
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 2, SECOND QUARTER 2016 1153

A Survey of Data Mining and Machine Learning
Methods for Cyber Security Intrusion Detection

Anna L. Buczak, Member, IEEE, and Erhan Guven, Member, IEEE

Abstract—This survey paper describes a focused literature
survey of machine learning (ML) and data mining (DM) methods
for cyber analytics in support of intrusion detection. Short tuto-
rial descriptions of each ML/DM method are provided. Based on
the number of citations or the relevance of an emerging method,
papers representing each method were identified, read, and sum-
marized. Because data are so important in ML/DM approaches,
some well-known cyber data sets used in ML/DM are described.
The complexity of ML/DM algorithms is addressed, discussion
of challenges for using ML/DM for cyber security is presented,
and some recommendations on when to use a given method are
provided.

Index Terms—Cyber analytics, data mining, machine learning.

I. INTRODUCTION

T HIS paper presents the results of a literature survey of
machine learning (ML) and data mining (DM) meth-

ods for cyber security applications. The ML/DM methods are
described, as well as several applications of each method to
cyber intrusion detection problems. The complexity of differ-
ent ML/DM algorithms is discussed, and the paper provides a
set of comparison criteria for ML/DM methods and a set of
recommendations on the best methods to use depending on the
characteristics of the cyber problem to solve.

Cyber security is the set of technologies and processes
designed to protect computers, networks, programs, and data
from attack, unauthorized access, change, or destruction. Cyber
security systems are composed of network security systems
and computer (host) security systems. Each of these has, at a
minimum, a firewall, antivirus software, and an intrusion detec-
tion system (IDS). IDSs help discover, determine, and identify
unauthorized use, duplication, alteration, and destruction of
information systems [1]. The security breaches include external
intrusions (attacks from outside the organization) and internal
intrusions (attacks from within the organization).

There are three main types of cyber analytics in sup-
port of IDSs: misuse-based (sometimes also called signature-
based), anomaly-based, and hybrid. Misuse-based techniques
are designed to detect known attacks by using signatures of
those attacks. They are effective for detecting known type of
attacks without generating an overwhelming number of false

Manuscript received March 9, 2015; revised August 31, 2015; accepted
October 16, 2015. Date of publication October 26, 2015; date of current ver-
sion May 20, 2016. This work was supported by the Department of Homeland
Security Network Security Deployment Division under contract HSSA01-13-
C-2709 (Chris Yoon, Program Manager).

The authors are with The Johns Hopkins University Applied Physics
Laboratory, Laurel, MD 20723 USA (e-mail: anna.buczak@jhuapl.edu).

Digital Object Identifier 10.1109/COMST.2015.2494502

alarms. They require frequent manual updates of the database
with rules and signatures. Misuse-based techniques cannot
detect novel (zero-day) attacks.

Anomaly-based techniques model the normal network and
system behavior, and identify anomalies as deviations from nor-
mal behavior. They are appealing because of their ability to
detect zero-day attacks. Another advantage is that the profiles of
normal activity are customized for every system, application, or
network, thereby making it difficult for attackers to know which
activities they can carry out undetected. Additionally, the data
on which anomaly-based techniques alert (novel attacks) can
be used to define the signatures for misuse detectors. The main
disadvantage of anomaly-based techniques is the potential for
high false alarm rates (FARs) because previously unseen (yet
legitimate) system behaviors may be categorized as anomalies.

Hybrid techniques combine misuse and anomaly detection.
They are employed to raise detection rates of known intrusions
and decrease the false positive (FP) rate for unknown attacks.
An in-depth review of the literature did not discover many pure
anomaly detection methods; most of the methods were really
hybrid. Therefore, in the descriptions of ML and DM meth-
ods, the anomaly detection and hybrid methods are described
together.

Another division of IDSs is based on where they look for
intrusive behavior: network-based or host-based. A network-
based IDS identifies intrusions by monitoring traffic through
network devices. A host-based IDS monitors process and file
activities related to the software environment associated with a
specific host.

This survey paper focuses on ML and DM techniques for
cyber security, with an emphasis on the ML/DM methods and
their descriptions. Many papers describing these methods have
been published, including several reviews. In contrast to pre-
vious reviews, the focus of our paper is on publications that
meet certain criteria. Google Scholar queries were performed
using “machine learning” and cyber, and using “data mining”
and cyber. Special emphasis was placed on highly cited papers
because these described popular techniques. However, it was
also recognized that this emphasis might overlook significant
new and emerging techniques, so some of these papers were
chosen also. Overall, papers were selected so that each of the
ML/DM categories listed later had at least one and preferably a
few representative papers.

This paper is intended for readers who wish to begin research
in the field of ML/DM for cyber intrusion detection. As such,
great emphasis is placed on a thorough description of the
ML/DM methods, and references to seminal works for each ML

1553-877X © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1154 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 2, SECOND QUARTER 2016

and DM method are provided. Some examples are provided as
to how the techniques were used in cyber security.

This paper does not describe all the different techniques of
network anomaly detection, as do Bhuyan et al. [2]; instead
it concentrates only on ML and DM techniques. However, in
addition to the anomaly detection, signature-based and hybrid
methods are depicted. The descriptions of the methods in the
present survey are more in-depth than in [2].

Nguyen et al. [3] describe ML techniques for Internet traffic
classification. The techniques described therein do not rely on
well-known port numbers but on statistical traffic characteris-
tics. Their survey only covers papers published in 2004 to 2007,
where our survey includes more recent papers. Unlike Nguyen
et al. [3], this paper presents methods that work on any type of
cyber data, not only Internet Protocol (IP) flows.

Teodoro et al. [4] focus on anomaly-based network intrusion
techniques. The authors present statistical, knowledge-based,
and machine-learning approaches, but their study does not
present a full set of state-of-the-art machine-learning methods.
In contrast, this paper describes not only anomaly detection
but also signature-based methods. Our paper also includes the
methods for recognition of type of the attack (misuse) and for
detection of an attack (intrusion). Lastly, our paper presents the
full and latest list of ML/DM methods that are applied to cyber
security.

Sperotto et al. [5] focus on Network Flow (NetFlow) data and
point out that the packet processing may not be possible at the
streaming speeds due to the amount of traffic. They describe
a broad set of methods to detect anomalous traffic (possible
attack) and misuse. However, unlike our paper, they do not
include explanations of the technical details of the individual
methods.

Wu et al. [6] focus on Computational Intelligence meth-
ods and their applications to intrusion detection. Methods
such as Artificial Neural Networks (ANNs), Fuzzy Systems,
Evolutionary Computation, Artificial Immune Systems, and
Swarm Intelligence are described in great detail. Because
only Computational Intelligence methods are described, major
ML/DM methods such as clustering, decision trees, and rule
mining (that this paper addresses) are not included.

This paper focuses primarily on cyber intrusion detection as
it applies to wired networks. With a wired network, an adver-
sary must pass through several layers of defense at firewalls
and operating systems, or gain physical access to the network.
However, a wireless network can be targeted at any node, so it
is naturally more vulnerable to malicious attacks than a wired
network. The ML and DM methods covered in this paper are
fully applicable to the intrusion and misuse detection problems
in both wired and wireless networks. The reader who desires
a perspective focused only on wireless network protection is
referred to papers such as Zhang et al. [7], which focuses more
on dynamic changing network topology, routing algorithms,
decentralized management, etc.

The remainder of this paper is organized as follows:
Section II focuses on major steps in ML and DM. Section III
discusses cyber security data sets used in ML and DM.
Section IV describes the individual methods and related
papers for ML and DM in cyber security. Section V

discusses the computational complexity of different meth-
ods. Section VI describes observations and recommendations.
Lastly, Section VII presents conclusions.

II. MAJOR STEPS IN ML AND DM

There is a lot of confusion about the terms ML, DM, and
Knowledge Discovery in Databases (KDD). KDD is a full
process that deals with extracting useful, previously unknown
information (i.e., knowledge) from data [8]. DM is a particu-
lar step in this process—the application of specific algorithms
for extracting patterns from data. The additional steps in the
KDD process (data preparation, data selection, data cleaning,
incorporation of appropriate prior knowledge, and proper inter-
pretation of the results of DM) guarantee that useful knowledge
is extracted from available data. However, there are many publi-
cations [e.g., Cross Industry Standard Process for Data Mining
(CRISP-DM) [9]] and industry participants who call the whole
KDD process DM. In this paper, following Fayyad et al. [8],
DM is used to describe a particular step in KDD that deals with
application of specific algorithms for extracting patterns from
data.

There is a significant overlap between ML and DM. These
two terms are commonly confused because they often employ
the same methods and therefore overlap significantly. The pio-
neer of ML, Arthur Samuel, defined ML as a “field of study
that gives computers the ability to learn without being explic-
itly programmed.” ML focuses on classification and prediction,
based on known properties previously learned from the training
data. ML algorithms need a goal (problem formulation) from
the domain (e.g., dependent variable to predict). DM focuses
on the discovery of previously unknown properties in the data.
It does not need a specific goal from the domain, but instead
focuses on finding new and interesting knowledge.

One can view ML as the older sibling of DM. The term data
mining was introduced in late 1980s (the first KDD confer-
ence took place in 1989), whereas the term machine learning
has been in use since the 1960s. Presently, the younger sibling
(i.e., use of the term DM) is more popular than the older one,
which might be the reason why some researchers actually label
their work as DM rather than ML. This could be the reason that
when queries “machine learning” AND cyber and “data min-
ing” AND cyber were performed on Google Scholar, the first
retrieved 21,300 results and the second retrieved 40,800 results.
The methods used in the papers retrieved by the first query were
not significantly different from those in the papers retrieved by
the second query. Therefore, because this paper concentrates on
methods, we will call these methods ML/DM methods.

An ML approach usually consists of two phases: training and
testing. Often, the following steps are performed:

• Identify class attributes (features) and classes from train-
ing data.

• Identify a subset of the attributes necessary for classifica-
tion (i.e., dimensionality reduction).

• Learn the model using training data.
• Use the trained model to classify the unknown data.

In the case of misuse detection, in the training phase each
misuse class is learned by using appropriate exemplars from

BUCZAK AND GUVEN: SURVEY OF DATA MINING AND MACHINE LEARNING METHODS 1155

the training set. In the testing phase, new data are run through
the model and the exemplar is classified as to whether it belongs
to one of the misuse classes. If the exemplar does not belong to
any of the misuse classes, it is classified as normal.

In the case of anomaly detection, the normal traffic pattern is
defined in the training phase. In the testing phase, the learned
model is applied to new data, and every exemplar in the testing
set is classified as either normal or anomalous.

In reality, for most ML methods, there should be three
phases, not two: training, validation, and testing. ML and DM
methods often have parameters such as the number of layers
and nodes for an ANN. After the training is complete, there are
usually several models (e.g., ANNs) available. To decide which
one to use and have a good estimation of the error it will achieve
on a test set, there should be a third separate data set, the valida-
tion data set. The model that performs the best on the validation
data should be the model used, and should not be fine-tuned
depending on its accuracy on the test data set. Otherwise, the
accuracy reported is optimistic and might not reflect the accu-
racy that would be obtained on another test set similar to but
slightly different from the existing test set.

There are three main types of ML/DM approaches: unsu-
pervised, semi-supervised, and supervised. In unsupervised
learning problems, the main task is to find patterns, structures,
or knowledge in unlabeled data. When a portion of the data
is labeled during acquisition of the data or by human experts,
the problem is called semi-supervised learning. The addition
of the labeled data greatly helps to solve the problem. If the
data are completely labeled, the problem is called supervised
learning and generally the task is to find a function or model
that explains the data. The approaches such as curve fitting
or machine-learning methods are used to model the data to
the underlying problem. The label is generally the business
or problem variable that experts assume has relation to the
collected data.

Once a classification model is developed by using train-
ing and validation data, the model can be stored so that it
can be used later or on a different system. The Predictive
Model Markup Language (PMML) is developed and proposed
by Data Mining Group to help predictive model sharing [10].
It is based on XML and currently supports logistic regres-
sion and feed-forward neural network (NN) classifiers. The
latest version (4.2) supports Naïve Bayes, k-Nearest Neighbor
(k-NN), and Support Vector Machine (SVM) classifiers. The
model supports several common DM metadata such as a data
dictionary (e.g., discrete, Boolean, numerical), normalization,
model name, model attributes, mining schema, outlier treat-
ment, and output. Some popular data mining platforms such
as Weka [11], R [12], and RapidMiner [13] support PMML
models.

The CRISP-DM model [9] illustrates (see Fig. 1) commonly
used phases and paradigms by DM experts to solve problems.
The model is composed of the following six phases:

• Business understanding: Defining the DM problem
shaped by the project requirements.

• Data understanding: Data collection and examination.
• Data preparation: All aspects of data preparation to reach

the final dataset.

Fig. 1. CRISP-DM Process Diagram.

TABLE I
BINARY CONFUSION MATRIX

∗TP, TN, FP, and FN represent, respectively, True Positive, True
Negative, False Positive, and False Negative

• Modeling: Applying DM and ML methods and optimiz-
ing parameters to fit best model.

• Evaluation: Evaluating the method with appropriate met-
rics to verify business goals are reached.

• Deployment: Varies from submitting a report to a
full implementation of the data collection and model-
ing framework. Usually, the data analyst engages the
phases until deployment, while the customer performs the
deployment phase.

There are several classification metrics for ML/DM methods.
Certain metrics are called by two or even three different names.
In Section IV, the papers are described with the metric names
used by the authors of the corresponding papers. To understand
that section easier, the metrics with their different names are
described next. For a binary classification problem, the metrics
are computed from the confusion matrix (see Table I).

The metrics frequently used for binary classification (super-
vised learning) problems are:

• Accuracy or Proportion Correct: (TP + TN)/
(TP + TN + FP + FN). When classes are balanced,
this is a good measure; however, when classes are
unbalanced (e.g., 97% of items belong to class X and
3% to class Y, if all the items are classified as X, the
accuracy would be 97% but all items from class Y would
be misclassified), this metric is not very useful.

• Positive Predictive Value (PPV) or Precision: TP/(TP +
FP). Ratio of items correctly classified as X to all items
classified as X.

• Sensitivity or Recall or True Positive Rate or Probability
of Detection (PD) or Detection Rate: TP/(TP + FN).

1156 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 2, SECOND QUARTER 2016

Ratio of items correctly classified as X to all items that
belong to class X.

• Negative Predictive Value (NPV): TN/(TN + FN). Ratio
of items correctly classified as negatives (not X) to all
items classified as not X.

• Specificity or TN Rate: TN/(TN + FP). Ratio of items
correctly classified as negatives (not X) to all items that
belong to class not X.

