
Lecture 10:
Files

Stephen Huang
April 12, 2023

1

Contents

1. Introduction to Text Files
2. Opening a file
3. Reading from a file
4. Writing to a File
5. Appending to a file
6. Modules

Importance
• Python allows you to read and write from/to files

like most other languages.

• All the values you hold in variables will be gone
at the end of your program.

• Files will outlast the program.

• Whether writing to a simple text file, reading a
detailed server log, or even analyzing raw byte
data (which we will NOT do), these situations
require reading or writing a file.

3

1. Introduction
• This chapter introduces the idea of “persistent”

programs that keep data in permanent storage.

• Persistent Program: they run for a long time (or
all the time); they keep at least some of their
data in permanent storage (a hard drive); and if
they shut down and restart, they pick up where
they left off.

• One of the most straightforward ways programs
maintain data is by reading and writing text files.

4

Files
• A text file is a sequence of characters stored on

a permanent medium like a hard drive.
• We consider only the text (ASCII) file in this

chapter. Binary files are not considered.
• A text file is a linear structure of characters. In

general, we must process input sequentially. No
Random Access in this course.

• End-of-Line (“\n”) characters separate a file into
lines (of variable length). The implementation is
OS-dependent.

5

Line Ending
• One problem often encountered when working

with file data is representing a new line or line
ending.

• ASA standard states that line endings should use
the sequence of the Carriage Return (CR, x0D or
\r) and the Line Feed (LF, x0A, or \n) characters
(CR+LF or \r\n).

• However, the ISO standard allowed for either the
CR+LF characters or just the LF character.

6

Line Ending
• Windows uses the CR+LF (\r\n) characters,

while Unix and Mac use just the LF (\n)
character.

• Internally, Python uses “\n” to represent end-of-
line (eoln). Technically, we use eoln’s to separate
lines, not to terminate lines.

• You can always add an eoln at the end of the
last line to make it more uniform. But then the
last line is no longer the last.

• There is no end-of-file character.

7

Under the Hood
This is a text file.

Is this clear?

That's all!

8

ASCII

9

Finding the file
import os

os.chdir("C:/Users/guido/My Documents")

file = open("info.txt", "r")

10

Name of the file To read from

2. Opening a file
• Stream (internal/program object) is our

representation of a file (external object) in the
program.

• A file must be connected to a stream before it
can be used.

11

Opening file

12

Program

fin

fout

infile.txt

outfile.txt

File Name

• Files have two “names” in our programs
– External file name

• Also called "physical file name."
– Like "infile.txt"

• Sometimes considered "real file name."
• Used only once in the program (to open)

– Once connected, forget it!

– Stream (internal) name
• Also called "logical file name."
• The program uses this name for all file activity

13

Open
• A file can be opened in two modes: read (r) or

write (w).
fin = open(‘input.txt’, ‘r’)

fout = open(‘output.txt’, ‘w’)

• In opening a file for input, the file must exist in
your directory.
– A common error is misspelling the name of the file.

– All subsequent input operations will fail if the file does
not open.

• Trying to open a file that does not exist will fail.

14

Open
open(file_name [, access_mode][, buffering])

• file_name: name of the file that you want to
access.

• access_mode: The access_mode determines the
mode in which the file has to be opened, i.e.,
read, write, append, etc. This parameter is
optional; the default file access mode is read (r).

• buffering: Not important in this chapter.

15

1. Operation Mode:
– Read
– Write
– Append

2. Format Mode:
– ASCII Text
– Binary

3. R/W Option: +

16

Modes
• w

• wb

• w+

• wb+

• a

• ab

• a+

• ab+

• r

• rb

• r+

• rb+

r/w/a b +

Modes
• We won’t discuss binary files here.

• You should know the three basic modes of r, w,
and a first.

• Then try to understand the three corresponding
+ modes later.

17

Modes

18

Mode read write append pointer create truncate

r √ B
w √ B √
a * √ E √
r+ √ √ B
w+ √ √ B √ √
a+ * * √ E √

* If file does not exist, create a new file for r/w
B = beginning,
E = End

Close()
• An opened file will be closed automatically at the

end of the program.

