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In machine  learning,  a combination  of  classifiers,  known  as  an ensemble  classifier,  often  outperforms
individual  ones.  While  many  ensemble  approaches  exist,  it remains,  however,  a difficult  task  to  find  a
suitable ensemble  configuration  for a particular  dataset.  This paper  proposes  a novel  ensemble  construc-
tion  method  that  uses  PSO  generated  weights  to  create  ensemble  of  classifiers  with  better  accuracy  for
intrusion  detection.  Local  unimodal  sampling  (LUS)  method  is  used  as  a meta-optimizer  to find  better
behavioral  parameters  for PSO.  For  our empirical  study,  we  took  five  random  subsets  from  the  well-known
eywords:
nsemble
-NN
US
SO
VM
eighted majority voting (WMV)

KDD99  dataset.  Ensemble  classifiers  are  created  using  the new  approaches  as  well  as the  weighted  major-
ity algorithm  (WMA)  approach.  Our  experimental  results  suggest  that  the  new  approach  can  generate
ensembles  that  outperform  WMA  in  terms  of classification  accuracy.

©  2015  Elsevier  B.V.  All  rights  reserved.
. Introduction

Intrusion detection is a new network security mechanism for detecting, preven-
ing,  and repelling unauthorized access to a communication or computer network.
ntrusion detection systems (IDS) play a crucial role in maintaining a safe and secure
etwork. The term anomaly-based intrusion detection describes a class of techniques
hat  attempt to classify network traffic as either normal or anomalous. It mainly
nvolves binary classification of selected audit data and other aspects of a system.
he  success of an intrusion detection system depends on how well it succeeds in
aximizing its detection accuracy while minimizing its false alarm rate. Because

f  their success in practice at spotting new and unfamiliar attacks, anomaly-based
ntrusion detection systems have remained a heavily researched topic in the IDS
ommunity [1].

In recent decades, anomaly-based intrusion detection and many other classifi-
ation problems have benefited from the idea of combining multiple classifiers. The
dea of combining responses produced by multiple classifiers into a single response
s  known as the ensemble approach [2].

Ensemble-based classifiers are well-studied and have been used to improve
he  accuracy of several classification tasks. Several ensemble methods have been
roposed, including mean combiner, median combiner, max  combiner, majority
oting, and weighed majority voting (WMV). While individual classifiers can be

ombined using any one of these methods, WMV  is by far the most popular among
hem partly because of its conceptual simplicity, intuitiveness, and its effectiveness
n  practice [3].

∗ Corresponding author. Tel.: +60 123573020.
E-mail addresses: reoroman@hotmail.com (A.A. Aburomman),

amun.reaz@gmail.com (M.B. Ibne Reaz).

ttp://dx.doi.org/10.1016/j.asoc.2015.10.011
568-4946/© 2015 Elsevier B.V. All rights reserved.
In early research, ensembles were shown empirically and theoretically to
possess better accuracy than any single component classifier. An ensemble gen-
erated from classifiers trained from the same learning algorithm is termed
homogeneous,  whereas one generated from classifiers trained from different learn-
ing  algorithms is a heterogeneous ensemble. For example, bagging and boosting are
often used to generate homogeneous ensembles, whereas stacking can be used to
produce heterogeneous ensembles. The success of an ensemble classifier strongly
depends on the diversity in the outputs of its component classifiers, as well as on the
choice of method to combine these outputs into a single one [4]. Because the selec-
tion of a suitable combination method is still poorly understood, several heuristic
approaches for combining classifiers have been proposed. Particle swarm optimiza-
tion (PSO) is one such approach. In 1995, Eberhart and Kennedy proposed the PSO
method, which is a stochastic optimization technique that models the analogy of a
swarm of birds in flight [5].

In  this paper, we  define an expert as a collection of five binary classifiers that
together generate a binary vector of responses. We trained six k-nearest neigh-
bor  (k-NN) and six support vector machine (SVM) experts on the same dataset.
We  then created three new ensembles using the two new approaches (PSO and
meta-optimized PSO) and the weighted majority algorithm (WMA) approach. The
ensembles all combine the opinions of the twelve experts to reach the final decision.
The twelve experts were created from binary classifiers using different param-
eters to ensure their diversity. This in turn means that the resulting ensembles
inherit this diversity property. We combined the expert opinions in three ways.
In  this first way, we generate weights using PSO that is constructed with manually
selected behavioral parameters. These weights are then used with the weighted
majority voting (WMV)  to combine the expert opinions. We call this approach the

PSO  approach. The second way  (meta-optimized PSO) is similar to the first approach,
except that the PSO behavioral parameters were optimized using Local unimodal
sampling (LUS). The third way (WMA  approach) is to combine the opinions using
the weighted majority algorithm (WMA). Finally, the three approaches were empir-
ically compared. The experimental results based on five randomly selected subsets

dx.doi.org/10.1016/j.asoc.2015.10.011
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2015.10.011&domain=pdf
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f the KDD99 datasets showed that the new method gives better accuracy than
eighted majority algorithm (WMA).

The remainder of this paper is organized as follows. Section 2 provides an
verview of related work. Section 3 introduces the methodology. Section 4 describes
xperimental results and discussions. Finally, Section 5 concludes the paper and
ives direction for future work.

. Related work

The application of ensemble techniques to intrusion detection
as recently witnessed a surge of research efforts.

Syarif et al. [6] applied bagging, boosting and stacking ensem-
le techniques to the intrusion detection problem to improve the
ccuracy and reduce its false positive rates. As base classifiers for
hese ensemble methods, they used naï ve Bayes, J48 (decision tree),
Rip (rule induction) and iBK (nearest neighbor). They report that
heir approach achieves an accuracy of more than 99% in detec-
ing known intrusions but could only detect novel intrusions with
he accuracy rates of around 60%. The use of bagging, boosting, and
tacking showed no significant gain in accuracy. While stacking was
he only method that led to a significant reduction in false positive
ates 46.84%, it also has the longest execution time and thus is too
nefficient to be practical for the intrusion detection problem.

Bahri et al. [7] introduced a hybrid approach based on a
ew ensemble method called Greedy-Boost. They compared
xperimentally the precision and recall of AdaBoost, C4.5 and
reedy-Boost using the KDD 1999 data set. It was not very clear

rom the paper what base classifiers were used in the experimen-
al study. Their results indicate that Greedy-Boost outperforms the
ther algorithms in terms of the precision even for Probe, U2R, and
2L attacks.

