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Abstract. There is significant research into sparse and dense matrix
computations, with high-performance computing techniques, reducing
time complexity and improving parallel speedup mostly with ample main
memory, considering I/O on secondary storage as a less important as-
pect. On the other hand, there has been important work in the database,
data mining and big data communities accelerating the computation of
machine learning models on large data sets. However, massive neural
networks and constantly changing data sets are pushing matrix compu-
tation demands further. We first present a survey on three key prob-
lems identifying research issues: maintaining a large data set updated
under frequent matrix entry insertions and deletions, sparse matrix ad-
dition/multiplication and recomputing a deep neural network when a
sparse data set changes frequently. We then propose a research agenda
focusing on those three major problems solved with parallel I/O effi-
cient algorithms storing and processing matrices with coordinate tuples
(like a database relational table): matrix entry insertion/deletion, ma-
trix addition/multiplication and assembling these algorithms into state
of the art neural networks. We argue coordinate tuples complement and
can potentially replace established main memory storage mechanisms,
like dense arrays and compressed row/column formats. In summary, we
believe database-inspired, parallel I/O efficient, algorithms tailored for
sparse matrices can help updating, explaining and monitoring evolving
neural networks on large dynamic data sets.

1 Introduction

1.1 Motivation

Computing and monitoring dynamic machine learning models plays a crucial role
in addressing science and society problems involving evolving matrix data sets
and evolving graphs, where matrix entries are inserted and deleted frequently.
This challenge will persist as a significant concern in the future due to the versa-
tility of sparse matrices, which can represent interactions or connections among
numerous variables, objects, people, devices, and more [12,14]. The dynamic na-
ture of these data structures, characterized by frequent updates and changes,
necessitates the development of efficient and adaptive machine learning models
that can accurately capture and respond to these shifts. As the complexity and
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data scale of these problems continue to grow, the ability to compute and moni-
tor dynamic models will remain essential for extracting meaningful insights and
driving scientific advancements.

The Coordinate (COO) format [10] is generally not the preferred choice in
most existing High-Performance Computing (HPC) and Artificial Intelligence
(AI) libraries (e.g. Python NumPy, SciPy, PyTorch). This is largely because
many libraries opt for dense formats to leverage CPU vectorized instructions
for vector and matrix operations [24], while other libraries utilize compressed
formats for sparse matrices, like Compressed Sparse Row (CSR [22]) and Com-
pressed Sparse Column (CSC [19]) due to their efficiency in data transfer and
access through the upper memory hierarchy, including RAM, CPU L1/L2 cache,
and registers. The primary reasons for the limited adoption of COO format are
its relatively slower performance and redundant coordinate information. How-
ever, as the landscape of HPC and AI continues to evolve, this mindset and
inferiority may shift, potentially leading to a reevaluation of the COO format’s
role in AI, databases and HPC.

The gap between dense, compressed formats and coordinate (COO) format
for sparse matrices may shrink as advancements in hardware technology con-
tinue to evolve. As CPUs increasingly feature more cores, allowing for greater
parallelization, and main memory capacities expand, enabling larger datasets
to be processed in-memory, the advantages of compressed formats may dimin-
ish. On the other hand, there is growing interest in optimizing GPUs for sparse
matrices. Furthermore, the emergence of non-volatile memory technologies that
increasingly approach the speeds of traditional memory will also help to reduce
the performance differences between these formats. As a result, the benefits of
using COO format, such as simpler algorithm implementation, easier code verifi-
cation, straightforward transfer in and out and explainable intermediate results,
may become more appealing, potentially making it a viable choice for dynamic
applications.

1.2 Adapting Theory, Parallel Computing and Database Algorithms
for Evolving Neural Networks

Insertion and deletion of a sparse matrix requires innovation that bridges the
fields of algorithms [3], parallel computing [14], and database systems [16]. This
is because traditional algorithms for dense matrices are not directly applicable
to sparse matrices, and existing algorithms for sparse matrices are often limited
to specific storage formats or operations. Furthermore, parallel algorithms for
sparse matrix addition and multiplication, which are fundamental operations in
many applications, require significant changes if the matrix is stored as a table
containing coordinate tuples. While this storage format is slower in main memory
compared to compressed formats, it offers broader algorithmic possibilities, easier
verification of code correctness, and clear understanding of the algorithm. The
time performance gap may shrink or become less important as CPUs and GPUs
get faster and RAM grows larger.



