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a b s t r a c t

Abnormal network traffic analysis has become an increasingly important research topic to protect
computing infrastructures from intruders. Yet, it is challenging to accurately discover threats due to the
high volume of network traffic. To have better knowledge about network intrusions, this paper focuses
on designing a multi-level network detection method. Mainly, it is composed of three steps as
(1) understanding hidden underlying patterns from network traffic data by creating reliable rules to
identify network abnormality, (2) generating a predictive model to determine exact attack categories,
and (3) integrating a visual analytics tool to conduct an interactive visual analysis and validate the
identified intrusions with transparent reasons.

To verify our approach, a broadly known intrusion dataset (i.e. NSL-KDD) is used. We found that the
generated rules maintain a high performance rate and provide clear explanations. The proposed pre-
dictive model resulted about 96% of accuracy in detecting exact attack categories. With the interactive
visual analysis, a significant difference among the attack categories was discovered by visually repre-
senting attacks in separated clusters. Overall, our multi-level detection method is well-suited for iden-
tifying hidden underlying patterns and attack categories by revealing the relationship among the fea-
tures of network traffic data.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the advancement of Internet technologies, applications,
and protocols, network traffic analysis has become more difficult
since it deals with extreme amount of network traffic data.
Because of the network complexity, network traffic analysis to
detect unauthorized network intruders is also considered as one of
the increasingly important research topics in network security.

To address the issue of protecting computing infrastructures by
detecting network intruders, numerous intrusion detection (ID)
techniques have been proposed. A traditionally known ID system
discovers threats by analyzing traffic data at the network layer. The
intrusion detection system (called host-based IDS) identifies
threats on computer hosts by monitoring computer system logs,
te.edu (S. Choi),
system calls, network events, and files (Das and Sarkar, 2014). To
detect any abnormal behaviors, it monitors network packets to
find possible attack signatures and compare them to known attack
patterns. Although the host-based IDS is designed to prevent
intruders by changing computer system security policies, it cannot
monitor network traffic effectively because it only detects intru-
sions based on the analysis of information such as logs or packets
(Bace, 1999). The system may detect threats based on known
attack signatures, but new attacks cannot be discovered (Rubin et
al., 2004).

Most analysis approaches are designed to detect intrusions by
conducting misuse detection and anomaly detection. The misuse
detection searches for events (i.e. known attacks) that are matched
to predefined signatures (Kumar and Spafford, 1994). The anomaly
detection identifies abnormal behaviors on hosts or networks
based on the assumption that each attack shows different beha-
viors compared to normal activity. Therefore, it is possible to
identify any abnormal attacks without having specific knowledge.
Due to this advantage, the anomaly detection is used for designing
various applications in other areas such as credit cards fraud
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detection (Kou et al., 2004), fault detection in safety critical sys-
tems (Worden and Dulieu-Barton, 2004), and any domains that
aim to detect abnormal activities including a medical field
(Duftschmid and Miksch, 2001). However, the anomaly detection
method may provide a high false alarm rate, and require extensive
training sets to achieve a reliable performance result (Chandola et
al., 2009; Eskin et al., 2002).

Abnormal behaviors are considered as different patterns if they
do not match to a well-defined model representing normal
behaviors. To discover abnormal behaviors (i.e. intrusions or
attacks), understanding their trends or patterns is essential. ID can
help us to minimize further damages by providing early warnings.
In this paper, we extended our two previous studies by focusing on
(1) generating simple and reliable rules to identify intrusions,
(2) building a predictive model to determine exact attack cate-
gories by utilizing a signal processing technique (i.e. DWT) and
Support Vector Machine (SVM), and (3) visually representing the
input data to support an interactive visual analysis. For the visual
analysis, a visual analytics tool called iPCA (Jeong et al., 2009) was
used. With this tool, an interactive visual analysis was conducted
to understand the intrusions and their relationships.

