
Chapter 3: Loops

Stephen Huang
January 26, 2023

1

Introduction
• Loops allow a block of statements to be

executed repeatedly.

• Sometimes, but not always, there is an “index”
that changes from one iteration to another.

• Lists and loops go together. Unavoidably, we
will use lists in some examples with a loop.

2

Iterations
• There are two types of iteration:

– Definite iteration: the number of repetitions is
specified explicitly in advance, not necessarily a
constant.

– Indefinite iteration: the code block executes until
some condition is met.

• Python has two main kinds of loops:
– For-loop (ideal for Definite Iteration)

– While-loop (ideal for Indefinite Iteration)

• Example: Repeatedly reading integer numbers
until a negative number is entered.

3

Contents
1. Iterator and Range
2. For Loop
3. While Loop
4. Nested Loops
5. Additional Statements

– Break
– Else
– Continue
– Enumerate() function

1. Iterator
• An iterator is an object that contains a countable

number of values.

• It can be iterated upon, meaning you can
traverse through all the values.

• The values are arranged in some order, and you
can go from one to the next.

5

P Y T H O N

Formally
• An iterable object is an object that implements

__iter__, which is expected to return an iterator
object.

• An iterator is an object that implements next,
expected to return the next element of the
iterable object.

• Example of iterable containers:
– strings,
– lists,
– tuples

6

Iterable

7

Iterator
• You can get an iterator from an iterable

container by calling the iter() method.

• The for loop creates an iterator object and
executes the next() method for each loop.

8

Iter-*
• In Python, an iterable is anything you can iterate

over, and an iterator is a thing that does the
actual iterating.

• Iterables can be iterated over. Iterators are the
agents that perform the iteration.

• You can get an iterator from any iterable in
Python using the iter function.

• Iterators are stateful. Once consumed, it’s gone!
Exhausted!

9

Iterator

10

iterable

iterator

Init & next

Lists
• Lists, tuples, dictionaries, and sets are all

iterable objects.
• They are iterable containers which you can get

an iterator from.

11

The first time you call it,
you get the first one

Then you get the next
one

You get the iterator of
the object

apple
banana
cherry

Iterable
• Strings are also iterable objects containing a

sequence of characters.

• This is special because you can pass a string
literal to the iter().

• The for-loop creates an iterator and executes
the next() method.

• You are NOT going to use iter() and next().

12

Range
• Most of the time, a for-loop is associated with an

index within a range.
range (start, stop [, step])

• The three parameters must be integers.

• The default step is 1 and can be omitted.

• If the start is omitted, it defaults to 0.
– range(stop)

– range(start, stop)

– range(start, stop, step)

• range(n) is equivalent to range(0,n,1).

13

Range
• The range type represents an immutable

sequence of numbers.
class range(stop)

class range(start, stop[, step])

• The arguments to the range constructor must be
integers.
– range(x,y,z)

– range(x,y) range(x,y,1)

– range(y) range(0,y,1)

14

Range
• Range() is commonly used for looping a specific

number of times in for loops.

• Technically, it returns a class. We are not going
to discuss classes at this time.

• It generates a sequence of numbers (0 or more)
based on the parameters given. For example,
range(5) generates 0, 1, 2, 3, 4.

15

Step
• For a positive step, the contents of a range r are

determined by the formula
– r[i] = start + step*i

– where i >= 0 and r[i] < stop.

• For a negative step, the contents of the range
are still determined by the formula
– r[i] = start + step*i,

– Where i >= 0 and r[i] > stop.

16

Range (positive step)

17

r[i] < stop

Generate r[i]
i = i + 1

r[i] = start + step * i

i = 0

Yes

No

Range (negative step)

18

r[i] > stop

Generate r[i]
i = i + 1

r[i] = start + step * i

i = 0

Yes

No

[0, 1, 2, 3, 4]

[1, 2, 3, 4]

[0, 2, 4]

[0, 3, 6, 9]

[5, 4, 3, 2, 1]

[]

19

Examples
print(list(range(5)))

print(list(range(1,5)))

print(list(range(0,5,2)))

print(list(range(0,10,3)))

print(list(range(5,0,-1)))

print(list(range(0,5,-2)))

Using Range in For-Loop
• If you need to iterate over a sequence of

numbers in a for-loop, the built-in function
range() comes in handy.

• Other iterators:
– A list (tuple, dictionary, set)
– A string

20

2. For loop
• Python’s for-statement iterates over the items of

any sequence (a list or a string, for now) in the
order that they appear in the sequence.

• Syntax:

for <iterating_var> in <iterable>:

<statement(s)>

• A sequence (such as a string or list) is iterable.

21

Flow Chart

22

Range
• Some authors considered range() as iterable.

• It is almost iterable with some minor differences.

• The following number is generated as you
request it. There is no prepared sequence of all
the numbers. (why?)
– The reason is that the next “item” is predictable; add

one to the last number.

– It also saves memory. Think large: Range(1000000).