Sparse Matrix Algorithms for Evolving Neural Networks 3

As hardware continues to evolve with advancements in CPUs and GPUs [8]
featuring increased core counts, alongside novel storage technologies like Non-
Volatile Memory (NVM) approaching main memory speeds, the processing ca-
pabilities for large-scale data sets will substantially improve. However, the ex-
ponential growth of data sets and the increasing prevalence of neural networks
will create new challenges, particularly in observing and tuning neural network
models as data changes. In this context, innovative parallel algorithms designed
to leverage new hardware architectures and efficiently handle dynamic data will
play a crucial role in addressing these challenges, enabling faster insights and
more accurate predictions.

1.3 Potential Impact on Science and Society

Algorithms optimized for the Coordinate (COO) tuple format have the poten-
tial to significantly impact various scientific and societal problems in the future.
Sparse matrices are used in several science applications involving large graphs
or high-dimensional data for maintaining dynamic neural networks. Biology is
one such field, where protein-protein interaction networks can be represented as
large graphs with millions of vertices and edges, and dynamic neural networks
can be used to predict new interactions or identify patterns in the data (e.g., the
BioGRID database). Atmospheric sciences is another field, where climate models
can generate large amounts of high-dimensional data that require efficient stor-
age and analysis, and dynamic neural networks can be used to predict weather
patterns or identify trends in the data (e.g., the Climate Data Online dataset).
Additionally, geology and physics can also benefit from COO format sparse ma-
trices, where seismic data and particle collision data can be represented as large
graphs and high-dimensional data that require efficient analysis and updates,
and dynamic neural networks can be used to predict earthquakes or identify
patterns in particle collisions (e.g., the Incorporated Research Institutions for
Seismology dataset and the CERN Open Data Portal).

The efficient representation and analysis of complex data structures is crucial
for informed decision-making in several key areas of society, as illustrated in the
following examples. In traffic management, for instance, sparse matrices can be
used to represent large graphs of traffic flow and congestion, enabling dynamic
neural networks to predict traffic patterns and optimize traffic light control (e.g.,
the Transportation Networks for Research dataset). Similarly, in epidemiology,
COO format sparse matrices can be applied to disease transmission networks,
allowing dynamic neural networks to predict the spread of diseases and iden-
tify key factors in disease transmission (e.g., the Centers for Disease Control
and Prevention’s (CDC) Influenza dataset). Furthermore, in economics, sparse
matrices can be used to represent large graphs of economic transactions and
relationships, enabling dynamic neural networks to identify patterns and trends
in economic data (e.g., the US Census Bureau’s economic datasets).
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2 Survey: State of the Art

2.1 Updating a Large Sparse Matrix in Batches

Updating a large sparse matrix in secondary storage requires clever algorithms to
minimize the number of I/O operations [18], using optimal space in main mem-
ory. Serial algorithms, such as the in-place update, involve reading the matrix (or
a matrix block) from secondary storage, updating the elements in main memory,
and writing the updated matrix back to secondary storage. This method is sim-
ple but may require multiple passes over the data, which can be time-consuming
for large matrices. Another serial approach is the buffer-based update algorithm,
which uses a buffer in main memory to accumulate updates before writing them
to secondary storage. The buffer is flushed when it is full or when a certain change
threshold is reached. On the other hand, in parallel computing, algorithms such
as parallel in-place update and parallel buffer-based update can be used to speed
up updates. These approaches involve dividing the matrix into smaller chunks
and updating each chunk in parallel using multiple threads or processes. The
log-structured merge (LSM) algorithm, commonly used in databases, can also
be parallelized by dividing the log file into smaller chunks and merging each
updated chunk with the main matrix in parallel.

From a theory perspective, I/O-efficient algorithms, are designed to minimize
the number of I/O operations required to update the matrix. These algorithms
can be applied to sparse matrix updates to reduce the number of I/O operations
(read access). Cache-oblivious algorithms, which are designed to optimize cache
performance, can also be used to improve the efficiency of sparse matrix updates.