The rest of this paper begins with explaining related work in
Section 2, our approach including a description of the data (i.e.
NSL-KDD) and methods in Section 3. Study results are provided in
Section 4. Lastly, Section 5 presents implications of this study and
avenue for future research.
2. Related work

Researchers have applied various algorithms or theories such
as statistics, machine learning, data mining, information theory,
and spectral theory to extract patterns from attacks and design
better anomaly detection techniques. Machine Learning (ML) is
one of the broadly used algorithms in anomaly detection. ML
techniques develop classifiers to determine possible attacks.
Markou and Singh (2003a,b) proposed a detection technique with
utilizing neural networks and statistical approaches. Rule-based
anomaly detection techniques are introduced to capture rules that
can identify network behaviors using Fuzzy (Chadha and Jain,
2015; Amini et al., 2015) or decision trees (Lee et al., 2008; Kruegel
and Toth, 2003; Stein et al., 2005; Jain and Abouzakhar, 2013).
Also, clustering technique (Lin et al., 2015) and SVM (Kuang et al.,
2015; Wang et al., 2015; Aslahi-Shahri et al., 2015; Sani and Gha-
semi, 2015) are used by numerous researchers to detect abnormal
network behaviors. For instance, Xiang et al. (2008) introduced a
multiple-level hybrid classifiers combining tree classifiers and
Bayesian clustering to detect network anomaly. Kuang et al. (2015)
presented a hybrid classifier by integrating SVM and principal
component analysis. Golmah (2014) proposed an hybrid intrusion
detection method integrating both C5.0 and SVM.

To generate a reliable ID system model, feature selection and
extraction are considered as critical tasks for saving computational
cost as well as for discovering data patterns. The feature selection
is used to select a subset of most meaningful features from the
original feature. The feature extraction is necessary for converting
input data to reduce dimensions. There are various techniques that
can be used for the feature extraction and selection such as
Genetic Algorithm (GA) (Aslahi-Shahri et al., 2015), entropy of
network features (Agarwal and Mittal, 2012), Partial Least Square
(PLS) (Gan et al., 2013), Kernel Principal Component Analysis
(KPCA) (Kuang et al., 2015), and cuttlefish optimization algorithm
(Eesa et al., 2015). When applying the feature extraction, there is
an important consideration whether the characteristics of original
input data are transmitted to extracted new feature sets. However,
it is important to note that the generated new feature set may not
maintain the same or similar patterns compared to the original
input data (Yang et al., 2011). Sanei et al. (2015) addressed the
potential capability of discovering important features from input
data by utilizing signal processing techniques. In our previous
studies (Ji et al., 2014a,b), we emphasized the importance of
detecting network abnormal behaviors. More specifically, in the
study (Ji et al., 2014a), two-level ID method was introduced using a
publicly available internet traffic data to show its capability in
classifying abnormal network traffic. Fractal dimension (FD) was
applied to identify the specific attack. Our previous works focused
on generating rules to detect network anomalous activities and
finding the self-similarity among the attacks. While the generated
rules clearly differentiated normal and abnormal behaviors, there
was a limitation of providing a detailed information (i.e. reasons)
about the detected abnormal behaviors. To address this limitation,
the categorical variables are converted to dummy variables. In
addition, a visual analytics approach is integrated to identify
transparent reasons about detected abnormal activities.
3. Approach

3.1. Data description

In this study, a publicly available intrusion detection dataset
(called NSL-KDD dataset NSL-KDD, 2014; Tavallaee et al., 2009) is
used. NSL-KDD dataset is the refined version of the KDD cup'99
dataset that redundant data records are removed (Tavallaee et al.,
2009; NSL-KDD, 2014). The NSL-KDD dataset includes training set
(125,973 records) and testing set (22,544 records). It contains 41
attributes (three nominal, six binary, and thirty-two numeric
attributes), and includes normal activity and twenty-four attacks.
These attacks are grouped into four major categories. Table 1
represents the four major attacks and intrusion categories. In this
study, the training and testing data were combined to make a new
input data. A total of 148,517 records were used as an input data.

DoS attack indicates any attempts to disable network access
from remote machines (or computing resources). R2L represents
that a remote user gains an access to local user accounts by
sending packets to a computing machine over the network. Probe
indicates that network is scanned to gather information to find
known vulnerabilities. U2R denotes that an attacker accesses
normal users' accounts by exploring the system as a root-user.

