Chapter 4:
Functions 1

Stephen Huang
February 15, 2023

UNIVERSITYof HOUSTON

Functions

« We divide our discussion of functions into two
parts to start using functions early.

« Part 2 will follow later:
— Scope rules
— Default argument
— Function as an argument
— Recursive functions (briefly)
— Lambda functions (briefly)

UNIVERSITYof HOUSTON ’

Why use functions?
Defining Functions
Using Functions
Library Functions
Stubs & Drivers

Al S

UNIVERSITYof HOUSTON

1. Why do we need functions?

It is common for us to do some identical (or
very similar) operations several times in a
program.

 Find the largest number in a list of numbers,
« Swap two numbers,

« Sort an array/list,

« Compute the average of a list of numbers

« It is better to make it into a function so we do
not have to duplicate the code.

« Defined once, used many times.

UNIVERSITYof HOUSTON

« Functions allow us to reuse a section of code
more than once. If you have to write it twice,
make it a function.

— This is the original reason to have functions.

« Functions also allow us to group codes into
logical units. So, we may write a function even
if we only use it once.

— This may be more important than reusing the code.

UNIVERSITYof HOUSTON :

Where to put the functions?

« You can put function definitions almost
anywhere.

 But a function must be defined before being
used.

 Typically, we group all the functions at the top of
the program. Good programming practice.

UNIVERSITYof HOUSTON

Type of Functions

« For Python 3.6, there are 68 built-in functions,
such as abs(), max(), and min(). Check with
python.org for a complete list.

» Python provides many existing library functions
for us to use.

— More on this later.

A user can define functions for his use. They are
called user-defined functions.

UNIVERSITYof HOUSTON 7

Functions vs. Procedures

« There are two slightly different forms for a

function definition, depending on whether the
function returns a value.

« Functions with no return value are not like
mathematical functions, and in some

programming languages, they are called
subroutines or procedures.

» Python uses function only.

UNIVERSITYof HOUSTON ’

« If the function does return a value, then the
function body must contain 1 or more return
statements followed by the value to be returned.
— The return statement is typically at the end of the

function, but it can occur anywhere in the function,
and more than 1 return can occur.

* Functions that do not return a value do not need
a return statement.

— When execution reaches the end of such a function, it
automatically returns to the location where the
function was called.

UNIVERSITYof HOUSTON

None

« If a function doesn’t explicitly return data and is
used in an expression, the function evaluates to
the value None.

« Although the print() produces output, it does not
explicitly return anything.

>>> x = print ("Hello")
Hello

>>> type (x)

<class 'NoneType'>
>>>

UNIVERSITYof HOUSTON 10

Example

def test({level):

<:>ii;l1eve1+1}

print (" # "klevel,

o "klevel,

"Entering test() at lewvel ", level)

def foo(levgl):

prynt

print {" "*level,

(:)ha legel+l)
j : ”?level,

"Enterin at lewvel ", lewvel)

"Leavigg fool()

def bar(]ewvel) :

pring (" *level,

priogt (" '*level,

ing bar({) at level ", level)
"LeAving bar() at level ", level)

retyrn (1) (::)

test (1) §

010,

UNIVERSITYof HOUSTON

11

Levels

i Run ¢ funcion-001

I=
s

X 7

S

T
4

-

& o

Entering test({) at level <I>
Entering foo{] at level <:>
Entering bar() at lewvel
Leaving bar({) at level
Ieaving Ifco{) at level (:)

Leaving tE5t1?<:>

Process finished with exit code 0O

UNIVERSITYof HOUSTON

o

12

Parameters

« Functions are not very useful if it is not allowed to act on
different pieces of data at different times.

« It doesn’t make sense to write two functions to sort two
integer arrays. It will be much better to do it with only
one.

« Thus, we have to pass some data to the function so that
it can work on that piece of the data.

2 3 1

Compute Square Compute
_ of 2 _ _ Squa_re of * _
VoA I
4 4 4 9 1

UNIVERSITYof HOUSTON 13

Parameters

« Parameters are the mechanism for conveying the
data to a function that needs to perform its task.

« The parameter list is a list of parameters separated
by commas between a pair of parentheses.

« The list can also be empty in which case the
parentheses after the function name are still
required, e.g., £ ().

» There will be more on parameters in a later lecture.

