
Lecture 9:
Functions II

Stephen Huang
April 10, 2023

1

Contents
1. Scope of Variables
2. Nested Function
3. Mutable vs. Immutable Objects
4. Parameter Passing
5. Function as an Argument
6. Default Arguments
7. Recursive Functions*
8. Lambda Functions

1. Scope of Variables
• So far, we have been cautious in using a variable

inside a function (mainly parameters).

• We are also careful in returning a value to the
calling statement.

• In a function, we did not use or change variables
outside the function. Can we do that?
– A local variable is a variable defined and used inside a

function.

– A global variable is defined at the top level (outside
any function).

• Scope rule.

3

Variables in side a function
• There are three types of variables one can use

inside a function definition.
– Variables that are parameters passed to the function,
– Variables that only exist inside this particular function

(local variables), and
– Variables existed outside the function (global, non-

local variables).

• How do we know which type?
– Parameters are easy to identify,
– The difference between the other two depends on

how we use the variables.

4

Namespace
• A Python namespace is a

container (of names)
where names are mapped
to objects.

• A name may exist in a
different part of a
program.

• The name may be the
same, but the object
(value associated with the
name) may be different.

5

Last_name
City
i, j, k

Scope
• You can define a name in many places in a

program—location matters.

• When you use a name (a variable or a function
name), Python searches the program to
determine whether the name exists.

• To resolve a name, Python follows a specific
order of scope levels.

6

Mapping
• Everything in Python (literals, lists, dictionaries,

functions, classes, etc.) is an object.

• Namespaces are just containers for mapping
names to objects.

• The “scope” in Python
defines the “hierarchy
level” in which we
search namespaces for
certain “name-to-object”
mappings.

7

Python Scope
• A scope defines the order in which the

namespaces must be searched to obtain the
name-to-object (variables) mappings.

• The LEGB stands for
– Local scope,
– Enclosing scope,
– Global scope, and
– Built-in scope.

8

Global and More
• Built-in: Special names that Python reserves for

itself.

• Global: before we start using functions, all
variables are global.

• Local: all variables defined inside a function are
local.

• Enclosed: variable in the enclosing function. This
is something new.

9

Scopes
• The scope of a variable inside a function

definition depends on how it is used.
– Python assumes that any name assigned to within a

function is local to that function unless explicitly told
otherwise.

– If it is only reading (using) from a name that doesn't
exist locally, it will try to look up the name in any
containing scopes.

• The code over which a variable is accessible or
visible is known as the variable’s scope.

10

Scope Rule
• Suppose we have a variable X in a function; here

is how to determine the scope.
– If X is a parameter, then it is local,

– Otherwise, if X is assigned a value in the function, it is
a local variable (may be used anywhere in the
function),

– If not, check if X is local to a containing block, and
stop when found. (not local)

11

Local vs. Global
• All the parameters and variables defined in a

function are local to the function, meaning that
these variables cannot be “seen” by code
outside of the function.

• It would be best if you always used parameters
to pass data into a function and always use the
return statement to export data. Recommended.

• The other way to exchange data with a function
is by using global variables, but using a global
variable inside a function is considered a
dangerous programming practice.

12

Constants
• A variable that does not change its value

throughout the program is called a constant.

• If many constants are used in many functions,
passing them all the time may not be practical.

• It is okay to define all the constants at the
beginning of the program and use them
throughout the program.
– Some programmers developed conventions to easily

identify variables that are constants (such as SIZE,
TAX_RATE). So they know to keep the values
unchanged.

13

Scope of Variables
• The scope of a variable within a function is from

the point it is created either
– in the parameter list, or

– in the body via an assignment operation,

to the end of the function.

• It does not matter whether one made any
change to the parameter or the variable. It’s
their static role that determines the scope.

14

Using Local

15

def f():

s = 'Go Rockets'

print(f'Inside f(): s = {s}')

s = 'Go Coogs'

f()

print(f'Outside f(): s = {s}')

Inside f(): s = Go Rockets
Outside f(): s = Go Coogs

Using Global

16

def f():

print(f'Inside f(): s = {s}')

s = 'Go Coogs'

f()

print(f'Outside f(): s = {s}')

Inside f(): s = Go Coogs
Outside f(): s = Go Coogs

Using Local or Global?

17

def f():

print(f'Inside f(): s = {s}')

s = 'Go Rockets'

s = 'Go Coogs'

f()

print(f'Outside f(): s = {s}')

local variable 's' referenced
before assignment

Local to what?

