
Lecture 11:
Dictionaries

Stephen Huang
April 13, 2023

1

Note
• Due to the time limitation, we will skip the

chapter on Tuples.
• However, we will briefly compare lists and tuples

before discussing dictionaries.

• Lists and tuples are the commonly used data
structures in Python.

• But what are the similarities and differences
between them?

2

Contents
1. Comparison with Lists and Tuples
2. Dictionary Basics
3. Cycling through a dictionary
4. Dictionary as a counter
5. Dictionary of lists
6. List of dictionaries
7. Memo

1. Lists and Tuples
• Both lists and tuples consist of objects which can

be referenced by their position number within
the object.

• We can change the elements, add extra
elements, or delete an element with a list.

• You're probably wondering why the two
structures are provided - are they both
necessary?

• A tuple is much more efficient in use after it has
been created.

4

Tuples
• Lists and tuples are containers where data can

be accessed easily.
• Lists and tuples are also sequences in that data

are organized in a well-defined sequential
manner.

• Tuples are immutable, whereas lists are
mutable. We pay the price for the efficiency of
the mutability of lists.

• Both are indexed by integers starting with 0.

5

Tuples
• A tuple is a comma-separated list of values.

• Although it is unnecessary, enclosing tuples in
parentheses is common.

• To create a tuple with a single element, you
must include a final comma.

• To create a tuple, we can also use the built-in
function tuple().

– If the argument is a sequence (string, list, or tuple),
the result is a tuple with the sequence elements.

6

Summary

7

List Tuple
Syntax Square brackets [] Parentheses ()

Mutability Mutable Immutable

Built-in
Methods

More methods such as
pop(), insert(), append()

Fewer methods

Storage
Efficiency

Consumes more
memory/storage

Consumes less
memory/storage

Time
Efficiency

Slower to create list and
to access list elements

Faster to create tuple and
to access tuple elements

Example: lists

8

John

Bob

Amy

Joe

June

May

3.99

2.01

3.50

3.22

2.91

2.50

Name telNum classCode GPA

0

1

2

3

4

5

This is a logical unit that
we would like to keep

together.

xxx

xxx

xxx

xxx

xxx

xxx

1

2

3

4

1

2

Tire together by the
index

“Record”

9

John

3.99

xxx

1
It is unlikely that we are going to

add or delete fields in this
record.

It will be nice to be able to treat
this record as a unit, such as

passing it to a function.

A tuple makes more sense than
a list in this case.

2. Dictionary Basics
• Dictionaries share some syntactic properties with

lists and tuples, but significant differences exist.

• All the keys/words are alphabetically arranged in
a traditional printed dictionary. There is no such
ordering of the keys in Python’s dict.

10

Dictionary (Dict)
• A dictionary is a collection that is

– unordered,

– changeable, and

– indexed.

• In Python, dictionaries are written with curly
brackets {}, with keys and values.

11

Dictionary Basics
• Python provides a container known as a

dictionary, or dict for short.
• Dictionaries share some syntactic properties with

lists and tuples, but significant differences exist.
• Dictionaries are not sequential collections of

data. Instead, dictionaries consist of key-value
pairs.

• To obtain a “value” (i.e., the data of interest),
you specify its associated key.

12

Dictionary
• The order in which Python stores the key-value

pairs is not a concern.

• We need to know that when we specify the key
’name’, Python will provide the associated value.
Key -> value.

• In a traditional dictionary model, we provide a
word (as the key), and the dictionary returns the
word’s definition (as the value).

• You can also model a dictionary as a list of
tuples, but you have to do your search.

13

A Comparison

14

Index Value

Key Value

Value0

Value1

Value2

Value3

Value4

Value5

0

1

2

3

4

5

A Comparison

15

Index Value

Key Value

(Key, Value)

Key0 Value0

Key1 Value1

Key2 Value2

Key3 Value3

Key4 Value4

Examples

16

‘brand’ ‘Ford’

‘model’ ‘Mustang’

‘year’ 1964

‘Name’ ‘Python’

‘Credit’ 3

‘Room’ 232

‘Building’ ‘PGH’

Basics
• To create a dictionary, we use curly braces {}.

