
Page 1

COSC 3371 Cybersecurity
Homework Assignment 3
COSC 3371, Spring 2024

Version 1, March 30, 2024

Version 2, April 3, 2024

This assignment focuses on several essen al concepts discussed recently. These topics include encryp on
(public-key encryp on, RSA encryp on) for privacy, hashing that produces digests for integrity, and
authen ca on of the sender’s iden ty. The overall structure of the assignment, discussed in class recently,
is shown below (parallel to our nota ons used in the class slides). RSA provides some func ons to simplify
the work, such as genera ng and verifying the signature. Each implementa on of the cryptography
module may be slightly different. For example, RSA combines hashing (H) and encryp on (EP) into one
func on and provides one func on to verify the signature.

User B would like to send a message to User A securely. The requirements are:

 The message must be encrypted using public-key encryp on (RSA).
 The message must also produce a hash for integrity check.
 The hash must be signed to ensure it comes from B.
 There is no need to concatenate the signature and the encrypted message.

There are several places where you have choices. Here are the preferred parameters.

 Key size of the public and private key: 2048
 Hash: SHA-256
 Signing the hash (sign_hash).

Page 2

The assignment must use the RSA module in Python. You must install it in your Python interpreter if it has
not already been installed. Many references are available online, such as h ps://stuvel.eu/python-rsa-
doc/. The module provides func ons to generate public-private key pairs, hash, encryp on, and
verifica on. If you encounter difficulty using RSA, please get in touch with the TA for help.

We are NOT going to test the program across the network. Instead, we will simulate it in a Python program.
To do so, we will create two classes, sender and receiver, to separate the two sides.

Sender class:

 A Sender will hold the following data: the plaintext message, the pair of keys, the hash value
(digest), the signature, and the ciphertext. Set them to None ini ally.

 Sender’s methods:
o The constructor __init__,
o The encrypt func on
o The sign func on

Receiver class:
 A Receiver will hold the following data: the plaintext message, the pair of keys, the signature,

and the ciphertext. Set them to None ini ally.
 Receiver’s methods:

o The constructor __init__,
o The decrypt func on
o The verify func on

Problem 1 (30 Points): Successful Valida on.

You will input a message and hash, sign, and encrypt it according to the descrip on above. Ensure each
user (A and B) can access its private key. Public keys are available for both. We assume there is no
malicious ac vity related to this part. Whenever possible, print an explana on of what you did and the
output of any value produced.

Submission: One Python file.

Problem 2 (10 Points): Simulated A ack.

The two classes defined in Problem 1 should remain the same for this part. You are modifying the main
program to experiment. The experiment simulates an a ack with someone changing the message a er
signing it. We would like to see if the code can detect this a ack. In reality, it is hard to edit an encrypted
message. Here is the sugges on: Take the plaintext file, swap two characters, and encrypt the modified
file. Your signature should be generated with the text in the original plaintext file.

Submission: One Python file, modified from Problem 1. The class defini ons should be the same.

Problem 3 (10 Points): Simulated A ack.

Page 3

For this part, simulate an a ack on the signature (as opposed to the message like in Problem 2). You
may propose more than one way to simulate the a ack.

Submission:

 One Python file, modified from Problem 1. The class defini ons should be the same.
 A one-page PDF file explaining what you did and your conclusion (for Problems 1-3).