• FAR or FP Rate or Fall-out: FP/(TN + FP). FAR =
1-Specificity. Ratio of items incorrectly classified as pos-
itives (X) to all items that belong to a class not X.

In classification problems, there is a trade-off between
Sensitivity and FAR (1-Specificity). This trade-off is illustrated
by a Receiver Operating Characteristic (ROC) curve. ROC has
FAR on the x-axis and Sensitivity on the y-axis. As the thresh-
old for classification is changed, a different point on the ROC
is chosen with different FAR and different Sensitivity. A higher
FAR results in a higher Sensitivity and a lower FAR in a lower
Sensitivity. The point on the ROC that provides a better classi-
fication is application dependent. Often, FAR cannot be higher
than a certain number, and this is how the final classifier is
chosen.

For a multi-class problem (classification into more than two
classes), usually the following metrics are used:

• Overall accuracy: Exemplars classified correctly, all
exemplars.

• Class detection rate: Exemplars from a given class classi-
fied correctly, all exemplars from a given class.

• Class FAR or class FP rate: Exemplars from a given class
classified incorrectly, all exemplars not from a given class.

It is possible to compute PPV and NPV per class as well,
but in the papers reviewed and described in Section IV, these
metrics were not used.

There are two types of metrics for unsupervised methods:
internal and external. Internal metrics are used on the data that
were clustered, and class labels (because they are unknown by
the clustering algorithm) are not used to compute those met-
rics. Metrics such as inter-cluster distance (distance between
two different clusters, could be between their centroids), intra-
cluster distance (distance between members of the same cluster,
could be mean distance or distance between farthest members),
and Dunn index (identifies dense and well-separated clusters)
are frequently used.

External metrics operate on a data set for which the class
labels are known. The metrics used resemble the supervised
learning metrics. Several of the papers described in Section IV
use unsupervised methods, but the final metrics provided are
the Class Detection Rate and the Class FAR. This means that
although the method was developed in an unsupervised fashion,
there were labels available for the test data, so it was possible
to compute classification metrics.

III. CYBER-SECURITY DATA SETS FOR ML AND DM

For ML and DM approaches, the data is of great importance.
Because these techniques learn from the available data, it is
necessary to have an understanding of the data they use in order
to understand how different authors applied different ML and

DM algorithms. This section describes in detail the different
types of data used by the ML and DM approaches—packet
capture (pcap), NetFlow, and other network data. Therefore,
Section IV, which describes the methods in detail, cites only
whether a method uses pcap, NetFlow, or other network data
and does not describe the data in detail. The following subsec-
tions cover the low-level details of the data sets.

A. Packet-Level Data

There are 144 IPs listed by the Internet Engineering
Task Force (IETF) including widely used protocols such as
Transmission Control Protocol (TCP), User Datagram Protocol
(UDP), Internet Control Message Protocol (ICMP), Internet
Gateway Management Protocol (IGMP), etc. Users’ programs
running these protocols generate the packet network traffic
of the Internet. The network packets received and transmitted
at the physical interface (e.g., Ethernet port) of the com-
puter can be captured by a specific application programming
interface (API) called pcap. Libpcap and WinPCap (the Unix
and Windows versions, respectively) are the front-end packet
capture software libraries for many network tools, including
protocol analyzers, packet sniffers, network monitors, network
IDSs, and traffic generators. A few popular programs that use
pcap data are tcpdump [14], Wireshark [15], Snort [16], and
Nmap [17].

At the network physical layer, an Ethernet frame is composed
of the Ethernet header (i.e., Media Access Control [MAC]
address), and up to 1500 bytes (Maximum Transmission Unit
[MTU]) of payload. This payload contains the IP packet, which
is composed of the IP (i.e., transport layer) header, and the IP
payload. The IP payload might contain data or other encap-
sulated higher level protocols such as Network File System
(NFS), Server Message Block (SMB), Hypertext Transfer
Protocol (HTTP), BitTorrent, Post Office Protocol (POP)
Version 3, Network Basic Input/Output System (NetBIOS),
telnet, and Trivial File Transfer Protocol (TFTP).

Because the entire packet is captured by a pcap interface, the
features of the data vary with respect to the protocol that packet
carries. Table II lists the subsets of features captured for TCP,
UDP, and ICMP. The IP addresses are in the IP header, which
are handled at the Network Layer.

B. NetFlow Data

Originally, NetFlow was introduced as a router feature by
Cisco. The router or switch has the ability to collect IP net-
work traffic as it enters and exits the interface. Cisco’s NetFlow
version 5 defines a network flow as a unidirectional sequence
of packets that share the exact same seven packet attributes:
ingress interface, source IP address, destination IP address, IP
protocol, source port, destination port, and IP type of service.
The logical NetFlow architecture consists of three components:
a NetFlow Exporter, a NetFlow Collector, and an Analysis
Console. Currently, there are 10 versions of NetFlow. Versions
1 to 8 are similar, but starting with version 9, NetFlow differs
significantly. For versions 1 to 8, the feature set in Table III

BUCZAK AND GUVEN: SURVEY OF DATA MINING AND MACHINE LEARNING METHODS 1157

TABLE II
PACKET HEADERS OF CYBER-SECURITY DATASETS

TABLE III
NETFLOW PACKET HEADER OF CYBER SECURITY DATASETS

presents the minimum set of NetFlow data variables for a
unidirectional sequence of packets (i.e., a flow).

NetFlow data include a compressed and preprocessed version
of the actual network packets. The statistics are derived features
and, based on certain parameters such as duration of window,
number of packets, etc., set the NetFlow settings on the device.

C. Public Data Sets

The Defense Advanced Research Projects Agency (DARPA)
1998 and DARPA 1999 data sets [18], [19] are extensively
used in experiments and frequently cited in publications.
The DARPA 1998 set was created by the Cyber Systems
and Technology Group of the Massachusetts Institute of
Technology Lincoln Laboratory (MIT/LL). A simulation net-
work was built and data were compiled based on TCP/IP
network data, Solaris Basic Security Module log data, and
Solaris file system dumps for user and root. Effectively, the
assembled data set was composed of network and operating
system (OS) data. The data were collected for 9 weeks, with
the first 7 assigned as the training set and last 2 assigned as
the testing set. Attack simulations were organized during the
training and testing weeks.

Similarly, the DARPA 1999 data set was collected for a total
of 5 weeks, with the first 3 assigned as the training set and the
last 2 assigned as the testing set. This data set had substantially
more attack types than the DARPA 1998 data set. In both col-
lections, the data sets were processed and curated to be used in
the experiments. The TCP dumps and logs were combined into
one stream with many columns.

One of the most widely used data sets is the KDD 1999
data set [20], which was created for the KDD Cup challenge
in 1999. The data set is based on DARPA 1998 TCP/IP data
and has basic features captured by pcap. Additional features
were derived by analyzing the data with time and sequence win-
dows. The data set has three components—basic, content, and
traffic features—making for a total of 41 attributes. The KDD
1999 data set is similar to NetFlow data, but has more derived
and detailed features because the attacks were simulated. The
complete list can be found in Table IV.

The KDD 1999 data set (with about 4 million records of nor-
mal and attack traffic) has been analyzed comprehensively by
Tavallaee et al. [21] and found to have some serious limita-
tions. A few inherent problems were noted, such as synthesizing
the network and attack data (after sampling the actual traffic)
because of privacy concerns, an unknown number of dropped
packets caused by traffic overflow, and vague attack definitions.
Tavallaee et al. also performed statistical evaluations and their
own classification experiments. They reported a huge number
of redundant records (78% in the training data and 75% in
test data) causing bias. In addition, in the classification experi-
ments the group conducted, they pointed out that by randomly
selecting subsets of the training and testing data, often very-
high, unrealistic accuracies can be achieved. They proposed
a new data set, NSL-KDD, that consists of selected records
of the complete KDD data set and does not experience the
aforementioned shortcomings.

The DARPA 1998 set defines four types of attacks: Denial
of Service (DoS), User to Root (U2R), Remote to Local (R2L),
and Probe or Scan. A DoS attack is an attempt to deny to the
aimed users computing or network resources. A U2R attack
grants root access to the attacker. An R2L attack grants local
network access to the attacker. Probe or Scan attacks collect
information about the network resources. DARPA 1999 added

1158 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 2, SECOND QUARTER 2016

TABLE IV
FEATURES OF TCP CONNECTION

a new attack type—one where the attacker attempts to exfiltrate
special files that have to remain on the victim computer.

IV. ML AND DM METHODS FOR CYBER

This section describes the different ML/DM methods for
cyber security. Each technique is described with some detail,
and references to seminal works are provided. Also, for each
method, two to three papers with their applications to cyber
domain are presented.

A. Artificial Neural Networks

ANNs are inspired by the brain and composed of intercon-
nected artificial neurons capable of certain computations on
their inputs [22]. The input data activate the neurons in the first
layer of the network whose output is the input to the second
layer of neurons in the network. Similarly, each layer passes
its output to the next layer and the last layer outputs the result.
Layers in between the input and output layers are referred to as
hidden layers. When an ANN is used as a classifier, the output
layer generates the final classification category.

ANN classifiers are based on the perceptron [23] and were
very popular until the 1990s when SVMs were invented.
Compared to the convex quadratic optimization applied in an
SVM, ANNs often suffer from local minima and thus long
runtimes during learning. Unlike an SVM, as the number of fea-
tures in an ANN increase, its learning runtime increases. With
one or more hidden layers, the ANN is able to generate nonlin-
ear models. The back-propagation feature of the ANN makes it
possible to model EX-OR logic.

With developments in this field such as recurrent, feed-
forward, and convolutional NNs, ANNs are gaining in pop-
ularity again, and at the same time winning many prizes in
recent pattern recognition contests (these contests are not yet
related to cyber intrusion detection). Because the advanced ver-
sions of ANNs require even more processing power, they are
implemented commonly on graphics processing units.

1) Misuse Detection: Cannady [24] used ANNs as the
multi-category classifier to detect misuse. He used data gener-
ated by a RealSecureTM network monitor, which has the attack
signatures built into the system. Ten thousand events were col-
lected by the monitor, of which 3000 came from simulated
attacks. The attacks were simulated by the Internet Scanner [25]
and Satan [26] programs.

The data preprocessing stage resulted in the selection of nine
features: protocol identifier (ID), source port, destination port,
source address, destination address, ICMP type, ICMP code,
raw data length, and raw data. Ten percent of the data was
selected randomly for testing. The study then used the remain-
ing normal and attack data to train an ANN, which learned
the combined signatures. The paper expressed that the findings
were preliminary and reported the error rates for training and
testing, which were 0.058 and 0.070 root-mean-square (RMS)
errors, respectively. Although the details were not disclosed, the
output of the ANN was a number between 0 and 1 representing
each of the two categories (attack and normal). Therefore, an
RMS of 0.070 can be roughly considered as 93% accuracy for
testing phase. Each packet or data instance was categorized as
either a normal or an attack group.

BUCZAK AND GUVEN: SURVEY OF DATA MINING AND MACHINE LEARNING METHODS 1159

2) Anomaly Detection and Hybrid Detection: Lippmann
and Cunningham [27] proposed a system that uses keyword
selection and artificial neural networks. The keyword selection
was performed on transcripts of telnet sessions and statistics
were computed of the number of times each keyword (from
a predetermined list) occurred. The keyword statistics consti-
tute the input to a neural network that provides an estimate of
the posterior probability of an attack. A second neural network
operates on the instances that were flagged as an attack, and
attempts to classify them (i.e., provide an attack name). Both
neural networks consisted of multilayer perceptrons with no
hidden units. The system achieves 80% detection with roughly
1 false alarm per day. This false alarm rate represents a two
orders of magnitude improvement from the baseline system
with the same detection accuracy.

Bivens et al. [28] describe a complete IDS that employs
a preprocessing stage, clustering the normal traffic, normal-
ization, an ANN training stage, and an ANN decision stage.
The first stage used a Self-Organizing Map (SOM), which is
a type of unsupervised ANN, to learn the normal traffic pat-
terns over time, such as commonly used TCP/IP port numbers.
In this manner, the first stage quantized the input features into
bins, which were then fed to the second stage, a Multilayer
Perceptron (MLP) ANN. The MLP network parameters, such as
the number of nodes and layers, were determined by the first-
stage SOM. Once the MLP training was completed, it started
predicting the intrusions. The system can be restarted for a new
SOM to learn a new traffic pattern and a new MLP attack classi-
fier to be trained. The study used TCP/IP data from the DARPA
1999 challenge [18], [19], where the data set consisted of net-
work packet-level data. Unlike the previous study by Cannady
[24], which classified each packet-level data separately, this
system used time windows to perform the detection and clas-
sified a group of packets. Thus, the system was able to detect
attack types of longer duration. Because the input was low-level
network packet data (as opposed to NetFlow data), the granu-
larity is high and the produced predictions still correspond to
short durations. Bivens et al. [28] reported successfully pre-
dicting 100% of the normal behavior. Their overall approach is
promising, even though some attacks were not fully predicted
and the FAR for some attacks reached 76%.

B. Association Rules and Fuzzy Association Rules

The goal of Association Rule Mining is to discover previ-
ously unknown association rules from the data. An association
rule describes a relationship among different attributes: IF (A
AND B) THEN C. This rule describes the relationship that
when A and B are present, C is present as well. Association
rules have metrics that tell how often a given relationship occurs
in the data. The support is the prior probability (of A, B, and C),
and the confidence is the conditional probability of C given A
and B. Association Rule Mining was introduced by Agrawal et
al. [29] as a way to discover interesting co-occurrences in super-
market data. It finds frequent sets of items (i.e., combinations of
items that are purchased together in at least N transactions in the
database), and from the frequent items sets such as {X, Y}, gen-
erates association rules of the form: X → Y and/or Y → X.

Fig. 2. Membership Functions for the Fuzzy Variable Human Body
Temperature: Low, Normal, Fever, Strong Fever, and Hypothermia.

A simple example of an association rule pertaining to the items
that people buy together is:

IF (Bread AND Butter) → Milk (1)

This rule states that if a person buys bread and butter, they
also buy milk.

A limitation of traditional Association Rule Mining is that it
only works on binary data [i.e., an item was either purchased
in a transaction (1) or not (0)]. In many real-world applications,
data are either categorical (e.g., IP name, type of public health
intervention) or quantitative (e.g., duration, number of failed
logins, temperature). For numerical and categorical attributes,
Boolean rules are unsatisfactory. An extension that can process
numerical and categorical variables is called Fuzzy Association
Rule Mining [30].