In the context of database systems [16], indexed tables can be used to update
the matrix, providing atomicity, isolation and consistency guarantees. On the
hand, columnar database systems can provide efficient updates and exploration
queries with sparse matrices. Finally, array database systems allow manipulating
unlimited size arrays on secondary storage.

In conclusion, the three major approaches of serial and parallel I/O efficient
algorithms, theoretical foundations, and database solutions must be combined
to develop efficient algorithms for updating a large sparse matrix on secondary
storage. By following theoretical foundations and combining the strengths of
each approach, researchers can develop algorithms that minimize I/O operations,
optimize cache performance, and provide atomicity and consistency guarantees.

2.2 Fast Linear Algebra: Matrix Multiplication

Existing algorithms for fundamental matrix operators like matrix addition and
matrix multiplication typically utilize dense and sparse compressed formats [17],
which are optimized for modern multi-core CPU architectures [20]. Sparse for-
mats, such as Compressed Sparse Row (CSR) or Compressed Sparse Column
(CSC), store non-zero elements in a contiguous block of memory, allowing for ef-
ficient memory access patterns and minimizing memory bandwidth usage [15,7].
This leads to significant performance improvements on modern CPUs, which are
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designed to handle large amounts of data in parallel [13]. Moreover, the trend
towards using Graphics Processing Units (GPUs) for matrix computations has
further emphasized the importance of using dense matrix formats [7]. GPUs,
with their massive parallelism and high-bandwidth memory, are particularly
well-suited for dense matrix operations. Dense matrix formats can take full ad-
vantage of the GPU architecture, allowing for thousands of threads to perform
math calculations simultaneously. GPUs have produced significant performance
gains in many applications, including machine learning, scientific simulations,
and data analytics.

In contrast, the Coordinate Format (COO) [10], which stores matrix ele-
ments as a table with tuples containing the row, column, and value, is generally
considered slow, redundant, and space-inefficient. Why? Because the coordinate
format requires more memory accesses and has a higher overhead due to the need
to iterate over a list (sequence) of tuples. Additionally, the coordinate format
is more memory-intensive, as it requires storing the row and column indices for
each non-zero element, resulting in a slightly larger memory footprint (but still
proportional to the number of non-zero entries, known as nnz).

As a result, dense and compressed matrix formats have become the defacto
standard for high-performance matrix computations on both CPUs and GPUs.
While the COO format may still be useful in certain niche applications, dense
and compressed formats are generally the preferred choice for most use cases due
to their superior performance and efficiency. Nevertheless, we believe the COO
format may become more useful as hardware gets faster, sparse matrices change
more frequently and they are read and written on secondary storage.

2.3 Computing Neural Networks with Sparse Input Matrices

The latest research on computing neural networks with sparse input matrices
that have periodic changes has focused on developing efficient methods to han-
dle these changes [23]. One approach is iterative linearization, which allows for
sparse feature updates and quantifies the frequency of feature learning needed
to achieve comparable performance. This method has shown remarkable perfor-
mance on par with standard training methods, highlighting the importance of
feature learning in neural networks.

Most current neural networks use dense matrices during forward and back-
ward propagation. Dense matrices are also widely supported by popular deep
learning frameworks and libraries. Additionally, dense matrices take advantage of
optimized linear in multi-core CPUs and GPUs. However, some neural networks,
such as those used in natural language processing and recommendation systems,
often deal with large sparse matrices as input. For example, the Word2Vec model
uses a sparse matrix to represent word embeddings, where each row corresponds
to a word and each column corresponds to a feature. Similarly, the DeepWalk
model uses a sparse matrix to represent graph embeddings, where each row cor-
responds to a node and each column corresponds to a feature. The GraphSAGE
model also uses sparse matrices to represent graph data, where each row corre-
sponds to a node and each column corresponds to a feature. On the other hand,
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sparse matrices may appear in intermediate results during forward and backward
propagation when neurons are dropped to avoid overfit or when gradients vanish.
Overall, the development of efficient methods for updating neural networks with
sparse input matrices is an active area of research, and new techniques are being
explored to take advantage of the benefits of sparse matrices while minimizing
their drawbacks.