• However, it is a good programming practice to
close a file if it is no longer needed.

• If so, you can reuse the file name, i.e., open
another file using the name.

19

With Open As
• Using the following syntax will limit the scope of

the file to be inside the “with” clause.
with open(“test.txt”) as f:

read from the file

f closed at the end of this block

• Compare to:
f = open(“test.txt”)

read from the file

f.close()

20

With .. As
• The with statement initiates a context manager.

• The context manager opens a file and manages
the file resource as long as the context is active.

• All the code in the indented block depends on
the file object being open.

• Once the indented block ends or raises an
exception, the file will close automatically.

• Otherwise, you must close the file explicitly.

21

Closing Files is Important
• An opened file requires the use of certain

system resources.

• The leaking of resources may be due to poor
programming practice or a malicious program
attacking the system.

• Operating systems limit the number of open files
a single process can have.

• Keeping files open leaves you vulnerable to
losing data when the system crashes.

22

3. Reading from a file
• There are multiple ways to read from a file.

a. Using an Iterator

b. Readline()

c. Read()

d. Readlines()

• Some do it one line at a time, and others read
the whole file.

• Storage considerations for large files. Do you
need the entire file altogether?

23

One line at a
time

All lines in
one call

Input from a file
• A text file is divided into lines of various lengths.

An end-of-line character (\n) is used as a
separator.

• An extra end-of-line may occur when printing
the string because of the \n character at the end
of each line.

• End-of-line can be removed by the strip()
method of string.

24

(a) Using an Iterator
for line in f:

• Reads one line from the file per iteration.

• Returns the line.

• The line includes the end-of-line character (if
any).

• The iterator goes from the first line to the last
line of the file.

• There is no risk of reading past the end of the
file.

25

Example

fin = open('test.txt')

for line in fin:

print(line)

fin.close()

26

Remove the eoln

fin = open("test.txt")

for line in fin:

print(len(line))

line = line.strip()

print(line)

print(len(line), "\n")

24

This is the first line.

23

27

(b) Readline
line = f.readline()

• Reads one line from the file.

• Returns the line.

• The line includes the eoln character.

• Use a (while) loop to read all lines.

• Reading past the eoln returns an empty string.
An empty string is considered False as a Boolean
value that can be used to terminate a while
loop.

28

Example
f = open('test.txt')
line = f.readline()
while line:

print(line)
line=f.readline()

f.close()

29

Example
f = open('test.txt')
line = 'none empty'
while line:

line = f.readline()

print(line)
f.close()

This program prints one extra empty line if no
eoln at the end.

How do we fix that?

30

Iterator readline()

f = open('test.txt')

line = f.readline()

while line:

print(line)

line = f.readline()

f.close()

31

A comparison

f = open('test.txt')

for line in f:

print(line)

f.close()

(c) Read
line = f.read()

• Reads the whole file as one string.
• Returns the string.
• The string includes all eoln characters.
• There may be no eoln character at the end of

the last line.

32

Example
f = open('test.txt')
lines = f.read()
print(lines)
f.close()

33

(d) Readlines
lines = f.readlines()

• Reads the whole file into a string and then splits
it into a list of separate lines.

• Return a list of lines.
• Each line in the list contains an end-of-line

character.*

34

Example
f = open('test.txt')
lines = f.readlines()
print(lines)
f.close()

35

read() readlines()

f = open('test.txt')

lines = f.readlines()

for line in lines:

print(line)

f.close()

36

A comparison

f = open('test.txt')

lines = f.read().splitlines()

for line in lines:

print(line)

f.close()

readline() readlines()

f = open('test.txt')

lines = f.readlines()

for line in lines:

print(line)

f.close()

37

Another comparison

f = open('test.txt')

line = " "

while line:

line = f.readline()

print(line)

f.close()

A Grand Comparison

38

returns

method reads type end-of-line Loop

Iterator one line string with for

readline() one line string with while

read() the file string with all -

readlines() the file list of strings with all -

Closing the file
• fin.close() will close the file fin.
• A file that is closed will not be accessible.
• The file object, fin for this case, can be reused.

fin = open("test1.txt")
for line in fin:

line = line.strip()
print(line)

print("---")
fin.close()
fin = open("test2.txt")
for line in fin:

line = line.strip()
print(line)

print("---")

39

Close
• If you must read a file multiple times, you can

close it using the close() method and then open
it again using open().