Bukhtoyarov et al. [8] applied a probabilistic approach to design
ase neural network classifiers called probability-based genera-
or of neural networks structures (PGNS) to the network intrusion
etection problem. To design neural network ensembles, they
mployed an approach called Genetic Programming based ENsem-
ling (GPEN). GPEN applies genetic programming operators to find
n optimal function for combining the base classifiers into an
nsemble. This technique was applied to the KDD Cup 1999 data set
ith the goal was to classify the input intrusions as PROBE attacks or
on-PROBE attacks, using nine of the 41 attributes. They compared
he results with those published for other approaches in [9]. The
esults obtained using their approach show better detection accu-
acy of PROBE attacks than almost all the competing approaches
ncluded in [9]. The only approach that had better detection accu-
acy and fewer false positives was PSO-RF approach.

Although PSO performs well in many applications, it has not
een implemented in solving ensemble configuration problems
ith respect to intrusion detection before.

Cordeiro and Pappa [10] used the PSO algorithm for weight-
ng classifications coming from different data views. They dubbed
his approach PSO-WV. They also modified PSO to provide weights
or classes in specific views, by estimating how well a view can
redict a class. They called this version PSO-WC. One of the four
lassification algorithms – KNN, Naive Bayes, Rocchio, and SVM is
pplied to each view. They conducted experiments using PSO-WV
nd PSO-WC on two problems: a document classification prob-
em from ACM-DL dataset and classification of users of video social
etwork – YouTube dataset. The comparison of results show that
SO-WV has better results for YouTube dataset, and PSO-WC was
etter for ACM-DL dataset. Both approaches outperformed a single
lassifier on both datasets.

Similar approaches have been applied to other problems besides

ntrusion detection. We  found [11] to be the most similar work to
urs. The authors proposed an ensemble of classifiers to perform a
lassification task for four well-known datasets: Hearth, Diabetes,
ris, and Transfusion. An ensemble is generated based on opinions of
Soft Computing 38 (2016) 360–372 361

four expert systems: Linear Discriminant Classifier (LDC), Quadratic
Discriminant Classifier (QDC), k-nearest neighbor (KNN) and back
propagation (BP). The opinion of each expert in the ensemble is
weighted by a set of coefficients generated by PSO. The ensemble is
created by combining the opinions of the experts, each multiplied
by a weight coefficient, with weighted majority voting (WMV). The
experimental results indicate the PSO-WMV approach had greater
accuracy compared to the other ensemble approaches like Mean,
Maximum, Minimum and Median Combiner and simple majority
voting. The authors did not provide any implementation details nor
specify their PSO objective function.

In this paper, we adopt the same approach for utilizing PSO
in majority voting process, but with methodology specifically
designed for IDS. We  also introduced LUS as a meta-optimizer for
PSO, while [11] only used base PSO. Since two papers used dif-
ferent experimental datasets, it is not possible to make a direct
comparison of the results.

3. Methodology

3.1. System framework

As stated earlier the objective of this paper is to develop ensem-
ble based classifiers that will improve the accuracy of intrusion
detection. For this purpose, we  trained and tested twelve experts
and then combined them into an ensemble. We  used the PSO algo-
rithm to weight the opinion of each expert. Because the quality of
the behavioral parameters inserted by the user into PSO strongly
affects its effectiveness, we have used the LUS method as a meta-
optimizer for finding high-quality parameters. We  then used the
improved PSO to create new weights for each expert. For com-
parison, we also developed an ensemble classifier with weights
generated using WMA  [12]. Fig. 1 depicts the entire process. For
simplicity, the system framework was divided into the following
seven stages:

1. Kdd99 data pre-processing.
2. Data classification with six different SVM experts.
3. Data classification with six different k-NN experts.
4. Data classification with ensemble classifier based on PSO.
5. Data classification with ensemble classifier based on LUS

improvement of PSO.
6. Data classification with ensemble classifier based on WMA.
7. Comparison of results for each approach.

3.2. Dataset used for experiments

We used the knowledge discovery and data mining 1999
(KDD99) dataset [13] in the experiments. The dataset contains
hundreds of thousands of connection records. For each TCP/IP con-
nection, 41 different quantitative and qualitative features were
extracted. Each single set of 41 features represents one observa-
tion that is either in a normal or an intrusion state. Ref. [14] gives a
description of all features.

To correctly assess the performance of each classifier we  need,
at least, two distinct datasets: one for training and one for testing.
Optionally a third dataset may  be obtained to validate classifiers,
and we  decided to create a new sub-set especially for validation.
All the data comes from [13], and can be divided into three groups:

1. Training data: (kddcup.data 10 percent.gz), this data is used to

train each expert in the ensemble.

2. Testing data: (corrected.gz), this data is used to evaluate the per-
formance of each base classifier in the system, as well as the
performance of ensemble classifiers.
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Fig. 1. Sys

. Validation data: a unique sub-set created from corrected.gz file.
Data used for validation was removed from other datasets, to
ensure the independency of the validation process.

The KDD99 dataset is divided into normal traffic and four classes
f attacks [15]:

Denial of Service (DoS): A connections trying to prevent authentic
users from getting access to the services in the targeted machine.
Probe (Scanning): A connections searching potential weaknesses
on target machine.
Remote to Local (R2L): A connections trying to acquire illegal
access to a network or computer.
User to Root (U2R): A connection in which an attacker has already
gained access, but is attempting to gain super user privileges.

Table 1 represents the number of observations for each attack
orted in one of the four intrusion states. Testing data introduces
ome new types of attacks, marked with gray shade. Observations
or these attacks were not available during training of each expert.

Table 2 provides information about the number of observations
n training and testing datasets for each class.

This experiment used five data sets, taken from the training and
esting KDD99. As shown in Table 3, all five samples are of the same
ize, but contain different observations selected at random from the
raining and testing datasets represented in Table 2.

.3. Data pre-processing

To use the proposed classification methods we need to ensure
hat each observation is a set of numeric values. We  also need to
nsure that each class can be represented as numeric value as well.
DD99 data includes three symbolic features that are incompatible
ith the proposed classification algorithms:

Protocol type – this feature represents connection protocol (e.g.
tcp, udp,...).
Service – this feature represents destination service (e.g. telnet,
ftp,...).
Flag – this feature represents status flag of the connection.
We perform data pre-processing in two steps:

Data mapping: Symbolic values of three features were mapped
to numeric values for each observation in training, validation and
amework.

testing datasets. The value for each of three features is mapped to
a numeric value ranging from 1 to N, where N is the total number
of symbols for each feature.
• Identification of State. The KDD99 dataset includes a state for each

set of features, where the state is either a normal connection or
a type of attack as represented in Table 1. This means that each
record in the data belongs to one of five major classes: Normal,
DoS, Probe, U2R, and R2L. The values for each state are mapped to
a numeric value. More specifically the Normal class was  mapped
to the number 1, Probe to 2, DoS to 3, U2R to 4, and R2L to 5.

