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Abstract—Given the climate change crisis, there is a worldwide
growing concern on energy production, energy consumption and
pollution. Cloud computing represents a small fraction of global
energy consumption, but trends indicate it will continue to grow,
driven by Big Data and AI. AI analytics are pushing computing
resources, especially CPUs and GPUs, to their limits. However,
powerful CPUs and GPUs, consume tons of energy and require
cooling appliances, which results into higher operating cost and as
an indirect consequence, higher pollution and global warming.
Based on these issues, we present a survey on measuring and
reducing energy, especially when processing analytic workloads.
We discuss tradeoffs between high performance (low latency to
get results) and low energy (less power consumed over time). Our
focus is on identifying modern hardware components which have
a significant impact on energy consumption and then examining
how software optimizations can manage hardware to reduce
energy in a cloud data center. We conclude with a tentative
research agenda, based on the state of the art of research at the
intersection of big data analytics, high performance computing,
electrical energy and cloud computing.

I. INTRODUCTION

Big Data and Artificial Intelligence (AI) are major tasks
in cloud computing. The Internet of Things (IoT) keeps Big
Data growing. Edge computing is offloading some Big Data
processing from the cloud, but most AI processing happens
in the cloud. All these computing tasks need tons of energy.
By 2040, projections indicate that the IT carbon footprint
could reach 14%, with cloud data centers contributing 50%
[10]. Given the significant energy requirements of cloud data
centers, reducing energy demand is critical for sustainability.
Based on electrical energy consumed, AI is now contributing
a surprising 1% to worldwide carbon emissions [17], which is
much less than the pollution from factories and vehicles, but
it will keep growing as AI becomes more pervasive.

We argue energy is a hardware aspect, which needs to be
measurable, tunable and tweakable by software. We believe
developers and researchers need to become aware about how
much energy is consumed in analytic workloads, especially
AI with tons of linear algebra and numerical methods. We
suggest potential solutions, considering data science projects
developed and deployed in a cloud environment. We conclude
the paper with a tentative, but ambitious, research agenda.

II. BACKGROUND

A. Cloud Architecture

Cloud computing [3] is defined as a technology that offers
software as a service (SaaS), guaranteeing high quality of ser-
vice (QoS), under dynamic economic supply/demand changes
(elasticity). The customer (user, company, organization) pays
according to needed computing power, storage size, data
retrieval speed, time availability and shared/exclusive access,
under a Service-Level Agreement (SLA) guaranteed by the
cloud provider. In general, energy is not a consideration for
the user who looks at the cloud as an imaginary computer with
ample (almost unlimited) resources.

From a hardware perspective, the cloud consists of many
rack servers featuring multicore CPUs, large main memory
(RAM), with/without GPU, interconnected with each other
via a high speed hardware interconnection (e.g. Infiniband)
or a fast LAN wire connection (Gigabit Ethernet). In general,
rack servers do not have internal massive storage. Instead, they
have access to Network Attached Storage (NAS), commonly
known as disaggregated storage. In Section III, we explore
these components at a fine granular level and at a macro cloud
level, understanding performance and energy tradeoffs.

From a software perspective, the operating system, vir-
tualization, containerization, microservices, scheduling, and
orchestration manage all hardware components, giving the user
the impression of working with a local physical server.

B. Power and Energy

Our discussion focuses on electrical energy. We start by
defining electrical power as

P = V · I, (1)

where V (voltage) is measured in Volts (V), I (current
intensity) is measured in Amperes (A) and power P is mea-
sured in Watts (W). Therefore, Watts are intuitively understood
as Watts=Volts × Amperes. Example: a computer in the US
working at 120V, with a 3A power supply can draw up to 360
Watts at full capacity.

Based on the previous succinct definitions, energy is defined
as power consumed over a period of time, going from seconds
to hours. In Physics energy is defined, in a general manner,
as power consumed over time: P · t, where t is time elapsed
in seconds. In practice, for billing and provisioning purposes,



Watts are measured over hours (not seconds), resulting in
Watts/hour (Wh) to measure electrical energy consumption. In
this article, we use the energy equation below, where electrical
energy E is measured in Wh:

E = P · t (2)

When analyzing energy trends it is common to measure
energy in kilowatts/hour (kWh) and megawatts/hour (MWh).
Therefore, we will use the three measurement units (Wh, kWh,
MWh), depending on the size and scope of the underlying
components: Wh for specific hardware components, kWh for
many servers, interconnected devices and AC cooling units
and finally MWh for cloud data centers.

Hardware-based energy measurement techniques directly
monitor physical components like CPUs, GPUs, memory, and
storage in data centers or on-premises setups. Key methods
include power meters, which provide real-time consumption
data at the rack, server, or processor level, and intelligent
power distribution units (PDUs), which offer detailed device-
level usage data by measuring voltage, current, and power fac-
tor. Some modern CPUs and GPUs also have on-chip sensors,
reporting energy and temperature data via interfaces like Intel’s
RAPL or NVIDIA’s NVML. Additionally, external monitoring
tools, such as smart meters and energy analyzers, deliver
precise measurements for individual devices or entire cloud
regions, making them valuable in hybrid and experimental
environments.