18

2. Nested Function
• Python allows the user to define a function

within the body of another function.
– A local function, or

– An inner function

• The inner function can only be invoked from
within the function in which it was defined.
– Similar to a local variable.

• Not all languages allow the nesting of function
definitions as Python does.

19

Global, Nonlocal, and Local
• Modify the scope rule.

• The nonlocal keyword works with variables
inside nested functions, where the variable
should not belong to the inner function.

• The global keyword specifies global variables
from a no-global scope inside a function.

• “Local” is not a keyword in Python.

• To avoid confusion, try not to use the same
variable name for different variables.

20

But why nested function?
• A function can be defined inside another

function. It is possible to avoid using nested
functions, but

• In some cases, there may be some benefits.
– The inner function can access the variables within the

enclosing scope.

– Two functions may have one inner function each with
the same name, such as print_result().

21

Scope rules
• The scoping rules for functions are no different

than for variables: anything defined inside a
function is local to that function.

• Variables and functions defined external to any
function have global scope and are visible
“everywhere.”

22

Main()
• For some programming languages, it is required

that every program has a function called main().
– The program execution starts at the main().

• Python does not require the use of a main().
• Some Python programmers put all statements

inside one function.
– Put the statements in the main() function.
– Call main() as the last (possibly the only) statement.

This function call is the sole statement not in a
function.

• Main is not a reserved word. A function called
main does not have any significance.

23

Example: Nonlocal
def outer():

def inner():
nonlocal x
print(" inner:", x)
x = 'defined in inner'
print(" inner:", x)

print(" outer:", x)
x = 'defined in outer'
inner()
print(" outer:", x)

x = 'defined in main'
print('main: ', x)
outer()
print('main: ', x)

24

main: defined in main
outer: defined in outer
inner: defined in outer
inner: defined in inner

outer: defined in inner
main: defined in main

def func():

x = 'Hi'

x = 'Welcome'

print(x)

func()

print(x)

def func():

global x

x = 'Hi'

x = 'Welcome'

print(x)

func()

print(x)

25

Example

Welcome
Welcome

Welcome
Hi

3. Mutable & Immutable Objects

• A review of mutable and immutable variables.

• A general explanation from the "Data Model"
chapter in the Python Language Reference":
– The value of some objects can change.

– Objects whose value can change are said to be
mutable;

– Objects whose value is unchangeable once they are
created are called immutable.

26

Mutable Parameter
• We cannot change a parameter in a function. If

we do change it, it becomes a local variable and
not associated with the parameter anymore.

• For a parameter of a mutable type, such as a
list, we cannot change the parameter (the list),
but we can change some of the components in
the structure.

• What is going on?

27

Immutable Assignment

28

11

99

Y

X

X = 11
X = 99

This is a
different box

Immutable Assignment

29

Java

Python

Y

X

X = “Java”
X = “Python”

This is a
different box

Mutable Assignment

30

Java Python

Y

X

[, ,]

X = [“Java”, “C++”, “Pascal”]
X [0] = “Python”
X.append(…)

This is the
same box

Summary
• If we have a mutable variable such as a list,

– We cannot change the list object, but
– We can change elements inside the list

• What if we pass a mutable variable to a
function?

31

4. Parameter Passing
• The process behind parameter passing in Python

is simple: the function call binds to the formal
parameter, the object referenced by the actual
parameter.

• The kinds of objects we have considered so
far—integers, floating-point numbers, and
strings—are classified as immutable objects.

• This means a programmer cannot change the
value of the object.

• Parameters are “pass-by-value”.

32

Parameters
• Changing the parameter inside a function does

not change the actual parameter in the calling
function.

• The actual parameters may be an expression (or
constant) that cannot receive a value anyway.

• Other languages have a different way of passing
parameters (call-by-reference), which allows a
statement inside a function to cause change to
an actual parameter (which must be a variable).

33

Pass-by-value

34

Main() function()
When value changes:

If the parameter is of
immutable type, then
a new space is
allocated for the new
value.

If the parameter is of
mutable type, then
the value is changed

Pass-by-value

35

Main() function()
When value changes:

If the parameter is of
immutable type, then
a new space is
allocated for the new
value.

If the parameter is of
mutable type, then
the value is changed

Passing Changes Back
• There are three ways to change, from inside a

function, the values in the calling function.
– Use a global variable—very bad idea. Read from the

global variable is bad; changing the global variable is
very bad. (Exception: Constants)

– Use return and assign to the variable. This is the
recommended way. Remember that we can return
multiple values, an improvement over other
languages.