3.4. SVM classifier

Support vector machines (SVM) are an effective technique for
solving classification and regression problems. SVM is originally
an implementation of Vapnik’s Structural Risk Minimization (SRM)
principle [16], which is known to have low generalization error or
equivalently does not suffer much from overfitting to the training
data set. A model is said to overfit or has a high generalization error
if it performs poorly on instances not present in the training set.
SVM is particularly effective on data sets that are linearly separable,
i.e. where hyperplane H can be found that partitions the instances
into two  classes such that instances in one class (almost) entirely
fall on one side of H. Since there is an infinite number of candi-
date hyperplances that can be selected, SVM selects the hyperplane
H so that it maximizes its distance to the nearest data points in
either class. This is refered to as margin maximization. So far, we
have only considered the case where the data set is linearly sep-
arable. However, for many real-life data sets, such a hyperplane
may  not exist. In these cases, SVM uses a function to map  the data
into a different feature space where such separability is then pos-
sible. This transformation often comes in the form of mapping to a
high-dimensional space. A function used to perform such a trans-
formation is called a kernel function. Thus, kernel functions play a
pivotal role both in the theory and application of SVM.

The following kernel functions are commonly used along with
SVM [17].

• Linear kernel: k(xi, xj) = xixj
• Polynomial kernel: k(xi, xj) = (yxt
i
xj + rd)

2

• RBF kernel: k(xi, xj) = e�‖xi−xj‖2

• Sigmoid kernel: k(xi, xj) = tanh(yxt
i
xj + r)
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Table  1
Attack distribution.

Class In training Testing Total

Attack names Samples Total Attack names Samples

DOS

teardrop 979

391,458

Apache 2 794

229,853

smurf 280,790 Back 1098
neptune 107,201 land 9
Pod 264 mailbomb 5000
Back  2203 neptune 58,001
Land 21 pod 87

processtable 759
smurf 164,091
teardrop 12
udpstorm 2

Probe

satan 1589

4107

ipsweep 306

4166

nmap 231 mscan 1053
ipsweep 1247 nmap 84
portsweep 1040 portsweep 354

saint 736
satan 1633

U2R

perl  3

52

buffer overflow 22

70

buffer overflow 30 loadmodule 2
rootkit 10 perl 2
loadmodule 9 ps 16

rootkit 13
sqlattack 2
xterm 13

R2L

ftp  write 8

1126

ftp write 3

16,347

Warezclient 1020 guess passwd 4367
Warezmaster 20 imap 1
Spy 2 multihop 18
guess passwd 53 named 17
Imap 12 phf 2
multihop 7 sendmail 17
Phf 4 snmpgetattack 7741

Snmpguess 2406
warezmaster 1602
worm 2
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To extend SVM to multi-class classification, a set of five binary
lassifiers are trained, one for each class. Let i = (1, . . .,  5) be an index
nto the quintuple T = (Normal, Probe, DoS, U2R, and R2L) and let Bi
enote the corresponding binary classifier for the target class i in T.
ll five binary classifiers were trained using the whole training set,
ut each for its corresponding target class. In other words, when
raining the classifier Bi, the label 1 is assigned to observations that
elong to class i, and 0 to those that belong to any other class. This is
nown as the One-Versus-All approach for classifying the observa-
ions into one of the five classes. To differentiate among the binary
lassifiers, we introduce term expert,  to denote one set of five binary
lassifiers. Fig. 2 illustrates the relationship between binary classi-
ers and experts and gives the output format of classification for
ach class.
SVM produces the best results for classification when the RBF
ernel function is used [16]. Experimental results have shown
hat performance of SVM classifiers with RBF kernel function will

able 2
umber of observations in KDD99.

Connection type Training dataset Testing dataset

Normal 97,278 60,593
Dos  391,458 229,853
Probe 4107 4166
R2L 1126 16,347
U2R 52 70
Total 494,021 311,029
xlock 9
xsnoop 4
httptunnel 158

vary with the selection of RBF function. Therefore, in this paper,
we train six different SVM experts with different RBF parame-
ters, to ensure that SVM algorithm is maximally utilized. This
approach will also ensure greater diversity of experts in ensemble
classifier.

Selected values for RBF parameter are defined by RBF vector
with values: RBF = [5 2 1 0.5 0.2 0.1].

Later, it will be demonstrated that accuracy of each binary clas-
sifier inside each expert system will vary, according to the selected
value in RBF vector. Based on RBF vector six SVM experts are devel-
oped as follows:

SVM 1: RBF = 5;
SVM 2: RBF = 2;
SVM 3: RBF = 1;

SVM 4: RBF = 0.5;
SVM 5: RBF = 0.2;
SVM 6: RBF = 0.1.

Table 3
Dataset size used in experiments.

Normal DoS Probe U2R R2L Total

Training 5000 4107 5000 52 1126 15,285
Testing 7500 3124 7500 52 3750 21,926
Validation 2500 1042 2500 18 1250 7310
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Fig. 2. Structure

.5. k-NN classifier

The k-nearest neighbour (k-NN) is a simple and effective tech-
ique for objects classification according to the closest training
xamples in the feature space [18]. Consider a set of observations
nd targets (x1, y1), . . .,  (xn, yn), where observations xi ∈ Rd and tar-
ets yi ∈ {0, 1}; then for a given i, k-NN rates the neighbours of a
est sequence among the training sample, and uses the class labels
f the nearest neighbours to predict the test vector class. So, k-NN
akes the new points and classifies them according to the majority
f the votes obtained for the K nearest points in the training data.
n k-NN, the Euclidean distance is often used as the distance metric
o measure the similarity between two vectors (points):

2(xi, xj) = ‖xi − xj‖2 =
d∑

k=1

(xik − xjk)2 (1)

here (xi, xj) ∈ Rd, xi = (xi1, xi2, . . .,  xid).
Unlike SVM, k-NN classifiers can be used to solve multi-class

roblems. However, to make k-NN experts and SVM experts com-
atible, we needed to implement five binary classifiers for this
ethod as well. Therefore, the structure of the k-NN expert system,

epicted Fig. 2, is the same as that of the SVM expert. Compatibility
etween this two approaches enables us to combine both SVM and
-NN experts into an ensemble expert system.

The k parameter of k-NN classifiers represents the number of
eighbors in a set of training observations that are nearest to the
iven observation in validation or testing data set. Variation of this
arameter will affect the accuracy of each binary classifier inside
n expert.

To ensure greater diversity of classifiers and to maximally utilize
otential of k-NN classifier, we have created six k-NN experts with
ifferent values of k parameter, defined by k vector:

 = [1,  3, 5, 7, 9, 11].

