
 Page 1

Assignment 2: Encrypted File Transfer

Version Date: February 18, 2025

Prerequisites:

Before starting the project, ensure you have done the following.

 Download and install Wireshark. Make sure you can use it to examine the packet transfers.
There is plenty of help online.

 Review the basic client-server programming and other Operating System topics.
 Review public-key encryption and RSA.
 Review Block Cipher, including AES.
 Have a Python IDE ready for the coding. The suggestion is PyCharm.

The assignment is designed to make it easier for students by providing the structure of the solution.

Introduction

Modern secure communication relies on public key exchange protocols and stream/block ciphers.
These two building blocks ensure that encryption keys are exchanged securely before data
encryption. Once two entities exchange keys, they establish a secure "tunnel", allowing encrypted
communication.

This homework will explore secure file transfer by implementing an encrypted file transfer system
over sockets.

Part 1: Plaintext File Transfer

Before securing our communication, let's examine an insecure version to understand potential
vulnerabilities. These programs will help you set up your local environment for simulating client-
server programming.

This section provides an insecure version of the script. Please download client1.py and server1
from the website. They are the codes for unencrypted transmission.

To simulate the traƯic on your local machine, open two Python IDE windows (or two terminal
sessions), one for the server and one for the client. Additionally, we will inspect the network traƯic
using Wireshark, a network protocol analyzer. Download
(https://www.wireshark.org/download.html) and install Wireshark from its oƯicial website if you
haven't already. This will allow you to capture and analyze the data packets transmitted during the
file transfer. The entire task flow is as follows:

1. Create a MyFile.txt file. Please put some text in it. It does not matter what, but try to make it
unique and contain no private information.

 Page 2

2. Start capturing traƯic using Wireshark.

Open the Wireshark software. Select "Loopback" for Windows or "lo0" for macOS/Linux in the
capture interface. Double-click the interface, and Wireshark will start capturing traƯic.

3. Run the server.

4. Run the client, sending the file’s metadata and content to the server. If the file is located in
the same directory as the code, you may use the file name directly without the path.

5. After the file is successfully transferred, stop the traƯic capture by clicking the red square in

the top-left corner of the Wireshark window.

 Page 3

6. Inspect the captured traƯic. Type tcp.port == 6000 in the filter box to locate all relevant

network packets.

Click through each packet and identify those that contain a TCP payload in the
Transmission Control Protocol section. Right-click on the TCP payload and select "Show
Packet Bytes." As shown in the example on the next page, the payload content of this
packet represents the metadata (filename) of the transferred file.

7. Take a screenshot of the payload content for all the remaining payload packets.

 Page 4

 Page 5

Part 2: Encrypted File Transfer

To prevent eavesdropping, let’s secure our
system using public key exchange protocols and
stream/block ciphers. We will use RSA for public
key exchange and AES as the encryption cipher.

1. Download the skeleton script for the
encrypted version from the website and
complete all the blanks to ensure the
scripts perform their tasks correctly. The
protocol between the client and the
server is in the figure on the right.

2. Capture the network traƯic as done
previously for the insecure version and
take screenshots of all payload content.

For the encrypted version, the files are called
client2.py and server2.py. Some of the codes
were removed from the programs, and the
omitted code is replaced with:

 ## BEGIN
 #
 ## END
Your job is to fill in the line between the BEGIN
and the END. Keep these two lines so the TA can find them easily. The amount of space is
approximately the length of the code I expected. However, there are always multiple ways of doing
the same task.

Part 3: Deliverables

1. Python Codes: Submit the two Python files (client2.py and server2.py). The TAs will test
your code using their test files. Ensure your code contains additional print statements (after
each significant step) to help the TAs easily trace your progress.)

2. Wireshark Logs: Provide two copies of the Wireshark log in pcap format. You may have
several logs, but please submit only one for each scenario: HWK2E.pcap for the encrypted
file transfer and HWK2U.pcap for the unencrypted file transfer.

3. PDF Report: Please include a PDF report (HWK2.pdf) on your Wireshark log examination.
Please include screenshots showing that one could see the plain text when running the
unencrypted version and the encoded message for the encrypted experiment. You may
include comments on how the assignment can be made more interesting.