2.4 Theoretical Models for Parallel Computation

The best theory computation models to study the time and space complexity
of parallel matrix computations (to be discussed later) are the Parallel Ran-
dom Access Machine (PRAM) model and the Bulk Synchronous Parallel (BSP)
model, but extensions are needed for newer architectures with the massive par-
allelism of GPUs. Some alternative parallel model include the CGM (Coarse
Grained Multi-computer; distributed, synchronous, each processor has limited
memory), LogP model (Latency-overhead-gap-Processors, which may be more
practical than PRAM, it assumes short messages among processors) and PP
(Pipeline Parallelism; best for GPUs). The PRAM model is a widely used theo-
retical model for parallel computing that assumes a shared memory and multiple
processors that can access and modify the memory simultaneously. It is suitable
for studying parallel algorithms on multi-core CPUs. For GPU computing, the
BSP model is more suitable as it takes into account the specific characteristics
of GPU architectures, such as the bulk-synchronous execution model and the
memory hierarchy. However, some researchers argue that a different model, such
as the GPU-PRAM model, may be necessary to accurately capture the unique
characteristics of GPU architectures, such as the SIMT (Single Instruction, Mul-
tiple Thread) execution model and the memory coalescing. It is necessary to use
a different theoretical model for GPU compared to CPU because of the following
reasons. Different memory hierarchies: GPU has a different memory hierarchy
compared to CPU, with a larger register file and a smaller cache. Different execu-
tion models: GPU uses a bulk-synchronous execution model, whereas CPU uses
a traditional one-task execution model. Different thread scheduling: GPU incor-
porate a more complex thread scheduling mechanism compared to CPU. Some
models for GPU parallel computing worth mentioning include: GPU-PRAM: an
extension of the PRAM model for GPU architectures; BSP-GPU: an extension
of the BSP model for GPU architectures; SIMT model: a model specifically de-
signed for SIMT architectures. In conclusion, while the PRAM and BSP models
can be used to study parallel algorithms on multi-core CPUs and GPUs, a dif-
ferent model may be necessary to accurately capture the unique characteristics
of GPU architectures.

3 Future Research

We defend the idea of storing sparse matrices in coordinate format, opposing es-
tablished compressed formats like CSR and CSC. When a sparse matrix is stored
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in coordinate format, represented as (i, j, v) tuples, it offers a unique advantage
over compressed formats like Compressed Sparse Row (CSR) or Compressed
Sparse Column (CSC). Coordinate tuples enable a wide range of database sys-
tems and list-based algorithms to compute machine learning models. This flexi-
bility is crucial, as it enables extending existing algorithms, exploiting the struc-
tural properties of the matrix and data-oriented parallel processing. Moreover,
it provides a deeper understanding of the theoretical implications of sparse ma-
trix computations. By working directly with the (i, j, v) tuples, research can
gain insights into the underlying complexity of the algorithms and explore the
relationships between the matrix elements. This understanding can lead to the
development of more explainable, intuitive algorithms, but also efficient and
scalable. The coordinate format uncompressed storage allows for a more direct
analysis of computational and space complexity.

Algorithms for sparse matrices in coordinate tuple format are a relatively
new area of research compared to the state of the art. This is because classical
parallel I/O efficient algorithms have traditionally been designed with arrays
in main memory as the preferred data structure, rather than sparse matrices
stored in tuple format. As a result, adapting these algorithms to work with COO
format sparse matrices has not received significant attention. However, there is a
substantial body of existing work on theoretical algorithms for sparse matrices in
main memory, as well as I/O efficient algorithms for other data structures, that
can be combined and extended to develop new algorithms for sparse matrices
in COO format. By building on these foundations, researchers can create novel
algorithms that efficiently handle the unique characteristics of sparse matrices
in COO format.

We envision future research should study these three major problems below,
all of which assume that the input sparse matrix is maintained on secondary
storage, intermediate matrices may be maintained on secondary storage and
the output matrices (weights) may also need to be stored. Research is needed to
address the following key challenges considering data-oriented parallel processing
and reducing I/O cost:

1. Algorithms for inserting and deleting batches of matrix entries, which can
efficiently handle the dynamic nature of sparse matrices.