By selecting different k parameter we create six k-NN experts as
ollows:
k-NN 1: k = 1;
k-NN 2: k = 3;
k-NN 3: k = 5;
k-NN 4: k = 7;
 expert system.

k-NN 5: k = 9;
k-NN 6: k = 11.

3.6. Ensemble approach with WMV

The very idea of majority voting is simple and intuitive; first,
votes are assigned to each expert’s opinion. The opinion with the
most votes is accepted as the final decision. Littlestone and War-
muth [12], have shown that we can reduce number of mistakes that
ensemble system makes by introducing weights to the majority
voting process. A detailed description of methodology and proofs
are presented in [12], and we  will provide details of WMV  imple-
mentation for IDS in this section.

In this paper we  use voting procedure, as described in [12], to
combine opinions of the base experts in an ensemble. Each expert
is assigned a weight derived from the expert’s accuracy in classi-
fying validation sample. Since each expert consists of five binary
classifiers Bi (as shown in Fig. 2), we consider expert’s opinion for
each class i separately. Based on the output of each binary classifier
Bi we  can divide expert’s opinions in two  categories:

• Experts which classify given observation as an instance of class i
(output value 1) and
• Experts which claim that given observation belongs to some other

class than i (output value 0).

The voting procedure is repeated for each observation x, and
for each binary classifier inside expert. As a result, we generate an
ensemble expert, with five binary classifiers – one for each class.

This paper presents three methods to generate weight: by using
PSO algorithm; by using PSO algorithm with LUS improvements of
PSO algorithm and with WMA.  PSO and LUS-PSO based ensembles
are a novel way to combine expert opinions, for intrusion detection
systems.

We define a set of weight coefficients w as a twelve element
vector, where each element j represents weight for jth expert in
ensemble. i.e. w = (w1, w2, . . .,  w12).

To define a final decision function, we  must first consider how

weights are used in the voting process. For a single observation x,
we obtain twelve output values (y1, y2 . . . , y12), one output value
per expert. Each value can be defined as a positive or a negative
instance, i.e. yj = {1, − 1}.where value 1 corresponds to expert’s
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utput 1, and negative value −1 represents expert’s output 0. The
nal decision y is reached by evaluation of Eq. (2).

 = sgn

(
j=12∑
i=1

wj · yj

)
(2)

here tie cases, sgn(0), are broken randomly
Each coefficient wj is multiplied with output from jth expert yj

nd final decision is formed by determining the sign of the sum of
eight coefficients for all twelve experts.

.7. PSO algorithm

Particle swarm optimization is a population-based iterative
ptimization algorithm, formulated by Kennedy and Eberhart [22].
SO is derivative-free, zero-order method. That means it does not
eed gradients, so it can be applied to a variety of problems,

ncluding those with discontinuous or non-convex and multimodal
roblems.

The algorithm starts out with a set of agents, called particles,
n random positions in the problem space. Each is also assigned
andom velocity at the outset. A fitness function is defined on a
article’s location. The optimization problem to be solved is to
nd the best position, i.e. the one that minimizes the fitness func-
ion. Through each iteration, the algorithm evaluates each particle’s
tness, updates its velocity, and computes its new position. A parti-
le’s new velocity depends on its current velocity, its distance from
ts own best position so far and its distance from the populations
est position yet.

Compared to genetic algorithms (GA), PSO has no evolution
perators such as crossover and mutation which makes it easy to
mplement with great success to several problems wherever GA
an be applied [5].

The mathematical basis of the algorithm [19] is as follows. Let
 ⊂ Rn be the search space and f : A → Y ⊆ R be the objective func-
ion. We  assume as well that A is also the feasible space of the given
roblem. In other words there are no more explicit constraints

mposed on the candidate solutions. We mentioned earlier that the
lgorithms analogous to a swarm of solutions which floats through
earch space. Thus we define the search space to be the set of all
he positions of the N particles (candidate solutions) S = {s1, s2, s3,

 . .,  sN}. Each solution si is defined as si = (si1, si2, . . .,  sin)T for i = (1,
, . . .,  N). where n is a dimension of the search space.

Indices are arbitrarily assigned to particles, while the number
f particles N is a user-defined parameter of the algorithm. The
bjective function f(s) is assumed to be available for all points in A.
herefore each particle has a unique function value, fi = f(si) ∈ Y.

The particles are assumed to move within the search space
 iteratively. This is done by updating their position using

 proper position shift, named velocity and denoted as vi =
vi1, vi2, . . .,  vin)T , i = (1,  2, . . .,  N).

Velocity is iteratively updated so that every particle can visit
ny region of A. If t stands for the iteration counter (or time unit),
hen the current position of the ith particle and it’s velocity will be
enoted as si(t) and vi(t), respectively.

Each best position of every particle is stored in a memory array
hich contains the best positions, pi = (pi1, pi2, . . .,  pin)T ∈ A, for

 = (1, 2, . . .,  N). So in addition to the swarm set S we  have the
et P = {p1, p2, . . .,  pN} for the best positions. These positions are

efined as pi(t) = arg mint(fi(t)). Analogous to the interaction of ants,
here is a communication mechanism that shares information of
he best position visited by all particles. This position is defined as
g = arg mintf(pi(t)).
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While there are slightly different versions of the PSO update
equations, the version we  have used in this work is the one defined
by the following equations (Eberhart et al. [20]):

vij(t + 1) = ωvij(t) + �prp(pij(t) − xij(t)) + �grg(pgj(t) − xij(t)) (3)

sij(t + 1) = sij(t) + vij(t + 1) (4)

where i = 1, 2, . . .,  N is an index of each particle in the swarm; j = 1,
2, . . .,  n represents jth element of ith particle si(t) and velocity vi(t);
rp, rg are uniformly distributed stochastic variables; pi(t) is the par-
ticle’s best position in previous iteration; pg(t) is the best position
in whole swarm for previous iteration.

Factors: ω, �p, and �g are user defined behavioral parameters,
and they represent weight or inertia quotient, particle acceleration
and swarm acceleration respectively.

