
Lecture 05:
Lists

Stephen Huang
March 15, 2023

1

Contents
1. Python Data Structures

2. Defining Lists

3. List Enumeration

4. Traversing a list

5. List Slices

6. List Methods

7. Multi-Dimensional Lists

8. List Comprehension

1. Python Data Structures
• Data structures are structures that can hold some

data together. In other words, they are used to
store a collection of related data.

• There are four built-in data structures in Python
– list,

– tuple,

– dictionary, and

– set.

• We will spend more time on lists, arguably the most
useful ones. Many, but not all, of the discussions on
lists apply to the other three.

3

Overview

4

Types Ordered Indexed Collection
Changeable?

Item
Changeable?

Duplicate

List Yes Yes Add/Remove Yes Yes

Tuple Yes Yes No No Yes

Set No No Add/Remove No No

Dictionary No Yes Yes Value Yes
Key No

No

List Data Structure
• A list is a sequence of elements (0 or more). A

list can be empty.

• A list is also called an array.

• A list is a data structure that can be decomposed
into multiple elements.

• In most other languages, list elements must be
homogenous (of the same type).

• In Python, the elements can be heterogeneous
(of different types).

5

List
• Some types of a list: string, int, float, etc.

• An element of a list can be a list. So, we can
have a list of lists or a nested list.

• Since multiple elements may exist in a list, each
element is uniquely identified by its position.

• Positions start with 0, 1, 2, …

• To access the i-th element of a list x, use x[i].

6

Visualization

7

2. Defining Lists
• There are several ways to create a new list; the

simplest is to enclose the elements in square
brackets ([and]).
– [10, 20, 30, 40]

– [“apple”, “mango”, “banana”]

– [“apple”, 20, 30.5]

– []

• An element can be of any type, including a list
itself.
– [20, 30, [1, 2]]

8

Examples

9

Definition
• In general, a list element can be an expression.

Thus, it should be evaluated first. The result is
then used as a list element.

10

Lists are Mutable

11

banana

Lists are mutable

12

banana

apple

99

kiwi
list

Empty list

0

1

2

List index
• List indices work the same way as string indices:

– Any integer expression can be used as an index.

– If you try to read or write an element that does not
exist, you get an IndexError.

– If an index has a negative value, it counts backward
from the end of the list.

13

Negative index
• List

• String

14

Starts with -1,
Not zero

Membership Operator
• The in-operator works on lists.

15

3. List Enumeration
• Python’s built-in enumerate function allows us to

loop over a list and retrieve both the index and
the value of each item in the list.

• The enumerate function gives us an iterable
where each element is a tuple containing the
item’s index and the original item value.

• Syntax: enumerate(<iterable>, start)

• The start is optional and defaults to 0.

16

Example

17

fruits = ['apple', 'banana', 'mango',
'pear', 'watermelon']

i = 0
while i < len(fruits):

print(f'{i}: {fruits[i]}')
i += 1

0: apple
1: banana
2: mango
3: pear
4: watermelon

Example

18

fruits = ['apple', 'banana', 'mango',
'pear', 'watermelon']

for i in range(len(fruits)):
print(f'{i}: {fruits[i]}')

0: apple
1: banana
2: mango
3: pear
4: watermelon

Example

19

fruits = ['apple', 'banana', 'mango',
'pear', 'watermelon']

for item in enumerate(fruits):
print(item)

(0, 'apple')
(1, 'banana')
(2, 'mango')
(3, 'pear')
(4, 'watermelon')

Example

20

fruits = ['apple', 'banana', 'mango',
'pear', 'watermelon']

for index, fruit in enumerate(fruits):
print(f'{index}: {fruit}')

0: apple
1: banana
2: mango
3: pear
4: watermelon

Example

21

fruits = ['apple', 'banana', 'mango',
'pear', 'watermelon']

for index, fruit in enumerate(fruits, 1):
print(f'{index}: {fruit}')

1: apple
2: banana
3: mango
4: pear
5: watermelon

4. Traversing a list
• It is a common practice to “visit” every list

element sequentially.

• “Traversal.”