2. Algorithms for fundamental matrix operations such as matrix addition and
matrix multiplication, which can minimize the overhead of data transfer
between secondary storage and main memory, preserving fast transfer in the
upper memory hierarchy (registers, L1/L2 cache, RAM).

3. Incorporating the previous algorithms into evolving neural networks that are
computed on sparse matrices, which are periodically updated with scattered
changes, requiring efficient and scalable solutions to maintain model accuracy
and performance.

3.1 Problem I: Insertion and Deletion of Batches of Matrix Entries

Data sets are not static: they continuously change. The Internet is pushing
changes further and the rate of change may be unpredictable. Recent research
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has explored various techniques for maintaining a sparse matrix up to date with
batches of insertions and deletions of a few matrix entries, particularly within a
time window. Under this window-based approach, parallel aspects such as O(1)
data structures, parallel insertion and deletion algorithms, and concurrent ac-
cess control have been studied. The primary reason for this focus is that most
High-Performance Computing (HPC) research assumes the sparse matrix can
be stored with arrays maintained in main memory, limiting the applicability of
these techniques to problems where the matrix is so large that it cannot fit in
main memory. Notable contributions include research by Bender et al. on paral-
lel data structures for dynamic sparse matrices [6], and studies by Liu et al. on
efficient sparse matrix multiplication across diverse systems, including database
systems [21]. However, a thorough review of research literature reveals a signif-
icant gap specifically addressing the challenges of maintaining sparse matrices
with unpredictable batches of insertions and deletions, indicating a need for
further research in this area.

Optimizing batches of insertions and deletions of sparse matrix entries is a
more general problem than a sliding window approach because it can handle a
wide range of dynamic scenarios, rather than just a fixed-size window of recent
updates (insert new records, delete old records). In many domains, the rate and
pattern of insertions and deletions can vary significantly over time, with different
time scales, rhythms, and spikes in activity. By providing more flexibility and
adaptability, optimizing batches of insertions and deletions can lead to better
performance and efficiency in a wide range of applications, from social networks
and financial markets to recommendation systems and more. For example, in a
social network, the rate of new user sign-ups and friendships may be relatively
steady, but there may be sudden spikes in activity around holidays or major
events. In contrast, a financial market may experience rapid changes in trading
activity during times of economic uncertainty. A sliding window approach may
not be able to adapt to these varying patterns with spikes, whereas optimizing
batches of insertions and deletions can handle these changes more effectively.
Furthermore, optimizing batches of insertions and deletions requires collecting
and processing more information than just the recent updates. In addition to
the entry coordinates and values of the matrix entries, timestamps must also
be collected and considered. This allows the optimization algorithm to take into
account the temporal relationships between updates and make more informed
decisions to process them in groups to reduce I/O cost.

Modern hardware aspects must be considered. Future research should de-
velop parallel algorithms for multi-core CPU or hybrid CPU/GPU, but exclud-
ing GPU-only (since the data set is assumed to be read from secondary storage),
for efficient insertion/deletion of a few matrix entries (O(1) or O(log(n))) of a
large sparse matrix with O(n) edges stored in Coordinate (COO) format. Two
important I/O techniques include matrix tiling to improve data locality and
identifying I/O patterns in sparse matrices to exploit buffers and group I/O op-
erations. This research direction aims to leverage the strengths of both multi-core
CPUs and hybrid CPU/GPU architectures to achieve significant performance
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gains in a few updates of a sparse matrix. By focusing on COO format, which is
well-suited for parallel processing, future research can explore novel algorithms
that minimize the time complexity of insertion and deletion operations, making
them suitable for large-scale applications. The development of such algorithms
will require careful consideration of data structures, memory management, and
synchronization techniques to ensure efficient and scalable performance.