The pseudocode of the PSO algorithm is defined as:

Algorithm 1. PSO algorithm
1: procedure PSO
2: for particle i ∈ {1, 2, . . ., N} do
3:  for dimension j ∈ {1, 2, . . .,  n} do
4:  set sij ∼ U(lowerBoundaryj , upperBoundaryj)
5: set dj← |upperBoundaryj − lowerBoundaryj|
6:  set vij∼U(−dj, dj)
7: set pij← sij

8: if f(pij) < f(pgj) then
9:  set pgj← pij

10: for timestep t ∈ {1, 2, . . ., Imax} do
11: for particle i ∈ {1, 2, . . .,  N} do
12: set rp ∼ U(0, 1)
13: set rg ∼ U(0, 1)
14:  for dimension j ∈ {1, 2, . . .,  n} do
15: update vij, sij from (3), (4)
16: if f(sij) < f(pij) then
17:  set pij← sij

18: if f(pij) < f(pgj) then
19: set pgj← pij

20: print best solution pgj

Stopping criteria is met  when iteration t reaches the maximal
allowed number of iterations Imax. A set of particles sg(t = Imax)
with minimal value of fitness function is declared to be the opti-
mal  solution. In this paper, particle with best fitness sg = (sg1, sg2,
. . .,  sgn) will represent the optimal set of weight coefficients w =
(w1, w2, . . ., wn), where n represents number of expert in ensem-
ble. Therefore, each particle s represents a potential set of weight
coefficients w.

For each observation x in the sample, we  evaluate the Eq. (2) in
order to obtain class predicted by voting algorithm y. The correct
class (target) T is provided for each observation in the training set.
In a training set of a size m, we  define a number of correctly clas-
sified observations c, as each instance in training sample for which
the predicted output y is same as a target T, i.e. y = T. The accuracy
for generated set of weights ACC(w) is a fraction of correctly clas-
sified observations, i.e. ACC(w)  = c

m , where m is a total number of
observations from validation sample.

To achieve better performance of ensemble classifiers we  need
to maximize accuracy or minimize the error for each particle in
the swarm. Therefore we define our fitness function, that is to be
minimized, as:

ACC(w)  = 1 − c

m
(5)

Weights are generated for each class separately. The ensemble
classifier created with PSO weights will have same structure as an
expert, illustrated with Fig. 2. Consequently, we need to generate

five sets of weights with PSO, one for each binary classifier in base
expert.

It is important to note that the validation data is used to gener-
ate weights. This is necessary because we are not able to correctly
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of PSO weights that were derived with base PSO, with user set PSO
parameters. Thus, we ensure that LUS will generate set of weights
with better accuracy than those generated by PSO.
Fig. 3. Converge

valuate accuracy of each classifier with the training data. Eval-
ating model performance with the data used for training is not
cceptable because this will result in strongly biased weights and
an easily generate overfitted model. To determine fitness value we
annot use testing data either, since testing targets must be used
nly to evaluate the performance of each expert system, whether
t is a base classifier or an ensemble. To generate the validation
ataset, we took a subset from the corrected.gz file which is used
or testing and this subset was removed from all datasets used in
he testing process. In such way we insure the independency of the
alidation process.

Fig. 3 represents convergence of PSO algorithm towards optimal
olution, for each of our five classes.

.8. LUS algorithm

As stated earlier, the number of PSO parameters are defined by
he user. These parameters are:

N – number of particles,
Imax – number of iterations of PSO algorithm,
ω – weight or inertia quotient,
�p – particle acceleration and
�g – swarm acceleration.

A user may  choose to impose limits for the minimal and maximal
alue of weights and velocities for PSO algorithm. The performance
f PSO is strongly influenced by selection of these parameters.
lthough it is possible to determine them by trial-and-error, it

s more effective to select parameters by adding a layer of opti-
ization. The structure of meta-optimization algorithm for PSO is

hown in Fig. 4.
Algorithm used as a meta-optimizer is a method called local uni-

odal sampling (LUS). As explained in Pedersen [21], this method

oes not require evaluation of the gradient, and it is derivative-free.

nstead it uses a sampling method to find the optimum choice of
arameters by gradually adapting the search-range through itera-
ion.
f PSO algorithm.

The basic idea behind LUS is to decrease iteratively search range
di for each parameter i until the optimal solution is reached. We
define search range as d = (1, 2, . . .,  n), where n is the total num-
ber of parameter to be optimized. In our case n = 5. Initial search
range, at timestep t = 0, is derived from user defined upper and
lower boundary bup and blow, respectively.

→
d ←

→
bup −

→
blow (6)

The optimal solution s is defined in similar fashion as: s = (s1, s2,
. . .,  sn) and, at timestep t = 0, value of each parameter is initialized
to uniformly distributed random number with value that is inside
search range boundaries:

→
s∼U(

→
blow,

→
bup) (7)

At this stage, the fitness function is evaluated for the initial set
of parameters s. As with PSO, the objective is to find set of weights
that will maximize accuracy for each class in the ensemble. There-
fore the fitness function of both PSO and LUS is defined by Eq. (5).
Unlike in [21], we decided to set initial fitness value to the fitness
Fig. 4. Structure of the meta-optimization algorithm.
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After the initial fitness is evaluated, we generate a new set of
SO parameters snew, as defined by formula (8).

→
new =

→
s +→a (8)

able 4
xperimental results for SVM experts.

Expert Normal Probe 

Dataset 1
SVM 1: RBF = 5 75.9418% 96.2191% 

SVM  2: RBF = 2 76.5347% 95.2066% 

SVM  3: RBF = 1 81.4056% 94.8144% 

SVM  4: RBF = 0.5 76.895% 94.3993%
SVM  5: RBF = 0.2 72.9773% 93.6651% 

SVM  6: RBF = 0.1 69.8531% 92.2284% 

Dataset 2
SVM 1: RBF = 5 76.667% 96.438% 

SVM  2: RBF = 2 76.781% 95.3662% 

SVM  3: RBF = 1 80.229% 94.8053% 

SVM  4: RBF = 0.5 77.2827% 94.4814% 

SVM  5: RBF = 0.2 75.2622% 93.7061% 

SVM  6: RBF = 0.1 71.7185% 92.3561% 

Dataset 3
SVM 1: RBF = 5 76.0695% 96.1507% 

SVM  2: RBF = 2 76.4572% 95.0926% 

SVM  3: RBF = 1 78.0398% 94.6776% 

SVM  4: RBF = 0.5 76.8084% 94.3401% 

SVM  5: RBF = 0.2 71.4449% 93.6103% 

SVM  6: RBF = 0.1 68.9501% 92.2786% 

Dataset 4
SVM 1: RBF = 5 75.5997% 96.3012% 

SVM  2: RBF = 2 75.8597% 95.0424% 

SVM  3: RBF = 1 78.6555% 94.6684% 

SVM  4: RBF = 0.5 76.5256% 94.3309% 

SVM  5: RBF = 0.2 71.3445% 93.6605% 

SVM  6: RBF = 0.1 69.014% 92.3333% 

Dataset 5
SVM 1: RBF = 5 76.635% 96.5156% 

SVM  2: RBF = 2 76.4435% 95.3434% 

SVM  3: RBF = 1 79.8778% 94.8645% 

SVM  4: RBF = 0.5 77.2553% 94.445% 

SVM  5: RBF = 0.2 75.3535% 93.7335% 

SVM  6: RBF = 0.1 72.0104% 92.347% 
f LUS algorithm.
where a = (a1, a2, . . .,  an), is a vector of uniformly distributed random

values inside search range d, i.e.
→
a∼(

→
−d,

→
d )