Fuzzy association rules are of the form:

IF (X is A) → (Y is B) (2)

where X and Y are variables, and A and B are fuzzy sets
that characterize X and Y, respectively. A simple example of
fuzzy association rule for a medical application could be the
following:

IF (Temperature is Strong Fever) AND (Skin is Yellowish)
AND (Loss of appetite is Profound) → (Hepatitis is Acute)

The rule states that if a person has a Strong Fever, Yellowish
skin and Profound Loss of appetite, then the person has Acute
Hepatitis. Strong Fever, Yellowish, Profound, and Acute are
membership functions of the variables Temperature, Skin, Loss
of appetite, and Hepatitis, respectively. As an example of
fuzzy membership functions, the membership functions for the
variable Temperature are shown in Fig. 2.

According to the definition in the diagram, a person with a
100 ◦F temperature has a Normal temperature with a member-
ship value of 0.2 and has a Fever with a membership value of
0.78. The use of fuzzy membership functions allows reason-
ing using linguistic terms. Those linguistic terms for human
body temperature are Low, Normal, Fever, Strong Fever, and
Hypothermia. More information on fuzzy logic and fuzzy
membership functions can be found in [31].

1160 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 2, SECOND QUARTER 2016

1) Misuse Detection: The study by Brahmi [32] is a good
example of association rules applied to the DARPA 1998 data
set to capture the relationships between TCP/IP parameters and
attack types. In the rules, the antecedents are extracted from the
DARPA 1998 data set and the consequents are the attack types.
The work explains multidimensional Association Rule Mining,
in which there is more than one antecedent in the rules, such
as (IF (service AND src_port AND dst_port AND num_conn)
THEN attack_type), which is an example of a four-dimensional
rule. The work includes finding the rules with high support and
high confidence. The best performance is achieved using six-
dimensional rules with the detection rates 99%, 95%, 75%, 87%
for the attack types DoS, Probe or Scan, U2R, and R2L, respec-
tively. Experiments were not performed with higher dimensions
because of computational cost. One of the main advantages of
Association Rule Mining is that the discovered rules explain the
relationships clearly. The approach is promising for building
attack signatures.

Zhengbing et al. [33] proposed a novel algorithm based on
the Signature a priori algorithm [34] for finding new signatures
of attacks from existing signatures of attacks. They compared
their algorithm’s processing time with that of Signature a pri-
ori and found that their algorithm has a shorter processing time,
and the difference in processing times increases with increas-
ing size of the database. The contribution of that paper is its
description of a novel method for finding new attack signatures
from existing ones. Such an algorithm could be used for obtain-
ing new signatures for inclusion into misuse detection systems,
such as Snort [16].

2) Anomaly Detection and Hybrid Detection: The
NETMINE framework [35] performs data stream processing,
refinement analysis (by capturing association rules from
traffic data), and rule classification. Data capture is performed
simultaneously with online stream analysis. Traffic packets are
captured by network capture tools developed at Politecnico di
Torino [36] running on a backbone link of the campus network.
The data captured are NetFlow data with attributes such as
source address, destination address, destination port, source
port, and flow size (in bytes).

NETMINE performs generalized association rule extraction
to detect anomalies and identify recurrent patterns. Individual
association rules (e.g., for one specific IP address) might be
too detailed and have very low support. Generalized associa-
tion rules (e.g., for a subnet traffic) allow raising the abstraction
level at which correlations are represented. Generalized rules
extraction is performed by the novel Genio algorithm [37],
which is more effective than previous approaches for mining
generalized rules. The generalized association rule extraction
process is not designed to be performed in real time during data
capture. However, some experiments show the feasibility of the
approach for appropriate sliding window update frequencies.

Rule classification organizes the rules according to their
semantic interpretation. Three basic classes of rules are defined:

• Traffic flow rules involve source and destination
addresses.

• Provided services rules consist of destination port (i.e.,
the service) and destination address (i.e., the service
provider).

• Service usage rules have destination port and source
address (i.e., the service user).

The extracted rules are meant to assist the network analyst
in quickly determining patterns that are worth further inves-
tigation. There is no automatic classification into normal and
anomalous categories.

The work by Tajbakhsh et al. [38] used the KDD 1999 data
set to perform Fuzzy Association Rule Mining to discover com-
mon relationship patterns. The study used the corrected version
of the KDD set (see Section III) with approximately 300,000
instances. They used a clustering approach to define the fuzzy
membership functions of the attributes, claiming it performs
better than histogram-based approaches. To reduce the items
(according to the paper, there are 189 different items: 31 numer-
ical attributes with 3 values make 93 items and 10 nominal
attributes with a total of 96), the study used an association
hyper-edge method. For example, the item set {a, b} is con-
sidered a hyper edge if the average confidence of the rules
(a → b and b → a) is greater than a threshold. The work uses
the thresholds of 98% for association hyper-edge reduction and
50% for confidence. The anomaly detection performance is
reported as 100% accurate with a 13% FP rate. The perfor-
mance drops quickly as the FP rate is reduced. The paper also
states the benefits of the Association Rule Mining approach,
such as human-comprehendible rules, easier handling of sym-
bolic (nominal) attributes, and efficient classification on large
data sets.

Integrating fuzzy logic with frequency episodes was
attempted by Luo and Bridges [39] to find the fuzzy frequency
episodes that represent the frequent fuzzy sequences in the
data. The fuzzification (i.e., quantization of data with over-
lapping bins) helps to handle the numerical variables and to
explain the variables to the cyber security analyst. The fre-
quency episodes are determined by a user-supplied threshold.
Effectively, the overall approach is similar to sequence mining.
The experiment used data collected by tcpdump from a server
on a university campus. Main features from the data contained
TCP flags and port numbers, and they are quantized by fuzzy
logic. Intrusion simulations were conducted by custom pro-
grams. The study reports the similarity measurements between
the training and testing data sets. The highest reported simi-
larity is 0.82. Although the work did not report performance
measures, the overall approach is promising, thereby extending
and improving the previous approaches in the literature.

C. Bayesian Network

A Bayesian network is a probabilistic graphical model that
represents the variables and the relationships between them
[40], [41]. The network is constructed with nodes as the discrete
or continuous random variables and directed edges as the rela-
tionships between them, establishing a directed acyclic graph.
The child nodes are dependent on their parents. Each node
maintains the states of the random variable and the conditional
probability form. Bayesian networks are built using expert
knowledge or using efficient algorithms that perform inference.

Fig. 3 gives an example of a Bayesian network for attack
signature detection. Each state (or network variable) can be an

BUCZAK AND GUVEN: SURVEY OF DATA MINING AND MACHINE LEARNING METHODS 1161

Fig. 3. Example Bayesian Network for Signature Detection.

input to other states with certain set of state values. For exam-
ple, the protocol state can pick values from available protocol
numbers. Each of the state values that can go from a state to
another state have an associated probability, and the sum of
those probabilities will add up to 1 representing the entire set
of state values. Depending on the application, the network can
be used to explain the interplay between the variables or to cal-
culate a probable outcome for a target state (e.g., alert or file
access) using the input states.

The probability tables can be calculated from the available
training data. Inferring unobserved variables, parameter learn-
ing, and structure learning are among the main tasks for training
Bayesian networks.

1) Misuse Detection: In general, anomaly detection can be
considered as reactive because the system responds to an input
when the input is unexpected. Conversely, in a misuse detec-
tion problem, the system is proactive because the signatures
extracted from the input are being checked continuously against
a list of attack patterns. Taking the proactive approach as in mis-
use detection requires classifying the network streams. In their
work, Livadas et al. [42] compared several methods applied
to DoS problem. Their work tried to resolve the botnet traffic
in filtered Internet Relay Chat (IRC) traffic, hence determin-
ing botnet existence and its origins. The study uses TCP-level
data collected from 18 locations on Dartmouth University’s
wireless campus network over a period of 4 months. The TCP
(IRC-based botnets do not use UDP or ICMP) data are used to
generate the network streams or NetFlow data. A filter layer is
used to extract IRC data from all network data.

Because the ground truth is hard to obtain, the study used cer-
tain aspects of IRC communication to tag data with IRC class
labels. To label the IRC-botnet generated data is even harder,
so the study uses simulated data for the experiments. The per-
formance of the Bayesian network is reported as 93% precision
with a FP rate of 1.39%. The other two classifiers, Naïve Bayes
and C4.5 decision tree, both achieve 97% precision. However,
their FP rates are higher—1.47% and 8.05% respectively.

In another study, Jemili et al. [43] suggested an IDS frame-
work using Bayesian network classifiers. The work used nine
features of the KDD 1999 data in the inference network. In

the anomaly detection stage, the normal or attack decision is
made by a junction tree inference module with a performance
of 88% and 89% on the normal and attack categories, respec-
tively. In the next phase, the attack types were recognized from
the data labeled as attack data by the anomaly detection module.
Performances of 89%, 99%, 21%, 7%, and 66% are reported for
the DoS, Probe or Scan, R2L, U2R, and other classes, respec-
tively. The study suggests the low performance of the R2L and
U2R categories is because the number of training instances is
much lower than for the other categories.

2) Anomaly Detection and Hybrid Detection: When the
computing platform receives TCP/IP packets, the network stack
of the underlying OS processes these packets. The network
stack generates various logs and system kernel calls, and ulti-
mately the packet data are processed at the application level
invoked by the kernel. Kruegel et al. [44] used a Bayesian net-
work to classify events during open and executive OS calls.
The DARPA 1999 data set is used to excite the OS kernel
by TCP/IP packets. Then a set of attributes based on these
system calls, such as system call argument string length and
distribution and character distribution, are compared using a
Pearson test. Moreover, the structure of the string with respect
to grammar (command syntax) and tokens is searched in the
parameters of the system calls. These features are used in a
Bayesian network to calculate the probability of a normal state
or an anomaly state. Because the detection threshold is used
to control the FAR, the system is flexible and can make self-
adjustments against too many false alarms; 75% accuracy, 0.2%
FAR and 100% accuracy, and 0.1% FAR are achieved by using
different threshold values.

Determining complex attacks often requires observing the
anomalies and the correlations between them to uncover sce-
narios or attack plans. To achieve this goal, alert correlation
has been studied to reduce the volume of alerts generated by
the system. Clustering, similarity measures, or expert knowl-
edge is used to correlate anomalies and then reveal the complex
patterns of attack scenarios.

A DoS intrusion detector that uses a Bayesian network is
described by Benferhat et al. [45]. There is only one parent
node representing the hidden variable (i.e., class – {normal,

1162 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 2, SECOND QUARTER 2016

anomaly}), and the observed variables are child nodes. The
child nodes are assumed to be statistically independent. The
main goal of this approach is to perform alert correlation using
historical data with minimal use of expert knowledge. The
DARPA 2000 data set is used in the experiments. For each intru-
sion objective, a network is constructed. The study setup has
two different scenarios extracted from the DARPA data set; the
system detected one of the scenarios successfully but failed to
detect the other. Unfortunately, the study does not report any
numerical results.

D. Clustering

Clustering [46] is a set of techniques for finding patterns
in high-dimensional unlabeled data. It is an unsupervised pat-
tern discovery approach where the data are grouped together
based on a similarity measure. The main advantage of cluster-
ing for intrusion detection is that it can learn from audit data
without requiring the system administrator to provide explicit
descriptions of various attack classes.

There are several approaches for clustering the input data. In
connectivity models (e.g., hierarchical clustering), data points
are grouped by the distances between them. In centroid models
(e.g., k-means), each cluster is represented by its mean vector.
In distribution models (e.g., Expectation Maximization algo-
rithm), the groups are assumed to be acquiescent to a statistical
distribution. Density models group the data points as dense
and connected regions (e.g., Density-Based Spatial Clustering
of Applications with Noise [DBSCAN]). Lastly, graph models
(e.g., clique) define each cluster as a set of connected nodes
(data points) where each node has an edge to at least one other
node in the set.

An instance-based learning (also called lazy learning) algo-
rithm, the k-NN, is another popular ML method where the
classification of a point is determined by the k nearest neigh-
bors of that data point. An example of this approach for cyber
is described in [47]. Determining the category of the point exer-
cises a majority voting, which can be a drawback if the class
distribution is skewed. Because high-dimensional data affect
the k-NN methods negatively (i.e., curse of dimensionality), a
feature reduction is almost always required. The choice of the
neighborhood order or the order in the data set is also consid-
ered to have high impact. Among the benefits of k-NN is its
simplicity and absence of parametric assumptions (except the
number k).

In graph theory, the clustering coefficient represents the affin-
ity of the nodes that are close to each other [48]. Certain types of
data such as social networks have high clustering coefficients.
The global clustering coefficient is defined as the ratio of num-
ber of closed triplets to the number of connected triplets of
vertices. The local clustering coefficient of a node is defined
as the ratio of the number of sub-graphs with three edges and
three vertices that the node is part of to the number of triples
which the node is part of [49]. The coefficient is between 0 and
1, 0 being a single node and 1 being every neighbor connected
to the node.

1) Misuse Detection: In the literature, there are fewer appli-
cations of the clustering methods for misuse detection than

for anomaly detection. However, as demonstrated by one study
[50], real-time signature generation by an anomaly detector can
be an important asset. A density-based clustering scheme called
Simple Logfile Clustering Tool (SLCT) is used to create clus-
ters of normal and malicious network traffic. To differentiate
between the normal and anomalous traffic, the study used a
parameter M to set the percentage of fixed features that the
cluster contains. A fixed feature for the cluster corresponds to
a constant value for that feature. The study defines as a dense
one-region the feature values that are at least in N percent of
the instances. This is essentially the support value of a single
antecedent, one of the metrics that Association Rule Mining
uses. This way, when M is zero, all of the data are clustered
and when M has a high value, ideally only malicious clusters
remain. As an example, by setting the value of M to 97%,
the study detects 98% of the attack data with a 15% FAR.
The method can detect previously unseen (new or zero-day)
attacks. After the clustering stage with the specified parame-
ters, all of the clusters are considered as attacks that treat the
cluster centroids as the signatures.

The system is composed of two clustering schemes: the
first is used for the normal or attack detection (as previously
described), and the second is used in a supervised manner to
determine the normal traffic. The difference between them is
the modification of parameter setting, practically having two
clustering schemes to detect normal and anomalous traffic in
parallel. The output of this stage goes to a rule-based module to
extract signatures to be used by either the system or the cyber
security professionals. One of the novelties in this study is that
each anomalous cluster centroid is treated as a signature to be
filtered out by the system (e.g., after hourly or daily signature
updates by the system).

The study used the KDD data set in several experiments. The
data sets were prepared with attack percentages of 0%, 1%, 5%,
10%, 25%, 50%, and 80%. Performance metrics such as cluster
integrity were used in addition to accuracy. The study reported
their performance as 70% to 80% detection rate for previously
unknown attacks. The results are impressive, especially given
the fact that the system had no prior knowledge of any of the
attacks or attack patterns in the KDD data set.

