
Page 1

COSC 3371 Cybersecurity
Homework Assignment 3
COSC 3371, Spring 2024

Version 1, March 30, 2024

Version 2, April 3, 2024

This assignment focuses on several essenƟal concepts discussed recently. These topics include encrypƟon
(public-key encrypƟon, RSA encrypƟon) for privacy, hashing that produces digests for integrity, and
authenƟcaƟon of the sender’s idenƟty. The overall structure of the assignment, discussed in class recently,
is shown below (parallel to our notaƟons used in the class slides). RSA provides some funcƟons to simplify
the work, such as generaƟng and verifying the signature. Each implementaƟon of the cryptography
module may be slightly different. For example, RSA combines hashing (H) and encrypƟon (EP) into one
funcƟon and provides one funcƟon to verify the signature.

User B would like to send a message to User A securely. The requirements are:

 The message must be encrypted using public-key encrypƟon (RSA).
 The message must also produce a hash for integrity check.
 The hash must be signed to ensure it comes from B.
 There is no need to concatenate the signature and the encrypted message.

There are several places where you have choices. Here are the preferred parameters.

 Key size of the public and private key: 2048
 Hash: SHA-256
 Signing the hash (sign_hash).

Page 2

The assignment must use the RSA module in Python. You must install it in your Python interpreter if it has
not already been installed. Many references are available online, such as hƩps://stuvel.eu/python-rsa-
doc/. The module provides funcƟons to generate public-private key pairs, hash, encrypƟon, and
verificaƟon. If you encounter difficulty using RSA, please get in touch with the TA for help.

We are NOT going to test the program across the network. Instead, we will simulate it in a Python program.
To do so, we will create two classes, sender and receiver, to separate the two sides.

Sender class:

 A Sender will hold the following data: the plaintext message, the pair of keys, the hash value
(digest), the signature, and the ciphertext. Set them to None iniƟally.

 Sender’s methods:
o The constructor __init__,
o The encrypt funcƟon
o The sign funcƟon

Receiver class:
 A Receiver will hold the following data: the plaintext message, the pair of keys, the signature,

and the ciphertext. Set them to None iniƟally.
 Receiver’s methods:

o The constructor __init__,
o The decrypt funcƟon
o The verify funcƟon



Problem 1 (30 Points): Successful ValidaƟon.

You will input a message and hash, sign, and encrypt it according to the descripƟon above. Ensure each
user (A and B) can access its private key. Public keys are available for both. We assume there is no
malicious acƟvity related to this part. Whenever possible, print an explanaƟon of what you did and the
output of any value produced.

Submission: One Python file.

Problem 2 (10 Points): Simulated AƩack.

The two classes defined in Problem 1 should remain the same for this part. You are modifying the main
program to experiment. The experiment simulates an aƩack with someone changing the message aŌer
signing it. We would like to see if the code can detect this aƩack. In reality, it is hard to edit an encrypted
message. Here is the suggesƟon: Take the plaintext file, swap two characters, and encrypt the modified
file. Your signature should be generated with the text in the original plaintext file.

Submission: One Python file, modified from Problem 1. The class definiƟons should be the same.

Problem 3 (10 Points): Simulated AƩack.

Page 3

For this part, simulate an aƩack on the signature (as opposed to the message like in Problem 2). You
may propose more than one way to simulate the aƩack.

Submission:

 One Python file, modified from Problem 1. The class definiƟons should be the same.
 A one-page PDF file explaining what you did and your conclusion (for Problems 1-3).