22

List

23

List Traversal
prime_list = [2, 3, 5, 7, 11, 13, 17, 19]

for p in prime_list:

print(p)

for i in range(len(prime_list)):

print(i, ‘:', prime_list[i])

for i, p in enumerate(prime_list, 1):

print(i, ‘:', p)

24

Print
prime_list = [2, 3, 5, 7, 11, 13, 17, 19]

for p in prime_list:

print(p)

2

3

5

7

11

13

17

19

25

List Index
use the index to get the value

for i in range(len(prime_list)):

print(i, ':', prime_list[i])

use enumeration to get the index

for i, value in enumerate(prime_list):

print(i, ':', value)

26

List Operators
a = [1,2,3]
b = [4,5,6]
c = a + b # concatenation
print(b*3) # repetition

a = []
for i in range(10):

a = a+[i] # concatenation

if x in b:
print x

27

Example: Max
def list_max(alist):

max = alist[0]
for elem in alist:

if elem>max:
max = elem

return max

a = [2, 3, 25, 4, 9, 8, 7, 16, 25]
print(list_max(a))

28

Where is the max?

Example: Max
def list_max(a):

max = a[0]
index = 0
for i, elem in enumerate(a):

if elem>max:
max = elem
index = i

return index

a = [2, 3, 25, 4, 9, 8, 7, 16, 25]
idx = list_max(a)
print(idx, ": ", a[idx])
There is a max() for list

29

5. List Slices
• Slicing is the ability to create a list from

another list by cutting pieces of that other list.

• The new list is a different copy.

• The original list is unchanged.

• Three parameters: start, stop, and step.

• list[start:stop:step], any one can be
omitted.

30

Negative Indices

31

10 20 30 40 50 60 70 80 90 100

0 1 2 3 4 5 6 7 8 9

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

start stop

The sign of the Step
determines the

direction
startstop

Example
L = list(range(10))
print(L)
low = 1
high = 8
print(L[low:high:2])
print(L[high:low:-1])
print(L[high:low:-2])

a = [1,2,3]
a[1:3] = [4, 5, 6]
print(a)

32

a=[1,2,3]

a[1:3] = [4, 5, 6]

print(a)

L = list(range(10))

b = L[:7]

print(b)

b = L[3:]

print(b)

b = L[3:7]

print(b)

b = L[3:-2]

print(b)

[1, 4, 5, 6]

[0, 1, 2, 3, 4, 5, 6]

[3, 4, 5, 6, 7, 8, 9]

[3, 4, 5, 6]

[3, 4, 5, 6, 7]

33

Slice Examples

“Pointers”

34

banana

[1, 2, 3]

[1, 2, 3]

a = “banana”

b = “banana”

A = [1, 2, 3]

B = [1, 2, 3]

C = B

Alias
• In the example of strings, Python only created

one string object, both a and b. But when you
create two lists (A and B), you get two objects.

• In this case, we would say that the two lists are
equivalent because they have the same
elements but are not identical.
– Identical => equivalent.

• If a refers to an object and you assign b = a,
then both variables refer to the same object.
The variable b is an alias of a.

35

Visualization of a list

36

A

lst = [‘a’, ‘b’, ‘c’]

B C

lst

X

6. List Methods
• Python provides many methods that operate on

lists.

• Most list methods are void; they modify the list
and return None.

• Remember, lists are mutable.

37

Methods
• append(...)

L.append(object) -> None -- append object to end
• clear(...)

L.clear() -> None -- remove all items from L
• copy(...)

L.copy() -> list -- a shallow copy of L
• count(value)

L.count(value) -> integer -- return number of occurrences
of value

• extend(...)
L.extend(iterable) -> None -- extend the list by appending

elements from the iterable

38

Methods
• index(...)

L.index(value, [start, [stop]]) -> integer -- return the first index of value.

Raises ValueError if the value is not present.

• insert(...)

L.insert(index, object) -- insert object before index

• pop(...)

L.pop([index]) -> item -- remove and return the item at index (default last).

Raises IndexError if the list is empty or the index is out of range.

• remove(...)

L.remove(value) -> None -- remove the first occurrence of value.

Raises ValueError if the value is not present.

39

Methods
• reverse(...)