C. Analytic Tasks Classification

In the past, analytics were mostly exploratory (cube queries,
business intelligence), statistical (histograms, plots, statistical
tests, simple predictive models) and data mining (machine
learning pattern discovery on large data sets). Today, the
main analytic task is training and deploying neural networks,
which are commonly known by the popular keyword “AI”.
However, database technology is still used to feed clean,
integrated, data to neural networks, statistics are still needed
to understand probabilistic distribution, linear vs non-linear
behavior and to compute preliminary predictive models, and
data mining techniques are being revisited and extended to
make neural networks scalable. However, the input data files
tend to be much larger for neural networks (mixing text,
images and databases) and the computation tends to involve
many more arithmetic and floating point operations (linear
algebra, numerical methods). In this survey, we aim to quantify
what fraction and amount of energy is used by each analytic
technique.

III. OPTIMIZING ENERGY ON MODERN HARDWARE

The goal of this section is to highlight key hardware
mechanisms for reducing energy consumption. We will discuss
various concepts related to energy efficiency and identify the
cloud hardware components where significant energy reduc-
tion can be achieved.

The variety of cloud infrastructures and workflow types
makes it impossible to define a unified method for saving

Fig. 1. Breakdown of energy consumption by hardware component.

energy. Different setups and workloads require tailored ap-
proaches to optimize energy consumption based on specific
needs and hardware resource configurations.

A. Power and Cooling Components

The number of servers in a data center varies significantly
based on its size and purpose. Small data centers may house
hundreds of servers, while enterprise data centers typically
host between 500 and 3,000 servers. Hyperscale data centers,
such as those operated by Google, Amazon, or Microsoft,
can accommodate anywhere from 100,000 to 400,000 servers
and even more, depending on the facility’s scale and opera-
tional needs. It is estimated that the total power consumption
of Google’s server data centers ranges from 500 to 700
megawatts.

The major contributor to the total energy usage in data
centers is IT equipment, which consists of rack servers, storage
devices, networking equipment, but also AC cooling systems.
Cooling contributes a whopping one-third of this energy use
[13], a fact that is generally overlooked or dismissed. There-
fore, the system deployment environment (building, geograph-
ical location) is critical to the optimal functioning of these
components. Nowadays, energy efficiency cooling techniques
for the cloud have become a central problem. There are two
main directions for power savings of cooling systems, one is
to reduce the cooling air production directly down to some
minimum threshold, and the other one is to reduce power
consumption with alternative cooling mechanisms, while at
the same time maintaining a given cooling production profile.
Cloud providers like Google, Amazon, and Microsoft are
adopting more efficient cooling methods to reduce energy
usage. Free cooling uses natural air or water to cool data
centers, reducing the need for mechanical air conditioning. On
the other hand, liquid cooling, such as direct-to-chip systems,
circulates coolant around components and can cut power con-
sumption by up to 40%. Immersion cooling submerges servers
in non-conductive liquid, offering even more energy savings



[33]. AI-optimized cooling dynamically adjusts cooling con-
figurations in real-time. It is based on the data and train models
which take various system extrinsic and intrinsic factors into
consideration, hence is highly adaptive to many circumstances
like aging devices, deteriorating equipment conditions, and so
on [32].

B. CPU Energy-Performance Optimization: DVFS

Dynamic Voltage and Frequency Scaling (DVFS) can sig-
nificantly reduce energy consumption in CPUs by dynamically
adjusting their voltage and frequency based on workload
requirements. Energy savings from DVFS in the cloud can
vary depending on the workload and system architecture
but typically range from 20% to 50% in general computing
environments [27], [14], [20]. The savings can be optimized
further by integrating DVFS with workload management and
scheduling strategies [6]. However, the exact rates depend on
system configurations, the type of tasks being performed, and
the level of scaling applied [1].

The application of the DVFS technique on a multi-core
CPU is a complex task. It is often simplified by forcing
each core on a package to operate at the same frequency and
voltage. Having a system with only one global voltage for
all cores (global DVFS) is energy-inefficient. To overcome
this limitation, global DVFS and per-core DVFS architectures
with multiple Voltage Frequency Islands (VFIs) have been
proposed. In such platforms, the cores in an island share
the same voltage and frequency, but different islands can be
executed at various voltages and frequencies [23]. By lowering
the voltage and frequency of less critical or idle areas, energy
consumption is significantly reduced without sacrificing the
performance of active sections. VFI is particularly effective
in complex systems like multi-core processors and cloud
infrastructures, where workload variability is common.

C. Accelerators

Hardware accelerators play a key role in reducing pro-
cessing time and improving energy efficiency across various
computing environments by offloading specific tasks from
general-purpose processors to specialized hardware optimized
for those tasks. This enables faster computation with reduced
energy consumption. Two popular types of hardware accelera-
tors in the cloud are GPUs and FPGAs. GPUs are particularly
effective when used in conjunction with CPUs.

1) GPU: GPUs today repesent the most important ac-
celerator. GPUs have evolved from their original purpose
of fast processing of high resolution images and video to
become essential components of modern AI infrastructure.
Neural networks (deep, transformers), require many tensor
(multidimensional arrays) computations, which are orders of
magnitude more demanding than classical models (SVMs, de-
cision trees, regression). GPUs provide extremely fast integer
and floating point arithmetic for linear algebra computations
[30], used to compute every ML model. But this comes at a
price: GPUs consume more energy.

