
Chapter 4:
Functions I

Stephen Huang
February 15, 2023

1

Functions
• We divide our discussion of functions into two

parts to start using functions early.

• Part 2 will follow later:
– Scope rules
– Default argument
– Function as an argument
– Recursive functions (briefly)
– Lambda functions (briefly)

2

Contents
1. Why use functions?
2. Defining Functions
3. Using Functions
4. Library Functions
5. Stubs & Drivers

1. Why do we need functions?
• It is common for us to do some identical (or

very similar) operations several times in a
program.
• Find the largest number in a list of numbers,

• Swap two numbers,

• Sort an array/list,

• Compute the average of a list of numbers

• It is better to make it into a function so we do
not have to duplicate the code.

• Defined once, used many times.

4

Why?
• Functions allow us to reuse a section of code

more than once. If you have to write it twice,
make it a function.
– This is the original reason to have functions.

• Functions also allow us to group codes into
logical units. So, we may write a function even
if we only use it once.
– This may be more important than reusing the code.

5

Where to put the functions?
• You can put function definitions almost

anywhere.

• But a function must be defined before being
used.

• Typically, we group all the functions at the top of
the program. Good programming practice.

6

Type of Functions
• For Python 3.6, there are 68 built-in functions,

such as abs(), max(), and min(). Check with
python.org for a complete list.

• Python provides many existing library functions
for us to use.
– More on this later.

• A user can define functions for his use. They are
called user-defined functions.

7

8

Functions vs. Procedures
• There are two slightly different forms for a

function definition, depending on whether the
function returns a value.

• Functions with no return value are not like
mathematical functions, and in some
programming languages, they are called
subroutines or procedures.

• Python uses function only.

9

Return
• If the function does return a value, then the

function body must contain 1 or more return
statements followed by the value to be returned.
– The return statement is typically at the end of the

function, but it can occur anywhere in the function,
and more than 1 return can occur.

• Functions that do not return a value do not need
a return statement.
– When execution reaches the end of such a function, it

automatically returns to the location where the
function was called.

None
• If a function doesn’t explicitly return data and is

used in an expression, the function evaluates to
the value None.

• Although the print() produces output, it does not
explicitly return anything.

>>> x = print("Hello")

Hello

>>> type(x)

<class 'NoneType'>

>>>

10

Example

11

1

2

3

4

5

6

7

Levels

12

Parameters
• Functions are not very useful if it is not allowed to act on

different pieces of data at different times.

• It doesn’t make sense to write two functions to sort two
integer arrays. It will be much better to do it with only
one.

• Thus, we have to pass some data to the function so that
it can work on that piece of the data.

13

Compute
Square of *

Compute Square
of 2

4 4

2

9

3

1

1

4

14

Parameters
• Parameters are the mechanism for conveying the

data to a function that needs to perform its task.

• The parameter list is a list of parameters separated
by commas between a pair of parentheses.

• The list can also be empty in which case the
parentheses after the function name are still
required, e.g., f().

• There will be more on parameters in a later lecture.

Examples

15

Main function
• All the code outside the functions collectively is

called the main function even if we did not
define it.
– See the test(), foo(), bar() example before.

• It is okay to define a function called main() but
it is just like any other function one defines.
– In some programming languages, the execution of

the programs starts with the main(). This is NOT the
case for Python.

16

2. Defining Functions
• The keyword def introduces a function

definition.

• It is followed by a function name and a
parameter list.

• A simplified form:
def <func_name> (<para_list>):

<Statement(s)>

• The first statement of the function body can
optionally be a string literal; this string literal is
the function’s documentation string or docstring.

17

Definition
• The parentheses following a function’s name are

mandatory even though the function does not
have any parameter.

• The parentheses enclose a list of formal
parameters which are identifiers separated by
commas.

• The actual values assigned to these parameters
are established when the function is called. They
are called actual parameters or arguments.

18

Example

19

Example

20

3. Using functions
• A function is not executed when it is defined.

• To execute (or call, or invoke) a function, one
writes the function’s name followed by
parentheses with the requisite number of
(actual) parameters.

• The order of the actual parameters must match
that of the formal parameters.
– There are exceptions.