• Start with an empty dictionary; we can add a
key-value pair to a dictionary.

• A list of key-value pairs can be specified to
initialize a dictionary.

• A comma (,) is used to separate key-value pairs.

• A colon (:) is used to separate key and value.

• A pair of brackets ([key]) is used to access the
value of a given key.

17

Adding A Key-Value Pair
• How to add a new pair to a dictionary?
• The following statement adds a new pair to the

dictionary d.
d[key] = value

• If there is a key-value pair with the same key in
the dict, the value will be over-written.
– You cannot have two key-value pairs with the same

key.

• If there is no pair with the key, one will be
created.

18

Example
myclass ={'Smith': 99,

'Johnson': 88,

'Johnsson': 77,

'Huang': 88}

for stu in myclass:

print(f'{stu} {myclass[stu]}')

print()

19

Example
phone_book = {'Smith': '713-743-3350',

'Johnson': '713-743-3334',

'Johnsson': '713-743-3388',

'Huang': '713-743-3338'}

for fac in phone_book:

print(f'{fac}: {phone_book[fac]}')

20

Example
myclass = {'name': 'Python',

'credit': 3,

'room': 232,

'building': 'PGH'}

print(myclass)
{'name': 'Python', 'credit': 3, 'room': 232, 'building': 'PGH'}

print(type(myclass))
<class 'dict'>

print(myclass['name'])
'Python'

21

Examples
print(myclass['name'])

'Python'

print(myclass['Name'])
Traceback (most recent call last):

File "<pyshell#16>", line 1, in <module>

myclass['Name']

KeyError: 'Name'

22

Dict
• Key is case-sensitive.
• Because of the {}, the statement can span

several lines.

23

Initialization
d = {

<key>: <value>,
<key>: <value>,
.
.
.
<key>: <value>

}

24

Keys
• As shown in our examples, keys do not have to

be of string type.
• Keys can be numeric values, tuples, or any

immutable object.
• So, you can use an integer as an index, and it

does not have to start with 0, and they don’t
have to be consecutive numbers.

• There is no guarantee that the pairs will be
stored in the order of the keys.
– The older version may sort it.
– The newer version of Python remembers the order of

entry.

25

A Terrible Example

26

No one in the right mind will do this.

d = {
'alma mater': 'UH',
42: 'The meaning of Life.',
(3,4): {'first': 33, 'second': 3+4},
5.71: [5, 0.71]

}

Example
huang = {'name':'Huang', 'phone':'x3-3338'}

cs1336 = {'name':'Python', 'courseNum':1336,

'instructor': huang}

print(cs1336)

print("\nKeys: ", cs1336.keys())

print("\nValues: ", cs1336.values())

print("\nItems: ", cs1336.items())

print("\nGet courseNum: ",

cs1336.get('courseNum'))

27

Example
{'name':'Python', 'courseNum':1336, 'instructor':

{'name':'Huang', 'phone':'x3-3338'}}

Keys: dict_keys(['name', 'courseNum', 'instructor'])

Values: dict_values(['Python', 1336, {'name':

'Huang', 'phone': 'x3-3338'}])

Items: dict_items([('name', 'Python'), ('courseNum',

1336), ('instructor', {'name': 'Huang', 'phone':

'x3-3338'})])

Get courseNum: 1336

28

3. Cycling through Dictionary
• Dict is an “iterable” and can be used in a for-

loop header.

• Iterator provides an easy way to go through the
dictionary and “process” each item.

• The iterator is equal to the key of the dict.

• You can use the iterator to access the values
using dict[key].

