Lecture 9:
Functions 11

Stephen Huang
April 10, 2023

UNIVERSITYof HOUSTON

Scope of Variables

Nested Function

Mutable vs. Immutable Objects
Parameter Passing

Function as an Argument
Default Arguments

Recursive Functions*

Lambda Functions

©NO U AWM

UNIVERSITYof HOUSTON

1. Scope of Variables

« So far, we have been cautious in using a variable
inside a function (mainly parameters).

« We are also careful in returning a value to the
calling statement.

 In a function, we did not use or change variables
outside the function. Can we do that?

— A local variable is a variable defined and used inside a
function.

— A global variable is defined at the top level (outside
any function).

« Scope rule.

UNIVERSITYof HOUSTON 3

Variables in side a function

« There are three types of variables one can use
inside a function definition.
— Variables that are parameters passed to the function,

— Variables that only exist inside this particular function
(local variables), and

— Variables existed outside the function (global, non-
local variables).

« How do we know which type?
— Parameters are easy to identify,

— The difference between the other two depends on
how we use the variables.

UNIVERSITYof HOUSTON 4

Namespace

container (of names)
where names are mapped
to objects. -

¢ A name may eXISt in a vart . | NamespaceZ;
different part of a o

program.

* The name may be the
same, but the object

var3

» A Python namespace is a < vart >

/ vard

Namespace 1 vars }I

Namespace 3

(value associated with the Last_name
name) may be different. City
i, j, k

UNIVERSITYof HOUSTON :

« You can define a name in many places in a
program—Ilocation matters.

« When you use a name (a variable or a function
name), Python searches the program to
determine whether the name exists.

« To resolve a name, Python follows a specific
order of scope levels.

UNIVERSITYof HOUSTON 6

Mapping

* Everything in Python (literals, lists, dictionaries,
functions, classes, etc.) is an object.

Namespaces are just containers for mapping
names to objects.

The “scope” in Python L
defines the “hierarchy - foom

level” in which we Namespace 1 vars :j:
search namespaces for are
certain “name-to-object” < 7> aaaaaaa
mappings. e

Namespace 3

UNIVERSITYof HOUSTON

Python Scope

A scope defines the order in which the
namespaces must be searched to obtain the
name-to-object (variables) mappings.

 The LEGB stands for

Built-in
— Local scope,
— Enclosing scope, Lu Global
— Global scope, and
PE, I__, Enclosed

— Built-in scope.

l Local

UNIVERSITYof HOUSTON

Global and More

 Built-in: Special names that Python reserves for
itself.

 Global: before we start using functions, all
variables are global.

e Local: all variables defined inside a function are
local.

« Enclosed: variable in the enclosing function. This
is something new.

UNIVERSITYof HOUSTON 9

« The scope of a variable inside a function
definition depends on how it is used.

— Python assumes that any name assigned to within a
function is local to that function unless explicitly told
otherwise.

— If it is only reading (using) from a name that doesn't
exist locally, it will try to look up the name in any
containing scopes.

 The code over which a variable is accessible or
visible is known as the variable’s scope.

UNIVERSITYof HOUSTON 10

Scope Rule

« Suppose we have a variable X in a function; here
IS how to determine the scope.

— If X is a parameter, then it is local,

— Otherwise, if X is assigned a value in the function, it is
a local variable (may be used anywhere in the
function),

— If not, check if X is local to a containing block, and
stop when found. (not local)

UNIVERSITYof HOUSTON 11

Local vs. Global

 All the parameters and variables defined in a
function are local to the function, meaning that
these variables cannot be “seen” by code
outside of the function.

It would be best if you always used parameters
to pass data into a function and always use the
return statement to export data. Recommended.

» The other way to exchange data with a function
is by using global variables, but using a global
variable inside a function is considered a
dangerous programming practice.

UNIVERSITYof HOUSTON 2

A variable that does not change its value
throughout the program is called a constant.

 If many constants are used in many functions,
passing them all the time may not be practical.

