Lecture 10:
Files

Stephen Huang
April 12, 2023

UNIVERSITYof HOUSTON

. Introduction to Text Files
. Opening a file

. Reading from a file

. Writing to a File

. Appending to a file

. Modules

SO O A W N =

UNIVERSITYof HOUSTON

« Python allows you to read and write from/to files
like most other languages.

» All the values you hold in variables will be gone
at the end of your program.

» Files will outlast the program.

« Whether writing to a simple text file, reading a
detailed server log, or even analyzing raw byte
data (which we will NOT do), these situations
require reading or writing a file.

UNIVERSITYof HOUSTON 3

1. Introduction

« This chapter introduces the idea of “persistent”
programs that keep data in permanent storage.

 Persistent Program: they run for a long time (or

all the time); they keep at least some of their
data in permanent storage (a hard drive); and if
they shut down and restart, they pick up where
they left off.

« One of the most straightforward ways programs
maintain data is by reading and writing text files.

UNIVERSITYof HOUSTON 4

« A text file is @ sequence of characters stored on
a permanent medium like a hard drive.

» We consider only the text (ASCII) file in this
chapter. Binary files are not considered.

« A text file is a linear structure of characters. In
general, we must process input sequentially. No
Random Access in this course.

« End-of-Line ("\n") characters separate a file into
lines (of variable length). The implementation is
OS-dependent.

UNIVERSITYof HOUSTON 5

Line Ending

« One problem often encountered when working
with file data is representing a new line or line
ending.

» ASA standard states that line endings should use
the sequence of the Carriage Return (CR, x0D or
\r) and the Line Feed (LF, x0A, or \n) characters
(CR+LF or \r\n).

« However, the ISO standard allowed for either the
CR+LF characters or just the LF character.

UNIVERSITYof HOUSTON 6

Line Ending

« Windows uses the CR+LF (\r\n) characters,
while Unix and Mac use just the LF (\n)
character.

 Internally, Python uses "\n"” to represent end-of-
line (eoln). Technically, we use eoln’s to separate
lines, not to terminate lines.

« You can always add an eoln at the end of the
last line to make it more uniform. But then the
last line is no longer the last.

 There is no end-of-file character.

UNIVERSITYof HOUSTON 7

Under the Hood

This 1s a text file.

General Securty Details Previous Versions

Is this clear?
That's all!

=

Type of file:

Opens with:

Location:
Size:
Size on disk:

file-1.txt

Text Document (txt)

| Notepad Change...

C:\Users\Stephen‘\Dropbox\CS\Code\1306\File IO
49 bytes (45 bytes)
0 bytes

g 1 2 3 4 5 6 7 8 9 a b ¢ d

g £

00000030h: 21

UNIVERSITYof HOUSTON

00000000h: 54 68 69 73 20 69 73 20 61 20 74 65 78 74 20 66
00000010h: 69 6C 65 2E OD OA 49 73 20 74 68 69 73 20 63 6C
00000020h: 65 61 72 EJgOD OA 54 68 61 74 27 73 20 61 6C 6C

This is a text £
ile...Is this cl

ear?..That's all
|

LT BT T T]

ASCII

Dec_HxOct Char Dec Hx Oct Html Chr [Dec Hx Oct Html Chr| Dec Hx Oct Html Chr
0 0 000 NUL (null) 32 20 040 &«#32; Space| 64 40 100 «#64; [96 60 140 &«#96;
1l 1 001 S0H (start of heading) 33 21 041 ! ! 65 41 101 &«#65; A | 97 61 141 &«#97; a
2 2 002 STX (start of text) 34 22 042 &«#34; " 66 42 102 «#66; B | 98 62 142 «#98; b
3 3 003 ETX (end of text) 35 23 043 &«#35; # 67 43 103 &«#67; C 99 63 143 «#99; cC
4 4 004 EOT (end of transmission) 36 24 044 «#$36; § 68 44 104 «#68; D |100 64 144 &«#100; d
5 5 005 ENQ {(enquiry) 37 25 045 % % 69 45 105 «#69; E [101 65 145 e e
6 6 006 ACK (acknowledge) 38 26 046 &’ ¢ 70 46 106 «#70; F |102 66 146 &«#102; £
7 7 007 BEL (bell) 39 27 047 «#39; ' 71 47 107 «#71; G |103 67 147 &«#103; g
8 8 010 BS (backspace) 40 28 050 «#40; (72 48 110 &«#72; H [104 68 150 &«#104; h
9 9 011 TAE (horizontal tab) 41 29 051 &«#41;) 73 49 111 &«#73; I |105 69 151 i 1

