically returns a negative result. Consequently, rather than
traversing all Bloom filters at the leaf level or all SSTables, we
can promptly verify that the requested value does not exist.

Algorithm 1 finds a set of key-value entries in the Bloom
filter hierarchy. The first part of the algorithm (lines 3 to 7)
describes the recursive search through the non-leaf nodes. The
second part of the algorithm (lines 8 to 11) checks for the
existence of the value v in the leaf Bloom filter. If v is found,
the corresponding SSTable is scanned.

Using this approach, we outline the method for scanning the
LSM-tree (see Algorithm 2), which consists of three parts. The
first part involves traversing the Bloom filter hierarchy, starting
from the root (refer to Algorithm 1). Since the MemTable
does not have an associated Bloom filter, it must be scanned
afterward. Finally, the keys must be validated (see Algorithm
3). This validation algorithm ensures that the entry returned
by the search is valid. Multiple versions of the same key-value
entry may exist in the LSM-tree (see Section II-A). In such
cases, the most recent version of the entry should be retrieved.
If the value of this version differs from v, the entry should be
excluded from the result set (lines 5 to 8). Additionally, if the
entry has been deleted and an obsolete version remains in the
result, that entry should also be discarded (lines 9 to 11).

IV. EXPERIMENTS

This section outlines the experiments conducted. We imple-
mented the Bloom filter hierarchy in C++ and integrated them
with LevelDB [6]. LevelDB is a popular choice for persistence
in many commercial systems due to its efficient key-value
storage capabilities and reliability. Its usage in prominent
systems such as Google Chrome’s IndexedDB, Riak, and
InfluxDB underscores its suitability for various applications,
including web browsers, distributed databases, and time-series
databases.

1 SearchInBloom(input: Value v, BloomFilter b, output:
Key[] keys)

2 Let k[] denote the set of keys returned by the search
3 if b /∈ LeafLevel & check(b, v) = true then
4 foreach Bloom bc ∈ b.children do
5 SearchInBloom(v, bc)
6 end
7 end
8 if b ∈ LeafLevel & check(b, v) = true then
9 k:= SearchRelatedSSTable(v)

10 keys:=keys ∪ k
11 end

Algorithm 1: Search in Bloom Filter.

1 LSMSearch(input: Value v, output: Key[] keys)
2 Let root denote a root node in the Bloom filter

hierarchy
3 Let keys[] denote the set of keys returned by the

search
4 keys := ∅
5 SearchInBloom(v, root, keys)
6 k:= SearchMemTable(v)
7 keys:=keys ∪ k
8 keys:=ValidateKeys(v, keys)
9 return keys

Algorithm 2: Search in LSM-tree.

A. Setup

The experiments were conducted on a Linux server Intel®
Core™ i9-9960X 3.10 GHz. The processor has 16 cores and
32 threads, and the cache lines configured as follows: L1 cache
of 516KB, L2 cache of 22MB, and L3 cache of 22MB. The
server also has a total of 132GB of RAM and SSD 1,7TB.

All experiments were programmed in C++ and compiled
using GNU g++ 13. We utilized the LevelDB library from [6].
In our experiments, we assume that the Bloom filters at the leaf
level are stored in persistent storage, while the intermediate
levels of the Bloom filter hierarchy are maintained in RAM.
Both the key and value of each entry in LevelDB are stored
as strings.

1 ValidateKeys(input: Value v, output: Key[] keys)
2 Let keys[] denote the set of keys returned by the

search
3 keys:= RemoveDuplicate(keys)
4 foreach Key k ∈ keys do
5 value:= GetValue(k)
6 if value ̸= v or k is deleted entry then
7 Remove k from keys
8 end
9 end

10 return keys
Algorithm 3: Keys validation.



TABLE I: Basic operation time in LevelDB without using
Bloom filters (in seconds).

