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Abstract. Traditionally, query processors (QPs) have been designed to
optimize response time, but not energy consumption. Heeding this new
optimization goal, during the last decade, the database community turned
its attention to enhancing the energy efficiency (EE) of QPs, but there are
still major challenges. By analyzing recent work on EE of QPs, we observe
that even though Machine Learning (ML) models can accurately predict
energy consumption, they do not modify the core QP functionality (soft-
ware) nor dynamically adjust CPU configuration parameters (hardware:
# of cores and clock frequency), to actually save energy for a query. To
address this gap, we introduce PAID, a subsystem integrated with the
query optimizer that combines old AI with new AI: a Genetic Algorithm
(GA) with a Neural Network (NN). The NN model predicts query energy
consumption, whereas GA determines the optimal CPU configuration,
deciding clock speed frequency and core allocation for each query. The
GA configuration is then fed back into the NN model to tune prediction
accuracy. Our experiments, conducted on the TPC-H benchmark with
PostgreSQL, show that PAID effectively finds CPU configurations that
exceed the performance of default settings, achieving significant energy
savings.

1 Introduction

The development of efficient query processors (QP) remains an active research
area. As data science and AI applications proliferate, QPs have become the back-
bone for data preparation and data exploration phases, enabling AI model com-
putations. In parallel, the ICT industry is estimated to be responsible for 1.8% -
2.8% of the global carbon footprint. Therefore, growing environmental concerns
will require policymakers, industry stakeholders and researchers to prioritize en-
ergy efficiency (EE) in the design of future computing systems. Thus, improving
the EE of QPs will remain an important problem for green computing.

Aligned with this motivation, the database community has shown notable
interest over the past two decades in developing various initiatives to address
the challenge of EE in databases. These efforts include surveys [15,2,7], methodic
studies for facilitating research on this topic [1], and prediction models for as-
sessing the energy consumption of traditional DBMS QPs [6,4,13,2,3,16,9,8].

By conducting an in-depth analysis of these research initiatives, we observe
that they introduce both hardware and software tactics to enhance EE [1]. Hard-
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ware manufacturers have made significant strides in developing high-performance
CPUs [14], GPUs [10], and specialized hardware accelerators [12]. Dynamic Volt-
age and Frequency Scaling (DVFS) is recognized as one of the most effective
techniques for reducing power consumption in both CPUs and GPUs. By dynam-
ically adjusting the voltage and frequency based on workload demands, DVFS
helps optimize EE without significantly compromising performance [5,11]. Soft-
ware tactics include, among others, analytical cost models designed to predict
the query energy consumption. They extend conventional query optimizers by
incorporating parameters such as IO, CPU usage, and memory costs. Machine
learning (ML) techniques use these parameters to predict energy consumption
of queries [2]. More recently, these models have been further refined by incor-
porating hardware-related parameters, such as the number of CPU cores and
frequency [3]. However, they primarily rely on basic predictive methods such as
linear regression, multiple regression, and random forest [13,4,6].

The analysis of the current state of the art reveals two important findings
(F1 and F2) that need to be consolidated, as well as two main limitations (L1
and L2). F1 The pivotal role of ML techniques in aiding the development of
environmentally-friendly QP. F2 The importance of ML solutions that integrate
both software and hardware parameters to accurately predict energy consump-
tion. L1 The existing energy consumption prediction models rely on simple ML
techniques. L2 Despite the CPU’s dominance in energy consumption, existing
ML-based solutions often overlook the importance of optimizing CPU config-
urations—specifically, the number of cores and CPU frequency. Instead, they
rely on the default settings predefined by the host machine of the target DBMS,
potentially missing opportunities for improvedEE.

To overcome the above two limitations, we propose a novel optimization
system PAID that integrates Genetic Algorithm (GA) and Neural Networks (NN).
GA aims at selecting the optimal number of CPU cores and a CPU frequency for
a given query. The configuration chosen by the GA is subsequently incorporated
into the NN model to enhance the accuracy of the prediction. Thereafter, NN are
utilized to predict both energy consumption and response time of queries.

2 Integrating old and new AI: GA and NN

In this section, we describe the two components of PAID system: GA and NN.

2.1 NN model

Our NN model aims to estimate the energy consumption (output) considering
critical CPU settings, including the number of cores and CPU frequency. Ac-
cording to the state-of-the-art, estimating the energy consumption for a given
query Qi requires considering the following key features (that can be extracted
from query optimizers): CPU cost, I/O cost, memory cost, and database size.
Therefore, from an energy consumption perspective, Qi can be represented by

the following feature vector
−→
Qi, which serves as input to our NN model:−→

Qi = (COSTCPUi
, COSTIOi

, COSTMemoryi
, DBSizei), where COSTCPUi

, COSTIOi
,

COSTMemoryi
, and DBSizei represent respectively the number of instructions

executed by the CPU, the number of pages read/written from secondary storage
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Fig. 1: The PAID Subsystem.

(persistent storage), the number of pages accessed in main memory when execut-
ing Qi, and the size of the target database. A CPU configuration used for execut-

ing a query Qi is represented by the following vector:
−−−→
CPUi = (FRQi, COREi),

where FRQi, and COREi represents respectively the CPU frequency and the
number of cores used during Qi execution. It is important to highlight that, in
existing studies, all CPU vectors associated with queries are fixed. That is, the
CPU configuration remains fixed across all queries, rather than being dynami-
cally optimized based on individual query characteristics. Based on these two
vectors, a query Qi is then represented by a vector obtained by concatenating

the query feature vector
−→
Qi and the CPU configuration vector

−−−→
CPUi. The query

vector is initially passed through a set of fully connected layers of monotonically
decreasing size.