A Fitness value is calculated using the new set of parameters
snew and value is compared to the initial fitness. If the new set of

DoS U2R R2L

93.9706% 98.6819% 84.621%
95.5943% 99.5166% 83.832%
98.577% 99.6169% 83.8001%
98.3399% 99.6853% 83.4626%
94.7095% 99.74% 83.4215%
93.697% 99.7492% 83.1433%

94.6547% 98.5451% 84.662%
98.5086% 99.4071% 83.9141%
98.796% 99.5667% 83.8548%
98.7914% 99.6534% 83.4626%
96.9716% 99.7492% 83.4124%
95.2568% 99.7537% 83.2528%

93.9387% 98.4676% 84.4887%
98.6409% 99.4983% 83.7727%
98.723% 99.6534% 83.7818%
97.4824% 99.7081% 83.4489%
93.6149% 99.7446% 83.4124%
93.0813% 99.7583% 83.1479%

93.3823% 98.6591% 84.5207%
94.3674% 99.5029% 83.8457%
95.5031% 99.6215% 83.7362%
96.4015% 99.6671% 83.4306%
93.4826% 99.7309% 83.385%
93.0265% 99.7537% 83.1524%

93.9752% 98.5588% 84.4386%
97.7105% 99.4983% 83.8457%
98.8279% 99.6123% 83.7955%
98.723% 99.6807% 83.4762%
97.2453% 99.7446% 83.4261%
95.4255% 99.7492% 83.1752%
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Table 5
Experimental results for k-NN experts.

Expert Normal Probe DoS U2R R2L

Dataset 1
k-NN 1: k = 1 81.1685% 96.3331% 97.861% 99.6944% 83.2756%
k-NN  2: k = 3 81.0362% 95.8725% 97.8427% 99.7355% 83.2756%
k-NN  3: k = 5 76.3204% 95.8451% 93.4917% 99.7902% 83.2117%
k-NN  4: k = 7 76.3705% 95.8816% 92.8715% 99.7856% 82.8195%
k-NN  5: k = 9 76.3295% 95.9774% 92.9673% 99.7948% 82.8195%
k-NN  6: k = 11 76.2565% 96.0504% 93.0357% 99.7948% 82.8058%

Dataset  2
k-NN 1: k = 1 81.1913% 96.3468% 97.7105% 99.6215% 83.2528%
k-NN 2: k = 3 80.8401% 95.9546% 97.7333% 99.6944% 83.2938%
k-NN  3: k = 5 80.4296% 95.7904% 97.4733% 99.7446% 83.2391%
k-NN  4: k = 7 79.0249% 95.8634% 96.5429% 99.7765% 82.8423%
k-NN  5: k = 9 79.1526% 95.9135% 93.2774% 99.772% 82.8423%
k-NN  6: k = 11 80.7352% 96.0732% 92.8167% 99.772% 82.8149%

Dataset  3
k-NN 1: k = 1 80.9222% 96.1689% 97.5828% 99.6853% 83.1798%
k-NN  2: k = 3 80.8811% 95.8269% 97.8245% 99.7172% 83.1935%
k-NN  3: k = 5 81.0818% 95.7949% 97.2225% 99.7674% 83.1387%
k-NN  4: k = 7 75.96% 95.8907% 92.2603% 99.7948% 82.7921%
k-NN  5: k = 9 75.8369% 96.0184% 92.3424% 99.7993% 82.7784%
k-NN  6: k = 11 75.8551% 96.1689% 92.4792% 99.7993% 82.7693%

Dataset  4
k-NN 1: k = 1 81.433% 96.438% 97.3% 99.6944% 83.2026%
k-NN  2: k = 3 80.2153% 95.8725% 96.2328% 99.7355% 83.2619%
k-NN  3: k = 5 78.9337% 95.8041% 95.3115% 99.7993% 83.1661%
k-NN  4: k = 7 75.6773% 95.7813% 92.4154% 99.7993% 82.8012%
k-NN  5: k = 9 75.7001% 95.9409% 92.5021% 99.7993% 82.8012%
k-NN  6: k = 11 75.7229% 96.0914% 92.5978% 99.7993% 82.7921%

Dataset  5
k-NN 1: k = 1 81.1183% 96.0777% 97.7105% 99.6351% 83.271%
k-NN  2: k = 3 76.2975% 95.9135% 93.0083% 99.6762% 83.312%
k-NN  3: k = 5 76.0376% 95.6536% 93.1588% 99.7537% 83.2938%

p
t
d
p

→

T
E

k-NN  4: k = 7 76.2109% 95.7858% 

k-NN  5: k = 9 76.3477% 95.9455% 

k-NN  6: k = 11 76.2793% 96.1598% 

arameters produces weights with greater accuracy, we adopt
his set as the current optimal solution, i.e. s = snew. Otherwise, we
ecrease search range with Eq. (9), and determine a new set of

arameters snew, for decreased search range d.

d = q
→
d (9)

able 6
xperimental results for ensemble experts.

Expert Normal Probe 

Dataset 1
PSO based 83.458% 96.1416% 

LUS  based 83.5036% 96.8759% 

WMA  based 65.794% 96.2191% 

Dataset  2
PSO based 82.8104% 96.9443% 

LUS  based 83.1114% 96.9078% 

WMA  based 65.794% 96.3468% 

Dataset  3
PSO based 83.8457% 96.6159% 

LUS  based 83.8776% 96.7025% 

WMA  based 65.794% 96.1507% 

Dataset  4
PSO based 83.9642% 96.6341% 

LUS  based 83.9642% 96.7527% 

WMA  based 65.794% 96.438% 

Dataset  5
PSO based 83.9825% 97.0492% 

LUS  based 83.9825% 97.0492% 

WMA  based 65.794% 96.0777% 
92.4884% 99.8039% 82.856%
92.6252% 99.8084% 82.8377%
92.6161% 99.8084% 82.8195%

We  define decrease factor q as:

(
1
)ˇ/n
q =
2

(10)

where:  ̌ is a user defined behavior parameter and n is a number
of PSO parameters that are being optimized.