It is okay to define all the constants at the

beginning of the program and use them
throughout the program.

— Some programmers developed conventions to easily
identify variables that are constants (such as SIZE,
TAX_RATE). So they know to keep the values
unchanged.

UNIVERSITYof HOUSTON 13

Scope of Variables

» The scope of a variable within a function is from
the point it is created either

— in the parameter list, or

— in the body via an assignment operation,
to the end of the function.

« It does not matter whether one made any
change to the parameter or the variable. It's
their static role that determines the scope.

UNIVERSITYof HOUSTON 14

Using Local

def f () :
s = '"Go Rockets'

print (f'Inside f£(): s = {s}")

s = 'Go Coogs'

()

print (£f'Outside f£(): s = {s}')
Inside f(): s = Go Rockets
OQutside f£(): s = Go Coogs

UNIVERSITYof HOUSTON 15

Using Global

def f():

print (f'Inside f£(): s

{s}t')

s = 'Go Coogs'
£()

print (£'Outside £(): s = {s}")

Inside f():
Outside f () :

UNIVERSITYof HOUSTON

S
S

Go Coogs
Go Coogs

16

Using Local or Global?

def f():
print (f'Inside f£(): s = {s}")
s = 'Go Rockets' ?
s = !Go Coogs' |
0| e
print (f'Outside f(): s = {s}') |
1 é

local variable 's' referenced
b e e e e e e e e e g — e — — —0

UNIVERSITYof HOUSTON 17

Local to what?

UNIVERSITYof HOUSTON 18

2. Nested Function

« Python allows the user to define a function
within the body of another function.

— A local function, or

— An inner function

» The inner function can only be invoked from
within the function in which it was defined.

— Similar to a local variable.

« Not all languages allow the nesting of function
definitions as Python does.

UNIVERSITYof HOUSTON 19

Global, Nonlocal, and Local

« Modify the scope rule.

 The nonlocal keyword works with variables

inside nested functions, where the variable
should not belong to the inner function.

 The global keyword specifies global variables
from a no-global scope inside a function.

« “Local” is not a keyword in Python.

« To avoid confusion, try not to use the same
variable name for different variables.

UNIVERSITYof HOUSTON 20

But why nested function?

* A function can be defined inside another

function. It is possible to avoid using nested
functions, but

« In some cases, there may be some benefits.

— The inner function can access the variables within the
enclosing scope.

— Two functions may have one inner function each with
the same name, such as print_result().

UNIVERSITYof HOUSTON 21

Scope rules

« The scoping rules for functions are no different
than for variables: anything defined inside a
function is local to that function.

 Variables and functions defined external to any
function have global scope and are visible
“everywhere.”

UNIVERSITYof HOUSTON 22

« For some programming languages, it is required
that every program has a function called main().
— The program execution starts at the main().

 Python does not require the use of a main().

« Some Python programmers put all statements
inside one function.
— Put the statements in the main() function.

— Call main() as the last (possibly the only) statement.
This function call is the sole statement not in a
function.

 Main is not a reserved word. A function called
main does not have any significance.

UNIVERSITYof HOUSTON 23

Example: Nonlocal

def outer () :
def inner () :
nonlocal X
print (" inner:", x)
X = 'defined in inner'
print (" inner:", x)
print (" outer:", x)
X = 'defined in outer'
inner ()
print (" outer:", x)
C i def] q ; o main: defined in main
X = eLined 1n main outer: defined in outer
:] 2 °]
print ('main: y X) inner: defined in outer
outer () inner: defined in inner
print ('main: ', X) outer: defined in inner
main: defined in main

UNIVERSITYof HOUSTON

24

def func () :

x = 'Hi'

x = 'Welcome'
print (x)
func ()

print (x)

Welcome
Welcome

UNIVERSITYof HOUSTON

def func () :
global x

x = 'Hi'

x = 'Welcome'
print (x)
func ()
print (x)
Welcome
Hi

25

3. Mutable & Immutable Objects

* A review of mutable and immuta

A general explanation from the "
chapter in the Python Language

vle variables.
Data Model"

Reference":

— The value of some objects can change.