– Make a change to the parameter if it is mutable. Use
this if you know what you are doing. There is no
need to use a return in this case.

36

Cheating the System

• We can use a mutable wrapper y to
contain an immutable variable x

• Pass the wrapper y to a function
• Change the value of x
• Upon return, take off the wrapper
• The value has been changed.

37

5. Functions as an Argument
• You can think about a method (or function) as a

variable whose value is the actual callable code
object.

• We can pass functions as arguments to other
functions.

38

Example
def foo(f, para):

print(f"Calling {f}(\"{para}\") inside foo().")

f(para)

def bar(para):

print(f"Inside bar(\"{para}\").")

bar("Hello world!")

foo(bar, "Howdy")

39

Executing f inside foo().
Inside bar("Hello world.").
Inside bar("Hello world!!!").

Example
def norm(s):

return s.casefold()

fruits = ['cherry', 'banana', 'Apple',

'Pear', 'Watermelon', 'peach']

print(sorted(fruits))

print(sorted(fruits, key=norm))

40

['Apple', 'Pear', 'Watermelon', 'banana', 'cherry', 'peach']
['Apple', 'banana', 'cherry', 'peach', 'Pear', 'Watermelon']

6. Default Arguments
• Sometimes an argument of a function has values

that are the usual values in most calls.

• Python allows the programmer to indicate the
usual (default) values.

• Any parameters that have default values must
be the rightmost parameters in the parameter
list.

• If one or more of the arguments to the function
are missing, then the default value of the
corresponding parameter is used.

41

Default Arguments
• If two parameters have default values and only

one of the arguments is missing, then the
rightmost of the arguments are assumed to be
the missing one.

• Python, like other languages, provides support
for default argument values, that is, function
arguments that can
– either be specified by the caller, or

– left blank to automatically receive a predefined value.

• All standard arguments first, then the default
ones.

42

Examples
• The following example below illustrates default

values for parameters.
– Suppose a function is used to compute the cost of

putting in a concrete driveway.

– Suppose the lengths of driveways are different, but
the width and depth of driveways are usually 6.5 feet
wide and 0.5 feet deep.

– Then we could write the function that computes the
cost with these as default values.

43

Example
def cost(unitCost,len,w=6.5,d=0.5):

return unitCost*len*w*d

print(cost(100, 10, 7, 1))

print(cost(100, 10, 7))

print(cost(100, 10))

44

7000
3500.0
3250.0

7. Recursive functions

• We have introduced the concept in
Lecture 3.

• More examples are here.

45

Skip this page

Factorial
def factorial(n):

if n<1:
return None

elif n==1:
return 1

else:
return factorial(n-1)*n

Factorial.py

46

Skip this page

Fibonacci Numbers

47

Skip this page

Fibonacci Numbers
def fib(n):

if n==0:
return 0

elif n==1:
return 1

else:
return fib(n-1)+fib(n-2)

48

Skip this page

8. Lambda Functions
• A lambda function is a small anonymous

function.
– Small: the body is an expression
– Anonymous: without a name
– May have parameters/arguments

• Syntax:
– Lambda <arguments> : <expression>

• Pretty much anything you can do with lambda
function, you can do better with a named
function. You don’t absolutely need it.

49

A Comparison

def function_name (<parameters>) :

<statements>

return <expression>

lambda <parameters> : <expression>

50

An Example

def double (x) :

return (x*2)

lambda x : x*2

51

Using Lambda
• It is possible to use a lambda function directly.

• In many cases, we do have to give an
anonymous function a name so we can use it.
See the following example.

• A lambda function is typically only used in one
place and does just one thing.

• One may avoid using this feature. However, you
may want to know what it is when you see one.

52

def main():
...
...
y = square(some_num)
...
return something
...
...
Many lines later
def square(x):

return x**2

def main():
...
...
square = lambda x: x**2
y = square(some_num)
...
return something

53

Physical Comparison

Skip this page

Sorting Tables
>>> student_tuples = [

... ('john', 'A', 15),

... ('jane', 'B', 12),

... ('dave', 'B', 10),

...]

>>> sorted(student_tuples, key=lambda
student: student[2]) # sort by age

[('dave', 'B', 10), ('jane', 'B', 12),
('john', 'A', 15)]

54