DoS U2R R2L

98.8461% 99.8084% 84.7396%
98.8461% 99.8084% 84.7259%
98.577% 99.7948% 82.897%

98.9191% 99.7674% 84.9676%
98.9145% 99.7674% 84.9676%
98.796% 99.772% 82.897%

98.8917% 99.7993% 84.6666%
98.8917% 99.7993% 84.6666%
98.723% 99.7948% 82.897%

98.6409% 99.8176% 84.7259%
98.7184% 99.8176% 84.6894%
97.3% 99.7993% 82.897%

98.8963% 99.8039% 84.7578%
98.8963% 99.8221% 84.7578%
98.8279% 99.8084% 82.897%
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Table  7
Average results for 5 datasets.

Expert Normal Probe DoS U2R R2L

SVM 1 76.1826% 96.3249% 93.9843% 98.5825% 84.5462%
SVM  2 76.4152% 95.2102% 96.9643% 99.4846% 83.8420%
SVM  3 79.6415% 94.7660% 98.0854% 99.6142% 83.7937%
SVM  4 76.9534% 94.3993% 97.9476% 99.6789% 83.4562%
SVM  5 73.2765% 93.6751% 95.2048% 99.7419% 83.4115%
SVM  6 70.3092% 92.3087% 94.0974% 99.7528% 83.1743%
k-NN  1 81.1667% 96.2729% 97.6329% 99.666% 83.2364%
k-NN 2 79.8540% 95.8880% 96.5283% 99.7118% 83.2674%
k-NN  3 78.5606% 95.7776% 95.3316% 99.7710% 83.2099%
k-NN  4 76.6487% 95.8407% 93.3157% 99.7920% 82.8222%
k-NN  5 76.6734% 95.9591% 92.7429% 99.7948% 82.8158%
k-NN  6 76.9698% 96.1087% 92.7091% 99.7948% 82.8003%

i
f

A

i
T
i
c

PSO  based 83.6121% 96.6770%
LUS based 83.6878% 96.8576%
WMA  based 65.794% 96.2464% 

The process is repeated iteratively until the maximal number of
terations maxEval for LUS algorithm is reached, or until accuracy
or generated set of weights is 100%.

We  define the LUS algorithm as:

lgorithm 2. Meta-PSO algorithm
1: procedure LUS
2:  set q ← 2−ˇ/n

3: for dimension j ∈ {1, 2, . . .,  n} do
4: set sj ∼ U(lowerBoundaryj , upperBoundaryj)
5:  set dj← |upperBoundaryj − lowerBoundaryj|
6:  while eval < maxEval and fitness > acceptFitness do
7:  set aj ∼ U(− dj , dj)
8: set yj← sj + aj

9: if f(yj) < f(sj) then
10: set sj← yj

11: else
12: set dj← q · dj

The LUS algorithm does not generate weights directly. Instead,

t uses PSO to generate weights by optimizing the PSO parameters.
his means that LUS will produce results in the same format as PSO,
.e. five sets of weights will be generated, one for each class. The
onvergence of LUS algorithm for each class is presented in Fig. 5.

Fig. 6. Accuracy of 
98.8388% 99.7993% 84.7715%
98.8534% 99.8029% 84.7615%
98.4448% 99.7939% 82.897%

As with PSO, LUS also uses validation sample to obtain optimal
weights.

3.9. Weighted majority algorithm

Weighted majority algorithm was  first introduced in [12], and
since then it has gained popularly as an effective method for com-
bining classifiers into an ensemble. To compare the efficiency of
developed methods, we  have also implemented WMA  to gener-
ate a set of weights in same way as PSO and LUS. Same as with
PSO and LUS, WMA  uses validation sample to obtain weights for
each classifier. All opinions are awarded initial weight with value
1, and opinions are combined with WMV  algorithm, as described
earlier. The predicted class is then compared with the target pro-
vided for the validation process, one observation at a time. All base
experts that made a mistake have their initial weight divided by
learning factor ˇ. Learning factor  ̌ is user defined parameter, and
it may  take values in range 0 <  ̌ < 1. The process is repeated for each

observation in validation sample.

It was proved in [12] that after each trial in which a mistake
occurs the sum of the weights is at most u times the sum of the
weights before the trial Winit, for some u < 1. If the initial total weight

SVM experts.
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s Winit and the lower bound for the total final weight is Wfin, then
initum ≥ Wfin must hold, where m is the number of mistakes.

 ≤ log(Winit/Wfin)
log(1/u)

(11)

WMA is defined by the following pseudocode:

lgorithm 3. WMA
1: procedure WMA
2:  set W ← Winit

3: for i ∈ {1 . . . length(data)} do
4:  set Q1← Sum(result(i, ) = =1)
5:  set Q0← Sum(result(i, ) = =0)
6:  if Q0 > Q1 then
7:  set Q ← 0
8:  else if Q0 < Q1 then
9:  set Q ← 1
10: else
11: if rand() < 0.5 then
12: set Q ← 0
13: else
14: set Q ← 1
15: if Q = = data(i) then
16: set W(result(i, ) ! =0) ← ˇW(result(i, ) ! =0)
17: set W(result(i, ) = =0) ← ˇW(result(i, ) = =0)
18:  return W

. Experimental results

This study was conducted with Matlab-2012b 64bit, installed on
indows 7 professional 64bit with an Intel Core i7 Processor (8M
ache, up to 3.90 GHz), and 16 GB of RAM.

Training, validation and testing samples were drawn from five
atasets introduced in Table 1. In order to compare efficiency of pro-
osed algorithms, we establish two characteristics as a comparison
asis:
Elapsed time: The time it takes an algorithm to complete a given
task and
Classification accuracy: Proportion of the test data correctly
classified by an algorithm.
-NN experts.

A classification method cannot be considered superior to other
methods if it requires a great deal of time to yield relatively small
improvements. Since the proposed methods for generating weights
with PSO and improving PSO with LUS are novel in the context of
intrusion detection, we need to measure the time for these methods
to accomplish the given task to characterize their efficiency pre-
cisely. Measured times are compared to the time taken by WMV
method as defined in [12].

More relevant characteristic of the proposed method is the clas-
sification accuracy. We  define a classifier’s accuracy as the number
of correctly classified observations Ci of class i divided by the total
number of observations s. As depicted in Fig. 2, each expert con-
sists of five binary classifiers. Each binary classifier Bi is used to
classify instances of class i from the set of observations O = O1, O2,
. . .,  Os. Therefore, we  determine accuracy Ai of each binary classifier
according to Eq. (12).

Ai =
Ci

S
(12)

We consider the accuracy of each binary classifier separately.
To compare ensemble approaches more easily, we decided to use
the average score from each binary classifier. Our  objective is to
evaluate the efficiency of each classifier – base and ensemble alike.
To do so we define an expert’s accuracy Ei using Eq. (13).

