
Lecture 07:
Exception Handling

Stephen Huang
March 21, 2023

1

Contents

1. Exception
2. Exception Handling
3. Assert and Raise

2

If you fail to plan (for failure),
you are planning to fail.

Benjamin Franklin

1. Exception
• While converting from string to int, you may

get a ValueError exception.

• This exception occurs if the string you want to
convert does not represent a number.

3

Errors
• A Python program terminates as soon as it

encounters an error.

• In Python, an error can be
– A syntax error, or

– an exception.

• Syntax errors are the most common complaint
while learning a programming language.

• By now, you should be able to “handle” this type
of error with ease.

4

Exception Errors
• Exception Error occurs whenever syntactically

correct Python code results in an error.

• Two types of exceptions:
– Built-In Error
– User-Defined Error (not discussed in this course)

5

2. Exception Handling
• Errors detected during execution are called

exceptions and are not unconditionally fatal. A
statement may work for some data and fail for
others, hence the name exception.

• We will soon learn how to “handle” them in
Python.

• If your program does not handle an exception, it
results in an error message, and your program
execution stops.

An exception is not fatal; it just has to be handled.

6

Built-In Exceptions
• There is a list of all

built-in exceptions on
the python.org website:
https://docs.python.org/3/library/ex

ceptions.html#bltin-exceptions.
• Some examples:

– ZeroDivisionError
– NameError
– TypeError
– ValueError

7

Handling Exceptions
• It is possible to write programs that handle

selected exceptions.
• The following example asks the user for input

until a valid integer has been entered.

8

Try-Except

9

try:

except:

Some statements
No Exception Occurred
Some other Statements

Not Executed

Whatever
follows

Defines the scope of
the checking

Try-Except

10

try:

except:

Some statements
Exception Occurred

Some other Statements

Execute this code

Whatever
follows

• Exceptions
– Occur
– Throw
– Raise

• Exceptions
– Handle
– Catch

11

Terminology

Try-Except-Else

12

May have multiple
excepts for a

different type of
exception

Try-Except-Else-Finally

13

Flow

14

try:

except:

else

except:

finally:

3. Assert and Raise
• Two more commands:

– Assert (condition): make sure specific condition is met
– Raise Exception: so that the issue can be handled.

• A defensive programmer will likely put such a
statement at the beginning of a function. The
purpose is to verify that the parameters are
given as specified.

15

Assertion
• Instead of waiting for a program to crash

midway, you can start by making an “assertion”
in Python.

• We assert that a specific condition is met.
• If this condition turns out to be True, that is

wonderful! The program can continue.
• If the condition turns False, the program can

throw an AssertionError exception. It’s
better to get the bad news sooner.

16

Example
• assert(0<=x<=100)
print("Wonderful!")

• Assert test if the condition is True or not.
– If True, it continues on the following line.
– If False, it throws an AssertionError exception.

17

Assert-Except
try:

x = int(input("Please enter an int: "))

assert(0<=x<=100)

print("Wonderful!")

except AssertionError:

print(f'X = {x} is outside the range.')

18

Raise
• The raise statement allows the code to force a

specified exception to occur.
– raise <exception>

temp = 101

if temp>=100:

raise Exception(‘Too hot’)

19

Remarks
• We can give an exception a short alias.

– except FileNotFoundError as err:

• All exceptions are subclasses of Exception, and
that’s what an exception defaults to if not given
a specific error.
– except:

• An exception can be re-raised in an exception
clause.
– raise

20

Example
try:

file = open('file.log')

read_data = file.read()

except FileNotFoundError:

print(FileNotFoundError)

21