The cloud offers a wide variety of server configurations with
GPUs, in which the main consideration is cost, not energy.
Currently, Large Language Models (LLMs) which involve
huge tensors with billions of dimensions require servers with
multiple GPUs. Different GPUs are designed for specific
workloads, which can be broadly categorized into graphics,
High-Performance Computing (HPC), and deep learning (DL).
Graphics workloads perform best on GPUs optimized for
texture cores and Graphics-DDR memory, like the NVIDIA
A10 and RTX A5000. In contrast, HPC and DL workloads
benefit from GPUs with tensor cores and High-Bandwidth
Memory (HBM), such as the NVIDIA A100 and T4. Both
types of GPUs are widely used in the clouds.

High-performance GPUs like NVIDIA GeForce or AMD
Radeon models typically consume between 15 to 30 watts
when idle. Under moderate loads, such as gaming or graphics
rendering, these GPUs can draw between 150 to 300 watts.
However, during tasks like deep learning, AI training, or
scientific simulations, high-end GPUs such as the NVIDIA
A100 or AMD Instinct MI100 can consume up to 400-500
watts or more. On the other hand, low-power CPUs, such
as those designed for mobile or energy-efficient applications,
typically consume between 10 to 35 watts under load. In
contrast, standard desktop CPUs generally range from 50 to
125 watts, depending on the specific model and workload
requirements. Meanwhile, server or high-performance CPUs,
which are tailored for data centers or compute-intensive tasks,
can consume between 100 to 300 watts or more, particularly
during peak performance conditions. While GPUs can con-
sume up to 400-500 watts under heavy workloads, their ability
to complete tasks faster than CPUs often results in overall
energy savings for high-performance tasks, especially in cloud
infrastructures.

Compute-intensive tasks, such as AI model training or gam-
ing, significantly increase power usage due to the parallel pro-
cessing capabilities of GPUs, whereas idle or low-utilization
tasks use less power but still more than CPUs. Clock speed
and voltage adjustments, through mechanisms like DVFS, help
manage energy consumption by reducing power when lower
performance is sufficient [19]. Modern GPU architectures,
such as NVIDIA’s Ampere and AMD’s RDNA are designed
for greater energy efficiency, while specialized AI-focused
GPUs further optimize power use for specific tasks. Effec-
tive thermal management is essential to prevent overheating,
which can lead to higher energy consumption [22]. Finally,
GPUs adjust automatically their power consumption based
on workload intensity through different power states, with
minimal energy use in idle states and higher consumption
during demanding applications. Energy efficiency in GPUs is
often measured by the performance per watt metric, indicating
how much computational work can be done for each watt
of power consumed. While newer GPU models generally
increase both peak performance and power usage, architectural
improvements and advanced power management techniques
have made modern GPUs more energy-efficient on a per-task
basis compared to older versions. This allows newer GPUs



to deliver higher performance while consuming proportionally
less energy for equivalent tasks, optimizing both power use
and computational output.

Measuring GPU energy consumption is crucial for optimiz-
ing performance and energy efficiency, particularly in data
centers and high-performance computing. Methods include
using external power meters or in-line monitors to measure
total power usage, software tools like NVIDIA SMI and
AMD Radeon Software for real-time monitoring, and GPU
performance tools such as GPU-Z and MSI Afterburner. Many
modern GPUs also feature integrated power management,
while profiling tools like CUDA Profiler and TensorFlow
Profiler can assess energy efficiency during specific tasks.
Energy consumption can be calculated over time by recording
power usage at intervals, and thermal sensors can provide
insights into the impact of temperature on energy consumption.
Combining these methods offers a comprehensive understand-
ing of GPU power usage, facilitating optimization strategies.

2) CPU-GPU: In some cases a CPU-GPU architecture
can provide better performance compared to executing all
operations on a single device, especially in tasks like ETL
(Extract, Transform, Load) processing and other I/O-intensive
workloads. This can be achieved by harnessing the parallel
processing capabilities of GPUs, offloading arithmetic opera-
tions to the GPU, allowing the CPU to focus on I/O aspects
of the workload.

Intel (CISC/x86) and ARM (RISC) architectures are both
integrated with GPUs. Table I highlights the key differences
between these architectures. In the cloud, ARM-based proces-
sors (like AWS Graviton) are gaining traction due to their
energy efficiency and lower cost, and GPU acceleration is
increasingly becoming a focus in ARM-based cloud comput-
ing environments for tasks such as AI inference and edge
computing.

3) Field Programmable Gate Arrays (FPGAs): Field Pro-
grammable Gate Arrays (FPGAs) are another accelerator
choice. An FPGA is a semi-customized integrated circuit
that can be programmed and configured for repetitive spe-
cific computations. FPGAs are especially valuable for tasks
requiring real-time data processing and adaptable hardware
configurations, enhancing flexibility and scalability in cloud
infrastructure. In the last few years, FPGAs have been used
in the cloud for diverse applications (see [5]). Common cloud
FPGA use cases include: (a) Customer applications, where
users can develop, simulate, and scale their custom FPGA
logic for tasks like genomics, financial analytics, or video
processing; (b) Application as a Service (AaaS), where the
cloud provider develops FPGA designs and exposes only nec-
essary APIs, offering high performance but limited customer
control; and (c) Provider applications, where cloud providers
use FPGAs to accelerate internal workloads freeing up CPU
resources for customer use.

