
Chapter 8:
Strings

Stephen Huang
March 23, 2023

1

Contents
1. Introduction to Characters and Strings

2. String Manipulations Methods

3. String Comparison

4. String Formatting
 With C-Style

 With String format() *

 With String Template

 With f-strings *

1. Introduction
• A string-type object is a sequence of characters.

• In Python, strings start and end with single- or
double-quotes.

• Each string is stored in computer memory as a
“special” list (array, vector) of characters.

• Python string variable consists of a pointer to
the position in computer memory (the address)
of the 0th byte.

• Every byte in your computer memory has a
unique integer address.

3

Character Encoding
• Two commonly used character encodings are

ASCII (128 characters) and Unicode (1,114,112
characters).

• Fortunately, they share the same numerical to
character values. ‘A’ is coded as 65 in both
systems.

• No need to worry about too much.

4

Printable ASCII

5

6

String
• In some other programming languages, strings

are terminated by an extra special character
which is not the case in Python.

• For example,
– "Test" consists of only four characters.

– "" is an empty string.

7

Ordering
• Note that the order of the character codes is such that

– '0' < '1' < ... < '9'

– 'A' < 'B' < ... < 'Z'

– 'a' < 'b' < ... < 'z'.

• There are no other characters in the three sequences
above. They are consecutive.

• So, two letters will compare as expected if the two
letters are both of the same cases.
– For example, 'A' < 'D' and 'a' < 'd'.

– However, 'D' < 'a' because all the uppercase letters have
character codes less than the lowercase letters.

8

Ordering
• The letters do not compare correctly in

alphabetical order if the letters are in different
cases.

• It would be best to ensure the compared letters
are in the same case.
– Use string.lower(), string.upper()

• One can assign a value to a variable of type
char, e.g., ch = 'A'.

9

Ordering
• To convert the character to the corresponding

ASCII code (an ordinal number), one can use
the ord() function.

ord(‘a’) = 97

ord(‘A’) = 65

• To convert an integer to an ASCII character: use
the chr() function.

chr(65) = ‘A’

10

Ordinal number of digits
"0" -> 48

"1" -> 49

"2" -> 50

"3" -> 51

"4" -> 52

"5" -> 53

"6" -> 54

"7" -> 55

"8" -> 56

"9" -> 57

11

Differ by 4Differ by 4

Example
def c2i(ch):

return ord(ch)-ord('0')

def i2c(i):

return chr(i+ord('0'))

ch = '7'

print(f'"{ch}" converts into {c2i(ch)}.')

i = 6

print(f'{i} converts into "{i2c(i)}".')

12

Accessing a single character
• myString = “GATTACA”

• You can access individual characters by using indices
in square brackets.
– myString[0], myString[2], myString[-1], but no myString[7]

13

Special Characters

14

Slicing
str = “Houston”

str[1:3]

str[:3]

str[4:]

str[3:5]

str[:]

15

H o u s t o n

0 1 2 3 4 5 6

Immutable

• Strings cannot be modified; instead, create a
new string for the new value. (List is mutable.)

>>> greeting = 'Hello, world!'

>>> greeting[0]

'H'

>>> greeting[0]='J'

TypeError: 'str' object does not

support item assignment

16

Example
>>> greeting[1:]

'ello, world!'

>>> new_greeting = 'J' + greeting[1:]

>>> new_greeting

'Jello, world!'

>>>

17

Search Example
def find(word, letter):

index = 0

while index<len(word):

if word[index] == letter:

return index

index = index+1

return None

18

Search Example

19

def find(word, letter):

for i, ch in enumerate(word):

if ch == letter:

return i

return None

• Length
• Concatenation
• Repeat
• Substring test (IN)

str = “Houston”

len(str)

str + str

“UH” * 3

“Hou” in “Houston”

“hou” in str

20

2. String Manipulations

String Methods
• In Python, a method is a function defined with

respect to a particular object.
• The syntax is:

object.method (arguments)

>>> dna = "ACGT"

>>> dna.find("T")

3
the first position where “T” appears

21

String Operations
• S = "AATTGG

• s1 + s2

• s2 * 3

• s2[i]