Insert operation
number (N)

Insertion N
key-value pairs

Lookup of one
non-key value

Lookup of
one key

10M 21 5 0.000243
50M 103 27 0.000088

100M 210 54 0.000257
500M 1141 281 0.000868

Fig. 6: LSM Tree Creation Time .

B. Preliminary experiments

Initially, we conducted some preliminary experiments. We
created databases using standard LevelDB settings, which
included a maximum of 7 LSM-tree levels and approximately
2MB SSTable size. Additionally, the size ratio, defined as
the factor by which each level in the tree grows relative
to the previous one, is set to 10. Hence, the database with
500 million key-value entries consists of 6434 SStables. All
the experiments always fetched the data from the secondary
storage. Table I illustrates the time required for the insertion
of N key-value entries, as well as the time taken for key and
value lookup in LevelDB. Evidently, key lookup operations
are exceptionally fast, whereas value lookup operations ex-
hibit a notably slower performance.

LevelDB utilizes a builder, where new key-value entries are
inserted before the merge process. When the builder reaches
its maximum file size, a new SSTable is created. We insert a
value into the Bloom filter simultaneously with the insertion of
the key-value entry into the builder. We measured the overhead
of Bloom filter insertion time and found it to be very similar to
the database insertion time (see Figure 6). Similarly, the cost
of creating the Bloom filter hierarchy is negligible. It is worth
noting that LevelDB performs its merge process in a separate
thread, which can result in slight variations in the time taken
for the LSM-tree creation.

Table II displays the sizes of SSTables, leaf Bloom filters,
and non-leaf Bloom filters in megabytes for LSM trees con-
taining varying numbers of items. We set the Bloom filter
size to 2 million and used an order d equal to 5, meaning that
each Bloom filter in the hierarchy, except for one, has exactly
5 child Bloom filters. The table shows that non-leaf Bloom

TABLE II: SSTable and Bloom Filter size.

Number of
entries 10M 50M 100M 500M 1B

SSTable size (MB) 293 1200 2420 12500 25200
Leaf Bloom filter
size (MB) 29 148 296 1540 3078

NonLeaf Bloom
filter size (MB) 7 37 75 405 769

Fig. 7: Memory footprint of non-leaf Bloom Filters for different
order d.

filters occupy relatively little space, making them well-suited
for storage in RAM.

The order d significantly impacts the memory footprint of
non-leaf Bloom filters, as it determines the number of these
filters within the hierarchy. When d is smaller, more non-leaf
Bloom filters are required to cover all entries, which increases
the overall memory usage (see Fig. 7). The experiment was
carried out for 500M key-value entries. A Bloom filter size
was fixed as 2M bits.

C. Bloom filter hierarchy

This subsection presents the experiments that validate the
effectiveness of a Bloom filter hierarchy. In the first experiment
(Fig. 8), we established four databases containing 10, 50, 100,
and 500 million elements, respectively. Then, we measured
time of finding the entry with the specific value in these
databases. We compared three methods: SSTable scan, clas-
sical Bloom scan, and our proposed method (Bloom hierarchy
scan). In the SSTable scan, all SSTables are traversed to check
the requested value. For the classical Bloom scan, all leaf-
level Bloom filters are scanned. If a Bloom filter returns a
positive result, the associated SSTable is examined to find
the requested entry. The Bloom hierarchy scan refers to the
approach proposed in this paper. We observe that there is no
discernible difference between the SSTable scan and classical
Bloom scan methods. Conversely, the Bloom hierarchy scan
method significantly outperforms the other methods. Worth
mentioning is the fact that the false-positive rate of the Bloom
filter is always below 0.1%.

In the second experiment (Fig. 9), we conducted a compar-
ison using the same methods, but with different order d in the



Fig. 8: Impact of the number of elements in LevelDB.

Fig. 9: Impact of order d in the Bloom filter hierarchy.