23

Flow chart (Range+)

24

Index
<

stop
index = index + step

Statement(s)

index = start

Yes

No

Examples
for letter in 'Python':

print ('Current Letter :', letter)

fruits = ['banana', 'apple', 'mango']
for fruit in fruits

print ('Current fruit :', fruit)

for i in [1, 2, 3, 4, 5]:
print (i)

for i in range(10):
print (i)

25

For Loop
• The for statement is used to iterate over the

elements of a sequence (a string, range, tuple,
or list) or other iterable objects.

• The expression list that generates the list is
evaluated only once.

• Fortunately, Python
– gets the iterator for the for-loop automatically, and

– calls next() repeated

– Until there is no more next item.

26

Caution
• It’s better not to change the index of a range.

Range(n) returns a sequence that cannot be
changed (even though you can change n).

• It is dangerous to modify the sequence inside
the loop. Please don’t do it.

• If you need to modify the sequence you are
iterating over inside the loop, it is recommended
that you first make a copy of the variable.

27

• The first loop is the
same as the second
one.

• They both print 0 to 4.

• What if you want to
print 1 to 5, not 0 to 4?
See the last two loops.

• How about 4 down to
0?

for i in range(5):
print(i, end=' ')

for i in range(0,5,1):
print(i, end=' ')

for i in range(5):
print(i+1, end=' ')

for i in range(1,6):
print(i, end=' ')

28

Caution

[0,5)
[1,6)

With Index or Not
fruits = ['apple','banana','cherry']

for i in range(len(fruits)):

print(fruits[i])

with no index, better

for fruit in fruits:

print(fruit)

29

Else
• Python allows an optional else statement

associated with a loop statement.

• If the else statement is used with a for-loop, the
else statement is executed when the loop has
exhausted iterating the list (normal exit).

• Read “else” as “on normal exist.” More to come
later.

30

More
• So far, all the data types you have encountered

that are collection or container types are
iterable.

• Many objects built into Python or defined in
modules are designed to be iterable.

• For example, open files in Python are iterable.

• As you will see later in the lecture on file I/O,
iterating over an opened file object reads data
from the file.

31

3. While Loop
• The syntax is:

while <expression>:

<statement(s)>

• The expression is evaluated as a Boolean
expression.

• Statements should be appropriately indented.
Otherwise, there is no way to know where the
“block” ends.

32

While Loop

33

test
T

F

Statement(s)

34

While Statement
• The while statement causes the loop body to be

executed repeatedly as long as the test evaluates True.

while (test)

statement(s)

a = 1

while (a < 10)

print("a = ", a)
a = a + 1 test

T
F

Statement(s)

35

The execution of While
• First, the test is evaluated. If it evaluates to True,

the loop body is executed next, and execution
returns to the test.

• The test is then re-evaluated, and if it is True, the
loop body is again executed, and the execution
returns to the test.

• This process continues in a loop while the test
evaluates to true.

• When the test evaluates to false, the execution
proceeds to the next instruction past the loop body.

36

While Loop
• Somewhere in the loop body, there must be a

change that may cause the test to be False.
Otherwise, the test will remain true forever. This
is called an “Infinite Loop.”

• Note that if the test evaluates to False the first
time it is evaluated, this will result in execution
jumping to the next instruction after the loop.

• Thus, the loop body of a while-statement may
execute 0 or more times depending on when the
test evaluates to False.

37

While Loop
• If you want more than one statement executed

each time around the loop, indent the
statements.

• It is common, though not required, to use an
index variable with the while loop.

38

Example

i = 1

while (i <= 3):

print (i)

i = i + 1

i = 1

i = 2

true
true true false

i = 3 i = 4

1

2

3

Sentinel
• A common task in programs is to input an

indefinite number of values.

• A loop must be used, and there must be a way
to signal that all the data has been entered.

• The user can enter as many data values as he
chooses before stopping the process by entering
the sentinel value.

• A for-loop is probably not the right choice.

39

Sentinel
• The programmer chooses a particular value that

the user can enter to signal the end of input to
achieve this.

• The value is a sentinel since it stands guard at
the end of the data entry and stops the process.

• One usually does not want to process the
sentinel value because it is not part of the data
but just a way to stop the input.

40

Solution 1
sum = 0
num = 0
value = int(input("Enter an Positive int: "))

while value != -1:
sum = sum + value
num = num + 1
value=int(input("Enter a positive int: "))

print("Sum of ", num, "numbers: ", sum)

41

Solution 2
sum = 0
num = 0

while True:
value=int(input("Enter a positive int: "))
if value == -1:

break
else:

sum = sum + value
num = num + 1

print("Sum of ", num, "numbers: ", sum)

42

Solution 3
sum = 0
num = 0
done = False

while not done:
value = int(input("Enter a positive int: "))
if value == -1:

done = True # one-way switch
else:

sum = sum + value
num = num + 1

print("Sum of ", num, "numbers: ", sum))

43

i = 0
while i <= 4:

print(i)
i = i + 1

for i in range(5):
print(i)

44

while vs. for

Which one do you like better?
Why?