• s2[x:y]

• len(S)

• int(S)

• float(S)

22

String Methods
• S.upper()

• S.lower()

• S.count(substring)

• S.replace(old,new)

• S.find(substring)

• S.startswith(substring)

• S.endswith(substring)

23

Replace
• The method replace(old, new, max)

returns a copy of the string in which the
occurrences of old have been replaced with
new, optionally limiting the number of
replacements to the max.

str = "this is string ..wow!!! this is string"

print(str.replace("is", "was"))

print(str.replace(" is ", " was "))

print(str.replace("is", "was", 3))

24

thwas was string ..wow!!! thwas was string
this was string ..wow!!! this was string
thwas was string ..wow!!! thwas is string

Testing
• word.isalnum() #check if all char are alphanumeric
• word.isalpha() #check if all char in the string are

alphabetic
• word.isdigit() #test if string contains digits
• word.isupper() #test if string contains upper case
• word.islower() #test if string contains lower case
• word.isspace() #test if string contains spaces
• word.endswith('d') #test if string endswith a d
• word.startswith('H') #test if string startswith H

25

3. String Comparison
• You can compare two strings using the relational

operators (==, !=, <, <=, >, >=).

• Relational operations help put words in
alphabetical order.

• Note that upper-case letters come before lower-
case letters in the ASCII table. We’re not
ordering alphabetically but ASCII-betically.

• A common way to address this problem is to
convert strings to a standard format, such as all
lowercase, before comparing.

26

Comparison
def swap(w1, w2):

if w1 > w2:
w1, w2 = w2, w1

return w1, w2

w1 = 'pear'
w2 = 'apple'
w3 = 'Apple'
w1, w2 = swap (w1, w2)
print(w1, w2)
w1, w3 = swap(w1, w3)
print(w1,w3)

27

apple pear
Apple apple

String Comparison

28

141 0

g

S2

S1

ihT n

ihT n

= = =

V

=

Example
• We try to get a “clean” string from the user

input in this example.

• A clean string is one without extra spaces
separating two words. In other words, we will
keep only one space between words and remove
the additional spaces.

29

Example
def getStrClean():

str = input("Enter a string: ")
clean, space = '', False
for ch in str:

if ch==' ':
if not space:

clean = clean+ch
space = True

else:
clean = clean+ch
space = False

return(clean)
print('[', getStrClean(),']', sep='')

30

Example
• There is one minor problem with the program.

– See if you can find it.
– How to fix it?

• This can be done quickly with a string method.
See the explanation of these methods later.

31

clean = ' '.join(str.split())

String Processing
• str.strip([chars])

– Chars: The characters to be removed from the
beginning or end of the string.

– This method returns a copy of the string in
which all “chars” have been stripped from the
string’s beginning and end.

str = "0000this is a string
example....wow!!!000";

Print(str.strip('0'))

32

String Processing
• str.split([chars])

– It splits a string and adds the data to a list
using a predefined separator string.

– The most common separator is space.
– If no separator is defined in the parameter,

whitespace will be the default. In this case,
all whitespaces will be removed.

Str-split.py

33

Join
• The reverse of the split is a join.

• If you have to join a list of words so that a
space separates the words, how do you do it?

• Not that easy if you don’t want a space at the
end.

' '.join(words)

34

4. String Formatting
• To produce readable output.

• We want to print many types of values (int, float,
string, etc.), plus additional formatting information.

• Eventually, they are all combined into a string before
printing.

• Two components:

– Values (variables, literals, or expressions)

– Formatting string (instruction on how to print)

• How do we mix the two?

35

Multiple Ways
• There are many ways to do so. Too many.

– “Old Style” String Formatting (%-operator) before
v2.6

– “New Style” String formatting (str.format())

– Template Strings (Standard Library)

– String Interpolation (f-strings) after v3.6

• We will spend more time on the second and the
fourth methods.

• Most of my notes use the f-string formatting.

36

Example
• We will use the same example for the

comparison methods we discussed.