2) Anomaly Detection and Hybrid Detection: In their
study, Blowers and Williams [51] use a DBSCAN clustering
method to group normal versus anomalous network packets.
The KDD data set is preprocessed to select features using a
correlation analysis. Although the actual FAR is not reported,
the study uses the threshold of the clustering method for con-
trolling the system’s FAR. A 10% attack to no-attack ratio is
set during preprocessing of the data. The reported performance
is 98% for attack or no-attack detection. This is a very high
value for an anomaly detector based on clustering, higher than
most studies in the literature. Overall, the study presents a good
example of summarizing the application of ML methods to
cyber operations.

Sequeira and Zaki [52] captured 500 sessions with a long
stream of commands from nine users at Purdue University.
User command level (shell commands) data were used to detect
whether the user is a regular user or an intruder. Each user’s
command stream in a session was parsed into tokens and

BUCZAK AND GUVEN: SURVEY OF DATA MINING AND MACHINE LEARNING METHODS 1163

subsequently represented as a sequence of tokens. Sequeira
and Zaki tried several approaches involving sequences, such
as sequence similarity measures and sequence matching algo-
rithms. One of the promising approaches used was based on the
longest common subsequence metric.

The command captures from nine users suggest that the data
are small, possibly due to the processing requirements. It is not
clear how many commands a typical session includes, but there
is a good chance it is much longer than the maximum sequence
length, which the study picked as 20. The study stated its perfor-
mance of 80% accuracy with 15% FAR as a successful result.
Sequeira and Zaki [52] refer to previous studies that used the
same data set and achieved 74% with 28% FAR and point to
an improvement. It could also be a good idea to use DARPA or
KDD data set server logs for comparison.

E. Decision Trees

A decision tree is a tree-like structure that has leaves, which
represent classifications and branches, which in turn represent
the conjunctions of features that lead to those classifications. An
exemplar is labeled (classified) by testing its feature (attribute)
values against the nodes of the decision tree. The best known
methods for automatically building decision trees are the ID3
[53] and C4.5 [54] algorithms. Both algorithms build decision
trees from a set of training data using the concept of information
entropy. When building the decision tree, at each node of the
tree, C4.5 chooses the attribute of the data that most effectively
splits its set of examples into subsets. The splitting criterion
is the normalized information gain (difference in entropy). The
attribute with the highest normalized information gain is chosen
to make the decision. The C4.5 algorithm then performs recur-
sion on the smaller subsets until all the training examples have
been classified.

The advantages of decision trees are intuitive knowledge
expression, high classification accuracy, and simple imple-
mentation. The main disadvantage is that for data including
categorical variables with a different number of levels, infor-
mation gain values are biased in favor of features with more
levels. The decision tree is built by maximizing the information
gain at each variable split, resulting in a natural variable rank-
ing or feature selection. Small trees (such as the one depicted in
Fig. 4) have an intuitive knowledge expression for experts in a
given domain because it is easy to extract rules from those trees
just by examining them. For deeper and wider trees, it is much
more difficult to extract the rules and thus the larger the tree,
the less intuitive its knowledge expression. Smaller trees are
obtained from bigger ones by pruning. Larger trees often have
high classification accuracy but not very good generalization
capabilities. By pruning larger trees, smaller trees are obtained
that often have better generalization capabilities (they avoid
over-fitting). Decision tree building algorithms (e.g., C4.5)
are relatively simpler than more complex algorithms such as
SVMs. As such, they have also a simpler implementation.

1) Misuse Detection: Most misuse detection systems per-
form detection by comparing each input to all rules (signa-
tures). Snort [16], a well-known open-source tool, follows the

signature-based approach. In Snort, each signature has a sin-
gle line description. The matching process between input data
and signatures is usually slow (especially when the number
of signatures is large) and therefore inefficient to use in the
front end.

Kruegel and Toth [55] replaced the misuse detection engine
of Snort by decision trees. First they performed a clustering
of rules used by Snort 2.0 and then derived a decision tree
using a variant of the ID3 algorithm. Rule clustering minimizes
the number of comparisons necessary to determine which rules
are triggered by given input data. The decision tree picks the
most discriminating features of the rule set, thus allowing par-
allel evaluation of every feature. This yields performance much
superior to that of Snort.

The proposed technique was applied to tcpdump files from
the 10 days of test data produced by MIT/LL for the 1999
DARPA intrusion detection evaluation. For that data set, the
speed of operation of Snort and the decision-tree technique
were compared. The actual performance gain varies consid-
erably depending on the type of traffic; the maximum speed-
up was 105%, the average 40.3%, and the minimum 5%.
Experiments were also performed by increasing the number
of rules from 150 to 1581 (full set used by Snort 2.0). With
increasing number of rules, the speed-up of the decision tree
method over Snort 2.0 is even more pronounced.

This study showed that clustering methods coupled with
decision trees can substantially reduce processing time of a mis-
use detection system, possibly allowing them to be efficiently
used in the front end.

2) Anomaly Detection and Hybrid Detection: EXPOSURE
[56], [57] is a system that employs large-scale, passive
Domain Name Service (DNS) analysis techniques to detect
domains that are involved in malicious activity. The system
consists of five main components: Data Collector, Feature
Attribution Component, Malicious and Benign Domains
Collector, Learning Module, and Classifier. The Classifier is
built by the Weka J48 decision tree program, which is an imple-
mentation of the C4.5 algorithm capable of generating pruned
or unpruned decision trees. Experimentation showed that the
minimum error was achieved when all features were combined,
and therefore all 15 features were used by the decision tree.

The data used consist of DNS data collected over a 2.5-
month period (100 billion DNS queries that resulted in 4.8
million distinct domain names). The study examined several
thousand malicious and benign domains and used them to con-
struct the training set. Malicious domains were obtained from
www.malwaredomains.com, the Zeus Block List, Anubis, etc.
The initial malicious domain list consists of 3500 domains.
Benign domains were from the Alexa top 1000 domains list.

By experimenting with different period lengths’ values, the
study determined that the optimal period of initial training for
the system was 7 days. After this initial training, the classifier
was retrained every day. The results vary considerably depend-
ing on the data set. Overall, using tenfold cross-validation, the
detection accuracy of malicious domains was 98.5% and the
FAR was 0.9%.

Additional experiments were performed to determine
whether the method could detect malicious domains that were

1164 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 2, SECOND QUARTER 2016

Fig. 4. An Example Decision Tree.

not present in the training set. In the first experiment, among the
50 randomly chosen domains from the list of 17,686 domains,
the classifier detected three benign domains as being malicious
(6% FP rate). In the second experiment, the study automatically
crosschecked the malicious and suspicious domains identified
by the classifier using online site rating tools such as McAfee
Site Advisor, Google Safe Browsing, and Norton Safe Web.
The FP rate was 7.9% for the malicious domains identified. In
the third experiment, EXPOSURE classified 100 million DNS
queries during a 2-week period, detected 3117 new malicious
domains (previously not known to the system and not used in
training), and did not generate any FPs during that time.

The experimental results show that the accuracy and FAR
of EXPOSURE are satisfactory and that EXPOSURE is use-
ful in automatically identifying a varied category of malicious
domains (e.g., botnet command and control servers, phishing
sites, scam hosts). The ability of EXPOSURE to detect a high
number of previously unknown malicious domains from DNS
traffic is an important achievement.

F. Ensemble Learning

In general, supervised learning algorithms search the hypoth-
esis space to determine the right hypothesis that will make good
predictions for a given problem. Although good hypotheses
might exist, it may be hard to find one. Ensemble methods com-
bine multiple hypotheses, hoping to form a better one than the
best hypothesis alone. Often, ensemble methods use multiple
weak learners to build a strong learner [58].

A weak learner is one that consistently generates better pre-
dictions than random. One of the ensemble algorithms uses
boosting to train several weak learning algorithms and combine
(i.e., summation) their weighted results. Adaptive Boosting
(AdaBoost) [59] is one of the more popular algorithms used
to reduce the over-fitting problem inherent to ML. Boosting
can be seen as a linear regression where data features are the
input to the weak learner h (e.g., a straight line dividing the
input data points into two categories in space), and the output
of the boosting is the weighted summation of these h functions.
Long and Servedio [60] criticized boosting by suggesting that a
non-zero fraction of mislabeled data can cause boosting to fail

completely and result in an ROC of 0.5 (which is equivalent to
random guess).

Bagging (bootstrap aggregating) is a method to improve the
generality of the predictive model to reduce over-fitting. It is
based on a model-averaging technique and known to improve
the 1-nearest neighbor clustering performance.

The Random Forest classifier [61] is an ML method that
combines the decision trees and ensemble learning. The for-
est is composed of many trees that use randomly picked data
features (attributes) as their input. The forest generation pro-
cess constructs a collection of trees with controlled variance.
The resulting prediction can be decided by majority voting or
weighted voting.

Random Forests have several advantages: a low number of
control and model parameters; resistance to over-fitting; no
requirement for feature selection because they can use a large
number of potential attributes. One important advantage of
Random Forest is that the variance of the model decreases as the
number of trees in the forest increases, whereas the bias remains
the same. Random Forests also have some disadvantages such
as low model interpretability, performance loss due to corre-
lated variables, and dependence on the random generator of the
implementation.

1) Misuse Detection: Zhang et al. [62] approach the prob-
lem of misuse detection by employing an outlier detection
module at the front end of their system. If the input is classi-
fied as abnormal network traffic, the data are further classified
as belonging to one of the attack categories of KDD 1999 data
set. The study provides a full system solution including an
outlier detector, a signature-based attack predictor, and a pat-
tern database. An anomaly database is also used to store the
patterns that are labeled as anomaly either by a user (man-
ually) or the system (automatically) using pre-labeled data.
The parameters of the Random Forest are determined and
optimized by trying different values on the balanced training
set. The study created a balanced data set by replicating the
least occurring attack instances, which might be considered
an improper approach. There is no validation stage, which is
not recommended because the system parameters are deter-
mined by the data from the training set, which reduces the
model generalization. Nevertheless, the overall approach is

BUCZAK AND GUVEN: SURVEY OF DATA MINING AND MACHINE LEARNING METHODS 1165

sound because it uses the helpful properties of Random Forests
successfully.

The study grouped the data set into attacks (DoS and Probe
or Scan) and minority attacks (U2R and R2L). The reported
performance on the misuse detection was 1.92% error on the
original set and 0.05% on the balanced set with 0.01% and 0%
FAR, respectively. The study also grouped the DoS and Probe
or Scan attacks into four attack levels (1%, 2%, 5%, and 10%),
which represent the percentage of attack data in the testing set.
The accuracies achieved for these four attack levels are 95%,
93%, 90%, and 87%, respectively, with a constant 1% FAR.
The minority attack (U2R and R2L) detection is reported as
65% with a 1% FAR. The implementation is fast enough to be
employed as an online solution.

Another study [63] used a Random Forest for misuse detec-
tion on the same KDD 1999 data set in a fashion similar to
Zhang et al. [62]. The main difference is that a normaliza-
tion stage takes place in the preprocessing module. This study
compares the performance of Random Forests to Gaussian
maximum likelihood, Naïve Bayes, and decision tree classi-
fiers. The accuracies reported for Random Forest are 97%,
76%, 5%, and 35% for DoS, Probe or Scan, R2L, and U2R,
respectively.

An ensemble of three ANNs (see Subsection A, one SVM
(see Subsection L), and one Multivariate Adaptive Regression
Spline (MARS) [64] is used by Mukkamala et al. [65] for intru-
sion detection. The first ANN is a resilient back-propagation
NN, the second is a scaled conjugate gradient ANN, and the
third is a one-step secant algorithm ANN. The majority voting
is used to combine the results of the five classifiers.

The data used are a subset of the DARPA 1998 data set.
This subset is composed in 80% of attacks and in 20% of nor-
mal data. Performances of 99.71%, 99.85%, 99.97%, 76%, and
100% are reported for the Normal, Probe or Scan, DoS, U2R,
and R2L categories, respectively. The ensemble method outper-
forms the accuracy of individual classifiers that are an input to
the ensemble. The accuracy of four classes is in the 99% range;
only the accuracy on the U2R class is much lower at 76%.

2) Anomaly Detection and Hybrid Detection: The
DISCLOSURE system by Bilge et al. [66] performs Command
and Control (C&C) botnet detection using Random Forests.
It uses NetFlow data that is easily available but includes only
aggregate metadata related to flow duration and number of
packets transferred, not full packet payloads. Flow-based fea-
tures are extracted from the data (e.g., flow size, client-access
patterns, temporal features). There are no details in their paper
of how many trees were used in the Random Forest classifier or
how many attributes the trees used on average. DISCLOSURE
was tested over two real-world networks and achieved a True
Positive (detection) Rate of 65%, and False Positive Rate of
1%.

The application of Random Forests to anomaly detection
is described by Zhang et al. [62], where an anomaly (out-
lier) detector was employed to feed a second threat classifier.
In effect, the method is hybrid, using two Random Forest
classifiers—one for anomaly detection and the other for misuse
detection. The performance of the outlier detection was 95%
accuracy with 1% FAR. The study illustrated how an anomaly

detector can be implemented by using a proximity measure (i.e.,
the distance between two instances calculated from the forest)
of the Random Forest. It used as the proximity measure the sum
of squares of the proximities between trees and categories.

G. Evolutionary Computation

The term evolutionary computation encompasses Genetic
Algorithms (GA) [67], Genetic Programming (GP) [68],
Evolution Strategies [69], Particle Swarm Optimization [70],
Ant Colony Optimization [71], and Artificial Immune Systems
[72]. This subsection focuses on the two most widely used
evolutionary computation methods—GA and GP. They are
both based on the principles of survival of the fittest. They
operate on a population of individuals (chromosomes) that
are evolved using certain operators. The basic operators are
selection, crossover, and mutation. They start usually with a
randomly generated population. For each individual from the
population, a fitness value is computed that reveals how good a
given individual is at solving the problem at hand. The individu-
als with higher fitness have a higher probability of being chosen
into the mating pool and thus being able to reproduce. Two
individuals from the mating pool can perform crossover (i.e.,
exchange genetic material between them) and each can also
undergo mutation, which is a random alteration of the genetic
material of the individual. The highest fit individuals are copied
into the next generation.

The main difference between GA and GP is how the individ-
uals are represented. In GA, they are represented as bit strings
and the operations of crossover and mutation are very simple.
In GP, the individuals represent programs and therefore repre-
sent trees with operators such as plus, minus, multiply, divide,
or, and, not, or even programming blocks such as if then, loop,
etc. In GP the operators of crossover and mutation are much
more complex than those used in GA.