• There is no need to close() the file before
issuing the second open() because if a file is
already open, Python will close it before opening
it again.

• However, it is a good practice to close files when
done with them.

40

Exception Handling
import sys

try:

f = open('integers.txt')

s = f.readline()

i = int(s.strip())

except IOError as e:

errno, strerror = e.args

print(f"I/O error({errno}): {strerror}")

except ValueError:

print("No valid integer in line.")

except:

print("Unexpected error:", sys.exc_info()[0])

raise

41

Exception Template
try:

logFile = 'log.txt'

report = open(logFile, 'w')

report.write('some message')

except Exception as e:

report.write('an error message')

finally:

report.close()

42

Failed Attempt
• fin = open("test.txt")
for line in fin:

line = line.strip()
print(line)

print("---")
fin.close()
for line in fin:

line = line.strip()
print(line)

43

Typical Steps

fin = open("test.txt") # open

for line in fin: # get line

line = line.strip()# strip

print(line) # process

fin.close() # close

44

With Open As
with open("test.txt") as f:

for line in f:

print(line)

File f is closed when existing the with

• File f is closed automatically, but variable f
survived.

• It is good practice to use the with keyword when
dealing with file objects.

• There is a Boolean variable f.closed.

45

4. Writing to a file
• Use open with ‘w’ mode to write to a file.

• If the file already exists, opening it in write
mode clears the old data and starts fresh, so be
careful!

• If the file doesn’t exist, a new one is created for
writing.

46

Write
• After opening the file, we can use the write()

or writelines() method to write to it.

• Additionally, an argument exists for the
print() function that names the output file.

• The write() method takes a single argument:
the string to be written to the file.

• The writelines() method writes the list
items to the file.

• The write() method is less flexible than the
print() function.

47

Write()
fin = open("test.in", 'r')
fout = open("test.out", 'w')
count = 0
for line in fin:

count += 1
fout.write(f"{count:03d}: {line}")

fin.close()
fout.close()

001: hello1
002: ok2
003: byebye3

48

Write()
f = open("mytest.txt", 'w')
a = 1.0
b = "Hello"
c = [1, 2, 3]

f.write(f'{a}, {b}, {c}')
f.close()

1.0, Hello, [1, 2, 3]

49

Print()
f = open("mytest.txt", 'w')
a = 1.0
b = "Hello"
c = [1, 2, 3]

print(a, b, c, file=f)
f.close()

1.0, Hello, [1, 2, 3]

50

Writelines()
f1 = open("out1.txt",'w')
f2 = open("out2.txt",'w')
values1 =["one","two","three"]
values2 =["one\n","two\n","three\n"]
f1.writelines(values1)
f2.writelines(values2)

51

5. Appending to a file

• If we write to a file in append mode, the
new text is appended to the end of the
file.

f = open("test.in", 'a')
f.write(“\nThis is the last line")
f.close()

52

Try Write
try:

logFile = 'log.txt'

log = open(logFile, 'a')

print('some message', file=log)

except Exception as e:

print('an error message', file=log)

finally:

log.close()

53

6. Modules
• Any Python code file can be imported as a

module to other Python code.

• Module allows multiple people and programs to
work on one project, sharing the same code.

• The module name is the file name without the
extension. To import a module x.py, say
“import x”

54

def linecount(filename):
count = 0
for line in open(filename):

count += 1
return count

import mycount as mc:

print(mc.linecount(‘test.txt'))

55

Import

mycount.py