– name = 'John Smith'

– acct_id = 12345678

– balance = 123456.789

37

Syntax Issues
• It is crucial to identify a place in a formatted

string for values to be injected—a “placeholder.”
– "Name: {name}"

• Sometimes, we need a symbol to separate a
value with the formatting instructions.
– %[flags][width][.precision]type

38

Formatting

• Formatting specifications include:
– Types (of the value)

– Width (of the value)

– Precision (of a floating number)

– Flags (various formatting specifications)

39

String Formatting Methods
• Since print() always print the content in a string

of characters, it is possible to format it by calling
string methods to change the string into a
desired form first.

• Then, you can print the ‘formatted’ string.

40

String Methods
• There are several methods available for the

string class for formatting the string. They are
fairly limited.
– str.center(),

– str.ljust(),

– str.rjust(),

– str.zfill()

41

s = 'Python'

num = '12345’

[] are added to show the white spaces

print('1. [', s, ']', sep='')

print('2. [', s.center(10), ']', sep='')

print('3. [', s.center(10,"*"), ']', sep='')

print('4. [', s.ljust(10), ']', sep='')

print('5. [', num.rjust(10, "*"), ']', sep='')

print('6. [', num.zfill(10), ']', sep='')

print('7. [', s.zfill(10), ']', sep='')

42

Examples

4.1 With C-Style Formatting
• This is the “old” style. Use it if you are using an

older version of Python.

• Inherited from C-style printf() function.

• Given format%values (where the format is a
string), % conversion specifications in format
are replaced with zero or more values elements.
– Example: %5d, %6.2f, %s

43

Example
name = 'John Smith'

acct_id = 12345678

balance = 123456.789

print("Name: %s Id: %d Balance: $%10.2f"

% (name, acct_id, balance))

44

Use this
format string

to format these values

General Formatting
• Syntax: %[flags][width][.precision]type

– Type
– Width
– Precision
– Flags, options

• Example: %5d, %6.2f, %s

45

Alternative Way
name = 'John Smith'

acct_id = 12345678

balance = 123456.789

data = (name, acct_id, balance)

fmt_str = "Name: %s Id: %d Balance: $%9.2f"

print(fmt_str % data)

46

4.2 With String Format()
• The string class has a format() method.

• A format string contains code (fields to be
replaced) embedded in the constant text.

• The template should be printed literally except
for the format code (placeholder) to be filled in.

• The "placeholder" should be surrounded by curly
braces {}.

• If a bracing character has to be printed, it has to
be escaped by doubling it: {{ and }}.

47

Format()
• The curly braces and the "code" inside will be

substituted with a formatted value from one of
the arguments.

• Anything else not contained in curly braces will
be printed without changes.

• There are two kinds of arguments for the
.format() method:
– positional arguments (0, 1, ...),

– keyword arguments of the form name=value.

48

Example
fmt_str = "Name: {:s} Id: {:d} Balance:
${:9,.2f}"

print(fmt_str.format(name,acct_id,balance))

print("Name: {:s} Id: {:d} Balance:
${:9,.2f}".format(name, acct_id, balance))

print("Name: {0:s} Id: {1:d} Balance:
${2:9,.2f}".format(name, acct_id, balance))

print("Name: {name:s} Id: {id:d} Balance:
${bal:9,.2f}".format(name=name, id=acct_id,
bal=balance))

49

By position

By index

By name

Simplified Syntax
{[index]:[fill] [align] [sign] [width] [,] [.precision]

[type]}

• Align: < (default), >, =, ^

• Fill: character to fill the space due to align.
Default is space.

• Sign: +, - (default), “ “

• Type: d c e f s etc.

• The ',' option signals the use of a comma for a
thousands separator.

50

Signs
• '+': indicates that a sign should be used for

both positive and negative numbers.

• '-': indicates that a sign should be used only
for negative numbers (this is the default
behavior).

• Space: indicates that a leading space should be
used on positive numbers and a minus sign on
negative numbers.

51

Commonly Used Types
• This is not a complete list.