10 A 012 LF (NI line feed, new linel|l 42 2A 052 «#42; * 74 4A 112 &«#74; J |106 6A 152 &«#106;]
1l B 013 VT (vertical tab) 43 2B 053 &«#43; + 75 4B 113 &«#75; K |107 6B 153 k k
"IZ C 014 FF (NP form feed, new page)| 44 2C 054 «#44; , 76 4C 114 «#76; L (108 6C 154 &«#108; 1
13D 015 (B __(carriage returnl 45 2D 055 &«#45; - 77 4D 115 &«#77; M |109 6D 155 &«#109; n

14 E 016 S0 (shift out) 46 2E 056 &«#46; . 78 4E 116 &«#78; N |110 6E 156 n n

15 F 017 S1I_ (shift in) 47 2F 057 / / 79 4F 117 «#79; 0 |111 6F 157 ll1l; o

16 10 020 DLE (data link escape) 48 30 060 &«#43; 0 80 S50 120 «#80; P |112 70 160 &«#l1l1l2; p

17 11 021 DCl1l (dewvice control 1) 49 31 061 1 1 81 51 121 «#81; 0 |113 71 161 q: 4

18 12 022 DCZ (dewvice control 2) S0 32 062 &«#50; 2 82 52 122 &«#82; R |114 72 162 &«#114; ¢

19 13 023 DC3 (dewvice control 3) 51 33 063 &«#51: 3 83 53 123 &«#83; 5 |115 73 163 &«#115; =

20 14 024 DC4 (device control 4) 52 34 064 &«#52; 4 84 54 124 «#384; T |116 74 164 &«#ll6; C

21 15 025 NAK (negative acknowledge) 53 35 065 &«#53; 5 85 55 125 &«#85; U |117 75 165 &«#117; 1

22 16 026 5SYN (synchronous idle) 54 36 066 &«#54; 6 86 56 126 «#386; V |118 76 166 l1l8; Vv

23 17 027 ETE (end of trans. block) 55 37 067 &«#55; 7 87 57 127 &«#87; W |119 77 167 &«#119; w

24 18 030 CAN (cancel) 56 38 070 &«#56; § 88 58 130 &«#838; X |120 78 170 &«#120; X

25 19 031 EM (end of nmedium) 57 39 071 &«#57; 9 89 59 131 &«#89:; Y |121 79 171 &«#121; ¥

26 1A 032 SUE (substitute) 58 3A 072 &«#58; : 90 SA 132 «#90; Z |122 74 172 «#122; 2z

27 1B 033 ESC (escape) 59 3B 073 &«#59; ; 91 SB 133 &«#91; [(123 7B 173 &«#123; {

28 1C 034 F5 (file separator) 60 3C 074 «#60; < 92 5C 134 «#92; \ |124 7C 174 &«#124; |

29 1D 035 G5 (group separator) 61 3D 075 &«#61: = 93 5D 135 «#93;] |125 7D 175 &«#125;)}

30 1E 036 RS (record separator) 62 3E 076 &«#62; > 94 SE 136 «#94; ~ |126 7E 176 &«#126; ~

31 1F 037 US ({unit separator) 63 3F 077 «#63; 2 95 SF 137 &«#95; _ |127 7F 177 &«#127; DEL

lull" 1V ILLINVIIT T VI ITIN W VYVVIWIX

Finding the file

import os
os.chdir ("C:/Users/guido/My Documents")

file = open("info.txt", "r")

\

[Name of the file {_l To read from]

UNIVERSITYof HOUSTON 10

2. Opening a file

 Stream (internal/program object) is our
representation of a file (external object) in the
program.