— Objects whose value can change are said to be

mutable;

— Objects whose value is unchangeable once they are

created are called immutable.

UNIVERSITYof HOUSTON

26

Mutable Parameter

« We cannot change a parameter in a function. If
we do change it, it becomes a local variable and
not associated with the parameter anymore.

« For a parameter of a mutable type, such as a
list, we cannot change the parameter (the list),
but we can change some of the components in
the structure.

« What is going on?

UNIVERSITYof HOUSTON

27

Immutable Assignment

4 N [)

Y

— 11

X

\ j \ This is a
different box

UNIVERSITYof HOUSTON 28

Immutable Assignment

g) D
%
—» Java
X
- Python
- RN St b
X = “Java”
X = “Python”

UNIVERSITYof HOUSTON 29

Mutable Assignment

This is the
/ \ / same box
[/]

=\

Java Python

N VAN /

X = [“Java”, “C++”, “Pascal”]
X [0] = “Python”
X.append(...)
UNIVERSITYof HOUSTON 30

« If we have a mutable variable such as a list,
— We cannot change the list object, but
— We can change elements inside the list

« What if we pass a mutable variable to a
function?

UNIVERSITYof HOUSTON 31

4. Parameter Passing

« The process behind parameter passing in Python
is simple: the function call binds to the formal
parameter, the object referenced by the actual
parameter.

« The kinds of objects we have considered so
far—integers, floating-point numbers, and
strings—are classified as immutable objects.

« This means a programmer cannot change the
value of the object.

« Parameters are “pass-by-value”.

UNIVERSITYof HOUSTON 32

Parameters

« Changing the parameter inside a function does
not change the actual parameter in the calling
function.

« The actual parameters may be an expression (or
constant) that cannot receive a value anyway.

« Other languages have a different way of passing
parameters (call-by-reference), which allows a
statement inside a function to cause change to
an actual parameter (which must be a variable).

UNIVERSITYof HOUSTON 33

Pass-by-value

Main ()

function|()

When value changes:

If the parameter is of
immutable type, then
a new space is
allocated for the new
value.

If the parameter is of
mutable type, then

UNIVERSITYof HOUSTON

the value is changed

34

Pass-by-value

Main ()

function|()

|V

When value changes:

If the parameter is of
immutable type, then
a new space is
allocated for the new
value.

If the parameter is of
mutable type, then

UNIVERSITYof HOUSTON

the value is changed

35

Passing Changes Back

« There are three ways to change, from inside a
function, the values in the calling function.

— Use a global variable—very bad idea. Read from the
global variable is bad; changing the global variable is
very bad. (Exception: Constants)

— Use return and assign to the variable. This is the
recommended way. Remember that we can return
multiple values, an improvement over other
languages.

— Make a change to the parameter if it is mutable. Use
this if you know what you are doing. There is no
need to use a return in this case.

UNIVERSITYof HOUSTON 36

Cheating the System

« We can use a mutable wrapper y to
contain an immutable variable x

 Pass the wrapper y to a function

« Change the value of x

« Upon return, take off the wrapper
« The value has been changed.

UNIVERSITYof HOUSTON

37

5. Functions as an Argument

« You can think about a method (or function) as a
variable whose value is the actual callable code
object.

« We can pass functions as arguments to other
functions.

UNIVERSITYof HOUSTON 38

def foo(f, para):
print (f"Calling {f} (\"{para}l\") inside foo().")
f (para)

def bar (para) :
print (f"Inside bar (\"{para}\").")

bar ("Hello world!")
foo (bar, "Howdy")

Executing f inside foo() .
Inside bar("Hello world.").
Inside bar ("Hello world!!!").