1) Misuse Detection: Li [73] developed a method that uses
GA for evolving rules for misuse detection. The DARPA
intrusion detection data set was used. The GA chromosome
is designed to contain the source IP address, destination IP
address, source port number, destination port number, duration
of the connection, protocol, number of bytes sent by originator
and responder, and state of the connection. In the fitness func-
tion, the agreement on certain parts of the chromosome (e.g.,
destination IP address) is weighted higher than on others (e.g.,
protocol type). Traditional operators of crossover and muta-
tion are applied to the individuals from the population. Niching
techniques are used to find multiple local maxima (because
many rules are needed, not just one). The best evolved rules
become part of the rule base for intrusion detection. Although
Li’s paper describes an interesting technique and shows some
rules evolved by the system, what is missing, despite the paper’s
181 citations, is the accuracy of the rule set on test data.

Abraham et al. [74] use GP to evolve simple programs
to classify the attacks. The three GP techniques used in
the experiments are Linear Genetic Programming (LGP),
Multi-Expression Programming (MEP), and Gene Expression
Programming (GEP). The programs involved made use of
+, −, ∗, /, sin, cos, sqrt, ln, lg, log2, min, max, and abs

1166 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 2, SECOND QUARTER 2016

TABLE V
SENSITIVITY AND SPECIFICITY OF GP WITH

HOMOLOGOUS CROSSOVER

as the function set. Different subsets of features are used by
the different GP techniques. The DARPA 1998 intrusion detec-
tion data set was used. The data set contains 24 attack types
that can be classified into four main categories: DoS, unautho-
rized access from a remote machine (R2L), unauthorized access
to local super user (U2R), and surveillance and other probing
(Probe or Scan). The FAR varies from 0% to 5.7% depending
on the method used and the type of attack.

Hansen et al. [75] used GP with homologous crossover
for evolving programs performing intrusion detection.
Homologous crossover is a special crossover operator designed
to reduce the tendency of evolved programs to grow ever larger
with increasing number of generations. A subset of the KDD
1999 data was used, with 30,000 instances for training and
10,000 for testing. Training and testing data sets were chosen
in such a way that they have the same proportions of attacks
of each type as the full data set. Their accuracy ranged from
66.7% to 100% depending on the type of attack (lowest for
U2R and highest for DoS). Specificity (Table V) ranged from
99.56% to 100%, meaning that the FAR is very low. GP with
homologous crossover results are also compared with the
results of the winner of the KDD 1999 Cup, and they are better.
However, that comparison might be invalid because the results
in this paper are only for a chosen test set of 10,000 signatures
and the results for the winner of the KDD Cup could have been
for a different test data set.

2) Anomaly Detection and Hybrid Detection: Khan [76]
uses GA to evolve rules for detection of intrusions. Two sub-
sets each of 10,000 instances from the KDD 1999 data set were
used: one for training and one for testing. For the large num-
ber of attributes in that data, eight were chosen using Principal
Component Analysis [77]. A population of 10 individuals was
used, and it appears only one rule from the final population
was used for classification of data into two classes: normal and
attack. It is surprising that the results obtained on the test data
set are actually better than the ones obtained on the training
data set. The accuracies and FARs are 93.45% (10.8% FAR)
and 94.19% (2.75% FAR) for the normal and attack classes,
respectively.

Lu and Traore [78] presented a rule evolution approach based
on GP for detecting known and novel attacks on the network.
The initial population of rules was selected based on back-
ground knowledge from known attacks, and each rule can
be represented as a parse tree. GP evolves these initial rules
to generate new rules using four genetic operators: reproduc-
tion, crossover, mutation, and dropping condition operator. The

dropping condition operator randomly selects one condition in
the rule, and then this condition is no longer considered in the
rule, thereby preventing the programs from growing increas-
ingly complicated with the number of generations. The fitness
function used was based on the support and confidence of a
rule (see Subsection 1). The paper uses a subset of the DARPA
intrusion detection data. The training data set consists of 1 day’s
connection records (i.e., 10,000 connection records) with eight
attack types. The testing data set consists of another day’s con-
nection records with 10 attack types (two attack types are new).
In practical evaluation, the rule base instead of single rule is
used to test the performance of the IDS. Ten thousand runs
of GP are executed and the average results are reported. The
average value of FAR is 0.41% and the average value of PD is
0.5714. The ROC shows PD close to 100% when the FAR is
in the range between 1.4% and 1.8%. However, when the FAR
is close to 0%, the PD is only about 40%. The PD falls in a
broad range from 40% to 100% because the number of rules in
the rule base is different for each run. The results are reported
on data that contain novel attacks as well as known attacks.
Unlike many other papers that report only the best results, Lu
and Traore include the average results. Their best results, with
PD close to 100% and FAR is in the range between 1.4% and
1.8% are good.

H. Hidden Markov Models

Markov chains and Hidden Markov Models (HMMs) belong
to the category of Markov models. A Markov chain [79] is a
set of states interconnected through transition probabilities that
determine the topology of the model. An HMM [80] is a sta-
tistical model where the system being modeled is assumed to
be a Markov process with unknown parameters. The main chal-
lenge is to determine the hidden parameters from the observable
parameters. The states of an HMM represent unobservable
conditions being modeled. By having different output proba-
bility distributions in each state and allowing the system to
change states over time, the model is capable of representing
non-stationary sequences.

An example of an HMM for host intrusion detection is shown
in Figure 5 [81]. In this example, each host is modeled by four
states: Good, Probed, Attacked, and Compromised. The edge
from one node to another represents the fact that, when a host
is in the state indicated by the source node, it can transition to
the state indicated by the destination node. The state transition
probability matrix P describes the probabilities of transitions
between the states of the model. The observation probabil-
ity matrix Q describes the probabilities of receiving different
observations given that the host is in a certain state. π is the
initial state distribution. An HMM is denoted by (P, Q, π).

1) Misuse Detection: In the study by Ariu et al. [82],
attacks on web applications (such as XSS and SQL-Injection)
are considered, and HMMs are used to extract attack signatures.
According to the study, 50% of the discovered vulnerabilities
in 2009 affected web applications. The study describes a sys-
tem named HMMPayl, which examines the HTTP payloads
using n-grams and builds multiple HMMs to be used in a clas-
sifier fusion scheme. The outlined multi-classifier can also be
considered as an ensemble learning approach; however, unlike

BUCZAK AND GUVEN: SURVEY OF DATA MINING AND MACHINE LEARNING METHODS 1167

Fig. 5. An Example Hidden Markov Model.

an ensemble method, Ariu et al. [82] set up the classifiers in a
competitive rather than complementary manner. In the experi-
ment section, Ariu’s study also used the DARPA 1999 data set
as well as some other HTTP data sets. In most of the experi-
ments, the mean Area Under the ROC Curve (AUC) of 0.915
to 0.976 is achieved, for an FP rate ranging from 10E-4 to 10E-
1. For FP rates higher than 10E-3, HMMPayl attains detection
rates higher than 0.85, a noteworthy result. For smaller FP rates,
the percentage of detected attacks decreases but still remains
higher than 70% for a FP rate of 10E-4.

2) Anomaly Detection and Hybrid Detection: HMMs were
used for intrusion detection by Joshi and Phoha [83]. They
use an HMM with five states and six observation symbols per
state. The states in the model are interconnected in such a way
that any state can be reached from any other state. The Baum-
Welch method [84] is used to estimate the HMM parameters.
The KDD 1999 data set was used, and 5 out of 41 features
were chosen for modeling. PD was 79%; the remaining 21%
is accounted for as a FP rate (i.e., classifying anomaly as nor-
mal) and an FN rate (i.e., classifying normal as an attack). The
authors claim that they could significantly improve the accuracy
by using more than five features. Although this is possible, it is
far from being proven that by using a larger subset of features
(or the full set), the accuracy of an HMM will increase.

I. Inductive Learning

Two basic techniques of inferring information from data are
deduction and induction. Deduction infers information that is a
logical consequence of the information present in the data and
proceeds from the top down. Inductive reasoning moves from
the bottom up, that is from specific observations to broader
generalizations and theories. In inductive learning, one starts
with specific observations and measures, begins to detect pat-
terns and regularities, formulates some tentative hypotheses to
be explored, and lastly ends up developing some general con-
clusions or theories. Several ML algorithms are inductive (e.g.,
C4.5 for building decision trees), but when researchers refer
to inductive learning, they usually mean Repeated Incremental
Pruning to Produce Error Reduction (RIPPER) [85] and the
algorithm quasi-optimal (AQ) [86].

RIPPER builds rules for two-class problems. It induces rules
directly from the training data by using a separate-and-conquer
approach. It learns one rule at a time in such a way that the
rule covers a maximal set of examples in the current train-
ing set. The rule is pruned to maximize a desired performance
measure. All of the examples that are correctly labeled by the

resulting rule are eliminated from the training set. The pro-
cess is repeated until the training set becomes empty or a
predetermined stopping criterion is reached.

An example RIPPER rule [87] could be:

Guess :- failed-logins >= 5

Which means that if number of failed-logins is greater than
or equal to 5, then this connection is a “guess” (i.e., a guessing
password attack)

1) Misuse Detection: Lee et al. [87] developed a frame-
work in which several ML and DM techniques were used
(e.g., Inductive Learning, Association Rules, Sequential Pattern
Mining). First, Sequential Pattern Mining (also called Frequent
Episodes) was used to construct temporal and statistical fea-
tures. A lot of experimentation with the time window is needed
when doing this. When Sequential Pattern Mining is performed
on the intrusion patterns, it extracts features that will be used
in misuse detection. In the next step, those features are used
by RIPPER to generate rules. However, RIPPER does not
use all the features identified in its rules because, as with
most classification algorithms, it has a built-in feature selection
mechanism.

RIPPER generates rules for classifying the telnet connections
from the DARPA 1998 data set. Seven weeks of data were used
for training, and two separate weeks of data were used for test-
ing. The test data contain 38 attack types, with 14 types present
in test data only. The accuracy achieved for a new type of attack
ranged from 5.9 (R2L) to 96.7% (Probe or Scan), while that for
an old type of attack ranged from 60 (R2L) to 97% (Probe or
Scan). Their method was able to detect with high accuracy new
attacks that are Probe or Scan (96.7%) and U2R (81.8%). The
accuracy of detecting new types of attacks for DoS and R2L
was less than 25%.

2) Anomaly Detection and Hybrid Detection: A true
anomaly detection problem, by definition, does not offer the
abnormal type of data in advance. Therefore, the major diffi-
culty of the anomaly detection lies in discovering the bound-
aries between known and unknown categories [88]. In the study,
an artificial anomaly generator was designed to improve the
performance of the anomaly detector in terms of its generaliza-
tion ability. The first approach was distribution-based anomaly
generation and the second was filtered artificial anomalies. The
DARPA 1998 data set was used in the experiment setup. An
impressive 94% anomaly detection rate with a 2% FAR was
achieved. The FAR is generally desired to be much less than
1%, especially with DARPA 1998 data set types where the rate
of packets is at the TCP/IP level (thousands of packets per sec-
ond). Nevertheless, the study successfully demonstrated how
true anomaly detection should be conducted and how the data
should be used by not employing a binary classifier for anomaly
detection, like many other studies performed.

J. Naïve Bayes

Naïve Bayes classifiers [89] are simple probabilistic classi-
fiers applying the Bayes theorem. The name originates from
the fact that the input features are assumed to be indepen-
dent, whereas in practice this is seldom true. The conditional

1168 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 2, SECOND QUARTER 2016

probabilities, p(C | f1, f2, . . . , fm), form the classifier model,
and the classifier assigns a class label as follows:

y(f1, f2, . . . , fm) = argmaxk∈{1,...K } p(Ck)
∏m

i=1
p(fi |Ck)

(3)

where m is the number of features, K is the number of classes,
fi is the i-th feature, Ck is the k-th class, p(Ck) is the prior
probability of Ck, and P(fi|Ck) is the conditional probability
of feature fi given class Ck.

Naive Bayes classifiers can handle an arbitrary number of
independent features whether continuous or categorical. They
reduce a high-dimensional density estimation task to a one-
dimensional kernel density estimation, using the assumption
that the features are independent.

Although the Naïve Bayes classifier has several limitations,
it is an optimal classifier if the features are conditionally inde-
pendent given the true class. Commonly, it is one of the first
classifiers that is compared to the more sophisticated algo-
rithms. In addition, certain types of users expressed that they
understand the classification model more intuitively compared
to other complex classifiers (e.g., SVM). One of the biggest
advantages of the Naïve Bayes classifier is that it is an online
algorithm and its training can be completed in linear time.

1) Misuse Detection: Panda and Patra [90] employed the
Naïve Bayes classifier from the Weka package [11] and used
the KDD 1999 data set for training and testing. The data were
grouped into four attack types (Probe or Scan, DoS, U2R, and
R2L) and the classifier achieved 96%, 99%, 90%, and 90% test-
ing accuracy, respectively, on these categories. The cumulative
FAR was reported as 3%.

The paper compared the results to an NN classifier and stated
that the Naïve Bayes classifier has a higher accuracy but a
higher FAR, which is undesirable. The results are reported to
be better than the highest score achieved in KDD competition.

2) Anomaly Detection and Hybrid Detection: The frame-
work developed by Amor et al. [91] uses a simple form of
a Bayesian network that can be considered a Naïve Bayes
classifier. Constructing a general Bayesian network is an NP-
complete problem, but the simple network of a root node
and leafs for attributes form the Naïve Bayes classification
structure.

This paper also used the KDD 1999 data set and grouped the
categories in three arrangements to reflect different attack sce-
narios and performance measurements. A single attack and the
normal data were contained in the first set. The second set con-
tained all four attack types of the KDD 1999 data set, and the
problem to be solved was a multi-class classification for misuse
detection. The third set contained the normal data and all four
attack types (combined into one category), and the problem to
be solved was an anomaly detection problem.

The paper reported the results as 97%, 96%, 9%, 12%, and
88% accuracy achieved for Normal, DoS, R2L, U2R, R2L,
and Probe or Scan categories, respectively. No false alarm is
reported in the work, but because 97% normal is achieved, the
FAR can be assumed to be less than 3%. The anomaly detec-
tion experiment is reported as 98% and 89% accuracies for the
Normal and Abnormal categories, respectively.