« A file must be connected to a stream before it
can be used.

UNIVERSITYof HOUSTON 11

Opening file

Program —» infile. txt

<4¢”’///”7

fin

fout

outfile. txt

UNIVERSITYof HOUSTON 12

* Files have two "names” in our programs

— External file name

* Also called "physical file name."
— Like "infile.txt"

« Sometimes considered "real file name."

 Used only once in the program (to open)
— Once connected, forget it!

— Stream (internal) name
« Also called "logical file name."
» The program uses this name for all file activity

UNIVERSITYof HOUSTON 13

A file can be opened in two modes: read (r) or
write (w).

fin = open(‘'input.txt’, ‘r’)
fout = open(‘output.txt’, ‘w’)

« In opening a file for input, the file must exist in
your directory.

— A common error is misspelling the name of the file.

— All subsequent input operations will fail if the file does
not open.

* Trying to open a file that does not exist will fail.

UNIVERSITYof HOUSTON 14

open(file name [, access mode] [, buffering])

 file_name: name of the file that you want to
access.

« access_mode: The access_mode determines the
mode in which the file has to be opened, i.e.,
read, write, append, etc. This parameter is
optional; the default file access mode is read (r).

 buffering: Not important in this chapter.

UNIVERSITYof HOUSTON 15

1. Operation Mode:
— Read
— Write
— Append

2. Format Mode:
— ASCII Text
— Binary

3. R/W Option: +

Modes

* 1
* rh

* r+

* rbh+

r/w/a

UNIVERSITYof HOUSTON

ab+

16

« We won't discuss binary files here.

 You should know the three basic modes of r, w,
and a first.

* Then try to understand the three corresponding
+ modes later.

UNIVERSITYof HOUSTON 17

Mode read write | append | pointer | create |truncate
r V B
W V B V
a * Vv E Vv
r+ V V B
W+ V \4 B V \4
a+ * * ' E v
* If file does not exist, create a new file for r/w
B = beginning,
E=End

UNIVERSITYof HOUSTON 18

« An opened file will be closed automatically at the
end of the program.

« However, it is @ good programming practice to
close a file if it is no longer needed.

 If so, you can reuse the file name, i.e., open
another file using the name.

UNIVERSITYof HOUSTON 19

With Open As

 Using the following syntax will limit the scope of
the file to be inside the “with” clause.

with open (“test.txt”) as f:

read from the file

£ closed at the end of this block
 Compare to:

f = open(“test.txt”)
read from the file

f.close ()

UNIVERSITYof HOUSTON 20

With .. As

* The with statement initiates a context manager.

* The context manager opens a file and manages
the file resource as long as the context is active.

 All the code in the indented block depends on
the file object being open.

* Once the indented block ends or raises an
exception, the file will close automatically.

« Otherwise, you must close the file explicitly.

UNIVERSITYof HOUSTON 21

Closing Files is Important

« An opened file requires the use of certain
system resources.

* The |leaking of resources may be due to poor

programming practice or a malicious program
attacking the system.

« Operating systems limit the number of open files
a single process can have.

« Keeping files open leaves you vulnerable to
losing data when the system crashes.

UNIVERSITYof HOUSTON 22

3. Reading from a file

« There are multiple ways to read from a file.

a. Using an Iterator | One line at a
b. Readline() time

c. Read() All lines in
d. Readlines() one call

 Some do it one line at a time, and others read
the whole file.

 Storage considerations for large files. Do you
need the entire file altogether?

UNIVERSITYof HOUSTON 23

Input from a file

A text file is divided into lines of various lengths.
An end-of-line character (\n) is used as a
separator.

« An extra end-of-line may occur when printing

the string because of the \n character at the end
of each line.