3.2. Methods

In this section, a brief explanation about our proposed multi-
level network intrusion detection approach is provided. As shown
in Fig. 1, the approach consists of three steps: (1) generating rules
to detect outcome (normal/abnormal), (2) building an abnormal
network behavior model to detect exact attack categories (i.e. DoS,
Probe, R2L), and (3) conducting an interactive visual analysis to
provide transparent reasons. First, the input data is divided into
two subsets: categorical (i.e. nominal) data and numerical data.
The nominal variables are used to generate rules. To determine
exact attack categories, an extraction of significant DWT features
from the numerical variables is performed. Furthermore, an
interactive visual analysis is conducted to find the relationship
between the raw and the DWT features and to present transparent
reasons about the results.

3.2.1. Detection of abnormal behavior
Pre-Processing: As mentioned above, the NSL-KDD data set

contains three nominal variables that include protocol type, ser-
vice, and flag. However, each nominal variables contains many
distinctive attribute values. Protocol type includes three attributes
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(i.e. TCP, UDP, and ICMP), service includes 70 attribute values (i.e.
SMTP, HTTP, POP3, SSH, WHOIS, and among others), and flag
contains 11 attributes (i.e. SF, S2, S1, S3, REJ, RSTR, and among
others). Since the nominal variables contain numerous amount of
attribute values, it is difficult to extract transparent information
regarding network abnormality. To resolve this issue, a binary
coding scheme (Shyu et al., 2005) via the use of indicator variables
is applied to the three nominal variables. Binary coding uses 1
(“one”) to indicate the occurrence of a category of interest and 0
(“zero”) to represents its non-occurrence (Neter et al., 1996). For
example, if the attribute value of protocol type is “TCP”, it is
converted to 1, and otherwise 0.

When labeling all attacks as “abnormal”, total of 77,054 normal
and 71,463 abnormal data are formed. To generate a rule-based
method to identify abnormal behaviors, nominal and binary vari-
ables are used. By reforming the nominal variables, total of 90
features including binary variables (i.e. yes/no) are generated.
Since the binary coding to the nominal variables causes an
increase of data dimensions, important features are selected. For
this selection, a statistical validation using SAS is performed. Then,
each normal and abnormal data are randomly divided into 10
different subsets to apply ten-fold cross-validation.

Rule generation with CART: To design a rule-based model,
Classification and Regression Tree (CART) (Breiman et al., 1984) is
used. CART applies the concept of information theory to create a
decision tree that captures complex patterns of input data. It is
broadly used due to its efficiency in dealing with multiple data
Table 1
Four attack categories in the NSL-KDD dataset.

Four categories Intrusion types

DoS Back, land, neptune, pod, smurf, teardrop, mailbomb,
processtable

R2L ftp_write, imap, guess_passwd, multihop, phf, spy, ware-
zclient, warezmaster
sendmail, snmpgetattack, snmpguess, worm, xlock, xsnoop,
named

U2R buffer_overflow, loadmodule, perl, spy, rootkit,ps, xterm,
sqlattack,mscan

Probe ipsweep, nmap, portsweep, satan, saint

Fig. 1. A schematic diagram o
types and missing values. CART expression forms explicit and
transparent grammatical rules (Loh and Vanichsetakul, 1988; Fu,
2004). Thus, it is much simpler to understand data patterns than
other models. In addition, it uses an exhaustive search of all
variables and split values to find optimal splits for each node by
measuring the degree of impurity for each outcome of the feature.
To find the most important features for identifying network traffic
abnormal behaviors, a statistical test (i.e. ANOVA) is performed.
Then, trees are generated from each training set using the selected
significant features. Due to the difficulty of extracting rules from
the generated trees, a software application (called TreeParser) is
designed to extract rules from the trees by navigating all branches
of the generated trees. With the extracted rules, the performance
of each rule is measured with a distinctive testing dataset.