Bloom filter hierarchy. We observe that increasing the order
results in fewer Bloom filters being created in the intermediate
level. Consequently, the intermediate Bloom filters have more
”1” bits inside. This situation necessitates checking more
Bloom filters during the search process. The experiment was
carried out for 100M insert operations. A Bloom filter size
was fixed as 500k.

In the next experiment, we investigated the impact of
the Bloom filter size on the efficiency of hierarchy scan.
We created three databases and inserted 10 million entries
into each database, resulting in 119 database files. For each
database, we varied the Bloom filter size m and the Bloom
filter hierarchy order d. In this experiment, the requested entry
was stored in one SSTable. The objective of this experiment is
to demonstrate how the Bloom filter hierarchy facilitates the
efficient skipping of irrelevant Bloom filters at the leaf level.
Figure 10 illustrates that with a small Bloom filter size (m) and
a high Bloom filter hierarchy order (d) a significant number
of Bloom filters need to be checked. The optimal outcome
is observed when m = 2 million and d = 3. In this case,
only 6% of the Bloom filters are accessed instead of scanning
all of them. According to our experiments, only one of these
accessed filters yields a positive result. Consequently, only one

Fig. 10: Impact of the Bloom filter size (m) and Bloom filter
hierarchy order (d).

Fig. 11: Impact of the Bloom filter size (m).

SSTable needs to be scanned to find the required entry.

When the Bloom filter size is small, such as 20k, it tends to
return many false positives. Consequently, the Bloom filters
in the intermediate levels may not function accurately. As
depicted in Fig. 11, when the Bloom filter size is small, the
hierarchy scan does not outperform the other methods. This is
because nearly all leaf Bloom filters must be accessed to find
the requested value. An interesting case arises for a Bloom
filter size of 200k. In this scenario, the Bloom scan performs
better than the SSTable scan. This is attributed to the fact
that the Bloom filter is more accurate and, simultaneously,
relatively small. Therefore, the overhead for Bloom filter
scanning is minimal. The best performance is achieved with
a large and accurate Bloom filter, such as for a size of 2
million. The results are confirmed on Fig. 12. It illustrates
the number of accessed leaf and non-leaf Bloom filters. When
the Bloom filter size is small, a large number of Bloom filters
are scanned. Conversely, when the Bloom filter is large, only
two leaf Bloom filters and a few non-leaf Bloom filters are
accessed.



Fig. 12: Impact of the Bloom filter size (m).

TABLE III: Number of accessed SSTables depending on the
value domain range.

Value Domain
Range (%)

Leaf Bloom
Filters Found

SSTables
Found

Leaf Bloom
Filters Scanned

1 56 55 250
5 28 26 190

10 13 11 105
40 5 5 125
70 2 1 70

100 0 0 65

D. Different value domain range

In the last experiment, we insert 50 million entries into 599
SSTables. As mentioned earlier, each entry e =< k, v >
must have a unique key k but the value v does not have
to be distinct. In the experiment, we compared the search
mechanisms for different domain sizes (see Figure 13). By
domain size, we mean the number of distinct values v that
can exist in the entire entry set. For example, a domain size
of 10% indicates a maximum of 5 million distinct values,
while a domain size of 100% indicates that all inserted values
are unique. Clearly, if the domain size is small (e.g., 1%),
the required value v can be found in many key-value entries.
We observe that the time required for the Classical Bloom
scan and SSTable scan is very similar across all domain
sizes. However, the performance of the Bloom hierarchy scan
depends on the domain size. As the domain size decreases, the
lookup time increases. This is because a smaller domain size
results in many repeated values, leading to the scanning of
multiple Bloom filters. In such cases, the method’s efficiency
is reduced. When the domain size approaches 0%, it becomes
more advantageous to use a traditional scan method instead.

Table III confirms these observations. When the value
domain size is small, many leaf Bloom filters must be scanned
(column 4). Columns 2 and 3 present the number of Bloom
filters that returned positive results and the number of SSTables
where the required values are stored, respectively. As we can
see, both numbers are similar, clearly indicating that the Bloom
filter’s false positive rate is very low.