« End-of-line can be removed by the strip()
method of string.

UNIVERSITYof HOUSTON 24

(@) Using an Iterator

for 1ine 1in f:

« Reads one line from the file per iteration.

« Returns the line.

« The line includes the end-of-line character (if
any).

« The iterator goes from the first line to the last
line of the file.

« There is no risk of reading past the end of the
file.

UNIVERSITYof HOUSTON 25

fin = open('test.txt')
for 1line 1in fin:
print (line)

fin.close ()

UNIVERSITYof HOUSTON 2

Remove the eoln

fin = open("test.txt")
for line 1in fin:
print (len(line))
line = line.strip()
print (line)

print (len(line), "\n")

24
This i1is the first line.

23

UNIVERSITYof HOUSTON 27

(b) Readline

line = f.readline ()

 Reads one line from the file.

* Returns the line.
* The line includes the eoln character.
» Use a (while) loop to read all lines.

» Reading past the eoln returns an empty string.
An empty string is considered False as a Boolean
value that can be used to terminate a while
loop.

UNIVERSITYof HOUSTON 28

f = open('test.txt')
line = f.readline ()
while line:
print (1line)
line=f.readline ()
f.close ()

UNIVERSITYof HOUSTON 29

f = open('test.txt')
line = 'none empty'
while line:

line = f.readline ()

print (line)
f.close ()

This program prints one extra empty line if no
coln at the end.

+ How do we fix that?

UNIVERSITYof HOUSTON 30

A comparison

Iterator readline()
f = open('test.txt") f = open('test.txt")
line = f.readline ()
for line in f: while line:
print (1line) print (1line)
line = f.readline ()
f.close () f.close ()

UNIVERSITYof HOUSTON 31

line = f.read()

« Reads the whole file as one string.
« Returns the string.

« The string includes all eoln characters.

« There may be no eoln character at the end of
the last line.

UNIVERSITYof HOUSTON 32

f = open('test.txt')
lines = f.read()
print (1lines)
f.close ()

UNIVERSITYof HOUSTON 33

(d) Readlines

lines = f.readlines ()

« Reads the whole file into a string and then splits
it into a list of separate lines.

e Return a list of lines.

 Each line in the list contains an end-of-line
character.*

UNIVERSITYof HOUSTON 34

f = open('test.txt')
lines = f.readlines ()
print (lines)
f.close ()

UNIVERSITYof HOUSTON 35

A comparison

read() readlines()
f = open('test.txt") f = open('test.txt")
lines = f.read() .splitlines/() lines = f.readlines ()
for line 1n lines: for line in lines:
print (1line) print (1line)
f.close () f.close ()

D

UNIVERSITYof HOUSTON 36

Another comparison

readline() readlines()
f = open('test.txt") f = open('test.txt")
line = " " lines = f.readlines|()
while line: for line 1n lines:
line = f.readline ()
print (line) print (line)
f.close() f.close()

)

UNIVERSITYof HOUSTON 37

A Grand Comparison

returns
method reads type end-of-line Loop
Iterator one line string with for
readline() oneline string with while
read() the file string with all -

readlines() the file list of strings with all -

UNIVERSITYof HOUSTON 38

Closing the file

* fin.close() will close the file fin.
« A file that is closed will not be accessible.
« The file object, fin for this case, can be reused.

fin = open("testl.txt")
for line in fin:

line = line.strip/()
print (line)
print (n___n)

fin.close ()
fin = open("test2.txt")
for line in fin:

line = line.strip()
print (line)
print ("---")

UNIVERSITYof HOUSTON 39

Close

 If you must read a file multiple times, you can
close it using the close() method and then open
it again using open().

« There is no need to close() the file before
issuing the second open() because if a file is
already open, Python will close it before opening
it again.

* However, it is a good practice to close files when
done with them.