L.reverse() -- reverse *IN PLACE*

• sort(...)
L.sort(key=None, reverse=False) -> None -- stable

sort *IN PLACE*

40

Methods
• You can remove an element by calling remove or

delete.
– L.remove(‘b’) remove ‘b’ from the list. If there is

more than one copy of ‘b’, only one is removed. By-
value

– del L[i] deletes the element at the i-th position of
the list. By-index

– You can also do x = L.pop(i), which pops off the
i-th element and put that in x.

41

Positions are relative
• Lists are mutable in Python.
• Positions are relative.
• When we make changes (pop, remove, insert) to

a list, the position of an element may be
changed.
– Suppose you ranked #3 in the class, and James

dropped out of the course. What is your rank?
– Your rank changes even though you did not do

anything.

42

John
James
You
….

Example
list = list(range(8))
list.insert(3,99)
print(list)

[0, 1, 2, 99, 3, 4, 5, 6, 7]

list = list(range(8))
for i in range(len(list)):

if list[i]==3:
list.pop(i)

else:
print(list[i],", ",sep='',end='')

0, 1, 2, 5, 6, 7, Crash!!!

43

Example
list = list(range(8))
for item in list:

if item==3:
list.remove(3)

else:
print(item)

0, 1, 2, 5, 6, 7 why?

44

Improved Version
list = list(range(8))
i = 0
while i<len(list):

if list[i]==3:
list.pop(i)

else:
print(list[i],", ",sep='',end=''

i+=1

0, 1, 2, 5, 6, 7, Crash!!!

45

Final Version
list = list(range(8))
i = 0
while i<len(list):

if list[i]==3:
list.pop(i)

else:
print(list[i],", ",sep='',end=''
i+=1

0, 1, 2, 4, 5, 6, 7,

46

7. Multi-Dimensional Lists
• A list of lists is a multi-dimensional list or multi-

dimensional array.

• One can access a multidimensional array using
multiple indices like a[i][j].
– Not a[i,j].

• The order of the index is essential. The first
refers to the index of the outer list, and the
second relates to the inner list.

• Just like a one-dimensional array, a list must be
created before you can use it.

47

Creating a 1D list
def create(n):

list = []

for i in range(n):

list.append(i)

return list

48

Creating a 2D list
def create(m,n):

list = []

for i in range(m):

sublist=[]

for j in range(n):

sublist.append(100*i+j)

list.append(sublist)

return list

49

Traversing a 1D list
def printlist(list, x):

for elem in list:
elem=elem*x
print('{elem:4d}', end=' ')

print()

list = create(5)
printlist(list, 10)
printlist(list, 2)

50

Traversing a 2D list
def printlist(list):

for sublist in list:

for elem in sublist:

print(f'{elem:5d}', end=' ')

print()

print()

51

Traversing a 2D list
def printlist(list):

for i in range(len(list)):

for j in range(len(list[i])):

print('{list[i][j]:5d}', end=' ')

print()

print()

52

8. List Comprehension
• In Math, we sometimes use this to define a set:

• It is straightforward to understand what the set
is. Of course, we are dealing with lists here.
So, imagine we have a list of all integers.

• It would be nice if we could do it on a list.
– Select only the odd numbers between 1 and 6
– Transform the numbers into their squares
– Make them into a list.

53

What is it?
• List comprehension allows us to make a new list

from a list.

• List comprehension provides a syntax for
transforming one list into another list.

• Elements can be conditionally included (only odd
numbers) in the new list, and each element can be
transformed (square) as needed.

• You don’t have to use a list comprehension. A (for-)
loop can do the same job.

• However, list comprehension is easier to understand
the code’s intention.

54

Solutions
numbers = [1, 2, 3, 4, 5, 6]
half_evens = []
for n in numbers:

if n%2 == 0:
half_evens.append(n/2)

half_evens = [

n/2 for n in numbers if n%2==0

]

55

I don’t see why is this better.
It’s difficult to understand.

Solutions
numbers = [1, 2, 3, 4, 5, 6]

half_evens = [

n/2

for n in numbers

if n%2 == 0

]

56

Now I see it.

Template
new_list = []

for item in ori_list:

if condition(item):

new_list.append(expression(item))

new_list = [

expression(item)

for item in ori_list

if condition(item)

]

57

Constructive:
How to generate
the list

Definitional:
What the list is

You don’t have to use it if you don’t like it.

Other Comprehensions

• This applies to other structures too
– Set comprehension
– Dictionary comprehension

58