Fig. 13: Impact of the value domain size.

E. Discussion

The proposed experiments confirm the effectiveness of our
method. It is worth mentioning that the approach can seam-
lessly integrate with various LSM-tree optimizations. Many
commercial LSM engines, such as RocksDB, use a tiered
merge policy, compacting only portions of a level at a time.
Our method assumes data is stored in raw files, with each
compaction simply transferring data between files. This design
allows the Bloom filter hierarchy to work with any compaction
strategy.

V. RELATED WORK

The efficient secondary index management in key-value
stores is a hot research topic. The authors in [4] discussed
two indexing strategies for distributed key-value stores: one
based on distributed tables, which leverages the underlying
system’s table model for index management, and the other
using a co-location approach, which stores the secondary index
on the same node as the corresponding base table records. Both
strategies were implemented and integrated into HBase [5].

The paper [8] proposed a secondary index based on the
LSM-tree. A key assumption of this approach is the existence
of two LSM-trees. The first LSM-tree stores entries in the
form e =< key, value >, while the second one holds the
secondary index in the form inde =< value, key >. A
required value can be quickly located, but afterward, the key
must be searched in the main LSM-tree storage. However, this
approach has some drawbacks. The primary issue with this
method is the validation strategy. When the entry e changes,
the corresponding index entries inde must also be updated.
To address this problem, the authors considered eager and
mutable-bitmap strategies.

The paper [9] proposed a partial secondary index in LSM-
tree stores. Typically, all items in the database are equally
covered by the secondary index. However, this approach is
not effective in big data stores where some items are queried
frequently while others are rarely, if ever, accessed. The key
idea is to create a secondary index adaptively as a byproduct
of query processing. Consequently, the database is indexed



partially, depending on the query workload.
A thorough comparison of secondary indexes in NoSQL

databases was presented in [11]. The comprehensive experi-
mental study and theoretical evaluation demonstrate that none
of these indexing techniques outperforms the others in all
aspects: embedded indexes offer superior write throughput
and are more space-efficient, whereas stand-alone secondary
indexes achieve faster query response times. Therefore, the
optimal choice of secondary index depends on the application
workload.

Bloom filters [1] are widely used to speed up key lookups in
the primary index of an LSM tree. In LevelDB, each SSTable
includes a Bloom filter to quickly determine whether a specific
key exists within it. In contrast, Cassandra utilizes counting
Bloom filters to keep track of the number of occurrences or
manage deletions of elements within the SSTable [7].

Zone maps are another indexing technique often used with
LSM-trees to enhance query efficiency by reducing unnec-
essary data scans [11]. Unlike Bloom filters, zone maps
store metadata about value ranges within a data block (e.g.,
minimum and maximum values), enabling the system to
bypass irrelevant blocks for a given query. This is particularly
effective for accelerating key-based lookups, as entries are
ordered by key. Although zone maps can be less effective
as secondary indexes due to potentially large value ranges in
SSTables, they can complement hierarchical Bloom filters.

A common challenge with secondary indexing is the se-
lection of appropriate columns for indexing. Wide-column
databases such as Cassandra and HBase enable storing column
families together in the secondary storage, allowing developers
to add elements to new columns without affecting existing
ones or their data. In such cases, imposing a secondary index
on a specific column becomes impractical. The utilization of
the Bloom filter hierarchy provides a straightforward solution.
Only one Bloom filter is required for each database file,
accommodating storage for all column data. When the Bloom
filter confirms the presence of data in the file, the file is
scanned to determine which column the data belongs to.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we proposed a new approach for efficiently
retrieving key-value entries based on the ”value” in the LSM-
tree. By employing the Bloom filter hierarchy, we avoided
scanning all database files and were able to retrieve the
file containing the required entries in logarithmic time. Our
method outperforms existing LSM-tree methods by 80%. The
approach has some limitations. Bloom filters only support
point queries, meaning they can efficiently determine whether
a particular item exists in the dataset, but they cannot handle
range queries or other more complex search functionalities.
Moreover, due to the use of hash functions, only exact com-
parisons are allowed, making it impossible to search for prefix
values like ”W*”.