UNIVERSITYof HOUSTON 40

Exception Handling

import sys

try:
f = open('integers.txt')
s = f.readline ()
1 = 1nt(s.strip())

except IOError as e:

errno, strerror = e.args

print (f"I/0 error ({errno}): {strerror}")
except ValueError:

print ("No valid integer 1in line.")
except:

print ("Unexpected error:", sys.exc info() [0])

raise

UNIVERSITYof HOUSTON 4

Exception Template

try:
logFile = '"log.txt'
report = open(logFile, 'w')

report.write ('some message')

except Exception as e:

report.write('an error message')

finally:

report.close ()

UNIVERSITYof HOUSTON 42

Failed Attempt

* fin = open("test.txt")
for line 1in fin:
line = line.strip()
print (line)
print ("---=-")

fin.close ()

for line 1in fin:
line = line.strip()
print (line)

UNIVERSITYof HOUSTON 3

Typical Steps

fin = open("test.txt") # open

for line in fin: # get line
line = line.strip()# strip
print (line) # process

fin.close () # close

UNIVERSITYof HOUSTON 4

With Open As

with open("test.txt") as f:

for 1line in f:

print (line)
File f is closed when existing the with

 File f is closed automatically, but variable f
survived.

It is good practice to use the with keyword when
dealing with file objects.

« There is a Boolean variable £.closed.

UNIVERSITYof HOUSTON 4

4. Writing to a file

« Use open with 'w" mode to write to a file.

« If the file already exists, opening it in write
mode clears the old data and starts fresh, so be

careful!

 If the file doesn’t exist, a new one is created for
writing.

UNIVERSITYof HOUSTON 4

 After opening the file, we can use the write ()
or writelines () method to write to it.

 Additionally, an argument exists for the
print () function that names the output file.

 The write () method takes a single argument:
the string to be written to the file.

e The writelines () method writes the list
items to the file.

« The write () method is less flexible than the
print () function.

UNIVERSITYof HOUSTON 47

fin = open("test.in", 'r')
fout = open("test.out", 'w')
count = 0

for line in fin:

count += 1

fout.write (f"{count:03d}: {line}")
fin.close ()
fout.close ()

001l: hellol
002: okZ
003: byebye3

UNIVERSITYof HOUSTON 4

= open ("mytest.txt", 'w')
= 1.0

= "Hello"

= [1, 2, 3]

Q O © Hh

)

.write(f'{a}, {b}, {c}")
f.close ()

1.0, Hello, [1, 2, 3]

UNIVERSITYof HOUSTON 4

= open ("mytest.txt", 'w') <::>
= 1.0

= "Hello"
— [1/ 2/ 3]

Q O © Hh

print(a, b, ¢, file=f)
f.close ()

1.0, Hello, [1, 2, 3]

UNIVERSITYof HOUSTON 50

Writelines()

fl = n("outl.txt", 'w")

2 = n("outZ2.txt", 'w')

valuesl =["one", "two", "three"]
values?2 =["one\n", "two\n","three\n"]

fl.writelines (valuesl)

f2.writelines (values?)

UNIVERSITYof HOUSTON 51

5. Appending to a file

 If we write to a file in append mode, the
new text is appended to the end of the

file.
f = open("test.in", 'a')
f.write (“\nThis 1is the last line")
f.close ()

UNIVERSITYof HOUSTON 52

Try Write

try:

logFile = 'log.txt'

log = open(logFile, 'a')

print ('some message', file=1loqg)
except Exception as e:

print ('an error message', file=10qg)
finally:

log.close ()

UNIVERSITYof HOUSTON 53

6. Modules

« Any Python code file can be imported as a
module to other Python code.

* Module allows multiple people and programs to
work on one project, sharing the same code.

« The module name is the file name without the

extension. To import a module x.py, say
“import x”

UNIVERSITYof HOUSTON 54

mycgunt.py
def ﬁineqpunt(filename):
éeunt\= 0

for lfﬁe 1n open (filename) :
\ coupt +=1
\
retyrn chunt
\
\ \
\ \

. \ \
1mport mycount es mc:

print (mc.linecount(‘test.txt'))

UNIVERSITYof HOUSTON 55