LetX be the input data set, consisting of n column vectors with d dimensions
(i.e. a d × n matrix). We envision two potential parallel algorithms and data
structures to insert batches of matrix entries in COO format of a large matrix
stored on secondary storage:

1. Batch-Insert-Delete Algorithm:
We can assume there a single process updating X, to simplify algorithms
and avoid concurrency mechanisms. However, concurrent updates should be
eventually considered. This algorithm uses a combination of a buffer-based
approach and a parallel merge-sort algorithm. The buffer is stored in main
memory and it is used to accumulate incoming batches and deleted batches of
matrix X entries. When the buffer is full, the algorithm sorts the buffer using
a parallel merge-sort algorithm and then merges the sorted buffer with the
existing matrix on secondary storage to propagate changes. This algorithm
can be improved with subscript ranges to process the matrix in blocks to
improve I/O locality.
Data Structure: A combination of a buffer (in main memory) and a sparse
matrix (on secondary storage) stored in coordinate tuple format. Time Com-
plexity derivation: Buffer accumulation:O(b), where b is the size of the buffer.
Parallel merge-sort: O(b log(b)/p), where p is the number of machines (cores).
Merge with existing matrix: O(nz + b), where nz is the number of non-zero
entries in the existing matrix.
Parallel Speedup: A parallel merge-sort algorithm can potentially achieve a
linear speedup of up to p, where p is the number of machines (cores).

2. Log-Structured-Merge (LSM) Algorithm:
The LSM approach is commonly used in modern NoSQL database systems
to handle high insertion rates. Therefore, new matrix update algorithms can
use the log-structured merge (LSM) file approach to insert large batches of
matrix entries, but with few or no deletions. That is,X is constantly growing,
mainly n as data size grows, but also d can grow as more features are added.
The algorithm can work with a combination of in-memory buffers and on-
disk storage to accumulate and merge batches of matrix entries, similar to
the more common algorithm introduced above.
Data Structure: A combination of in-memory buffers and on-disk storage,
with a sparse matrix stored in coordinate format.
Time Complexity: Buffer accumulation: O(b), where b is the size of the buffer.
Parallel merge: O(b log(b)/p), where p is the number of machines (cores).
Merge with existing matrix: O(nz + b), where nz is the number of non-zero
entries in the existing matrix. Parallel Speedup: a potential speedup of up
to p, where p is the number of machines (cores).
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There are important differences compared to algorithms used in query pro-
cessing. Database algorithms typically focus on handling high insertion rates
for transactions and demanding queries on normalized tables, whereas our envi-
sioned algorithms focus on inserting batches of matrix entries in parallel, where
there is no notion of normalized tables Database algorithms use different data
structures, such as B-trees or hash tables on rows, whereas future algorithms will
work on matrix sub-blocks, with coarser indexing In summary, our algorithms
are designed to efficiently insert batches of matrix entries in parallel, taking into
account the characteristics of secondary storage and multi-core CPUs. While
database algorithms share similarities, new algorithms will be tailored to the
specific requirements of sparse matrix insertion and deletion.

3.2 Problem II: Algorithms for Addition and Multiplication of
Sparse Matrices

The development of parallel, I/O-efficient algorithms for sparse-sparse and sparse-
dense matrix operators is crucial to process large matrices. Two fundamental
matrix operators must be studied: addition and multiplication. For matrix ad-
dition, an algorithm can take advantage of the fact that the coordinate tuples
allow efficient insertion and deletion of entries. By utilizing parallel processing
on multi-core CPUs and hybrid CPU/GPU architectures, the algorithm can
quickly identify and combine corresponding entries from the two input matrices,
resulting in a new sparse matrix in COO format. The parallelization of this pro-
cess can be achieved by dividing the matrices into smaller blocks and processing
them concurrently. In contrast, matrix multiplication is a more complex opera-
tion that requires careful consideration of I/O patterns to get rows from the left
matrix and columns from the right matrix, reading them as coordinate tuples.
To avoid recomputing all multiplications, the algorithm can employ techniques
such as caching intermediate results and reusing previously computed products.
By leveraging the parallel processing capabilities of multi-core CPUs and hybrid
CPU/GPU architectures, the algorithm can efficiently perform the necessary
multiplications and accumulations to produce the resulting sparse matrix in
coordinate format as well. Despite the differences between addition and multi-
plication, both algorithms share commonalities in their reliance on efficient I/O
operations by block and parallel processing. In both cases, the use of coordinate
tuples and partitioned storage enables efficient handling of sparse matrices.