2.2 Selecting an Optimal CPU Configuration: A Genetic Algorithm

Recall that our GA aims at selecting the best configuration of CPU for a given
query Qi. Let us first formalize the problem of CPU configuration selection.

Given the extended query (Qi) vector
−−→
EQi = (

−→
Qi,

−−−→
CPUi) and our NN model that

predicts the energy consumption of queries under a given CPU configuration,
our problem consists in setting the best CPU configuration that minimizes both
the power consumption (FPower) and execution time FTime:

minimize(j,k) Fpower(
−→
Qi,

−−−−−−→
CPUi,j,k)× Ftime(

−→
Qi,

−−−−−−→
CPUi,j,k)

where min frequency ≤ j ≤ max frequency and min number cores ≤ k ≤
max number cores.

Our NN model predicts energy consumption and response time for a query
based on considered the features, without varying them. In contrast, the GA

selects the optimal CPU configuration for a query. By sending predicted energy
from the NN to theGA, PAID enables NN to get the optimal CPU configuration.
Figure 1 illustrates the connection between NN and GA, where the fitness function
used by the GA is provided by the NN model.



4 A. Bouhatous et al.

3 Experimental Study

We present and discuss experimental results obtained using a Dell Precision
Tower 3620 server equipped with a Core i7-6700 CPU (4 cores, 8 threads), 16
GB DDR4 RAM, and a 256 GB SSD. Our experimental setup comprises three
main components: a client machine (monitor), a PostgreSQL DBMS (version
14.1) running on Ubuntu 20.04 (kernel 20.04.4 LTS), and an external power
meter for energy measurement called Yocto-Watt4 at a frequency of 1 Hz. It
is directly placed between the database server and the electrical power supply
and it is linked using a USB cable to the client machine for data collection. Our
server is installed with We utilize the TPC-H benchmark to train and evaluate
our models. Three databases are generated with sizes of 10 GB, 30 GB, and 50
GB (used to validate our proposal). In addition to the benchmark’s original 22
queries, we generate 70 additional queries randomly. For each database instance,
we collected query execution plans and measured energy consumption using our
power meter. Each query was executed multiple times while varying the number
of CPU cores (parallelism degree) from 1 to 4 and adjusting CPU frequency con-
figurations between 0.8 GHz and 3.4 GHz. Before conducting our experiments,
we deactivated unnecessary background tasks and cleared both the operating
system and PostgreSQL buffers before each query execution. To assess the ef-
fectiveness of our NN model, we selected Random Forest Regression (RFR) as a
baseline. The input layer of our NN model consists of 6 neurons, corresponding
to the number of features in the input data. The subsequent three layers are
densely connected, with each neuron in a layer being connected to every neuron
in the previous layer. We use the rectified linear unit (ReLU) as the activation
function for the hidden layers, which introduces non-linearity to the network.
The output layer consists of two neurons, each producing a single output value,
indicating the two outputs predicted by the network. The activation function for
these output neurons is linear, which allows for continuous predictions of power
consumption and query execution time. The model is compiled using the Adam
optimizer with a learning rate of 0.0125, and the loss function employed during
training is mean absolute error (MAE).

NN model vs. RFR Table 1 presents the evaluation results of Random Forest
Regression (RFR) and our NN model, showcasing their performance metrics for
predicting power consumption and query execution time. The NN model gener-
ally outperforms the RFR model in terms of both MAE and R2 for predicting
power and time. This indicates that the NN model provides superior accuracy in
estimating the energy consumption and execution time of queries, making it a
more reliable choice for predicting these metrics.
Impact of CPU configuration To evaluate the impact of CPU configuration,
we varied the number of cores and measured response time and energy con-
sumption for 22 queries (Fig. ??). As expected, increasing the number of cores
generally improved response time, except for simple queries (with less joins and
sorting). Surprisingly, energy consumption was found to correlate with elapsed

4 https://www.yoctopuce.com/FR/products/yocto-watt
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Table 1: Evaluation results of RFR and NN in predicting power consumption and
time of queries.

Model’s Output Evaluation Metrics RFR NN

Power MAE 2.3 2.5
R2 63.82 64.17

Time MAE 54.72 13.85
R2 47.51 83.64
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Fig. 2: Impact of variation of CPU configuration on queries Q1, Q11, and Q22

time. Using all available cores reduced energy consumption for most queries,
except some queries with high number of joins and sorting using two attributes,
energy usage remained high despite full core utilization. This suggests that for
complex queries, the overhead of parallelism may offset energy savings, especially
when managing numerous joins and sort operations. Due to the large number
of queries and the wide spectrum of values, plotting all results together was im-
practical. Therefore, we chose to present representative results for three queries
(Fig. 2): Q1 (0 join, 4 sums, 3 avg, 1 sort on two attributes), Q11 (4 joins, 2
nested queries, 3 sums, 1 sort), and Q22 (4 nested queries, 2 joins, 2, one sort).

4 Conclusions

We introduced PAID, a subsystem that integrates a GA with a NN to optimize en-
ergy consumption in query processors (QPs). PAID addresses the complexity of
selecting an optimal CPU configuration for a given query due to the large num-
ber of possible combinations. On the other hand, going beyond existing linear
regression models, we explained NN can learn a more accurate non-linear model
to predict energy and reduce energy consumption based on a query workload.
Therefore, we gave evidence both techniques need to be integrated, comple-
menting each other. Our results on the TPC-H Benchmark show that energy
consumption can be reduced by up to 30%, often accompanied by improved
query performance or a minor decrease. Interestingly, increasing the number of
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cores led to reductions in both energy use and response time. In contrast, the
effect of CPU frequency varied across query types, contradicting earlier work
aiming for a single default configuration.
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