UNIVERSITYof HOUSTON 39

def norm(s) :

return s.casefold()

fruits = ['cherry', 'banana', 'Apple',

'"Pear', 'Watermelon', 'peach']

print (sorted (fruits))

print (sorted(fruits, key=norm))

['Apple', 'Pear', 'Watermelon', 'banana', 'cherry', 'peach']
['Apple', 'banana', 'cherry', 'peach', 'Pear', 'Watermelon']

UNIVERSITYof HOUSTON 40

6. Default Arguments

« Sometimes an argument of a function has values
that are the usual values in most calls.

« Python allows the programmer to indicate the
usual (default) values.

« Any parameters that have default values must
be the rightmost parameters in the parameter
list.

 If one or more of the arguments to the function
are missing, then the default value of the
corresponding parameter is used.

UNIVERSITYof HOUSTON 4

Default Arguments

 If two parameters have default values and only
one of the arguments is missing, then the
rightmost of the arguments are assumed to be
the missing one.

 Python, like other languages, provides support
for default argument values, that is, function
arguments that can

— either be specified by the caller, or
— left blank to automatically receive a predefined value.

 All standard arguments first, then the default
ones.

UNIVERSITYof HOUSTON 42

» The following example below illustrates default
values for parameters.

— Suppose a function is used to compute the cost of
putting in a concrete driveway.

— Suppose the lengths of driveways are different, but
the width and depth of driveways are usually 6.5 feet
wide and 0.5 feet deep.

— Then we could write the function that computes the
cost with these as default values.

UNIVERSITYof HOUSTON 4

def cost (unitCost, len,w=06.5,d=0.5):

return unitCost*len*w*d

print (cost (100, 10, 7, 1))
print (cost (100, 10, 7))
print (cost (100, 10))

7000
3500.0
3250.0

UNIVERSITYof HOUSTON

44

/. Recursive functions

» We have introduced the concept in
Lecture 3.

« More examples are here.

Skip this page

UNIVERSITYof HOUSTON 4

def factorial (n):
1f n<l:
return None
elif n==1:
return 1
else:
return factorial (n-1) *n

Factorial.py

Skip this page

UNIVERSITYof HOUSTON

46

Fibonacci Numbers

Skip this page

UNIVERSITYof HOUSTON 47

Fibonacci Numbers

def fib(n) :
1f n==0:
return 0
elif n==1:
return 1

else:
return fib(n-1)+fib (n-2)

Skip this page

UNIVERSITYof HOUSTON

48

8. Lambda Functions

function.

— Small: the body is an expression
— Anonymous: without a name

— May have parameters/arguments

» Syntax:
— Lambda <arguments> : <expression>

« Pretty much anything you can do with lambda
function, you can do better with a named
function. You don’t absolutely need it.

« A lambda function is a small anonymous 7

UNIVERSITYof HOUSTON 4

def | function name ||(Kparameters>|

<statements>

return <exppr€ssion>

v .
lambda <parameters> : <expression>

UNIVERSITYof HOUSTON 50

An Example

def double (x)

return (x*2)

lambda x : x*2

UNIVERSITYof HOUSTON 51

Using Lambda

It is possible to use a lambda function directly.

« In many cases, we do have to give an
anonymous function a name so we can use it.
See the following example.

« A lambda function is typically only used in one
place and does just one thing.

« One may avoid using this feature. However, you
may want to know what it is when you see one.

UNIVERSITYof HOUSTON

52

Physical Comparison

def main(): def main():

y = square(some_num) square = lambda x: x**2

' y = square(some_num)
return something

return something

Many lines later
def square(x):
return x**2

Skip this page
UNIVERSITYof HOUSTON 53

Sorting Tables

>>> student tuples = |
('"John', 'A', 15),
('"3ane', 'B', 12),
('dave', 'B', 10),
]

>>> sorted(student tuples, key=lambda
student: student[2]) # sort by age

[('dave', 'B', 10), ('jgane', 'B', 12),
('"john', 'A', 15)]

UNIVERSITYof HOUSTON 54