HPC research on parallel algorithms for sparse matrix addition and mul-
tiplication, combining sparse and dense matrices, has explored various main
memory formats, including dense arrays, COO, CSR, and CSC. Several studies
have investigated the potential of these formats, such as the work by Buluç et al.
on parallel sparse matrix-vector multiplication using compressed sparse blocks
(CSB) [4]. Other notable contributions include the study by Kaya on parallel al-
gorithms for computing sparse matrix permanents [3], and the work by Liu et al.
on sparse matrix-matrix multiplication using the COO format [21]. The coordi-
nate tuple format opens new possibilities on modern hardware with faster CPUs
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and GPUs, offering opportunities for improved performance and efficiency. How-
ever, theoretical aspects, such as potential time complexity, I/O optimization,
and parallel speedup, have not received sufficient attention, largely due to the
efficiency of linear algebra libraries on modern CPUs and GPUs for dense matri-
ces, as noted by Demmel et al. [11] and by Ballard et al. [5]. Parallel aspects of
these algorithms have been explored in both multi-core and distributed memory
settings. The impact of I/O patterns and matrix structure on performance has
also been studied, highlighting the need for careful consideration of these factors
in algorithm design.

Future research should focus on developing new parallel algorithms for sparse
matrix addition and sparse matrix multiplication, specifically tailored for matri-
ces stored with coordinate (COO) tuples. Let the two input matrices be A,B,
compatible for matrix multiplication A · B. Matrix addition is an easier and
straightforward case since both matrices have equal dimensions. The primary
goal should be to achieve ideal time complexity and parallel speedup for these
matrix operators in three distinct scenarios: (1) when A,B are resident in main
memory, (2) when A,B are read from secondary storage, (3) when A is large
and it is read from secondary storage and B is in main memory (or vice-versa),
but size(B) ≪ size(A). Scenario (3) where one matrix is in main memory and
the other is on secondary storage can be reduced to Scenario (1) or (2) when
both matrices are about the same size. For Scenarios (1) and (2) hashing, sort-
ing can used to merge rows from A with columns from B, similar to a relational
join operator. For Scenario (3) B can be converted to a dense representation,
accessing B elements directly with subscripts i, j from A. NVM offers signif-
icantly faster access times, larger block sizes, and non-volatility, making it a
default option for storing and processing large matrices. Therefore, this research
direction is particularly relevant, given the increasing adoption of non-volatile
memory (NVM) with fast PCI connection, as a replacement for traditional disks
and SATA solid-state drives (SSDs). For GPUs A,B entries can be easily sorted
by A column, B row and then aligned before transferring to GPU memory for
parallel multiplication.

3.3 Problem III: Incorporating Sparse Matrix Algorithms into
Evolving Neural Networks

The landscape of deep learning has undergone a significant shift, with Trans-
formers and Graph Convolutional Networks (GCNs) [1] emerging as dominant
architectures [2,9], leaving behind plain Deep Learning, Recurrent Neural Net-
works (RNNs), and Convolutional Neural Networks (CNNs). Current research is
now focusing on incorporating sparse matrix algorithms into these two emerging
types of neural networks. The first step involves utilizing algorithms that update
the input sparse matrix with batches of insertions and deletions, allowing the
network to efficiently adapt to changing data. In Transformers, these updated
sparse matrices can be leveraged to compute self-attention mechanisms, where al-
gorithms for sparse matrix addition and multiplication play a crucial role in com-
bining and transforming input embeddings. Similarly, in GCNs, these algorithms
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can be applied to update adjacency matrices and node features, enabling the net-
work to learn from the evolving graph structure. By integrating sparse matrix
algorithms, both Transformers and GCNs can benefit from improved efficiency
and scalability, particularly when dealing with large and dynamic datasets.

Despite the extensive research on sparse matrices in HPC and parallel com-
puting, there is scarce work on utilizing sparse matrices within Transformers
and Graph Convolutional Networks (GCNs) neural networks, where the input
data set undergoes periodic batches of insertions and deletions. The vast major-
ity of existing research on sparse matrices has focused on optimizing their use
in traditional HPC applications, such as linear algebra operations and scientific
simulations. However, the potential benefits of sparse matrices in neural net-
works, particularly in the context of dynamic and evolving data, remain largely
unexplored. As a result, there is a significant gap in the literature regarding
the application of sparse matrices in Transformers and GCNs, where the input
data is constantly changing due to insertions and deletions. This lack of re-
search presents an opportunity for innovative work that could lead to significant
advancements in the efficiency and scalability of these neural networks.