FPGAs within a node in the cloud can be (a) not con-
nected to any other significant device (i.e., be a Disaggre-
gated resource) or connected to one or more devices; (b)
connected to CPUs, e.g., through PCIe; (c) connected to other

FPGAs, e.g., through a PCIe switch and/or using direct and
programmable interconnects; (d) connected to GPUs, e.g.,
through a PCIe switch; (e) connected to ASICs, e.g., through
multiple potential forms of connectivity depending on the
ASIC; (f) connected to storage devices through the device-
specific interface, e.g., SPI for flash and DDRfor SDRAM.
Table II presents various cloud providers along with their intra-
node connectivity types and associated use case categories. For
example, Alibaba Cloud offers two possibilities: customers can
either manage the FPGA logic themselves, or the provider
can use FPGAs to accelerate customer tasks. In this cloud
environment, the FPGA can be connected to a CPU, other
FPGAs, and storage, enabling flexible and efficient offloading
and acceleration of workloads.

D. Main Memory

To reduce memory energy consumption, various techniques
have been proposed. Some techniques utilize Dynamic Voltage
Scaling (DVS, analog to DVFS) to adjust the voltage supply in
modern multi-banked memory systems. Other methods focus
on reducing power consumption by activating only specific
memory banks, allowing the rest to remain idle. Additionally,
optimization algorithms target opportunities to switch either
the entire memory or portions of it into low-power modes,
either during or immediately after processes are running,
enhancing overall energy efficiency. In [15], the authors use
rank aware memory allocation and rate-based data placement
to deliberately skew memory access rates across available
memory. This creates idleness on the least-loaded memory sec-
tions, thereby reducing overall memory power consumption.
It is important to note that CPU caches are also power-hungry
components in multicore CPUs. Some techniques exploit the
CPU cache (e.g. L2 cache) to reduce energy consumed by
RAM, by tuning core activity.

In neural networks, data movement across the memory
hierarchy, particularly between higher (e.g., registers) and
lower levels (e.g., L1 cache), significantly drives energy con-
sumption. To minimize this, it is crucial to control memory
access by maximizing data reuse at lower levels. When data
is transferred from a higher to a lower level in the hierarchy, it
should be reused as much as possible to reduce the frequency
of future transfers and avoid costly energy operations. This
approach reduces the reliance on fetching data repeatedly from
energy-intensive upper memory levels, optimizing both perfor-
mance and energy efficiency in neural network processing. Ad-
vanced memory technologies can significantly reduce access
energy in high-density memories like DRAMs. One example
is embedded DRAM (eDRAM), which integrates high-density
memory directly onto the chip, avoiding the high energy costs
associated with switching off-chip capacitance. This on-chip
integration reduces the need for energy-intensive data transfers
between the CPU and external memory. Additionally, eDRAM
offers 2.85 times higher density than SRAM and is 321 times
more energy-efficient than standard DRAM, making it an
attractive option for energy-constrained applications such as
mobile devices, AI, and cloud computing environments [29].



TABLE I
INTEL (CISC/X86) AND ARM (RISC) COMPARISON.

Feature Intel x86 (CISC) ARM (RISC)
Design Philosophy Complex instruction set; more operations

per instruction
Simple instruction set; focus on efficiency

Power Consumption Higher power consumption, especially un-
der load

Lower power consumption, highly efficient

Performance Higher raw performance, suitable for inten-
sive workloads

Optimized for performance per watt, mobile
and low-power environments

GPU Integration Integrated (Intel Iris) or paired with discrete
GPUs

Integrated GPUs (Mali, Adreno) on SoCs

Energy Efficiency Lower efficiency, higher performance High efficiency, ideal for mobile/embedded
uses

Best Use Cases High-performance computing, gaming, con-
tent creation

Mobile, cloud computing, IoT, AI inference

TABLE II
CLASSIFICATION OF FPGA CLOUD ARCHITECTURES.

Cloud System Intra-node connectivity Use Case
Alibaba FPGA,CPU,Storage Customer,Provider
Baidu CPU,Storage Customer,Provider
Microsoft Catapult CPU,ASIC,Storage AaaS,Provider
Amazon AWSF1 FPGA,CPU,Storage Customer
Huawei FPGA,CPU,Storage Customer,Provider
Nimbix CPU,Storage AaaS
Tencent CPU,Storage Customer

While many energy-saving techniques can be applied to
individual servers in the cloud, significant energy savings can
be achieved by cloud providers adopting modern, energy-
efficient memory banks across all cloud components. When
these improvements are scaled across the entire data center,
they enhance overall energy efficiency and contribute to more
sustainable cloud operations. By selecting energy-optimized
hardware for memory-intensive operations, cloud providers
can lower both operational costs and their environmental
impact.

E. Storage: From Hard Disk to NVM

The storage system is a crucial component of any cloud
infrastructure. Currently, two types of storage disks dominate
the market: traditional hard disk drives (HDDs) and solid-state
drives (SSDs). Among these, SSDs are recognized as the most
energy-efficient storage hardware available today. They utilize
flash memory, which is a non-volatile memory technology with
characteristics similar to electrically erasable programmable
read-only memory (EEPROM).