21

Polymorphism
• In Python, functions polymorphism is possible as

we don’t specify the argument types while
creating functions. (dynamically typed)
– The behavior of a function may vary depending upon

the arguments passed to it.

– The same function can accept arguments of different
object types.

– If the objects find a matching interface, the function
can process them.

22

Using functions
• When a function has more than a few numeric

arguments, it is easy to forget what they are, or
where they should be in the list.

• In that case, it is often a good idea to include
the names of the parameters in the argument
list when calling the function.

polygon(bob, n=7, length=70)

• These are called keyword arguments because
they include the parameter names as
“keywords.”

23

Examples
def greeting(name):

print("Hello ", name, ".", sep='')

greeting("Stephen")
greeting("Robert")
greeting("everyone")

def getName():
return (input("Enter a name: "))

name1 = getName()
greeting(name1)

24

Execution
• Before the function’s body is executed, the

actual parameters are assigned to the
corresponding formal parameters.

• A copy of the value is given to the formal
parameter. Pass-by-Value.

• Think of a formal parameter as a local variable
initialized with a value given in the actual
parameter.

• The actual parameter can be an expression.

25

Composition of function calls
• If a function first returns a value of type X

and,
• If a function second takes a parameter of type

X,
• We can make consecutive function calls like

y = second(first(value))

print(second(first(value)))

instead of
x = first(value)

y = second(x)

26

Composition of functions

27

print(abs(eval(input("Enter a value: "))))

input()

eval()

abs()

print()

Example: BMI
• We are going to show a series of scripts that

computes BMI.

• You will be able to see the “generalization” of
the code.

• We are making the code more useful and more
structured. The BMI is a small program, so it
may not sound that important to make it more
structured. Think big.

28

Version 1
weight = float(input(

"Enter weight [pounds]: "))
height = float(input(

"Enter height [inches]: "))
bmi = 703*weight/(height*height)
print("Your body mass index is:", bmi)

29

Version 2
def cal_bmi():

weight = float(input(

"Enter weight [pounds]:"))
height = float(input(

"Enter height [inches]:"))
bmi = 703*weight/(height*height)
print("Your body mass index is:", bmi)

bmi()

30

Version 3
def getNum(valueType, unit):

return(eval(input("Enter "+valueType+ \

" in "+unit+": ")))

def cal_bmi():
weight = getNum("weight", "pounds")
height = getNum("height", "inches")
bmi = 703*weight/(height*height)
print("Your body mass index is:", bmi)

cal_bmi()

31

Version 4
def cal_bmi(w, h):

return 703*w/(h*h)

def getNum(valueType, unit):
return(eval(input("Enter "+valueType+ \

" in "+unit+": ")))

weight = getNum("weight", "pounds")
height = getNum("height", "inches")
bmi = cal_bmi(weight, height)
print("Your body mass index is:", bmi)

32

Version 5
def cal_bmi(w, h):

return 703*w/(h*h)

def getNum(valueType, unit):
return (eval(input("Enter "+valueType+ \

" in "+unit+": ")))

def main():
weight = getNum("weight", "pounds")
height = getNum("height", "inches")
print("Your BMI is:", cal_bmi(weight,height))

main()

33

4. Library Functions
• Python included some of the most commonly

used functions as “built-in” functions.

dir(__builtins__)

• Python distributions include an extensive
standard library that you must import before
using it.
– Math

– Regular Expressions

• We can easily create a module that contain a
collection of functions.

34

Import

• The contents of an entire module can be
imported using any of the following
statements:
– import <module>

– import <module> as <id>

– from <module> import *

35

Python Built-in Functions

36

References

• List of Python standard library functions:
https://docs.python.org/3/library

37

5. Stubs & Drivers
• How do you develop a program with multiple

functions?

• Software Engineering.

• It may not be clear why it is important to use
these functions for simple programs.

• Stubs & Drivers is one suggested way of
developing a program.

• This section is only a very brief introduction.

38

Stub and Driver

39

Stubs & Drivers

40

A

B

A

Stub
for A B

Driver
for Bcomponent

component

calls

Which one should we
write and test first?
A or B?

