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1. Problem-Solving
• The single most important skill for a computer 

scientist is problem-solving. 

• Problem-solving means the ability to 
– formulate problems, 
– think creatively about solutions, and 
– express a solution clearly and accurately.
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Syntax
• How do we describe an algorithm as a solution?

– Clearly
– Precisely
– Accurately

• There are many ways to do so, such as BNF, 
Context-free Grammar, Flowcharts, etc.

• Most Python textbooks do it informally because 
it is supposedly the obvious way to do it.
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Flowchart Components
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A Simple Flowchart

p = 0 ?

q ← p/2
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Pascal Syntax Diagrams
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Pascal Syntax Diagrams
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Railroad Diagrams
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Railroad Diagrams
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https://github.com/tabatkins/railroad-diagrams/blob/gh-pages/images/rr-zeroormore.png


Syntax
• We will not use any particular method to 

describe Python's syntax formally.

• Understanding the formal syntax is vital for CS 
majors.

• We will use intuitive examples most of the time.

• When in doubt, you can always check the official 
Python Language Reference 
(https://docs.python.org/3/reference/).
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Python Reference
• The syntax uses a modified BNF grammar 

notation:

– Each rule begins with a name (which is the name 
defined by the rule) and ::=.

– A vertical bar (|) is used to separate alternatives; 
– A star (*) means zero or more repetitions of the 

preceding item,
– a plus (+) means one or more repetitions.
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2. Programming Languages
• There are 3 classes of programming languages, 

– machine languages, 
– assembly languages, and 
– high-level languages. 
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2.1 Machine Languages
• Each computer has its machine language, which 

is very detailed and specific to the exact details 
of the computer architecture. 

• All instructions in a machine language are in 
binary codes. 

• Since machine languages are machine-
dependent, very detailed, and use binary codes, 
it isn’t easy to write them. 
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2.2 Assembly Languages
• Assembly languages are symbolic versions of 

machine languages. 
• The instructions use symbolic codes rather than 

binary codes and, thus, are easier to remember. 
• But assembly languages are still machine-

dependent and very detailed, therefore difficult 
to use. 
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Assembly Languages
• Forexample, an assembly language might have an 

instruction like 
Load R4, X 

loading the value of variable X into the register R4 
in the ALU. 

• In machine language, this same instruction might be 
00010111 0100 0010011…0 

where the first 8 bits are a binary code standing for 
load, the next 4 bits give the register number in 
binary, and the last bit sequence shows the address 
of the variable X. 
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2.3 High Level Languages
• High-level languages (HLL) are machine-

independent and much less detailed than 
machine/assembly languages. 

• HLL makes it easier to write programs and 
allows the same program to be run on different 
computers. Most languages have standards 
defined.

• There are many high-level languages including 
Fortran, C, C++, C#, Java, and Python. 

• We will use Python in this course. 



Type of PLs
• Two kinds of programs process high-level 

languages into low-level languages: 
– Interpreters, and 
– Compilers. 



Interpreter
• An interpreter reads a high-level program and 

executes it, meaning it does what the program 
says. 
– It processes the program a little at a time, alternately 

reading lines and performing computations.
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Compiler
• A compiler reads the program and translates it 

entirely before it starts running.
– In this context, the high-level program is called the 

source code, and the translated program is called the 
object code or the executable. 

– Once a program is compiled, you can execute it 
repeatedly without further translation.
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A sample C++ program
/* Hello World program */

#include <iostream>

using namespace std;

int main()

{  

cout<<"Hello World!"<<endl;

return 0;

}
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Python Equivalent

print("Hello World!")
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Compilers
• When the computer executes a program, it is 

always in the machine language of that
computer. 

• However, it is difficult and tedious to program in 
machine language. Most programs are written in 
a high-level, machine-independent programming 
language like C++. 

• Before the computer can execute a program 
written in such a language, it must be translated
into the computer's machine language. 



The Role of a Compiler
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Steps of Compilation
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Steps of Interpretation
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2.4 Programming Languages
• We want programming languages to support 

writing programs that are 
– concise, 
– clear and precise, 
– simple and natural 

• Designing programming languages is an art, not 
just a science. 

• So is using them to write code. 
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Elements of PLs
• According to Abelson and Sussman, a good 

programming language must have four 
elements.
– Primitives (built-in stuff such as integer numbers and 

functions)
– Means of Combination (Expression, containment)
– Means of Abstraction (naming, function)
– Means of Capturing Common Patterns
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Essential Elements
• Essential elements of a programming language:

– Some primitive data types.
– Expressions that allow one to compute new values.
– Using variables to store data.
– Various statements.
– Abstraction (function).
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Essential Elements
• Statements that contain instructions describing 

what a program does
– Assignment
– Flow control constructs (conditional & loops)
– Input and Output
– Data Types
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Four concepts in programming
• If you can do these four things* you can write 

every program that has ever existed. The code 
won’t be pretty, but it will solve the problem. 
– Process data (assignment)
– Make decision (if)
– Loop (while, for)
– Use indexed storage (arrays, lists)

* Platform independent
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