We can distinguish two types of transfer protocols used in
SSDs: SATA (Serial Advanced Technology Attachment) and
NVMe (Non-Volatile Memory Express). Older SSDs rely on
the SATA protocol, which provides a maximum data transfer
speed of six gigabits per second (Gbps). Although this is
slower than more recent interfaces, it is still significantly
faster than traditional hard disk drives (HDDs). In contrast,
NVMe SSDs can achieve transfer speeds of up to 20 Gbps
by utilizing the Peripheral Component Interconnect Express
(PCIe) bus. NVMe SSDs typically connect directly to a
computer’s motherboard using the M.2 form factor, which is

more power-efficient, compact, and faster than the commonly
used 2.5-inch SSDs. M.2 drives do not require cables and,
despite their small size, can store up to eight terabytes (TB)
of data. They are compatible with any motherboard that has
an M.2 slot, and when using the NVMe interface, M.2 NVMe
SSDs offer some of the fastest data transfer speeds available
today. SSDs are significantly more power-efficient than hard
disk drives (HDDs) due to their lack of moving parts (see
Table III. Additionally, SSDs dissipate less heat and, as a
consequence, require less power for cooling. SSDs also require
less power because most of the time they are in an idle state,
whereas HDDs must continuously spin their disks for fast
data access. This efficiency in power consumption, combined
with faster data access speeds, makes SSDs a preferred choice
for cloud environments seeking to optimize energy use while
maintaining performance.

F. Networking

Energy consumption in the cloud is significantly dependent
on the types of connections used within the cloud. Network en-
ergy efficiency in the cloud minimizes the power consumption
of networking infrastructure components, maintaining QoS.
These connections not only impact the overall performance,
but also play a key role in determining how efficiently en-
ergy is used during peak and idle times. In a typical cloud
computing environment, multiple layers of networking and
connectivity are involved, each of which consumes varying
amounts of power.

Data centers heavily depend on Ethernet-based connections
for communication among servers, storage, and network-
ing devices. High-speed Ethernet switches and routers (e.g.,



TABLE III
POWER CONSUMPTION RANGE.

Disk type Idle state Reading data Writing data
SATA SSD 0,25W to 2W 4W to 8W 5W to 9W
NVMe SSD 0.50W to 3W 2W to 8W 3W to 10W
3.5-inch HDD 5W to 7W 9W to 15W 9W to 15W
2.5-inch HDD 2W to 5W 5W to 7W 5W to 7W

Fig. 2. Ethernet network vs. CPU speed improvement.

10/40/100 Gbps) consume considerable energy, proportional
to the number of ports, with power being drawn by each
port even when idle. An approximate power usage is 15W
for one port, with total power consumption for a typical
switch ranging from 300W to 600W. To mitigate this power
demand, technologies like Energy-Efficient Ethernet (EEE)
have been developed, which can reduce energy consumption
by placing inactive network links into low-power states [24].
Alternatively, interconnects like InfiniBand, widely used in
high-performance computing (HPC) and cloud environments,
offer low latency and data rates from 2.5 Gbps to 200 Gbps.
Research has shown that InfiniBand can achieve up to 30-40%
lower power consumption per gigabit compared to Ethernet,
making it a more energy-efficient solution in many high-
throughput scenarios [25].

Some cloud data centers rely on optical fiber networks
[18], [8]. Optical fiber is used for high-speed, long-distance
data transmission within and between data centers. Although
fiber optic provides faster data transmission (up to 100 Gbps)
with lower latency and can be more energy-efficient per bit
than copper cables, the intermediate infrastructure to manage
and power fiber optic transceivers and signal amplifiers still
requires substantial energy.

Cloud networks can implement sleep modes for network
switches, routers, and other devices. These components can
enter low-power states when network demand is low, reducing
the power draw of idle components. Many high-performance
cloud data centers also integrate power scaling mechanisms
to adapt power usage based on dynamic real-time network
demands.

Figure 2 shows the increasing gap between Ethernet link
speed improvements and processor speed advancements over
the past 25 years. As this gap widens, techniques such
as disaggregated storage have emerged to help address the
disparity. Disaggregated storage in the cloud [21] refers to
a storage architecture where compute and storage resources
are separated or ”disaggregated” and managed independently,
unlike traditional architectures where storage is often tightly
coupled with compute nodes. This approach allows cloud
service providers to allocate, scale, and optimize storage
resources independently of compute, leading to increased
flexibility, resource utilization efficiency, and cost savings.
In disaggregated storage, compute nodes (servers running
applications) and storage nodes (where data is stored) are
decoupled. Compute resources access storage over the net-
work, typically using high-performance optical fiber networks.
Disaggregated storage can lead to better energy efficiency.
Resources are allocated based on actual usage, which prevents
underutilized hardware from drawing unnecessary power.

G. Solutions to Reduce Energy in the Cloud

We now provide recommendations to help save energy in
cloud computing environments. Most of our recommendations
are general, but we identify a few which are specific to AI
workloads. Given the multitude of factors, constantly evolving
due to hardware innovations, influencing energy consumption,
it is not possible to identify a single best recommendation.

Dynamic component deactivation is a key feature of cloud
computing, allowing systems to efficiently adapt to changing
workloads, reduce operational costs, and enhance overall re-
source management. Cloud platforms offer auto-scaling and
dynamic deactivation capabilities that optimize resource usage
and reduce costs. Auto-scaling allows components like virtual
machines, containers, or serverless functions to be automat-
ically activated or deactivated based on real-time demand,
ensuring efficient scaling. Dynamic deactivation suspends
unused components, minimizing consumption of compute,
memory, and storage resources, which is cost-effective in pay-
as-you-go cloud models like AWS or Azure. Additionally,
this deactivation reduces energy consumption in the cloud,
enhancing energy efficiency and supporting environmentally
sustainable cloud computing practices.