K. Sequential Pattern Mining

Sequential pattern mining has emerged as one of the
important DM methods [92] with the advent of transactional
databases where each transaction has a temporal ID, a user ID,
and an itemset. An itemset is a set of distinct items purchased in
a transaction (a strictly binary representation in which an item
was or was not purchased). A sequence is an ordered list of
itemsets. The length of the sequence is defined as the num-
ber of itemsets in the sequence. The order is determined by
the time ID. Sequence A (of length n) is contained in a sec-
ond sequence, B (of length m), when all the itemsets of A, {ai},
are subsets of itemsets B, {bj}, with a 1-to-1 mapping between
indices i to j such that a1 ⊆ bj1, a2 ⊆ bj2, . . . , an ⊆ bjk and
j1 ≤ j2 ≤ · · · ≤ jk. In other words, each of the itemsets of A
is a subset of an itemset in B. If an itemset ai is a subset of
an itemset bj, then the next itemset ai+1 must be a subset of an
itemset bj+m, where m > 0. In sequence B, itemsets that are not
a subset of an itemset in A are allowed (i.e., n ≤ m).

In a set of sequences, the sequence A is maximal if it is not
contained in any other sequence. Consider a database, D, which
contains sequences grouped by a certain nominal variable, such
as IP address, denoted by p. If sequence A is contained in D(p)

[i.e., one of the sequences of D(p) contains A], then A sup-
ports D(p). The support is the fraction of sequences in D(.)

that A supports. A large sequence is defined as the sequence
supporting a minimum threshold, Th. The problem of sequence
mining is then to find all maximal sequences that are contained
in D with a user-given minimum support Th. The maximal
sequences themselves are generated from the sequences in D
by enumerating all possible sequences.

1) Misuse Detection: In a slightly different field, database
intrusion detection [93] used sequential pattern mining to detect
database intrusions by examining the sequence patterns of
database logs. These logs include several fields such as oper-
ation type, transaction name, transaction ID, begin time, end
time, etc. The general approach presented in this work can be
applied to similar intrusion analysis for cyber security such as
U2R attacks. The study uses the AprioriAll [92] algorithm and
generates the maximal sequences with a user-set support thresh-
old. Generated patterns are the signatures for intrusions. The
reported maximum performance was 91% detection rate and
the worst FAR was around 30%. Nevertheless, the work suc-
cessfully applied sequential pattern mining to detect intrusions
to databases by examining database logs.

2) Anomaly Detection and Hybrid Detection: Li et al. [94]
give a good example of sequential pattern mining and its appli-
cation for reducing the redundancy of alerts and minimizing
FARs. They used the AprioriAll algorithm to discover multi-
stage attack patterns. The sequences were the attack patterns
either previously discovered or provided by the cyber adminis-
trator. A pattern visualization tool was also generated for the
cyber user. A support threshold of 40% was used, and the
generated maximal sequences were used for alert verification
and correlation. The work used the DARPA 1999 and DARPA
2000 data sets and was able to detect 93% of the attacks in 20
seconds. In a second set of experiments, the study reported a
simulated real-time scenario where 84% attack detection was
achieved. The paper stated that the support threshold was the

BUCZAK AND GUVEN: SURVEY OF DATA MINING AND MACHINE LEARNING METHODS 1169

main parameter to control the detection rate and the FAR.
The undetected patterns simply did not exceed the support
threshold.

L. Support Vector Machine

The SVM is a classifier based on finding a separating hyper-
plane in the feature space between two classes in such a way
that the distance between the hyperplane and the closest data
points of each class is maximized. The approach is based on a
minimized classification risk [95] rather than on optimal classi-
fication. SVMs are well known for their generalization ability
and are particularly useful when the number of features, m, is
high and the number of data points, n, is low (m >> n).

When the two classes are not separable, slack variables are
added and a cost parameter is assigned for the overlapping data
points. The maximum margin and the place of the hyperplane is
determined by a quadratic optimization with a practical runtime
of O(n2), placing the SVM among fast algorithms even when
the number of attributes is high.

Various types of dividing classification surfaces can be real-
ized by applying a kernel, such as linear, polynomial, Gaussian
Radial Basis Function (RBF), or hyperbolic tangent. SVMs are
binary classifiers and multi-class classification is realized by
developing an SVM for each pair of classes.

1) Misuse Detection: In the work by Li et al. [96], an SVM
classifier with an RBF kernel was used to classify the KDD
1999 data set into predefined categories (DoS, Probe or Scan,
U2R, R2L, and Normal). From the 41 features, a subset of
attributes was selected by following a feature removal policy
and a sole-feature selection policy. Lastly, the study used 19
features determined by the feature selection method.

In the same work, a subset of the training set was determined
by Ant Colony Optimization (see Subsection G). One possible
advantage of this approach is to maximize classifier general-
ization and minimize the bias in the KDD set, as reported in
Section II. The study reported its tenfold cross validation per-
formance as overall 98% accuracy with unknown variance. The
lowest performance of 53% was for the U2R category. The
strategy of using a subset of a training set to overcome the
limitations of the KDD data set is definitely worthwhile, as
demonstrated in this paper.

Amiri et al. [97] used a least-squared SVM to have a faster
system to train on large data sets. To reduce the number of
features in the KDD data set from 41 to 19 or less, they used
three different feature selection algorithms. The first was based
on picking the feature that maximizes the classification perfor-
mance, the second was based on mutual information, and the
third was correlation based. The experimental results showed
the mutual information-based approach is more promising
(albeit slightly) than the other two.

The data set was sampled randomly to have around 7000
instances (out of a total of 5 million) for each of the five classes
(DoS, Probe or Scan, U2R, R2L, and Normal). A bootstrapping
technique was used to resample the U2R attacks. To predict
the attack type, five classifiers were built for each category. In
this manner, a cost is associated with each category and the

TABLE VI
COMPARISON OF ACCURACY OF ENHANCED SVM WITH SNORT AND BRO

final classification was determined. The classification perfor-
mance was reported as 99% on the DoS, Probe or Scan, R2L,
and Normal classes and as 93% on the U2R class with 99%
confidence interval.

2) Anomaly Detection and Hybrid Detection: Hu et al. [98]
used the robust support vector machine (RSVM), a variation of
the SVM where the discriminating hyperplane is averaged to
be smoother and the regularization parameter is automatically
determined, as the anomaly classifier in their study. The Basic
Security Module [18] portions from the DARPA 1998 data set
were used to preprocess training and testing data. The study
showed a good classification performance in the presence of
noise (such as some mislabeling of the training data set) and
reported 75% accuracy with no false alarms and 100% accuracy
with a 3% FAR.

Wagner et al. [99] used NetFlow data collected from real-
world and simulated attack data using the Flame tool [100]
and other Internet Service Provider sources who provided real-
world attack data, such as NetBIOS scans, DoS attacks, POP
spams, and Secure Shell (SSH) scans. The study employed
a one-class SVM classifier, which is considered a natural
approach for anomaly detection. A new window kernel was
introduced to help find an anomaly based on time position
of the NetFlow data. More than one NetFlow record entered
into this kernel, suggesting the sequential information was also
retained for classification. Moreover, the window was checked
for IP address and traffic volume. The window kernel operates
as a similarity measure between the similar sequential NetFlow
records. The performance was reported as 89% to 94% accurate
on different types of attacks with FP rates of 0% to 3%.

The approach described by Shon and Moon [101] is a frame-
work for detection of novel attacks in network traffic. Their
approach is a combination of the Self-Organizing Feature Map
(SOFM), GA, and SVM. It is described here because the main
novelty of the method is the Enhanced SVM.

The four steps in the proposed system are as follows:
• A type of unsupervised ANN performing SOFM cluster-

ing [102] is used for packet profiling.
• Packet filtering is performed using Passive TCP/IP

Fingerprinting.
• GA selects features.
• Data are classified using the Enhanced SVM, which

is derived from a one-class SVM, and the supervised

1170 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 2, SECOND QUARTER 2016

soft-margin SVM. The first provides the unlabeled classi-
fication capability of the one-class SVM, and the second
provides the high detection performance of the supervised
SVM.

The study used the 1999 DARPA intrusion detection data
set. To make the data set more realistic, the subset chosen con-
sisted of 1% to 1.5% attacks and 98.5% to 99% normal traffic.
The results from the Enhanced SVMs had 87.74% accuracy, a
10.20% FP rate, and a 27.27% FN rate. Those results were sub-
stantially better than those from the one-class SVMs, but not
as good as soft-margin SVMs. However, the Enhanced SVM
can detect novel attack patterns, whereas a soft-margin SVM
cannot.

Another experiment was performed on a data set collected at
the institute where one of the authors works. The performance
of the Enhanced SVM-based system was compared to the per-
formance of Snort [16] and Bro [103]. Testing was performed
on normal data, two sets of known attacks, and so-called real
data (i.e., data collected by the author’s institute). In case of nor-
mal data (see Table VI), Bro performed the best. Snort and the
Enhanced SVM performed similarly, with Snort being slightly
better. In the case of known attacks, the performance of Snort
and Bro was better than that of the Enhanced SVM. In case of
real data, the Enhanced SVM outperforms Snort and Bro.

V. COMPUTATIONAL COMPLEXITY OF ML AND DM
METHODS

The literature contains a limited number of performance
comparisons for ML and DM algorithms. The concept of cal-
ibrating the prediction involves a kind of smoothing on the
output of the predictions to fit them more suitably to a distribu-
tion. Therefore, an appropriate performance comparison should
include calibration and no calibration of the predictions with a
suitable approach such as Platt Scaling and Isotonic Regression
[104]. According to the empirical comparison in [104], bagged
trees, Random Forests, and ANNs give the best results. After
calibration, boosted trees and SVMs perform better. The study
also reports that generalizations do not hold, there is signif-
icant variability across the problems and metrics, and model
performances are not always consistent. Although some algo-
rithms are accepted to be better performing than others, the
performance of a particular ML algorithm is application and
implementation dependent.

Table VII provides the computational complexity (i.e., time
complexity) of the different ML and DM algorithms. The ele-
ments of Table VII were found through an extensive literature
and Internet search. Naturally, some of the time complexities
are debatable, and they are based on the experience of the user
and the skills of the implementer. Most of these algorithms have
well-maintained open-source implementations. The assump-
tions made in Table VII are that the data consist of n instances,
each described by m attributes, and n is much greater than m.

As a rule of thumb, the O(n) and O(n log n) algorithms
are considered to be linear time and are usable for online
approaches. O(n2) is considered as acceptable time complex-
ity for most practices. O(n3) and higher are considered to be
much slower algorithms and used for offline approaches.

A higher percentage of the papers covered in this survey
paper present their approaches as offline methods. The pro-
cessed data are ready and input to the system as whole. When
the system pipeline is designed to work as an online sys-
tem, or when the system processes streaming data, several
concerns have to be addressed, such as the data input/output
streams and buffering, running the methods online, and dis-
playing results with the appropriate timing information. A
few studies [35], [42], [52], [62] described their systems as
online-running and processing the input data in soft real time.
Interestingly, some of these studies even use slower algorithms
such as sequence mining [52] to perform intrusion detection.
There are also system-level issues to be addressed such as par-
titioning the input data streams (e.g., MapReduce framework
[105]), employing the learning methods, and collecting and
aggregating the results in parallel.

In general, when training prediction models, or learning net-
work traffic features, an online suitable method addresses, at a
minimum, three factors: time complexity, incremental update
capability, and generalization capacity.

• The time complexity of each algorithm is presented in
Table VII. A method should be close to roughly O(n log
n) to be considered a streaming algorithm. However, slow
algorithms such as sequence mining methods or ANNs
are also used within streaming systems by keeping the
input data windowed and having a small n.

• For the incremental update capability, the clustering algo-
rithms, statistical methods (e.g., HMM, Bayesian net-
works), and ensemble models can easily be updated
incrementally [89], [106]. However, updates to ANNs,
SVMs, or evolutionary models may cause complications
[89], [106].

• A good generalization capacity is required so that the
trained model does not drastically deviate from the start-
ing model when new input data are seen. Most of the
state-of-the-art ML and DM methods have very good
generalization ability.

The testing phase for methods is generally fast, mostly on
the order of linear time with respect to the input data size.
Therefore, once trained, most methods can be used online.

VI. OBSERVATIONS AND RECOMMENDATIONS

The extent of papers found on ML and DM for cyber
intrusion detection shows that these methods are a prevalent
and growing research area for cyber security. The question
is: Which of these methods are the most effective for cyber
applications? Unfortunately, this is not yet established.

A. Observations Related to the Data Sets

Table VIII lists the representative ML and DM method papers
applied to cyber domain that were reviewed (and described
in Section IV), including the number of times they have been
cited, the cyber problem they are solving, and the data used. It
is interesting that of the 39 papers listed in Table VIII, 28 used
the DARPA 1998, DARPA 1999, DARPA 2000, or KDD 1999
data sets. Only two used NetFlow data, two used tcpdump data,

BUCZAK AND GUVEN: SURVEY OF DATA MINING AND MACHINE LEARNING METHODS 1171

TABLE VII
COMPLEXITY OF ML AND DM ALGORITHMS DURING TRAINING

one used DNS data, one used SSH commands, and four used
some other type of data. When identifying the representative
papers, this study primarily considered the ML or DM method
the authors used and the fact that the papers represented a mis-
use, anomaly, or hybrid approach. Another important factor was
that the papers were highly referenced, which was considered
to be some indication of their quality. However, some promis-
ing emerging methods were also included even if they have not
yet had a chance to be highly referenced. Although the study
targeted papers written in 2000 or later, two earlier papers were
well written and highly cited and therefore merited inclusion in
this survey paper.

The fact that so many papers use the DARPA and KDD
data sets is related to how difficult and time consuming it is
to obtain a representative data set. Once such a data set is avail-
able, researchers tend to reuse it. Additionally, reusing the same
data set should allow for easy comparison of the accuracy of
the different methods. As discussed earlier, in the case of the
DARPA and KDD data sets, this was actually not entirely true
because those data sets are so huge that researchers chose to
work on different subsets. The two papers that discussed the
use of NetFlow also discussed anomaly detection performance.
This is obvious because NetFlow does not have such a rich set
of features as tcpdump or DARPA or KDD data nor the features
necessary for detecting particular signatures in misuse detec-
tion. (Its features are limited to flow information generated by
higher-end routers.)

B. Factors Related to IDS Performance

One of the most important factors related to the performance
of IDSs is the type and level of the input data. As previously dis-
cussed, several studies used DARPA or KDD data sets because
they are easy to obtain and contain network-level data (either
tcpdump or NetFlow) as well as OS-level data (e.g., network

logs, security logs, kernel system calls). Primarily, the attack
data coming to the network stack and the effect of these packets
on the OS level carried important information. As a result, it is
advantageous that an IDS be able to reach network- and kernel-
level data. If only NetFlow (much easier to obtain and process)
data are available for the IDS, these data must be augmented
by network-level data such as network sensors that generate
additional features of packets or streams. If possible, the net-
work data should be augmented by OS kernel-level data. As
discovered, several studies approached the intrusion detection
problem by examining OS-level commands (i.e., host-based
IDS), not network packets.