Example
• Here is a crude description of an algorithm for

computing the greatest common divisor (GCD)
of 2 positive integers.
– Repeatedly subtract the smaller one of the 2 numbers

from the larger one until the resulting 2 numbers are
equal.

– The equal numbers are the greatest common divisor
of the original 2 numbers.

45

Example
• For example, we would do the following to

compute the greatest common divisor of 25 and
15 using this method.
num1 num2

25 15

10 15 <<<<subtract 15 from 25

10 5 <<<<subtract 10 from 15

5 5 <<<<subtract 5 from 10

GCD is 5

46

Pseudo Code
• To make this into a Python program, we would

need to prompt for and input the 2 numbers and
then have a loop to do this process repeatedly.

• We should exit the loop when the 2 numbers are
equal.
– That means we should stay in the loop when the 2

numbers are not equal.

• Each time around the loop, we must determine
which number is larger and subtract the smaller
number.

47

Code
num1 = int(input("Number 1: "))

num2 = int(input("Number 2: "))

while num1 != num2:

if num1 < num2:

num2 = num2 - num1

else:

num1 = num1 - num2

print ("GCD is", num1)

48

4. Nested Loops
• Loops can be nested (to any number of levels).

– For-loop inside for-loop

– For-loop inside while-loop

– While-loop inside for-loop

– While-loop inside while-loop

49

Example
SIZE = 5
for numStars in range(1,SIZE+1):

for i in range(numStars):
print ('*', sep = '', end='')

print()

50

5. Additional Clauses

• Break
• Continue
• Else

51

Two ways to exit
• There are two ways to exit the loop:

– Normal exit: when we reach the end of the iterable,
or the while condition becomes False.

– Abnormal exit: when we decided to exit in the middle
of the loop’s body. Break.

52

Break

53

Break Clause

• Breaks out of the innermost enclosing for
or while loop.

for i in range(10):
for j in range(10):

print("(", i, ",", j, ") ", end="")
if i == j:

break
print()

print()

54

Break Example

(0 , 0)
(1 , 0) (1 , 1)
(2 , 0) (2 , 1) (2 , 2)
(3 , 0) (3 , 1) (3 , 2) (3 , 3)
(4 , 0) (4 , 1) (4 , 2) (4 , 3) (4 , 4)
(5 , 0) (5 , 1) (5 , 2) (5 , 3) (5 , 4) (5 , 5)
(6 , 0) (6 , 1) (6 , 2) (6 , 3) (6 , 4) (6 , 5) (6 , 6)
(7 , 0) (7 , 1) (7 , 2) (7 , 3) (7 , 4) (7 , 5) (7 , 6) (7 , 7)
(8 , 0) (8 , 1) (8 , 2) (8 , 3) (8 , 4) (8 , 5) (8 , 6) (8 , 7) (8 , 8)
(9 , 0) (9 , 1) (9 , 2) (9 , 3) (9 , 4) (9 , 5) (9 , 6) (9 , 7) (9 , 8) (9 , 9)

55

Break & Else
• Loop statements may have an else clause; it is

executed when the loop terminates through
exhaustion of the list (with for) or when the
condition becomes false (with while), but not
when a break statement ends the loop.

• Normal exit vs. abnormal exit.
– Normal exit => execute else clause
– Abnormal exit => don’t execute else clause

56

Example

for i in range(10):
for j in range(10):

print("(", i, ",", j, ") ", end="")

else: # do not indent further
print()

else: # do not indent further

print()

57

Continue

58

Continue

• The continue statement, borrowed from C,
continues with the next iteration of the
loop. “Continue to the next iteration.”

for num in range(2, 10):
if num % 2 == 0:

print("Found an even number", num)
continue

print("Found a num", num)

59

Break and Continue
• Flow of Control

– Recall how loops provide a "graceful" and clear flow
of control in and out

– In rare instances, it can alter the natural flow

• break;
– Forces loop to exit immediately.

• continue;
– Skips rest of loop body

• These statements violate the natural flow
– Only used when necessary.

60

Why?
• Break and continue statements can alter the

flow of a loop.

• Loops iterate over a code block until the test
expression is false (normal exit). Still, sometimes
we wish to terminate the current iteration or
even the whole loop without checking the test
expression (abnormal exit).

• The break and continue statements are used in
these abnormal cases.

61

Else matters
i = 5
while (i <= 10):

print (i)
i = i + 1

#
#
else:

print(“Normal Exit")
print("The next statement.")

62

Else matters
i = 5
while (i <= 10):

print (i)
i = i + 1
if i== 7:

break # not the end
else:

print("Normal Exit")
print("The next statement.")

63

Enumerate()

• It is convenient to use an iterator to get
the elements in a for-loop.

• If it is necessary to have an index, we can
use Range().

• Is there a way to combine the features
(iterator and index)?

• Enumerate() is the answer.

64

Example
fruits = ["apple", "banana", "cherry",

"pear", "grape", "watermelon"]

for idx, fruit in enumerate(fruits):

print(idx, fruit)

for num, fruit in enumerate(fruits,start=1):

print(num, fruit)

for i in range(len(fruits)):

print(i, fruits[i])

65