Dynamic component deactivation is an effective method for
energy saving in the cloud, with varying benefits depend-
ing on the use case. In e-commerce, it allows deactivating
components during non-peak hours and reactivating them
during high-traffic periods like Black Friday. For development



and testing environments, it reduces energy consumption and
costs by deactivating unused resources. In AI/ML workflows,
resources are activated only when needed for tasks like training
or inference, avoiding unnecessary energy use and expenses
when models are idle. This approach enhances flexibility,
optimizes operational costs, and improves cloud resource
efficiency.

To enhance energy efficiency through Dynamic Voltage and
Frequency Scaling (DVFS) in cloud infrastructures, providers
should regularly monitor workloads and dynamically adjust
CPU/GPU frequencies based on real-time demand. Prioritizing
low-impact tasks for DVFS can help save energy without
degrading overall performance. The integration of advanced
scheduling algorithms prevents over-provisioning, while align-
ing DVFS strategies with Service Level Agreements (SLAs)
ensures stability.

GPUs like the NVIDIA A100 and Tesla T4 are ideal for
energy efficiency, featuring Dynamic Voltage and Frequency
Scaling (DVFS) for adaptive power management. Similarly,
the AMD Instinct MI100 excels in high-performance work-
loads while emphasizing energy conservation, particularly in
AI and deep learning applications. By selecting GPUs that
support DVFS and leveraging advanced workload management
and real-time monitoring tools, cloud providers can scale
performance dynamically based on demand, achieving notable
energy savings without compromising performance.

Integrating FPGA (Field Programmable Gate Array) tech-
nology is highly recommended to enhance performance and
energy efficiency. FPGAs offer customizable hardware acceler-
ation, ideal for workloads like AI, machine learning, and data
processing. They can be reprogrammed to optimize specific
tasks, reducing latency and improving throughput. Addition-
ally, FPGAs consume less power than traditional CPUs and
GPUs, making them a more energy-efficient solution in cloud
environments.

For cloud providers, NVMe SSDs are an excellent choice
due to their superior speed, low latency, and scalability.
NVMe technology is ideal for data centers, high-performance
computing, AI/ML workloads, and applications that require
fast data access and high IOPS (Input/Output Operations
Per Second). Providers should consider SSDs like the Intel
Optane or Samsung PM983 series, which offer the benefits of
NVMe for improving data transfer speeds and reducing power
consumption.

Cloud providers should adopt optical fiber networks and
interconnects such as InfiniBand due to their superior band-
width, minimal latency, and high reliability. Fiber optics effi-
ciently transmit large volumes of data, making them ideal for
supporting the demands of AI, machine learning, and big data
applications in data centers. Additionally, these technologies
enhance overall network performance and scalability, which
is crucial for modern cloud computing environments. More-
over, by combining sharing high-volume fiber optic channels
instead of adding new fiber optic cable, leveraging low energy
Ethernet on low demand servers, and letting users turn on
dynamic voltage and frequency scaling, cloud providers can

further reduce the overall energy consumption of networking
infrastructure, which in turn can contribute to overall cloud
data center energy efficiency and sustainability.

IV. OPTIMIZING ENERGY WITH SOFTWARE

A. Cloud Computing: Virtual Machines and Containers

Having low server utilization (i.e., server frequently idle)
is inefficient because it wastes resources: data center in-
frastructure, hardware, and power. Exclusive access is even
more wasteful. Therefore, low utilization and sharing resources
motivates virtualization. Virtualization allows running several
independent virtual operating systems on a single physical
computer. A single physical server can run multiple virtual
machines (VMs) sharing ample hardware resources (CPU
cores, RAM, storage), requiring minimal additional power,
resulting in lower energy consumption and data center op-
erating costs. Containers (e.g. Docker) represent a newer,
lightweight, virtualization technique that enables application
programs to run on isolated virtual space, but sharing the
operating system kernel. In general, containers have a faster
startup time than VMs. In addition, containers have more
flexibility to be orchestrated and scaled, up and down, to meet
dynamic demand of analytic workloads and microservices.

When servers are consolidated, several virtual machines
and containers are packed into a small number of physical
machines in order to turn off or switch the status of the
idle hosts to sleep mode to minimize energy consumption.
It has been shown that container consolidation saves more
energy than VM consolidation [11]. Another technique in-
volves scheduling cloud instances, allowing to turn off idle
machines. Some further techniques used in cloud data cen-
ters include virtual machine migration, load balancing, and
workload categorization. Virtual machines are migrated when
preconfigured thresholds are reached, distributing the work-
load evenly among various VMs, and classifying workloads
according to their demand, before a server is assigned to
them. Power in data centers is further reduced using machine
learning algorithms, a solution explained later. The objective
of dynamic power management is to allocate the minimum
physical resources to VMs, but deactivating unused resources
or setting them into a sleep state [16]. Live migration [9], a
dynamic technique, moves a VM from one physical server to
another one, scaling down or scaling up hardware resources
according to demand. Live migration can consider energy as a
factor to assign resources. In short, virtualization and related
techniques decrease performance (down to acceptable levels),
but yielding significant energy savings.