3.2.2. Classification of exact attack categories
When incoming network traffic events are considered as

“abnormal behaviors” or “attacks”, it is important to specify their
exact attack categories. Providing the exact information is critical
for system administrators so that relevant actions can be taken to
protect computing infrastructures. In this study, three attack
categories (i.e. DoS, Probe, R2L) are considered due to insufficient
amount of U2R data.

Feature extraction and selection: Since signal processing tech-
nique has a capability of discovering hidden patterns from input
data, discrete wavelet transform (DWT) is used. DWT is a pro-
mising technique for time-frequency analysis by decomposing the
input data until pre-determined level. By decomposing the input
data, further detailed information (e.g. any pattern changes) can be
represented. It is beneficial to understand non-stationary data
such as network traffic since DWT has an ability to detect any
changes from the data. Due to the benefit, Wavelet Transform
(WT) is commonly used to analyze data in other domains such as
medicine, health, and stock. While researchers (Callegari et al.,
2008; Gao et al., 2006; Tan et al., 2012; Dainotti et al., 2006) uti-
lized WT techniques in the context of intrusion detection, they
only used WT for reconstructing the data or determining a
threshold for detecting intrusions. The threshold was used to
make a decision to determine abnormality in their studies. How-
ever, in our study, we used DWT to extract new features repre-
senting hidden but significant patterns.
f the proposed approach.



S.-Y. Ji et al. / Journal of Network and Computer Applications 62 (2016) 9–1712
The selection of specific mother wavelet is often considered as
a difficult task since results can vary depending on what mother
wavelet is applied. For this study, a broadly used Daubechies'
wavelet family (specifically, a db2) is utilized. A three-level
decomposition is applied to the data with an overlapping sliding
window (size of 100 data points) to examine rapid changes within
the data. By applying DWT, three features (i.e. standard deviation
of absolute values, root mean square, and energy) are calculated.
The features are

σk ¼ ffip 1
N
ΣN

i ¼ 1ðjdki j �μÞ2
� �� �

;

mk ¼
ffiffi
ð

p
ð1=N ΣN

i ¼ 1ðdki Þ2Þ;
ek ¼ΣN

i ¼ 1ðjdki j Þ2

where μ¼ 1=NΣN
i ¼ 1d

k
i , N is the size of each coefficient, di repre-

sents wavelet coefficients, and k indicates a decomposition level
(our study uses k¼3).

Detection of exact attacks: Once the features are extracted, the
significance of each feature is tested. Only significant features are
selected to generate a classifier (i.e. learning model) that can be
used to detect exact attack categories using ML algorithms. Three
ML algorithms such as SVM, Neural Network (NN), and Naïve
Bayes are compared. Naïve Bayes and NN are commonly used to
classify data consisting of two groups (e.g. normal/abnormal). The
main idea of SVM, a statistical learning theory, is finding a
hyperplane that can separate the input data precisely. That is, SVM
finds the optimal hyperplane by minimizing the mis-classification
error. Naïve Bayes, a simplified Bayesian probability model based
on Bayes theorem, calculated prior and conditional probabilities to
generate a learning model. This learning model may cause an error
because of the impacts of bias and variance, and training data
noise. NN is an information processing model that is inspired by
the biological nervous systems. It is composed of a large number of
highly interconnected neurons. It has limitations including falling
into a local solution instead of global one and having a slow
convergence. In general, SVM (Vapnik, 1998) is simple, fast in
operation, and has good robustness than Bayes and Neural Net-
work. Therefore, it is widely used in different domains such as
bioinformatics (Idicula-Thomas et al., 2006), data mining, pattern
recognition (Shawe-Taylor and Cristianini, 2004), and text cate-
gorization (Joachims, 1998). In this study, SVM is used to generate
a classifier. Also, a performance comparison with NN and Naïve
Bayes is conducted.