– d: signed integer decimal

– e: floating point exponential format

– f: floating point decimal format

– c: single character

– s: string

– B: binary

– o: octal

– x: hex

52

Placeholder
• Placeholders can identify the value used for that

placeholder by position (starting from 0) or by
name.

53

Examples
template1="My name is {0} and I am {1} years old."
print(template1.format("Stephen", 59))

My name is Stephen and I am 59 years old.

template2="My name is {} and I am {} years old."
print(template2.format("Stephen", 39))

My name is Stephen and I am 39 years old.

template3="My name is {1} and I am {0} years old."
print(template3.format("Stephen", 29))

My name is 29 and I am Stephen years old.

54

Examples
fmt_str1="[{:s}] [{:s}]"
fmt_str2="[{:10s}] [{:8s}]"
fmt_str3="[{0:^10s}] [{1:>8s}]"

print(fmt_str1.format("Hello", "World."))
print(fmt_str2.format("Hello", "World."))
print(fmt_str3.format("Hello", "World."))

[Hello] [World.]

[Hello] [World.]

[Hello] [World.]

55

Examples
fmt_str4="[{0:>10d}] [{1:>15.3f}]"
fmt_str5="[{0:>10d}] [{1:>+15.2f}]"
fmt_str6="[{0:0=10d}] [{1:>15,.2f}]"

print(fmt_str4.format(123, 123456.789))
print(fmt_str5.format(-123, 123456.789))
print(fmt_str6.format(-123, 123456.789))

[123] [123456.789]

[-123] [+123456.79]

[-000000123] [123,456.79]

56

4.3 With String Template
• Separating formatting (template string) from

values.

• Probably the only time to use template strings is
when you use formatted strings generated by
others, such as program users.

• I don’t recommend this formatting method; you
don’t need it now. That’s why I am showing a
simple example here.

57

Examples
name = 'John Smith'

acct_id = 12345678

balance = 123456.789

from string import Template

t = Template("Name: $name Id: $id

Balance: $$$bal")

print(t.substitute(name=name, id=acct_id,

bal=balance))

58

4.4 With f-string
• Formatted string literals, also called format string or

f-strings, is a feature added to Python 3.6.
– Add an f or F before the quotes.

• Use curry braces {} as escape characters. Anything
inside {} will be evaluated (replaced with their
values

• Python f-strings provide a faster, more readable,
more concise, and less error-prone way of
formatting strings in Python.

• The f-strings have the f prefix and use {} brackets
to evaluate values.

59

Why it is better?
• Python f-strings provide

– A faster, more readable, more concise, and less error-
prone way of formatting strings in Python.

– The ability to print variable names with the value is
great for debugging.

– The ability to embed formatting operations into the
modifiers.

– Nested f-strings, conditional formatting, Lambda
expression

60

From f-string to string
• Can we use only f-strings and nothing else? No,

there are certain limitations too.
• An f-string is converted into a regular string

when it appears in the program.
– It will never be evaluated again,
– The expressions (variables) are evaluated only once,
– If you change the variables embedded in an f-string,

the string keeps the original value.

61

The f-strings
• What’s an f-string? Example:

– f'xyz',

– f"abc",

– F'foo'

• An f-string is just a string in which you can
embed an expression. Placeholder.

• The expression is evaluated, converted into
string form, and inserted right where the
expression is.

62

{expression}
• There must be a way to identify the

expression(s).

• Python uses {curly braces} to mark the
expression. In most cases, the expressions are
variables.

• Any character not inside { } is treated like a
regular string.

• F-string expression cannot include a “\”.

• Use {{ … }} to for non-escape curry braces.

63

Restrictions
• Empty expression {} is not allowed.

• An f-string expression can’t contain a backslash
(\) character.

f’foo{\n}bar’

is wrong, but using

n = ‘\n’

f’foo{n}bar’

are okay.

64

Modifiers
• F-strings support extensive modifiers that

control the final appearance of the output string.

• The modifier is almost the same as the format()
protocol.

65

A comparison (#2 vs #4)

66

print('{0} {1} cost ${2}.'.format(quantity, item, price))

print(f'{quantity} {item} cost ${price}.')

Which one is more intuitive?

str.format()

F-string