In future work, we will explore the use of Bloom filter
hierarchies in the column family LSM stores. We will expand

the underlying mathematical theory and focus on parallel
processing with different query workloads.

REFERENCES

[1] Bloom, B.H.: Space/time trade-offs in hash coding with
allowable errors. Commun. ACM 13(7), 422–426 (Jul 1970).
https://doi.org/10.1145/362686.362692, http://doi.acm.org/10.1145/
362686.362692

[2] Chodorow, K., Dirolf, M.: MongoDB - The Definitive Guide: Power-
ful and Scalable Data Storage. O’Reilly (2010), http://www.oreilly.de/
catalog/9781449381561/index.html

[3] Crainiceanu, A., Lemire, D.: Bloofi: Multidimensional bloom filters.
Inf. Syst. 54, 311–324 (2015). https://doi.org/10.1016/J.IS.2015.01.002,
https://doi.org/10.1016/j.is.2015.01.002

[4] D’silva, J.V., Ruiz-Carrillo, R., Yu, C., Ahmad, M.Y., Kemme, B.: Sec-
ondary indexing techniques for key-value stores: Two rings to rule them
all. In: Ioannidis, Y.E., Stoyanovich, J., Orsi, G. (eds.) Proceedings of
the Workshops of the EDBT/ICDT 2017 Joint Conference (EDBT/ICDT
2017), Venice, Italy, March 21-24, 2017. CEUR Workshop Proceed-
ings, vol. 1810. CEUR-WS.org (2017), https://ceur-ws.org/Vol-1810/
DOLAP\ paper\ 10.pdf

[5] George, L.: HBase: The Definitive Guide. O’Reilly Media, 1 edn.
(2011), http://www.amazon.de/HBase-Definitive-Guide-Lars-George/
dp/1449396100/ref=sr 1 1?ie=UTF8&qid=1317281653&sr=8-1

[6] Google: Leveldb. https://github.com/google/leveldb
[7] Lakshman, A., Malik, P.: Cassandra: a decentralized structured

storage system. ACM SIGOPS Oper. Syst. Rev. 44(2), 35–
40 (2010). https://doi.org/10.1145/1773912.1773922, https://doi.org/10.
1145/1773912.1773922

[8] Luo, C., Carey, M.J.: Efficient data ingestion and query processing
for lsm-based storage systems. Proc. VLDB Endow. 12(5), 531–543
(2019). https://doi.org/10.14778/3303753.3303759, http://www.vldb.org/
pvldb/vol12/p531-luo.pdf

[9] Macyna, W., Kukowski, M., Zwarzko, M.: Multi-core adaptive merg-
ing of the secondary index for lsm-based stores. In: Database and
Expert Systems Applications - 34th International Conference, DEXA
2023, Penang, Malaysia, August 28-30, 2023, Proceedings, Part II.
pp. 245–257. Springer (2023). https://doi.org/10.1007/978-3-031-39821-
6 20, https://doi.org/10.1007/978-3-031-39821-6\ 20

[10] O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The Log-
Structured Merge-Tree (LSM-Tree). Acta Informatica 33(4), 351–385
(1996). https://doi.org/10.1007/s002360050048, https://doi.org/10.1007/
s002360050048

[11] Qader, M.A., Cheng, S., Hristidis, V.: A Comparative Study of Sec-
ondary Indexing Techniques in LSM-based NoSQL Databases. In:
Proceedings of the 2018 International Conference on Management of
Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018.
pp. 551–566. ACM (2018). https://doi.org/10.1145/3183713.3196900,
https://doi.org/10.1145/3183713.3196900