3.2.3. Visual analysis
A visual analytics approach is utilized to perform an interactive

visual analysis on the network traffic data. Visual analytics has
been known as a new research area that focuses on performing
analytical reasoning with interactive visual interfaces (Thomas and
Table 2
Samples of the extracted rules that are used to identify abnormal network traffic behav

Rules

If(SF¼ ‘NO’ & http¼ ‘NO’ & login_Yes¼ ‘YES’ & IRC¼ ‘NO’ & S1¼ ‘NO’ & smtp¼ ‘NO’ & X
If (SF¼ ‘YES’ & ICMP¼ ‘YES’ & urp_i¼ ‘NO’) then Abnormal
If(SF¼ ‘YES’ & ICMP¼ ‘NO’ & private¼ ‘NO’ & pop_3¼ ‘YES’) then (Abnormal)
If (SF¼ ‘YES’ & ICMP¼ ‘NO’ & private¼ ‘NO’ & ftp¼ ‘NO’ & pop_3¼ ‘NO’ & telnet¼ ‘YES’
if(SF¼ ‘NO’ & http¼ ‘YES’ & REJ¼ ‘YES’) then Normal
If (SF¼ ‘YES’ & ICMP¼ ‘NO’ & private¼ ‘NO’ & pop_3¼ ‘NO’ & telnet¼ ‘NO’ & ftp¼ ‘NO’
If(SF¼ ‘YES’ & ICMP¼ ‘NO’ & private¼ ‘NO’ & pop_3¼ ‘NO’ & telnet¼ ‘NO’ & ftp¼ ‘NO’ &
If(SF¼ ‘NO’ & http¼ ‘YES’ & REJ¼ ‘YES’) then Normal
If(SF¼ ‘YES’ & ICMP¼ ‘NO’ & private¼ ‘NO’ & pop_3¼ ‘YES’) then Abnormal
If (SF¼ ‘YES’ & ICMP¼ ‘NO’ & Pop_3¼ ‘NO’ & telnet¼ ‘NO’ & ftp¼ ‘NO’ & ftp_data¼ ‘NO
If (SF¼ ‘YES’ & ICMP¼ ‘NO’ & ftp¼ ‘NO’ & pop_3¼ ‘NO’ & telnet¼ ‘NO’ & ftp_data¼ ‘NO
Cook, 2006). In this study, an extended version of a visual analytics
tool called iPCA (Jeong et al., 2009) is used to conduct an inter-
active factor analysis. iPCA is designed to represent the results of
Principal Component Analysis (PCA) using multiple coordinated
views and a rich set of user interactions to support interactive
analysis of multivariate datasets. The network traffic data are
projected onto two user-selected principal components. A parallel
coordinates visualization is used to show the data in the original
data dimensions. In the parallel coordinates visualization, hor-
izontal lines represent features of the data and each line indicates
an individual network traffic data. Within iPCA, the user is allowed
to select data in one view and immediately see the corresponding
data highlighted in the other view which helps the user to
understand the relationship between the two. To enhance the
capability of interactive visual analysis within each view, several
user interactions (i.e. highlighting, brushing, and filtering of data
items or dimensions) are supported. A detailed explanation of
conducted visual analysis with iPCA is included in Sections 4.2.2
and 4.2.3.
4. Results

This section presents the generated rules to identify network
abnormality, the performance of detecting exact attack categories,
and the visual analysis to examine the relationship among the
DWT features and its correlation analysis.

4.1. Abnormal behavior detection

As described in Section 3.2.1, total of 77,054 normal and 71,463
abnormal data are used. After converting the nominal input vari-
ables to binary scheme indicators, total of 90 variables including
six binary variables are generated. A statistical analysis (i.e.
ANOVA) is performed to determine statistically significant fea-
tures. As a result, 22 features (e.g. ICMP, HTTP, SMTP, domain_u, SF,
private, S2, S1, IRC, REJ, land_0, login_Yes, POP3, FTP, FTP_data, x11,
Host_login_Yes,urp_i, Telnet, IMAP4, Guest_login_Yes, Gopher) are
found to be statistically significant ðpo :05Þ. Then, the 22 sig-
nificant features are used to generate decision trees. Ten trees are
created and tested with distinctive test datasets. Table 2 represents
the samples of extracted rules maintaining the testing accuracy of
85% or above.