Adapting the Coordinate (COO) format to optimize I/O can yield substantial
algorithm efficiency benefits, particularly in scenarios involving frequent matrix
updates to recompute neural networks faster. By harnessing the COO format,
matrix updates can be executed more rapidly, and neural network models can be
recomputed with increased efficiency, thereby avoiding the need for costly recom-
putations from scratch. Moreover, incremental algorithms can process updates
in small batches, facilitating a faster update cycle characterized by a short lag of
a few seconds between the insertion or deletion of matrix batches and the sub-
sequent update of the neural network. This database-oriented approach enables
more responsive and adaptive modeling, making it well-suited for applications
where data is constantly evolving and timely insights are required.

4 Deployment

Since it would be a long-time effort to develop prototypes to solve the three
major problems introduced above, here we provide some guidelines for program-
ming and experimental evaluation. To deploy the algorithms and data structures
discussed above, Python is a better language than C++ or Java for faster proto-
type development of sparse matrix algorithms due to its ease of use, flexibility,
and extensive community support. Python’s syntax and nature make it an ideal
language for rapid prototyping and development, allowing developers to focus on
the theoretical aspects of the algorithms rather than the implementation details.
Additionally, Python’s vast array of libraries and frameworks provide a wealth
of pre-built functionality, enabling developers to build upon existing work and
accelerate their development process. However, low-level languages like C++
will still be needed for specific sparse matrix bottlenecks, where performance is
critical and optimization is required. C++’s ability to provide direct memory
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access and fine-grained control over hardware resources make it an ideal choice
for optimizing performance-critical components.

The following popular Python libraries can be used to develop and test the
theory of matrix algorithms and neural networks, listed in order of maturity and
popularity:

1. NumPy: A mature and widely-used library for efficient numerical computa-
tion, including linear algebra.

2. SciPy: A comprehensive library for scientific computing, providing functions
for linear algebra, optimization, and more.

3. PyTorch: A popular deep learning framework that provides a dynamic com-
putation graph, tensors and automatic differentiation.

4. scikit-learn: A widely-used library for machine learning, providing tools for
data pre-processing, feature selection, and model evaluation.

5. Pandas: A library for data manipulation and analysis, providing data struc-
tures and functions for working with structured data.

6. TensorFlow: similar to PyTorch, which was more popular a few years ago.

To experimentally validate time complexity and parallel speedup theory re-
sults, the following steps can be followed:

1. Program the algorithms using the chosen Py libraries and frameworks, with
a focus on simplicity and readability.

2. Use synthetic data to test the algorithms under various conditions, such as
different matrix sizes and numbers of threads.

3. Measure the execution time and parallel speedup of the algorithms using
profiling tools and benchmarking techniques.

4. Compare the results to the theoretical predictions and analyze any discrep-
ancies, using statistical methods and data visualization techniques to identify
trends and patterns.

5. Iterate on the design and implementation of the algorithms based on the
results of the experiments, refining the implementation and testing new hy-
potheses as needed.

5 Conclusions

We presented a vision paper, with a tentative research agenda. Therefore, nei-
ther theory results nor experiments were provided. From a research and code
development perspective, the coordinate tuple format holds potential benefits
that can streamline the development process and facilitate innovation, bridg-
ing database systems and HPC. Specifically, this format can be processed using
established I/O-efficient algorithms, which can accelerate computation and re-
duce overhead. The format’s simplicity also makes it easier to analyze space and
time complexity, enabling researchers to better understand the computational
resources required and optimize their code accordingly. Furthermore, the coor-
dinate format straightforward structure simplifies the process of writing correct
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code, reducing the likelihood of errors and bugs. Additionally, the explicit rep-
resentation of coordinates provides query capabilities and storage transparency,
making it easier to track and interpret results, and ultimately facilitating the
development of more reliable and efficient algorithms.
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