B. Efficient Analytic Algorithms

In general, analytic algorithms are programmed and opti-
mized to reduce computation time at all cost, using all avail-
able computer resources. Fast machine learning algorithms,
that require less iterations or fewer math computations, can
achieve significant energy savings. Stochastic gradient descent
(SGD), the dominating objective function optimization method
in AI, is more energy-efficient than older iterative methods or



batch gradient descent (the default). A related technique during
neural network training is model pruning, which removes
unnecessary neural network parameters (or neuron/vertex con-
nections). This optimization reduces computation time and
energy consumption, with minor accuracy decrease. During
model training, which is the most CPU-intensive computation,
dynamically adjusting the learning rate, batch size, and other
hyperparameters based on energy consumption and system
load to optimize efficiency. In contrast, inference (deploying
a computed model on new data) has much lower energy cost
in the cloud, but it is important when the neural network is
deployed to make predictions on the edge (a device). A last
technique worth mentioning, is quantization, which reduces
numerical precision (e.g., using 16-bit floats instead of 64-bit
double-precision numbers), but maintaining acceptable model
accuracy.

C. Operating System

The Linux kernel plays a significant role in the new wave
of embedded and mobile devices, in addition to cloud servers
[3]. It leverages various power management features including
hardware tuning tools like hdparm, swsusp, clock gating,
voltage scaling, sleep mode activation, and memory cache
deactivation. However, ongoing research aims to enhance the
platform’s functionality further. In [28], the authors explore
the behavior of the task management subsystems (sched-
uler and load balancer) in the Linux kernel on multi-core
Symmetric Multi-Processing (SMP) systems. It assesses their
effectiveness at reducing energy consumption across different
scenarios, such as idle and moderate load, and discusses tech-
niques like timer migration, task wakeup biasing, and related
heuristics for energy reduction. Original power management
from Linux is reproduced to Android. However, these solutions
do not satisfy mobile devices or embedded systems. They must
consider constraints like limited battery power capacity for
instance.

D. Extended Cost Models Combining I/O and Energy

Here we describe energy savings in data systems, following
classical cost models from database systems in [7]. Energy cost
can be considered for both transactional and query workloads.
Database transactions have a substantial impact on overall
energy consumption because they are CPU bound.

In general, the energy consumption of analytical job J is the
sum of energy used by each hardware component: CPU, RAM,
storage, and network (equation 3), where J is a collection
of CPU and I/O operations (vector/matrix multiplications, file
scans, file merge, file filtering/search).

E(J) = ECPU (J) +ERAM (J) +EIO(J) +ENET (J). (3)

In a cloud data center the equation above is generalized to
M machines (e.g. a cluster of uniform CPUs), disaggregated
storage (e.g. Amazon S3) [31], high speed interconnection
(e.g. InfiniBand) and networking hardware (e.g. Ethernet card,
fiber optic, Ethernet switches):

Ec = M ∗ECPU +Estorage +Einteconnect +Enetwork. (4)

There are important changes with respect to a local server:
each machine does not have separate I/O cost since the
cloud does not use a shared-nothing architecture and we are
adding separate energy costs for interconnection (higher) and
networking cards (lower). Moreover, we are bundling the costs
of accelerators (GPU, FPGA) into the CPU costs.

After constructing the energy-efficient cost model, the next
step is to identify the coefficients associated with each cost
used by the target storage system. This identification is usually
performed using AI-driven approaches. Most proposed cost
models use traditional machine learning methods to extract
the features of their cost models, with linear regression being
the most common. Other AI techniques that predict energy
behavior during query processing have to be explored to set
the relevant values, and to dynamically calibrate parameters
when the workload changes [2]. The non-uniform nature of
CPU nodes in the cloud makes ML models more difficult to
fit (i.e., to estimate the equation coefficients above).

It is necessary to validate cost model accuracy. The differ-
ence between estimations given by cost models and real energy
measurements can be computed with AC power measurement
devices, which provide a reference value.

Extended cost models for predicting energy are used by
various data systems to optimize database energy consumption
[26]. The system introduced in [12] integrated an energy cost
model into the query processing module of a DBMS. Rather
than choosing plans with optimal performance, plans with
acceptable performance degradation within a certain threshold
are selected to save energy. Such approaches represent a
proof that a trade-off between query performance and energy
consumption is feasible.

V. RESEARCH ISSUES

We conclude the paper by providing a tentative research
agenda aiming to co-design and co-optimize hardware and
software. However, we do not provide neither theory nor
experiments because this paper is a survey to encourage
research on energy. We identify features which are likely to
impact energy and then discuss how these features can help
reducing energy in a cloud environment. We conclude this
section with issues beyond computer science.

A. Hardware

1) CPU Clock speed: As introduced above, Dynamic Volt-
age and Frequency Scaling (DVFS) are established power
management techniques in both CISC and RISC CPUs. The
impact on energy of these hardware features in a cloud
environment running on virtual machines and containers needs
further research. In addition, hardware with non-uniform specs
(CPUs with different speed, far/near memory, mixed storage
with SSD and HDD) make energy optimization more difficult.