We found that “SF”, one of the attribute values in “flag”, is an
important attribute to identify network abnormality. Also, the
generated rules are complicated to present the “Abnormal”
behavior. When considering the “SF” feature (indicating normal
establishment and termination), if the “SF” feature is “NO”, there is
a higher chance that network activities are determined as abnor-
mal behaviors. However, it is important to verify the result by
iors.

Testing accuracy

11¼ ‘NO’) then Abnormal 5521/5542¼99.62%
840/929¼90.41%
324/342¼94.73%

& login_No¼ ‘NO’) then Abnormal 506/507¼99.80%
304/326 ¼93.25%

& ftp_data¼ ‘YES’) then Normal 560/633¼88.46%
ftp_data¼ ‘NO’ & imap4¼ ‘NO’ & tcp¼ ‘NO’) then Normal 1271/ 1297¼97.99%

308/333¼92.49%
324/342¼94.73%

’ & imap4¼ ‘NO’ & tcp¼ ‘YES’ & login¼ ‘NO’) then Normal 4799/4913¼97.67%
’ & gopher¼ ‘NO’ & login¼ ‘NO’) then Normal 5744/6085¼94.4%
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checking other features. Due to this reason, the size of the rule can
be longer and complex than when the “SF” feature is “Yes”.

4.2. Exact attack category detection

To detect the exact attack category, thirty-two numerical vari-
ables in abnormal data (i.e. total of 71,344) are used. A total
number of 54,275 data for the DoS attack, 14,077 for the Probe
attack, and 2992 for the R2L attack are used. Since two numerical
variables (i.e. urgent and num_outbound_cmds) have all zero
values, they are removed from the analysis. As explained in Section
3.2.2, DWT is applied to extract features. With the DWT, total of
2841 (2167 for DoS, 559 for Probe, and 115 for R2L) datasets with
144 features are generated. A statistical test is applied to find a
statistical significance of each feature. As a result, 77 out of 144
features were determined as statistically significant ðpo0:05Þ
features.

4.2.1. Feature comparison
A feature comparison between the raw and the DWT features is

performed by measuring the average of the features. Since the raw
and the DWT features have different scales, a normalization
between 0 and 1 is applied. As shown in Fig. 2, we found that the
DWT features clearly separate the attack categories while the raw
features maintain similar patterns. For the raw features, we
noticed that the five features (i.e. r1, r4, r7, r8, and r14) are almost
identical between the two attack categories (Probe and R2L).
Although the DoS attack shows a distinctive pattern among the
three attacks at the features (see the features of r5, r6, r10, r11, r12,
and r13), the raw features may not be useful for differentiating the
three exact attacks.

4.2.2. Visual comparison of the features
To project the raw and the DWT features, PCA computation is

performed to identify principal components. PCA requires a high
computational power to compute eigenvectors and eigenvalues,
thus an approximation method based on SVD called Online SVD
(Brand, 2006) is used to perform the PCA computation and
maintain real-time user interactions when interacting with large
scale datasets. Fig. 3 represents PCA projections with two principal
components on (A) the raw features and (B) the DWT features.
From the projection of the raw feature (Fig. 3(A)), it is difficult to
identify a clear separation among the three attack categories. The
DoS attacks are appeared mostly in three regions, the Probe
attacks occupies two regions, and the R2L attacks are spread out
all over the Projection space. This indicates that identifying the
difference among the three attacks is extremely difficult due to the
fact that they maintain similar patterns. However, there was a
Fig. 2. A comparison between the raw features (A) and the DWT features (B). x-axis in
feature.
clear separation among the attacks in the projection of the DWT
features (see Fig. 3(B)). The DoS attack is forming two clusters that
are completed separated from other attacks. Since there is a
similarity between Probe and R2L even in the DWT features, an
additional analysis is conducted to determine common features
appeared in both categories.