29

Example
cs1336 = {

'name':'Python',

'credit':3,

'room':232,

'building':'PGH'}

for key in cs1336:

print(key)

print()

30

name

credit

room

building

Example
president = {

41: 'George H. W. Bush',

42: 'Bill Clinton',

43: 'George W. Bush',

44: 'Barack Obama',

45: 'Donald Trump',

36: 'Lyndon B. Johnson'}

31

{41: 'George H. W. Bush', 42: 'Bill

Clinton', 43: 'George W. Bush', 44:

'Barack Obama', 45: 'Donald Trump',

36: 'Lyndon B. Johnson'}

Example
for prez in president:

print(prez)

print()

32

41

42

43

44

45

36

Example
for prez in president:

print(f"{prez}: {president[prez]}")

print()

33

41: George H. W. Bush

42: Bill Clinton

43: George W. Bush

44: Barack Obama

45: Donald Trump

36: Lyndon B. Johnson

Example
for prez in sorted(president):

print(prez, president[prez], sep = '')

34

36: Lyndon B. Johnson

41: George H. W. Bush

42: Bill Clinton

43: George W. Bush

44: Barack Obama

45: Donald Trump

Example
for value in president.values():

print(value)

35

George H. W. Bush

Bill Clinton

George W. Bush

Barack Obama

Donald Trump

Lyndon B. Johnson

Get(key) vs. [key]
• The get() method can look up values for a

given key.

• But so is dict[key].

• What’s the difference?
– If the key does not exist, the get() method returns

None.

– An error will result if we try to access the value using
dict[key] for a non-existing key.

36

Get()

37

cs1336 = {'name': 'Python',
'courseNum': 1336,
'instructor': 'Huang’}

cs1430 = {'name': 'C++',
'courseNum': 1430} # no instructor

for key in ['name', 'courseNum', 'instructor']:
print(cs1336[key])

for key in ['name', 'courseNum', 'instructor']:
print(cs1336.get(key))

Default Return Value

38

for key in ['name', 'courseNum', 'instructor']:
print(cs1430.get(key, 'John Doe'))

for key in ['name', 'courseNum', 'instructor']:
print(cs1430[key])

C++
1430
John Doe (None w/o default value)

C++
1430
KeyError: 'instructor'

Dict as a Dictionary
• Most examples up to this point are using dict to

store a “record”, such as a car, a student, or a
class.

• Using a dict is slightly better than a list because
you can use a ‘model’ instead of a meaningless
index.

• In the car example, ‘brand’, ‘model’, and ‘year’
are three different types of values.

39

Dictionary with a Key
• In a real dictionary, we use a word to search for

the meaning of the word.

• Suppose we want to use a car model to search
for the brand of the car. We can easily store
many such “words”.

{‘Mustang’: ‘Ford’, ‘Edge’: ‘Ford’,

‘Camry’: ‘Toyota’, ‘Bronco’: ‘Ford’}

40

Example

41

car_cat = {
'Dodge Charger': 29995,
'Toyota Camry': 24425,
'Honda Civic': 19850,
'BMW E': 54000,
'Kia Forte': 17890,
'Mercedes S': 94250,
'Ford Fusion': 23170

}

Example

42

stu = {
101: "Huang, Stephen",
102: "Johnson, Olin",
190: "Smith, John",
123: "Anderson, Robert"

}

Example

43

stu = {
101: {'name':"Huang, Stephen", 'major':"CS"},
102: {'name':"Johnson, Olin", 'major':"CS"},
190: {'name':"Smith, John", 'major':"Bio"},
123: {'name':"Anderson, Robert", 'major':"Math"}

}

Methods

44

4. Dictionary as a Counter
• This section discusses using dict as a counter for

certain keys.
• Suppose you are given a string, and you want to

count how many times each letter or word
appears.

45

Example
def histogram(s):

d = dict()
for ch in s:

if ch not in d:
d[ch] = 1

else:
d[ch] += 1

return d

h = histogram('mississippi')
print(h)

46

{'m': 1, 'i': 4, 's': 4, 'p': 2}

Counter
• The get() method can obtain the value

associated with a key.
• If the key does not exist, get() returns None by

default.
• However, an optional argument can be provided

to specify the return value for a non-existent
key.
– If it is not in there, add it in.

47

Get + default

def histogram(s):

d = dict()

for ch in s:

d[ch] = d.get(ch, 0) + 1

return d

48

Comparison

49

def histogram(s):
d = dict()
for ch in s:

if ch not in d:
d[ch] = 1

else:
d[ch] += 1

return d

def histogram(s):
d = dict()
for ch in s:

d[ch] = d.get(ch, 0) + 1
return d

Reverse Lookup
• The dictionary is not designed for searching for

an item with a particular value.