14

UNIVERSITYof HOUSTON

UNIVERSITYof HOUSTON

| @ Python 3.6.0 Shell O ¥
File Edit Shell Debug Options Window Help
>>> abs (-12.34) i
13. 348
>
>>> def double (num) :
return 2*num
>>> double (35)
70
>>>
>>> double (3.56)
g . b
>>> v
Ln:95 Col:4 |
15

 All the code outside the functions collectively is

called the main function even if we did not
define it.

— See the test(), foo(), bar() example before.

« It is okay to define a function called main() but
it is just like any other function one defines.

— In some programming languages, the execution of
the programs starts with the main(). This is NOT the
case for Python.

UNIVERSITYof HOUSTON 16

2. Defining Functions

« The keyword def introduces a function
definition.

« It is followed by a function name and a
parameter list.

« A simplified form:
def <func name> (<para list>):

<Statement (s)>

« The first statement of the function body can
optionally be a string literal; this string literal is
the function’s documentation string or docstring.

UNIVERSITYof HOUSTON

17

« The parentheses following a function’s name are
mandatory even though the function does not
have any parameter.

« The parentheses enclose a list of formal
parameters which are identifiers separated by
commas.

« The actual values assigned to these parameters
are established when the function is called. They
are called actual parameters or arguments.

UNIVERSITYof HOUSTON 18

Example

1 P def test(level):
2 prink (" "*level,

pELnt (Y "*level,

def foo(level):
BETIE(Y "*level,
pEIne{"” "*level,

def bar (level):
prink (" "*level,
print (¥ "*level,
return (1)

14 test (1)
15 foo (1)
16 bar (1)

Run function-002

"Entering

"Leaving

"Entering

"Leaving

"Entering

"Leaving

test ()
test ()

foo ()
foo ()

bar ()
bar ()

at
at

at
at

at
at

level
level

level
level

level
level

level)
level)

level)
level)

level)
level)

} | Entering test() at
Leaving test() at

;Eﬁ Entering foo() at
% |§ Leaving foo() at
= !Ei Entering bar() at
/5 ii11] Leaving bar() at

UNIVERSITYof HOUSTO

level
level
level
level
level
level

T S =g Sy

19

Example

1 P def test(level):
0 2 5 i "rlavel, “"Entering test() at level ™, level}l

3 if level<«h:
4 test (level+l)

print (" "*level, "Leaving test() at level ", level)
test (1)
#
Run function-003 o 38
) | Entering test() at level 1

Entering test() at level 2
7 Entering test() at level 3
= Entering test() at level 4
Entering test() at level 5
Leaving test() at level 5
Leaving test() at level 4
Leaving test() at level 3
Leaving test() at level 2
Leaving test() at level 1

UNIVERSITYof HOUSTON 20

VX% [

3. Using functions

* A function is not executed when it is defined.

« To execute (or call, or invoke) a function, one
writes the function’s name followed by
parentheses with the requisite number of
(actual) parameters.

« The order of the actual parameters must match
that of the formal parameters.

— There are exceptions.

UNIVERSITYof HOUSTON 21

Polymorphism

 In Python, functions polymorphism is possible as
we don't specify the argument types while
creating functions. (dynamically typed)

— The behavior of a function may vary depending upon
the arguments passed to it.

— The same function can accept arguments of different
object types.

— If the objects find a matching interface, the function
can process them.

UNIVERSITYof HOUSTON 22

Using functions

« When a function has more than a few numeric
arguments, it is easy to forget what they are, or
where they should be in the list.

 In that case, it is often a good idea to include
the names of the parameters in the argument
list when calling the function.

polygon (bob, n=7, length=70)

« These are called keyword arguments because
they include the parameter names as
“keywords.”

UNIVERSITYof HOUSTON 23

def greeting(name) :
print ("Hello ",

greeting ("Stephen")

greeting ("Robert")
greeting ("everyone")

def getName () :

name,

4

sep=' ")

return (input ("Enter a name: "))

namel = getName ()
greeting (namel)

UNIVERSITYof HOUSTON

24

Execution

« Before the function’s body is executed, the
actual parameters are assigned to the
corresponding formal parameters.

A copy of the value is given to the formal
parameter. Pass-by-Value.

« Think of a formal parameter as a local variable
initialized with a value given in the actual
parameter.

« The actual parameter can be an expression.

