
Computer Science & Programming
Lecture 2: Programming

Stephen Huang
January 23, 2023

1

Contents
1. Problem-Solving
2. Programming Languages

1. Machine Languages
2. Assembly Languages
3. High-level Languages *
4. Programming Languages *

2

1. Problem-Solving
• The single most important skill for a computer

scientist is problem-solving.

• Problem-solving means the ability to
– formulate problems,
– think creatively about solutions, and
– express a solution clearly and accurately.

3

Syntax
• How do we describe an algorithm as a solution?

– Clearly
– Precisely
– Accurately

• There are many ways to do so, such as BNF,
Context-free Grammar, Flowcharts, etc.

• Most Python textbooks do it informally because
it is supposedly the obvious way to do it.

4

Flowchart Components

5

decision
Basic

computation
Input

Output no

yes

6

A Simple Flowchart

p = 0 ?

q ← p/2
r ← p mod 2

r is the next bit
p ← q

Input p

Output
the bits

no

yes

Pascal Syntax Diagrams

7

Pascal Syntax Diagrams

8

Railroad Diagrams

9

Railroad Diagrams

10

https://github.com/tabatkins/railroad-diagrams/blob/gh-pages/images/rr-zeroormore.png

Syntax
• We will not use any particular method to

describe Python's syntax formally.

• Understanding the formal syntax is vital for CS
majors.

• We will use intuitive examples most of the time.

• When in doubt, you can always check the official
Python Language Reference
(https://docs.python.org/3/reference/).

11

https://docs.python.org/3/reference/

Python Reference
• The syntax uses a modified BNF grammar

notation:

– Each rule begins with a name (which is the name
defined by the rule) and ::=.

– A vertical bar (|) is used to separate alternatives;
– A star (*) means zero or more repetitions of the

preceding item,
– a plus (+) means one or more repetitions.

12

13

2. Programming Languages
• There are 3 classes of programming languages,

– machine languages,
– assembly languages, and
– high-level languages.

14

2.1 Machine Languages
• Each computer has its machine language, which

is very detailed and specific to the exact details
of the computer architecture.

• All instructions in a machine language are in
binary codes.

• Since machine languages are machine-
dependent, very detailed, and use binary codes,
it isn’t easy to write them.

15

2.2 Assembly Languages
• Assembly languages are symbolic versions of

machine languages.
• The instructions use symbolic codes rather than

binary codes and, thus, are easier to remember.
• But assembly languages are still machine-

dependent and very detailed, therefore difficult
to use.

16

Assembly Languages
• Forexample, an assembly language might have an

instruction like
Load R4, X

loading the value of variable X into the register R4
in the ALU.

• In machine language, this same instruction might be
00010111 0100 0010011…0

where the first 8 bits are a binary code standing for
load, the next 4 bits give the register number in
binary, and the last bit sequence shows the address
of the variable X.

17

2.3 High Level Languages
• High-level languages (HLL) are machine-

independent and much less detailed than
machine/assembly languages.

• HLL makes it easier to write programs and
allows the same program to be run on different
computers. Most languages have standards
defined.

• There are many high-level languages including
Fortran, C, C++, C#, Java, and Python.

• We will use Python in this course.

Type of PLs
• Two kinds of programs process high-level

languages into low-level languages:
– Interpreters, and
– Compilers.

Interpreter
• An interpreter reads a high-level program and

executes it, meaning it does what the program
says.
– It processes the program a little at a time, alternately

reading lines and performing computations.

19

One
instruction
at a time

Compiler
• A compiler reads the program and translates it

entirely before it starts running.
– In this context, the high-level program is called the

source code, and the translated program is called the
object code or the executable.

– Once a program is compiled, you can execute it
repeatedly without further translation.

20

persistent

21

A sample C++ program
/* Hello World program */

#include <iostream>

using namespace std;

int main()

{

cout<<"Hello World!"<<endl;

return 0;

}

22

Python Equivalent

print("Hello World!")

23

Compilers
• When the computer executes a program, it is

always in the machine language of that
computer.

• However, it is difficult and tedious to program in
machine language. Most programs are written in
a high-level, machine-independent programming
language like C++.

• Before the computer can execute a program
written in such a language, it must be translated
into the computer's machine language.

The Role of a Compiler

24

High Level
Language

Machine
Language

Computer

Programmer

Compiler

Steps of Compilation

25

Source File

Object File

Executable File

Library File

Compiler Linker

OSResult

Steps of Interpretation

26

Source CodeInterpreterResult

2.4 Programming Languages
• We want programming languages to support

writing programs that are
– concise,
– clear and precise,
– simple and natural

• Designing programming languages is an art, not
just a science.

• So is using them to write code.

27

Elements of PLs
• According to Abelson and Sussman, a good

programming language must have four
elements.
– Primitives (built-in stuff such as integer numbers and

functions)
– Means of Combination (Expression, containment)
– Means of Abstraction (naming, function)
– Means of Capturing Common Patterns

28

Essential Elements
• Essential elements of a programming language:

– Some primitive data types.
– Expressions that allow one to compute new values.
– Using variables to store data.
– Various statements.
– Abstraction (function).

29

Essential Elements
• Statements that contain instructions describing

what a program does
– Assignment
– Flow control constructs (conditional & loops)
– Input and Output
– Data Types

30

Four concepts in programming
• If you can do these four things* you can write

every program that has ever existed. The code
won’t be pretty, but it will solve the problem.
– Process data (assignment)
– Make decision (if)
– Loop (while, for)
– Use indexed storage (arrays, lists)

* Platform independent

31

	Computer Science & Programming�Lecture 2: Programming
	Contents
	1. Problem-Solving
	Syntax
	Flowchart Components
	A Simple Flowchart
	Pascal Syntax Diagrams
	Pascal Syntax Diagrams
	Railroad Diagrams
	Railroad Diagrams
	Syntax
	Python Reference
	2. Programming Languages
	2.1 Machine Languages
	2.2 Assembly Languages
	Assembly Languages
	2.3 High Level Languages
	Type of PLs
	Interpreter
	Compiler
	A sample C++ program
	Python Equivalent
	Compilers
	The Role of a Compiler
	Steps of Compilation
	Steps of Interpretation
	2.4 Programming Languages
	Elements of PLs
	Essential Elements
	Essential Elements
	Four concepts in programming