Ei =
∑i=n

i=1Ai

n
(13)

where n = 5 is the number of classes. Calculated value is used only
as a point of comparison between different experts.

Experimental results, for each data set, are represented sep-
arately for SVM, k-NN and ensemble experts in Tables 4–6,
respectively.

Table 7 contains averaged results from all 5 datasets, presented

for each expert in system.

Times required to complete classification, for each ensemble
method, with data drawn from 5 datasets, are represented in
Table 8.
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Fig. 8. Accuracy of en

Table 8
Elapsed time for ensemble experts.

Dataset PSO based LUS based WMA  based

Dataset 1 7.162 s 3569.219 s 0.384 s
Dataset 2 7.201 s 4234.299 s 0.532 s
Dataset 3 7.089 s 2882.458 s 0.459 s

N
a

4

a
T

r
R

T
E

Dataset 4 7.022 s 3285.989 s 0.403 s
Dataset 5 6.962 s 3997.482 s 0.361 s

Figs. 6–8 are graphical representations of accuracies of SVM, k-
N and ensemble experts, respectively. In these figures, we  depict
ccuracy of each expert for dataset 1.

.1. Discussion

For each base and ensemble expert, we have calculated average
ccuracy of expert’s binary classifiers, and results are presented in

able 9.

Note that accuracy for base experts is relatively high. The accu-
acy of base experts varied in correspondence to selected value of
BF or k parameters and obtained expert’s accuracies are in the

able 9
xperimental results for ensemble experts

Experts Dataset 1 Dataset 2 

SVM 1 89.8869% 90.1934% 

SVM  2 90.1368% 90.7954% 

SVM  3 91.6428% 91.4503% 

SVM  4 90.5564% 90.7343% 

SVM  5 88.9027% 89.8203% 

SVM  6 87.7342% 88.4548% 

k-NN  1 91.6665% 91.6246% 

k-NN  2 91.5525% 91.5032% 

k-NN  3 89.7318% 91.3354% 

k-NN  4 89.5457% 90.81% 

k-NN  5 89.5777% 90.1916% 

k-NN  6 89.5886% 90.4424% 

PSO  based 92.5987% 92.6817% 

LUS  based 92.752% 92.7337% 

WMA  based 88.6564% 88.7212% 
semble experts.

range from 87.44% to 91.67%. Well-selected training data, good
choice of RBF and k parameters and wide range of variation in
selected parameters are some of the factors that produced high
accuracies of base classifiers.

Somewhat poorer results were obtained when instances of class
Normal were classified, with the accuracy of base classifiers going as
low as 68.95%. A similar trend, albeit less apparent, can be observed
with instances of class R2L. This occurs because the test data set
contain observations that were not used in training the classifiers.

When considering WMA  method, we observe strikingly low
average accuracy. The lower average accuracy of WMA  is due to
the relatively low accuracy of base classifiers for instances of classes
Normal and R2L. WMA  method was  proven unable to overcome dif-
ficulties presented by variations between testing and training data
for these classes and performs poorer than base classifier with the
lowest accuracy. For other classes, the performance of WMA  is sig-
nificantly better, with accuracy being slightly less than those of the
PSO and LUS methods.
The weights generated by WMA  are constrained to lie between
0 and 1. Unlike WMA,  weights generated by PSO do not have
such restrictions and can take on a positive or negative value.
This enables us to discredit experts with low accuracy more easily.

Dataset 3 Dataset 4 Dataset 5

89.823% 89.6926% 90.0246%
90.6923% 89.7236% 90.5683%
90.9751% 90.4369% 91.3956%
90.3576% 90.0711% 90.716%
88.3654% 88.3207% 89.9006%
87.4432% 87.456% 88.5415%
91.5078% 91.6136% 91.5625%
91.4886% 91.0636% 89.6415%
91.4011% 90.6029% 89.5795%
89.3396% 89.2949% 89.429%
89.3551% 89.3487% 89.5129%
89.4144% 89.4007% 89.5366%
92.7638% 92.7565% 92.8979%
92.7876% 92.7885% 92.9016%
88.6719% 88.4457% 88.681%
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imultaneously we can reinforce opinions given by more reliable
xperts; which provides us with better chances to reach a correct
nal decision.

An improvement of PSO parameters is obtained by performing
US meta-optimization; however expected improvement of accu-
acy is insignificant, especially when considering the exceptionally
ong time it takes LUS to complete.

. Conclusion

Through experimental results, we have demonstrated that clas-
ification accuracy can be improved by combining opinions from
ultiple experts into one using an ensemble approach. We  have

sed weighted majority voting (WMV)  to combine results from
ifferent experts. We combined the expert opinions using the
OS, meta-optimized PSO, and the WMA  approaches. The three
pproaches were empirically compared using the KDD99 datasets.
e showed empirically that the new method gives better accuracy

han WMA.
The best results we obtained were with PSO. On average we

ave accuracy improvement of 0.756 % compared to the accuracy
f the best base expert. If we consider the size of whole testing data,
.e. 311,029 observations, then we can expect better classification
esults for some 2351 observations. We  can also expect a relatively
hort time for PSO based ensemble to complete its task. The success
f PSO-based ensemble can be attributed to the sets of generated
eights, which were further optimized to produce results with best
ossible accuracy.

Combining base experts into an ensemble expert with the
ethodology proposed in [12] has not proved to be very success-

ul for intrusion detection systems. Very short running time of the
pproach has little value given its poor accuracy. The poor accu-
acy of WMA  is chiefly due to differences between training and
esting sets. This poor accuracy may  be corrected by defining dif-
erent parameters for WMA.  Even then, we could not hope to match
he PSO results since weights generated by WMA  would be strictly
ositive values.

The accuracy gains contributed by LUS come at the cost of much
onger runtimes. Although we have achieved an average improve-

ent of 0.0529% compared to PSO, it took, on average, 500 times
onger to achieve this improvement. Consequently, LUS has not
roven to be an effective method to combine base classifiers into
n ensemble for intrusion detection system.

So far our work was based on binary classification methods,
hich can distinguish between two states. In case of conflict

etween binary classifiers final decision is reached by comparing
heir accuracy. An alternative solution is possible by developing

ulti-class classification methods to serve as the base experts. A
ew method would be required to combine such classifiers into
n ensemble. Such a method could be the subject of future work.

n conclusion, we can state that weights generated with meta-
euristic algorithms can yield improved accuracy for intrusion
etection systems. As is frequently the case with randomized algo-
ithms, we have observed some variance in classification accuracy

[

[
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for different datasets. This suggests that further improvement could
be achieved by implementing different optimization algorithms
also based on meta-heuristics. Therefore, the goal of our future
work would be to implement and compare different optimization
algorithms for generating weights.
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