4.2.3. Dimension contribution analysis
iPCA supports the change of dimension contributions by

moving slider bars where each feature provides the ability to
analyze the data non-linearly. The dimension contribution analysis
is performed to identify dominant features that make several
attacks to become appeared within other clusters. As shown in
Fig. 4, when dimension contribution analysis is performed by
changing the contribution of the five features (d37, d38, d68, d72,
and d75) from 100% to 0%, a clear separation of pattern is emerged.
Interestingly, we identified a couple of possible outliers. Fig. 4
(A) indicates that a R2L attack is appeared within a DoS cluster.
Fig. 4(B) represents that a DoS attack positioned in a R2L cluster.
These outliers might be strongly related to the five features. To
investigate the cause of the items being appeared in other attack
clusters, it is important to conduct an outlier analysis. Since
understanding outliers is not a primary concern of this study, we
leave it as a future work.

To investigate the relationship among the features, Pearson-
correlation analysis is conducted. Fig. 5 represents the correlations
of the (A) raw and (B) DWT feature datasets. In Fig. 5, the diagonal
displays the name of dimension as a text string. The lower trian-
gulation shows the coefficient value between two dimensions
with a color indicating positive (red), neutral (white), and negative
(blue) correlations. The upper triangulation contains cells of
scatter plots where all data items are projected onto the two
intersecting dimensions. As we discussed above, there was no
clear separation among the attacks using the raw features (see
Fig. 3(A)). This might be because a half of the features maintain
neutral correlations (Fig. 5(A)). However, positive and negative
correlations are easily discovered in the DWT features (Fig. 5(B)).
When looking at the scatterplots having highly positive correlation
coefficients (γ ¼ 0:99) in Fig. 5(C) and (D), we identified that they
maintain different distributions. Although the scatterplot in Fig. 5
(C) shows vertically or horizontally increasing patterns (i.e. skew
correlation), the scatterplot in Fig. 5(D) presents a directly pro-
portional pattern by showing a linear relationship between the
two features. In addition, the scatterplot (Fig. 5(D)) displays that
the attack categories are appeared by forming different patterns as
the R2L attacks are mostly appeared in the lower bottom corner,
the DoS attacks are forming two visible clusters, and the Probe
attacks are spread out in the middle and lower regions.
dicates the DWT and raw features, and y-axis presents the average value of each



Fig. 3. PCA projections of (A) the raw feature and (B) the DWT feature datasets. The data are mapped with different color attributes as DoS (green), Probe (orange), and R2L
(purple). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 4. Dimension contribution is applied in the five DWT features (d37, d38, d68, d72, and d75) from 100% to 0% using the slider bars to make a clear separation between
Probe and R2L (see the red arrows). 0% indicates that the selected variable is not used to going to contribute to the final PCA. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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4.2.4. Classification comparison
A classification is performed to determine exact attack cate-

gories with a ten-fold cross-validation (CV). The performance of
three ML techniques (i.e. SVM, Naïve Byes, and NN) is compared
and presented in Table 3. The average accuracy to detect exact
attack categories with SVM, Naïve Bayes, and NN were 95.5471%,
89.024%, and 96.67%, respectively. We found that NN shows a
slightly higher accuracy than SVM. But, when measuring the
standard error of the mean (SEM), there was a variation difference
as SVM (0.285), Naïve Bayes (2.02), and NN (0.683). In addition,
when generating a learning model with SVM and NN, it took
0.157 s and 13.04 s, accordingly.
5. Discussion and conclusion

This study presents a multi-level network abnormality detec-
tion method by utilizing reliable rules to detect abnormal beha-
vior, generating a predictive model to detect the exact attacks
(i.e. DoS, R2L, and Probe) using the DWT features, and applying a
visualization analytic tool to provide further detailed under-
standing and analysis for users.

Although DWT was often used by researchers to detect network
abnormal behaviors, it was simply used to determine a threshold or
to reconstruct data by removing noise. Unlike other studies, this
study emphasizes the importance of using DWT to extract



Fig. 5. Correlation views of the (A) raw feature and (B) DWT feature datasets. Each color indicates positive (red), neutral (white), and negative (blue) correlations. The arrows
in (A and B) indicate the scatterplots having positive correlation coefficients (γ¼0.99). Their scatterplots are presented in (C and D). (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

Table 3
Classification performance comparisons.