The second factor related to the performance of the IDSs is
the type of ML and DM algorithms employed and the over-
all system design. The literature survey revealed that many
studies used DARPA and KDD data sets and applied different
types of ML methods. These studies did not actually build an
IDS, but examined the performances of ML and DM methods
on some cyber security data. However, categorizing the stud-
ies with respect to the authors’ affiliations reveals studies that
built actual IDSs and employed real-world data captured from
campus networks or Internet backbones. All of these studies
appear to have used systems integrated with more than one ML
method and several modules related to attack signature capture,
signature database, etc.

C. Comparison Criteria

There are several criteria by which the ML/DM methods for
cyber could be compared:

• Accuracy
• Time for training a model
• Time for classifying an unknown instance with a trained

model
• Understandability of the final solution (classification)

1172 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 2, SECOND QUARTER 2016

TABLE VIII
ML AND DM METHODS AND DATA THEY USE

If one were to compare the accuracy of several ML/DM
methods, those methods should be trained on exactly the same
training data and tested on exactly the same testing data.
Unfortunately, even in the studies that used the same data set
(e.g., KDD 1999), when they compared their results with the
best methods from the KDD Cup (and usually claimed their
results were better), they did so in an imperfect fashion—they
used a subset of the KDD data set, but not necessarily the same
subset that the other method used. Therefore, the accuracy of
these results is not comparable.

The time for training a model is an important factor due to
ever changing cyber-attack types and features. Even anomaly
detectors need to be trained frequently, perhaps incrementally,
with fresh malware signature updates.

Time for classifying a new instance is an important factor
that reflects the reaction time and the packet processing power
of the intrusion detection system.

Understandability or readability of the classification model
is a means to help the administrators examine the model fea-
tures easily in order to patch their systems more quickly. This

information (such as packet type, port number, or some other
high level network packet feature that reflects the cyber-attack
footpath) will be available through the feature vectors that are
tagged by the classifier as an intrusion category.

D. Peculiarities of ML and DM for Cyber

ML and DM have been extremely useful in many applica-
tions. The cyber domain has some peculiarities that make those
methods harder to use. Those peculiarities are especially related
to how often the model needs to be retrained and the availability
of labeled data.

In most ML and DM applications, a model (e.g., classifier)
is trained and then used for a long time, without any changes.
In those applications, the processes are assumed to be quasi-
stationary and therefore the retraining of the model does not
happen often. The situation in cyber intrusion detection is dif-
ferent. Models are trained daily [56], whenever the analyst
requires [43], or each time a new intrusion is identified and its
pattern becomes known [75]. Especially when the models are

BUCZAK AND GUVEN: SURVEY OF DATA MINING AND MACHINE LEARNING METHODS 1173

supposed to be trained daily, their training time becomes impor-
tant. (It must definitely take less than 1 full day to retrain the
model.) Traditionally, ML and DM methods start the training
from scratch. However, if a model needs to be retrained often
(e.g., daily) because of just a few changes in the data, it makes
more sense to start from the trained model and continue train-
ing it or else use self-adaptive models. A fertile area of research
would be to investigate the methods of fast incremental learning
that could be used for daily updates of models for misuse and
anomaly detection.

There are many domains in which it is easy to obtain training
data, and in those domains ML and DM methods usually thrive
(e.g., recommendations that Amazon makes for its clients).
In other areas where data are difficult to obtain (e.g., health
monitoring data for machinery or aircraft), applications of ML
and DM can be abundant. In the cyber domain, much data
could be harvested by putting sensors on networks (e.g., to get
NetFlow or TCP), which although not an easy task is definitely
worthwhile.

However there is a problem with the sheer volume of that
data—there is too much data to store (terabytes per day).
Another problem is that some of the data need to be labeled
to be useful, which might be a laborious task. Data for train-
ing definitely need to be labeled, and this is even true for pure
anomaly detection methods. These methods have to use data
that are normal; they cannot develop a model with the attack
data intermingled. Additionally, because they have to be tested
with novel attacks, some novel attack data are required as well.
The biggest gap seen is the availability of the labeled data, and
definitely a worthwhile investment would be to collect data and
label some of it. Using this new data set, significant advances
could be made to ML and DM methods in cyber security and
breakthroughs could be possible. Otherwise, the best possible
available data set right now is the KDD 1999 corrected data
set. (However, being 15 years old, this data set does not have
examples of all the new attacks that have occurred in the last 15
years.)

E. ML and DM Recommendations for Misuse and Anomaly
Detection

IDSs are usually hybrid and have anomaly detection and
misuse detection modules. The anomaly detection module clas-
sifies the abnormal network traffic. The misuse detection mod-
ule classifies attack patterns with known signatures or extracts
new signatures from the attack-labeled data coming from the
anomaly module.

Often, an anomaly detector is based on a clustering method.
Among clustering algorithms, density-based methods (e.g.,
DBSCAN) are the most versatile, easy to implement, less
parameter or distribution dependent, and have high process-
ing speeds. In anomaly detectors, one-class SVMs also perform
well and much can be learned by extracting association rules or
sequential patterns from available normal traffic data.

Among misuse detectors, because the signatures need to be
captured, it is important that the classifier be able to generate
readable signatures, such as branch features in a decision tree,
genes in a genetic algorithm, rules in Association Rule Mining,

or sequences in Sequence Mining. Therefore, black-box clas-
sifiers like ANNs and SVMs are not well suited for misuse
detection

Several state-of-the-art ML and DM algorithms are suitable
for misuse detection. Some of these methods are statistical
such as Bayesian networks and HMMs; some are entropy-
based such as decision trees; some are evolutionary such as
genetic algorithms; some are ensemble methods like Random
Forests; and some are based on association rules. The design-
ers of the system should investigate whether the training data
are of good enough quality and have statistical properties that
can be exploited (e.g., Gaussian distribution). It is also impor-
tant to know whether the required system will work online or
offline. Answers to such questions will determine the most suit-
able ML approach. In the opinion of the authors of this paper,
the network data cannot be properly modeled using a simple
distribution (e.g., Gaussian) due to the fact that, in practice,
a single network packet might contain a payload that can be
associated to dozens of network protocols and user behaviors
[113]. The variability in the payload is characterized by sums of
multiple probability distributions or joint probability distribu-
tions, which are not directly separable. Therefore, methods like
Bayesian networks or HMMs may not be the strongest approach
because the data do not have the properties that are the most
appropriate for them. Evolutionary computation methods may
take a long time to run and therefore may not be suitable for sys-
tems that train online. If the training data are scarce, Random
Forests might have an advantage. If the attack signature cap-
ture is important, decision trees, evolutionary computation, and
association rules can be useful.

VII. CONCLUSIONS

The paper describes the literature review of ML and DM
methods used for cyber. Special emphasis was placed on finding
example papers that describe the use of different ML and DM
techniques in the cyber domain, both for misuse and anomaly
detection. Unfortunately, the methods that are the most effec-
tive for cyber applications have not been established; and given
the richness and complexity of the methods, it is impossible to
make one recommendation for each method, based on the type
of attack the system is supposed to detect. When determining
the effectiveness of the methods, there is not one criterion but
several criteria that need to be taken into account. They include
(as described in Section VI, Subsection C) accuracy, complex-
ity, time for classifying an unknown instance with a trained
model, and understandability of the final solution (classifica-
tion) of each ML or DM method. Depending on the particular
IDS, some might be more important than others.

Another crucial aspect of ML and DM for cyber intrusion
detection is the importance of the data sets for training and test-
ing the systems. ML and DM methods cannot work without
representative data, and it is difficult and time consuming to
obtain such data sets. To be able to perform anomaly detection
and misuse detection, it is advantageous for an IDS to be able
to reach network- and kernel-level data. If only NetFlow data
are available, these data must be augmented by network-level
data such as network sensors that generate additional features

1174 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 2, SECOND QUARTER 2016

of packets or streams. If possible, the network data should be
augmented by OS kernel-level data.

The biggest gap observed is the availability of labeled data,
and definitely a worthwhile investment would be to collect data
and label some of it. Using this new data set, several promis-
ing ML and DM methods could be used to develop models
and compared, narrowing the list of ML and DM effective
for cyber applications. Significant advances could be made to
ML and DM methods in cyber security using this data set and
breakthroughs could be possible.

There are some peculiarities of the cyber problem that make
ML and DM methods more difficult to use (as described in
Section VI, Subsection D). They are especially related to how
often the model needs to be retrained. A fertile area of research
would be to investigate the methods of fast incremental learning
that could be used for daily updates of models for misuse and
anomaly detection.

REFERENCES

[1] A. Mukkamala, A. Sung, and A. Abraham, “Cyber security challenges:
Designing efficient intrusion detection systems and antivirus tools,” in
Enhancing Computer Security with Smart Technology, V. R. Vemuri, Ed.
New York, NY, USA: Auerbach, 2005, pp. 125–163.

[2] M. Bhuyan, D. Bhattacharyya, and J. Kalita, “Network anomaly detec-
tion: Methods, systems and tools,” IEEE Commun. Surv. Tuts., vol. 16,
no. 1, pp. 303–336, First Quart. 2014.

[3] T. T. T. Nguyen and G. Armitage, “A survey of techniques for inter-
net traffic classification using machine learning,” IEEE Commun. Surv.
Tuts., vol. 10, no. 4, pp. 56–76, Fourth Quart. 2008.

[4] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández, and
E. Vázquez, “Anomaly-based network intrusion detection: Techniques,
systems and challenges,” Comput. Secur., vol. 28, no. 1, pp. 18–28,
2009.

[5] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,
“An overview of IP flow-based intrusion detection,” IEEE Commun.
Surv. Tuts., vol. 12, no. 3, pp. 343–356, Third Quart. 2010.

[6] S. X. Wu and W. Banzhaf, “The use of computational intelligence in
intrusion detection systems: A review,” Appl. Soft Comput., vol. 10,
no. 1, pp. 1–35, 2010.

[7] Y. Zhang, L. Wenke, and Y.-A. Huang, “Intrusion detection techniques
for mobile wireless networks,” Wireless Netw., vol. 9, no. 5, pp. 545–
556, 2003.

[8] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The KDD process for
extracting useful knowledge from volumes of data,” Commun. ACM,
vol. 39, no. 11, pp. 27–34, 1996.

[9] C. Shearer, “The CRISP-DM model: The new blueprint for data min-
ing,” J. Data Warehouse., vol. 5, pp. 13–22, 2000.

[10] A. Guazzelli, M. Zeller, W. Chen, and G. Williams, “PMML an open
standard for sharing models,” R J., vol. 1, no. 1, pp. 60–65, May 2009.

[11] M. Hall, E. Frank, J. Holmes, B. Pfahringer, P. Reutemann, and
I. Witten, “The WEKA data mining software: An update,” ACM
SIGKDD Explor. Newslett., vol. 11, no. 1, pp. 10–18, 2009.

[12] R Language Definition. (2000). R Core Team [Online]. Available:
ftp://155.232.191.133/cran/doc/manuals/r-devel/R-lang.pdf, accessed
on Nov. 2015.

[13] M. Graczyk, T. Lasota, and B. Trawinski, “Comparative analysis of
premises valuation models using KEEL, RapidMiner, and WEKA,”
Computational Collective Intelligence. Semantic Web, Social Networks
and Multiagent Systems. New York, NY, USA: Springer, 2009,
pp. 800–812.

[14] V. Jacobson, C. Leres, and S. McCanne, The Tcpdump Manual Page.
Berkeley, CA, USA: Lawrence Berkeley Laboratory, 1989.

[15] G. Combs. Wireshark [Online]. Available: http://www.wireshark.org,
accessed on Jun. 2014.

[16] Snort 2.0. Sourcefire [Online]. Available: http://www.sourcefire.com/
technology/whitepapers.htm, accessed on Jun. 2014.

[17] G. F. Lyon, Nmap Network Scanning: The Official Nmap Project Guide
to Network Discovery and Security Scanning. USA: Insecure, 2009.

[18] R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das, “The 1999
DARPA offline intrusion detection evaluation,” Comput. Netw., vol. 34,
pp. 579–595, 2000.

[19] R. Lippmann et al., “Evaluating intrusion detection systems: The 1998
DARPA offline intrusion detection evaluation,” in Proc. IEEE DARPA
Inf. Surviv. Conf. Expo., 2000, pp. 12–26.

[20] S. J. Stolfo, KDD Cup 1999 Data Set, University of California Irvine,
KDD repository [Online]. Available: http://kdd.ics.uci.edu, accessed on
Jun. 2014.

[21] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A detailed analysis
of the KDD Cup 1999 data set,” in Proc. 2nd IEEE Symp. Comput. Intell.
Secur. Defense Appl., 2009, pp. 1–6.

[22] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward net-
works are universal approximators,” Neural Netw., vol. 2, pp. 359–366,
1989.

[23] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychol. Rev., vol. 65, no. 6,
pp. 386–408, 1958.

[24] J. Cannady, “Artificial neural networks for misuse detection,” in Proc.
1998 Nat. Inf. Syst. Secur. Conf., Arlington, VA, USA, 1998, pp. 443–
456.

[25] Internet Security Scanner (ISS). IBM [Online]. Available:
http://www.iss.net, accessed on Feb. 2015.

[26] B. Morel, “Artificial intelligence and the future of cybersecurity,” in
Proc. 4th ACM Workshop Secur. Artif. Intell., 2011. pp. 93–98.

[27] R. P. Lippmann and R. K. Cunningham, “Improving intrusion detection
performance using keyword selection and neural networks,” Comput.
Netw., vol. 34, pp. 597–603, 2000.

[28] A. Bivens, C. Palagiri, R. Smith, B. Szymanski, and M. Embrechts,
“Network-based intrusion detection using neural networks,” Intell. Eng.
Syst. Artif. Neural Netw., vol. 12, no. 1, pp. 579–584, 2002.

[29] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” in Proc. Int. Conf. Manage.
Data Assoc. Comput. Mach. (ACM), 1993, pp. 207–216.

[30] C. M. Kuok, A. Fu, and M. H. Wong, “Mining fuzzy association
rules in databases,” ACM SIGMOD Rec., vol. 27, no. 1, pp. 41–46,
1998.

[31] L. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338—35, 1965.
[32] H. Brahmi, B. Imen, and B. Sadok, “OMC-IDS: At the cross-roads

of OLAP mining and intrusion detection,” in Advances in Knowledge
Discovery and Data Mining. New York, NY, USA: Springer, 2012,
pp. 13–24.

[33] H. Zhengbing, L. Zhitang, and W. Junqi, “A novel network intrusion
detection system (NIDS) based on signatures search of data mining,” in
Proc. 1st Int. Conf. Forensic Appl. Techn. Telecommun. Inf. Multimedia
Workshop (e-Forensics ‘08), 2008, pp. 10–16.