UNIVERSITYof HOUSTON

25

Composition of function calls

 If a function £irst returns a value of type X
and,
 If a function second takes a parameter of type
X,
« We can make consecutive function calls like
y = second(first(value))

print (second (first(value)))

instead of
x = first(value)
y = second (x)

UNIVERSITYof HOUSTON 26

Composition of functions

print (abs (eval (input ("Enter a value: "))))

4 ﬂ)

- input() ~

R
eval()

4)
Gk D
abs()

4 ll)
\-)
print()

\§ J

UNIVERSITYof HOUSTON 27

Example: BMI

« We are going to show a series of scripts that
computes BMI.

 You will be able to see the “generalization” of
the code.

« We are making the code more useful and more
structured. The BMI is a small program, so it
may not sound that important to make it more
structured. Think big.

UNIVERSITYof HOUSTON

28

welght = float (1nput (

"Enter weight [pounds]: "))
height = float (1nput (

"Enter height [inches]: "))
bmi = 703*weight/ (height*height)
print ("Your body mass index 1s:", bmi)

UNIVERSITYof HOUSTON 29

def cal bmi():
welight = float (input (

"Enter weight [pounds]:"))
height = float (1nput (

"Enter height [1nches]:"))
bmi = 703*weight/ (height*height)
print ("Your body mass i1ndex 1s:", bmi)

bmi ()

UNIVERSITYof HOUSTON 30

def

def

getNum (valueType, unit) :
return (eval (input ("Enter "+valueType+ \

" in "+unit+": ")))

cal bmi () :

welght = getNum("weight", "pounds")
height = getNum("height", "inches")
bmi = 703*weight/ (height*height)

print ("Your body mass i1ndex 1s:", bmi)

cal bmi ()

UNIVERSITYof HOUSTON 31

def cal bmi(w, h):
return 703*w/ (h*h)

def getNum(valueType, unit) :
return (eval (input ("Enter "+valueType+ \

" in "+unit+": ")))

welght = getNum("weight", "pounds")
height = getNum("height", "inches")
bmi = cal bmi(weight, height)

print ("Your body mass i1ndex 1s:", bmi)

UNIVERSITYof HOUSTON 32

def cal bmi(w, h):
return 703*w/ (h*h)

def getNum(valueType, unit):
return (eval (input ("Enter "+valueType+ \

" in "+unit+": ")))
def main () :
welght = getNum("weight", "pounds")
height = getNum("height", "inches")
print ("Your BMI 1s:", cal bmi(weight,height))

main ()

UNIVERSITYof HOUSTON 33

4. Library Functions

» Python included some of the most commonly
used functions as “built-in” functions.

dir(builtins)
« Python distributions include an extensive

standard library that you must import before
using it.

— Math

— Regular Expressions

« We can easily create a module that contain a
collection of functions.

UNIVERSITYof HOUSTON 34

« The contents of an entire module can be
imported using any of the following
statements:

— 1import <module>
— 1lmport <module> as <1d>

— from <module> import *

UNIVERSITYof HOUSTON 35

Functions

Python Built-in

abs ()

all ()

any ()}
asciif()
bin ()

bool ()
bytearray()
bytes ()
callable {)
chr ()
classmethod ()}
compile ()
complex ()

delattr ()

dict ()
dir()
divmod {)
enumerate ()
eval ()
exec|()
filter{)
float ()}
format{)
frozenset ()
getattr ()
globals ()
hazattr ()

hash ()

Built-in
Functions

help()

hex ()

id ()

input ()

int ()
iszinstance ()
issubclass ()
iter()

len{)

list()
locals ()

map ()

max ()

memoryview {)

UNIVERSITYof HOUSTON

min ()

next ()
cbject ()
oct ()

open ()

ord ()

pow ()
print()
property ()
range ()
repr ()
reversed ()
round ()

set ()

setattr()
slice ()
sorted{)
staticmethod ()
str ()
sum ()
super ()
tuple ()
type ()
vars ()
zip ()

__import_ ()

36

References

o List of Python standard library functions:

https://docs.python.org/3/library

UNIVERSITYof HOUSTON 37

5. Stubs & Drivers

« How do you develop a program with multiple
functions?

 Software Engineering.

« It may not be clear why it is important to use
these functions for simple programs.

« Stubs & Drivers is one suggested way of
developing a program.

 This section is only a very brief introduction.

UNIVERSITYof HOUSTON 38

Stub and Driver

Test Driver

Stub

UNIVERSITYof HOUSTON 39

Stubs & Drivers

Driver
component A A for B
calls
component B B

Which one should we
write and test first?
A or B?

UNIVERSITYof HOUSTON 40