Test
data-
set

Three attack classification

SVM Naïve Bayes NN

Test 1 95.77% 91.47% 94.77%
Test 2 96.83% 91.23% 95.93%
Test 3 96.83% 95.5% 100%
Test 4 95.77% 89.77% 96.83%
Test 5 96.47% 90.47% 95.77%
Test 6 96.12% 78.2% 96.1%
Test 7 95.77% 89.1% 94.57%
Test 8 95.77% 93% 94.2%
Test 9 97.88% 76.8% 100%
Test 10 98.22% 94.7% 98.59%
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significant features for detecting network abnormal behaviors. As
discussed earlier, our previous study (Ji et al., 2014a) presented
decision rules for detecting network abnormal behaviors with uti-
lizing only four variables (i.e. duration, protocol type, service, and
flag). The rules were statistically significant to detect intrusions.
While the generated rules clearly differentiated normal and
abnormal behaviors, there was a limitation of providing a detailed
information about the detected abnormal behaviors since each
variable includes numerous attribute values. For instance, the rule
ðprotocolaHTTPÞ does not provide useful information because there
are about 70 attribute values indicating different network protocols.
To avoid this ambiguity, the nominal variables are converted
dummy variables to generate more accurate rules. So, the result can
provide appropriate meaning about the detected network abnormal
behaviors.

Based on the performance measure of each rule, only highly
accurate rules were used for intrusion detection analysis. However,
it is important to note that even the rules with less accuracy may
provide a valuable information for detecting intrusions. For
instance, the rule - if (SF¼ ‘YES’ & ICMP¼ ‘NO’ & private¼ ‘YES’)
then Abnormal – has 72.16% of accuracy. Although the accuracy
does not represent a high performance, we found that the rule is
fitted to the majority of the data (306/424).

Among the extracted DWT features, 53.47% features are shown
to be statistically significant ðpo0:05Þ. Even though R2L attacks
have less amount of data compared to other attacks, we identified
that the true positive for the R2L with the raw feature is 59.8% and
75% for the DWT features. One of the major concerns in many
previous studies for detecting intrusions is how to reduce high
false positive (FP) results. In our study, the FP rate for the raw and
the DWT features were 7.9% and 2.3%, respectively. The DWT
features can provide a better performance if we have a larger
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amount of R2L data. It is also important to note that, unlike other
previous methods utilizing wavelet transform techniques, our
approach includes a method of performing a mathematical cal-
culation and a statistical validation to extract hidden underlying
patterns from the input data.

In this study, we utilized a visual analytics tool to interpret the
results, discover new knowledge, and find reasons efficiently. As
shown in Fig. 3, there was no clear separation of the raw features
among DOS, Probe, and R2L. However, when using the DWT fea-
tures, we identified a clear separation among the attack categories.
Most importantly, the “R2L” attack was not identifiable with the
raw features. When analyzing the DWT features further, we
identified that there was a similarity between Probe and R2L. The
dimension contribution analysis was performed with iPCA to
identify specific features that make them difficult to separate. The
dimension analysis with iPCA is quite challenging because the user
needs to maintain an awareness of this change by the contribution
since the projection of data will be modified. With carefully
adjusting dimension contributions to each feature, we identified a
clear separation (see Fig. 4). More specifically, we identified five
features as strong dimension contributors that make the Probe and
R2L attacks appeared nearby in the PCA projection.

Our study has potential avenues for future research. We plan to
enhance our approach by identifying possible outliers and
understand their patterns as well as effectiveness for determining
the abnormality precisely. In addition, we are going to test our
proposed approach with different network intrusion datasets. In
this study, we only focused on utilizing supervised learning algo-
rithms. To determine the effectiveness of our approach of
extracting and utilizing DWT features, we consider to compare our
approach to unsupervised learning algorithms. In addition, we are
going to conduct additional visual analysis to identify the cause of
outliers appeared in the network traffic data. Lastly, our method
can be applied to other research domains that require to detect
abnormal behaviors (or activities) with providing meaningful
information. Specifically, we plan to apply our proposed approach
to detect abnormality in software applications.
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