2) Hardware accelerators: Hardware accelerators, includ-
ing GPUs, TPUs, FPGAs are exploited for numerically inten-
sive tasks, such as neural networks (AI), numerical methods
(HPC) and gaming. But their energy consumption can be
very high, especially with powerful GPUs featuring 1000s
of cores. We argue that the initial stages of a data science
project or small AI problems can be solved with multi-core
CPUs, compromising performance, but saving tons of energy.
Therefore, there is a need for new hardware architectures and
more general energy cost models. The current trend using
GPUs in AI poses new challenges for energy efficiency. GPUs
are energy-hungry, because the number of data replicas and
their capability to support fault tolerance increases CPU usage
during data loading. Assigning workload dynamically to phys-
ical servers, instead of predefined instances (configurations)
offered by cloud providers, can also have a signifcant impact
on energy management. FPGAs are used to accelerate specific
computations, but they can potentially save energy when
repetitive, but expensive, computations can be transferred from
the CPU to the FPGA.

3) Secondary Storage Devices: Secondary storage tech-
nologies such as SSDs have the potential to significantly
decrease the energy consumption associated with processing
big data. SSDs are much faster than HDDs and they consume
much less energy. Nevertheless, SSDs have higher cost and
shorter write life. It is necessary to extend and tune old I/O
models, to save energy. Speed and energy tradeoffs between
RAM and SSD need to be studied (SSD access speed is
approaching RAM access speed).

4) Using machine learning models for tuning file access
parameters: ML models have been used to optimize resource
allocation in the cloud, in query processing and in ML
computation itself. There is significant research on learning
parameters of I/O cost models for query processing. Such ML
models must be extended to reduce energy, but providing an
acceptable performance reduction.

5) Energy-aware edge computing: The cloud is fed with
a lot of data coming from edge devices. Optimizing energy
on edge devices has received significant attention, because
edge devices work with batteries or little power supplies. But
most research has focused on one objective: either low latency,
or data privacy, or power saving. Hence we believe multi-
objetive optimization is needed, to reduce energy and latency
simultaneously. On the other hand, there is work on middle-
ware architectures [4] to improve device interoperability, but
tweaking the OS to save energy is still an open problem. At
a lower level, compiler-level code optimizations are needed
to save energy, especially with multicore CPUs with complex
instruction sets.

6) Quantum computing: Quantum computing is a future
alternative to save energy to solve difficult problems, at the
price of a small accuracy sacrifice.

B. Optimizing Energy with Software Controlling Hardware

1) Virtualization: Physical recources (hardware) are shared
among multiple virtual machines (VMs). Analyzing trade-offs

increasing RAM and virtual CPUs (VCPUs) is paramount
to optimize hardware usage, reducing energy overall. When
multiple workloads are consolidated onto fewer physical
servers, virtualization reduces global energy consumption in
data centers. This problem requires further study, at the cloud
instance level. On the other hand, containers (lightweight
virtualization such as Docker) is popular in AI analytics.
Carefully configured containers enable host machines to reach
optimal resource utilization. Future research is needed to
decide container and task placement on physical machines,
considering CPU multicores, large memory, secondary storage,
and network resources working in sinergy.

2) Saving Energy in Analytic Algorithms: Training a neural
network consumes tons of energy due to heavy linear algebra
computing tensor equations. As we mentioned above, large
neural networks have pushed innovation with lower precision
floating point arithmetic, smaller integers and quantization
(binary coding) techniques, which, suprisingly, still yield ac-
curate parameters, allowing learning larger neural networks.
The energy angle deserves more attention.

3) Extended Cost Models missing Energy and I/O: I/O cost
models are fundamental in query processing, but they are
insufficient to reduce energy. General hybrid models, mixing
energy and I/O cost are needed. From an ML side, non-
linear models deserve more attention since in they have been
shown to be more accurate than linear models. Moreover,
extended cost models environment-level parameters should
also be considered, such as hardware age, IT equipment per
cubic feet, external temperature, data center air volume.

4) Interaction between Hardware and Software on AI Work-
loads: The interaction among hardware components, software
AI libraries and the cloud infrastructure is hard to understand.
Can we reuse partial computations in past neural network
propagation iterations to save not only time, but also energy?
Can smaller neural networks be deployed (inference) without
GPUs (i.e. only with CPUs)? Is it better to have more memory
in a GPU vs more RAM in CPU, given the fact that GPUs
are more power hungry? To compute an LLM, architecture
is better? a multi-core CPU vs distributed computing with
a cluster of machines? Again, as motivated above, do lower
precision floating point numbers in a larger neural network
(compared to a neural network with double precision) result
in lower power consumption?

C. External Factors beyond Hardware and Software

Here we summarize aspects beyond computer science: so-
cietal, economic, political and legal. A viable solution cannot
ignore them.

New Economic Models: The ”polluter pays” principle
should be enforced making cloud providers and users aware of
energy and potential pollution caused by cloud applications.
We believe cloud providers and large corporations can be be
more environmentally responsible if people learn energy and
pollution implications.

Service Level Agreements (SLAs): Energy consumption
is likely to be another item in Service Level Agreements



(SLAs). In the past, The number one requirements in the
cloud have been guaranteed performance and availability, (at
an acceptable cost), but energy is now a second consideration.

A viable, long-term, solution requires a collaborative ef-
fort involving AI analytic developers and AI users becom-
ing aware about energy usage and deciding an acceptable
energy/performance level, but also cloud service providers
exposing energy measurements by component, and enabling
fine-grained cloud management settings and controls to reduce
energy consumption. Finally, energy companies should be
transparent about energy pricing, energy sources (renewable
vs fossils) and long-term energy trends they observe on the IT
industry.
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