• There may be multiple items with the same
value.

• It takes some effort to do that.

50

Example
def rev_get(d, v):

for key in d:

if d.get(key) == v:

return key

h = histogram('mississippi')

print(rev_get(h, 2))

51

{'m': 1, 'i': 4, 's': 4, 'p': 2}
p

5. Dictionary of Lists
• Dictionary values can be of any type, including

list and dictionary itself.

• We have seen an example of a value of
dictionary type (instructor).

• Let’s look at one example with a list as one
value type.

• Let’s create a dictionary that maps from
frequencies to letters, with each value in the
inverted dictionary a list of letters.

52

State Diagram

53

parrot

Invert
def invert_dict(d):

inverse = dict()

for key in d:

val = d[key]

if val not in inverse:

inverse[val] = [key]

else:

inverse[val].append(key)

return inverse

54

Test
def print_dict(d):

print("Dict:")

for key in sorted(d):

print(" ", key, "->", d[key])

print()

h = histogram('parrot')

print_dict(h)

d = invert_dict(h)

print_dict(d)

55

Dict:
a -> 1
o -> 1
p -> 1
r -> 2
t -> 1

Dict:
1 -> ['p','a','o','t']
2 -> ['r']

6. List of Dictionaries
• Given a list of student records in a text file, one

record per line, store the student record as a
dict with a name (string) and four grades (as a
list of numbers).

• The grades list is part of the dictionary.
• Build a list of the student records, i. e., a list of

dictionaries.

56

Structure

57

name grade [0] [1] [2] [3]

name grade [0] [1] [2] [3]

name grade [0] [1] [2] [3]

name grade [0] [1] [2] [3]

function
def build_roster(f):

roster = []

i = 0

for line in f:

d = dict()

list = line.split()

d['name'] = list.pop(0)

d['grade'] = list_a2i(list)

roster.append(d)

i += 1

return roster

58

functions
def list_a2i(list):

for i in range(len(list)):

list[i] = int(list[i])

return list

def print_dict(d):

print("Dict:")

for key in d:

print(" ", key, "->", d[key])

print()

59

f = open("grades.txt")

r = build_roster(f)

for d in r:

print_dict(d)

Dict:
name -> Steve
grade -> [85, 50, 80, 60]

Dict:
name -> James
grade -> [100, 100, 95, 90]

Dict:
name -> Zack
grade -> [99, 95, 95, 100]

Dict:
name -> Jackie
grade -> [95, 45, 90, 80]

Dict:
name -> Liz
grade -> [80, 70, 90, 70]

60

main

One level at a time

‘name’ -> ‘Steve’

‘grade’ -> [85, 50, 80, 60]

61

dictlist key value

r[i][‘grade’] r[i][‘grade’][2]

r[i-1]

r[i]

r[i+1]

r[i]

Find the lowest value
low = 100

for d in r:

for i in range(4):

if d['grade'][i]<low:

low = d['grade'][i]

r

r[j] = d

r[j][‘grade’]

r[j][‘grade’][i]

62

7. Memo
• For efficiency reasons, we should avoid

computing values that have been computed
before.

• One solution is to keep track of values that have
already been computed by storing them in a
dictionary.

• A previously computed value stored for later use
is called a memo.

• The recursive Fibonacci function is a simple
example of using a memo to save computation
time.

63

Code

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n-1) + fib(n-2)

64

Code

def fib(n):

if n in memo:

return memo[n]

result = fib(n-1)+fib(n-2)

memo[n] = result

return result

65

If saved in memo

Reuse the value

If not, compute
the value

Save the value in
memo

memo ={0:0, 1:1}

Overview

66

Types Ordered Indexed Collection
Changeable?

Item
Changeable?

Duplicate

List Yes Yes Add/Remove Yes Yes

Tuple Yes Yes No No Yes

Set No No Add/Remove No No

Dictionary No Yes Add/Remove Value Yes
Key No

No