[34] H. Han, X. Lu, and L. Ren, “Using data mining to discover signatures
in network-based intrusion detection,” in Proc. IEEE Comput. Graph.
Appl., 2002, pp. 212–217.

[35] D. Apiletti, E. Baralis, T. Cerquitelli, and V. D’Elia, “Characterizing
network traffic by means of the NetMine framework,” Comput. Netw.,
vol. 53, no. 6, pp. 774–789, Apr. 2009.

[36] NetGroup, Politecnico di Torino, Analyzer 3.0 [Online]. Available:
http://analyzer.polito.it, accessed on Jun. 2014.

[37] E. Baralis, T. Cerquitelli, and V. D’Elia. (2008). Generalized
Itemset Discovery by Means of Opportunistic Aggregation. Tech.
Rep., Politecnico di Torino [Online] https://dbdmg.polito.it/twiki/
bin/view/Public/NetworkTrafficAnalysis, accessed on Jun.
2014.

[38] A. Tajbakhsh, M. Rahmati, and A. Mirzaei, “Intrusion detection using
fuzzy association rules,” Appl. Soft Comput., vol. 9, pp. 462–469, 2009.

[39] J. Luo and S. Bridges, “Mining fuzzy association rules and fuzzy fre-
quency episodes for intrusion detection,” Int. J. Intell. Syst., vol. 15,
no. 8, pp. 687–703, 2000.

[40] D. Heckerman, A Tutorial on Learning with Bayesian Networks. New
York, NY, USA: Springer, 1998.

[41] F. V. Jensen, Bayesian Networks and Decision Graphs. New York, NY,
USA: Springer, 2001.

[42] C. Livadas, R. Walsh, D. Lapsley, and W. Strayer, “Using machine learn-
ing techniques to identify botnet traffic,” in Proc 31st IEEE Conf. Local
Comput. Netw., 2006, pp. 967–974.

[43] F. Jemili, M. Zaghdoud, and A. Ben, “A framework for an adaptive intru-
sion detection system using Bayesian network,” in Proc. IEEE Intell.
Secur. Informat., 2007, pp. 66–70.

[44] C. Kruegel, D. Mutz, W. Robertson, and F. Valeur, “Bayesian event clas-
sification for intrusion detection,” in Proc. IEEE 19th Annu. Comput.
Secur. Appl. Conf., 2003, pp. 14–23.

BUCZAK AND GUVEN: SURVEY OF DATA MINING AND MACHINE LEARNING METHODS 1175

[45] S. Benferhat, T. Kenaza, and A. Mokhtari, “A Naïve Bayes approach for
detecting coordinated attacks,” in Proc. 32nd Annu. IEEE Int. Comput.
Software Appl. Conf., 2008, pp. 704–709.

[46] K. Jain and R. C. Dubes, Algorithms for Clustering Data. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1988.

[47] K. Leung and C. Leckie, “Unsupervised anomaly detection in net-
work intrusion detection using clusters,” in Proc. 28th Australas. Conf.
Comput. Sci., vol. 38, 2005, pp. 333–342.

[48] P. W. Holland and S. Leinhardt, “Transitivity in structural models of
small groups,” Comp. Group Stud., vol. 2, pp. 107–124, 1971.

[49] J. Watts and S. Strogatz, “Collective dynamics of ‘small-world’ net-
works,” Nature, vol. 393, pp. 440–442, Jun. 1998.

[50] R. Hendry and S. J. Yang, “Intrusion signature creation via cluster-
ing anomalies,” in Proc. SPIE Defense Secur. Symp. Int. Soc. Opt.
Photonics, 2008, pp. 69730C–69730C.

[51] M. Blowers and J. Williams, “Machine learning applied to cyber oper-
ations,” in Network Science and Cybersecurity. New York, NY, USA:
Springer, 2014, pp. 55–175.

[52] K. Sequeira and M. Zaki, “ADMIT: Anomaly-based data mining for
intrusions,” in Proc 8th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Min., 2002, pp. 386–395.

[53] R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, 1986.

[54] R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA,
USA: Morgan Kaufmann, 1993.

[55] C. Kruegel and T. Toth, “Using decision trees to improve signature-
based intrusion detection,” in Proc. 6th Int. Workshop Recent Adv.
Intrusion Detect., West Lafayette, IN, USA, 2003, pp. 173–191.

[56] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “EXPOSURE: Finding
malicious domains using passive DNS analysis,” presented at the 18th
Annu. Netw. Distrib. Syst. Secur. Conf., 2011.

[57] L. Bilge, S. Sen, D. Balzarotti, E. Kirda, and C. Kruegel, “2014
Exposure: A passive DNS analysis service to detect and report malicious
domains,” ACM Trans. Inf. Syst. Secur., vol. 16, no. 4, Apr. 2014.

[58] R. Polikar, “Ensemble based systems in decision making,” IEEE
Circuits Syst. Mag., vol. 6, no. 3, pp. 21–45, Third Quart. 2006.

[59] Y. Freund and R. Schapire, “Experiments with a new boosting algo-
rithm,” in Proc. 13th Int. Conf. Mach. Learn., 1996, vol. 96, pp. 148–
156.

[60] P. Long and R. Servedio, “Boosting the area under the ROC curve,” Adv.
Neural Inf. Process. Syst., pp. 945–952, 2007.

[61] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[62] J. Zhang, M. Zulkernine, and A. Haque, “Random-forests-based net-
work intrusion detection systems,” IEEE Trans. Syst. Man Cybern. C:
Appl. Rev., vol. 38, no. 5, pp. 649–659, Sep. 2008.

[63] F. Gharibian and A. Ghorbani, “Comparative study of supervised
machine learning techniques for intrusion detection,” in Proc. 5th Annu.
Conf. Commun. Netw. Serv. Res., 2007, pp. 350–358.

[64] J. H. Friedman, “Multivariate adaptive regression splines,” Anal. Statist.,
vol. 19, pp. 1–141, 1991.

[65] S. Mukkamala, A. Sunga, and A. Abraham, “Intrusion detection using
an ensemble of intelligent paradigms,” J. Netw. Comput. Appl., vol. 28,
no. 2, pp. 167–182, 2004.

[66] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel,
“Disclosure: Detecting botnet command and control servers through
large-scale netflow analysis,” in Proc. 28th Annu. Comput. Secur.
Appl. Conf. (ACSAC’12), Orlando, FL, USA, Dec. 3–7, 2012,
pp. 129–138.

[67] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Mach. Learn., vol. 3, no. 2, pp. 95–99, 1988.

[68] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[69] H. G. Beyer and H. P. Schwefel, “Evolution strategies: A comprehensive
introduction,” J. Nat. Comput., vol. 1, no. 1, pp. 3–52, 2002.

[70] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., 1995, vol. IV, pp. 1942–1948.

[71] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem,” IEEE Trans. Evol.
Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997.

[72] J. Farmer, N. Packard, and A. Perelson, “The immune system, adap-
tation and machine learning,” Phys. D: Nonlinear Phenom., vol. 2,
pp. 187–204, 1986.

[73] W. Li, “Using genetic algorithms for network intrusion detection,” in
Proc. U.S. Dept. Energy Cyber Secur. Group 2004 Train. Conf., 2004,
pp. 1–8.

[74] A. Abraham, C. Grosan, and C. Martin-Vide, “Evolutionary design of
intrusion detection programs,” Int. J. Netw. Secur., vol. 4, no. 3, pp. 328–
339, 2007.

[75] J. Hansen, P. Lowry, D. Meservy, and D. McDonald, “Genetic program-
ming for prevention of cyberterrorism through dynamic and evolving
intrusion detection,” Decis. Support Syst., vol. 43, no. 4, pp. 1362–1374,
Aug. 2007.

[76] S. Khan, “Rule-based network intrusion detection using genetic algo-
rithms,” Int. J. Comput. Appl., vol. 18, no. 8, pp. 26–29, Mar. 2011.

[77] T. Jolliffe, Principal Component Analysis, 2nd ed. New York, NY, USA:
Springer, 2002.

[78] W. Lu and I. Traore, “Detecting new forms of network intrusion using
genetic programming,” Comput. Intell., vol. 20, pp. 470–489, 2004.

[79] A. Markov, “Extension of the limit theorems of probability theory to a
sum of variables connected in a chain,” Dynamic Probabilistic Systems,
vol. 1, R. Howard. Hoboken, NJ, USA: Wiley, 1971 (Reprinted in
Appendix B).

[80] L. E. Baum and J. A. Eagon, “An inequality with applications to sta-
tistical estimation for probabilistic functions of Markov processes and
to a model for ecology,” Bull. Amer. Math. Soc., vol. 73, no. 3, p. 360,
1967.

[81] A. Arnes, F. Valeur, G. Vigna, and R. A. Kemmerer, “Using Hidden
markov models to evaluate the risks of intrusions: System architec-
ture and model validation,” Lect. Notes Comput. Sci., pp. 145–164,
2006.

[82] D. Ariu, R. Tronci, and G. Giacinto, “HMMPayl: An intrusion detection
system based on hidden Markov models,” Comput. Secur., vol. 30, no. 4,
pp. 221–241, 2011.

[83] S. S. Joshi and V. V. Phoha, “Investigating hidden Markov models capa-
bilities in anomaly detection,” in Proc. ACM 43rd Annu. Southeast Reg.
Conf., 2005, vol. 1, pp. 98–103.

[84] P. Dempster, N. M. Laird, and D. B. Robin, “Maximum likelihood from
incomplete data via the EM algorithm,” J. Roy. Statist. Soc., Series B
(methodological), pp. 1–38, 1977.

[85] W. W. Cohen, “Fast effective rule induction,” in Proc. 12th Int. Conf.
Mach. Learn., Lake Tahoe, CA, USA, 1995, pp. 115–123.

[86] R. Michalski, “A theory and methodology of inductive learning,” Mach.
Learn., vol. 1, pp. 83–134, 1983.

[87] W. Lee, S. Stolfo, and K. Mok, “A data mining framework for building
intrusion detection models,” in Proc. IEEE Symp. Secur. Privacy, 1999,
pp. 120–132.

[88] W. Fan, M. Miller, S. Stolfo, W. Lee, and P. Chan, “Using artificial
anomalies to detect unknown and known network intrusions,” Knowl.
Inf. Syst., vol. 6, no. 5, pp. 507–527, 2004.

[89] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 3rd ed. San Mateo, CA, USA: Morgan Kaufmann,
2011.

[90] M. Panda and M. R. Patra, “Network intrusion detection using Naive
Bayes,” Int. J. Comput. Sci. Netw. Secur., vol. 7, no. 12, pp. 258–263,
2007.

[91] N. B. Amor, S. Benferhat, and Z. Elouedi, “Naïve Bayes vs. decision
trees in intrusion detection systems,” in Proc ACM Symp. Appl. Comput.,
2004, pp. 420–424.

[92] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proc. IEEE
11th Int. Conf. Data Eng., 1995, pp. 3–14.

[93] Y. Hu and B. Panda, “A data mining approach for database intrusion
detection,” in Proc. ACM Symp. Appl. Comput., 2004, pp. 711–716.

[94] Z. Li, A. Zhang, J. Lei, and L. Wang, “Real-time correlation of network
security alerts,” in Proc. IEEE Int. Conf. e-Business Eng., 2007, pp. 73–
80.

[95] V. Vapnik, The Nature of Statistical Learning Theory. New York, NY,
USA: Springer, 2010.

[96] Y. Li, J. Xia, S. Zhang, J. Yan, X. Ai, and K. Dai, “An efficient intrusion
detection system based on support vector machines and gradually fea-
ture removal method,” Expert Syst. Appl., vol. 39, no. 1, pp. 424–430,
2012.

[97] F. Amiri, M. Mahdi, R. Yousefi, C. Lucas, A. Shakery, and N. Yazdani,
“Mutual information-based feature selection for IDSs,” J. Netw.
Comput. Appl., vol. 34, no. 4, pp. 1184–1199, 2011.

[98] W. J. Hu, Y. H. Liao, and V. R. Vemuri, “Robust support vector machines
for anomaly detection in computer security,” in Proc. 20th Int. Conf.
Mach. Learn., 2003, pp. 282–289.

[99] C. Wagner, F. Jérôme, and E. Thomas, “Machine learning approach for
IP-flow record anomaly detection,” in Networking 2011. New York, NY,
USA: Springer, 2011, pp. 28–39.

[100] D. Brauckhoff, A. Wagner, and M. May, “Flame: A low-level anomaly
modeling engine,” in Proc. Conf. Cyber Secur. Exp. Test, 2008.

1176 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 18, NO. 2, SECOND QUARTER 2016

[101] T. Shon and J. Moon, “A hybrid machine learning approach to net-
work anomaly detection,” Inf. Sci., vol. 177, no. 18, pp. 3799–3821,
Sep. 2007.

[102] T. Kohonen, Self-Organizing Map. New York, NY, USA: Springer,
1995.

[103] V. Paxson. (2004). Bro 0.9 [Online]. Available: http://bro-ids.org,
accessed on Jun. 2014.

[104] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of super-
vised learning algorithms,” in Proc. ACM 23rd Int. Conf. Mach. Learn.,
2006, pp. 161–168.

[105] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[106] H. Guang-Bin, D. H. Wang, and Y. Lan, “Extreme learning machines: A
survey,” Int. J. Mach. Learn. Cybern., vol. 2, no. 2, pp. 107–122, 2011.

[107] K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks: A
tutorial,” Computer, vol. 29, no. 3, pp. 31–44, 1996.

[108] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo,
“Fast discovery of association rules,” Adv. Knowl. Discov. Data Min.,
vol. 12, no. 1, pp. 307–328, 1996.

[109] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,”
Knowl. Discov. Data Min., vol. 96, pp. 226–231, 1996.

[110] P. S. Oliveto, J. He, and X. Yao, “Time complexity of evolutionary
algorithms for combinatorial optimization: A decade of results,” Int. J.
Autom. Comput., vol. 4, no. 3, pp. 281–293, 2007.

[111] G. D. Forney, “The Viterbi algorithm,” Proc. IEEE, vol. 61, no. 3,
pp. 268–278, Mar. 1973.

[112] J. C. Burges, “A tutorial on support vector machines for pattern recog-
nition,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121–167, 1998.

[113] K. Ahsan and D. Kundur, “Practical data hiding in TCP/IP,” in Proc.
ACM Multimedia Secur. Workshop, 2002, vol. 2, no. 7.

Anna L. Buczak photograph and biography not available at the time of
Publication.

Erhan Guven photograph and biography not available at the time of
Publication.

