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Situation

 Two categories of Intrusion Detection algorithms
 Misuse Detection

 Detect attacks based on known attack signatures

 Effective for known attacks with low errors

 Can not detect new attacks

 Anomaly Detection
 Analyze and profile normal traffic patterns

 Can detect new attacks

 Higher false positive rate
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Task

 Hybrid Intrusion Detection method
 Combine Misuse and Anomaly Detection

 Previous Approach:
 Independently train misuse and anomaly detection models

 Aggregate results of detection models
 Consider as attack if at least one of the two models classify as attack

 High False Positive rate

 Consider as attack only if both models classify as attack
 Lower Recall rate
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Approach

 Hierarchically integrate misuse detection with anomaly detection
 Anomaly model indirectly uses known attack information to build 

normal behavior profiles
 Use misuse detection model to decompose normal training data

 Separate into disjoint subsets

 Build anomaly detection model for each subset
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Approach

 C4.5 Decision Tree (DT) used to create misuse detection model
 Trained on normal traffic and known attack data

 Produces disjoint subsets

 One Class Support Vector Machine (1-class SVM) used to create 
anomaly detection models
 Trained for each disjoint subset from DT

 Reduced data set sizes means 50% reduction in training time
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6

Diagram of decision making process of proposed method



Decision Tree and C4.5

 Locate attribute that best divides data into corresponding classes
 Recursively partitions data into subsets
 Creates tree-like structure

 Node: attribute to best divide current subset

 Edges: possible values/ranges of selected attribute

 Leaves: terminating node – no further distinguishing attributes

 Decomposes data space into homogenous regions
 Prunes data to generalize tree
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Decision Tree and C4.5

 C4.5 builds tree using information entropy
 Highest gain of each attribute
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Decision Tree and C4.5

Gain of set S after split over attribute A

n – number of different values of attribute A in S
fS(j) – proportion of the value j in the set S
Ai – ith possible value of A
SAi

– subset of S containing all items with value A = Ai
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Decision Tree and C4.5

 Information Entropy of set S

fS(j) – proportion of the value j in the set S
m – number of different values of the attribute in S

10



One-class Support Vector Machine

 Feature map non-linearly transforms data to Feature Space
 Locates hyper-plane to detect outliers in Feature space
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w vector orthogonal to hyper plane
𝜉𝜉 = [𝜉𝜉1,…,𝜉𝜉𝑙𝑙] vector of slack variables (penalizes rejected 

instances)
𝜌𝜌 margin (distance from origin to hyper plane)

𝜈𝜈 fraction training instances that can be rejected



One-class Support Vector Machine

 Utilize kernel theory
 Inner product in feature space can be computed using kernel function

𝑘𝑘 𝑥𝑥, 𝑦𝑦 = Φ(𝑥𝑥) � Φ(𝑦𝑦)

 Consider Gaussian kernel:
𝑘𝑘 𝑥𝑥,𝑦𝑦 = 𝑒𝑒−𝛾𝛾∥𝑥𝑥−𝑦𝑦∥2

parameter 𝛾𝛾 affects decision boundary
 small 𝛾𝛾 = smooth boundary

 large 𝛾𝛾 = sensitive to training data
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One-class Support Vector Machine

 Utilize kernel theory
 Decision function for test instance z becomes:

𝑓𝑓 𝑧𝑧 = 𝑠𝑠𝑠𝑠𝑠𝑠�
𝑖𝑖=1

𝑙𝑙
(𝛼𝛼𝑖𝑖𝑘𝑘𝑘𝑘𝑖𝑖 𝑧𝑧 − 𝜌𝜌 )

 Positive 𝑓𝑓(𝑧𝑧) indicates similar to training data set

 Negative 𝑓𝑓(𝑧𝑧) indicates outlier
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One-class Support Vector Machine

Important Parameters:
 𝜈𝜈 - fraction training instances that can be rejected

 High 𝜈𝜈 focuses on most frequent patterns

 Low 𝜈𝜈 includes noisy data

 𝛾𝛾 - affects decision boundary
 Low 𝛾𝛾 (0.0001) profiles normal data broadly

 Higher 𝛾𝛾 (0.001) profiles normal data narrowly
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15Decision boundaries of the conventional 1-class SVM model



16Decision boundaries of the proposed method



Experiments

 Effectiveness evaluated with NSL-KDD data set
 Modified version of KDD’99

 Redundant instances removed

 Performance evaluated with Weka 3.6 and LibSVM (from MATLAB)
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Experiments

 NSL-KDD data set includes KDDTrain+.TXT and KDDTest+.TXT
 KDDTest+.TXT contains both “known” and “unknown” attacks

 Problem: “Known” attack characteristics don’t always match same 
label in KDDTrain+.TXT

 Solution: Split KDDText+ into “Known” and “Unknown” connections

 Mix “Known” data set into KDDTrain+

 Evenly split mixed data set into training and test sets

 Add “Unknown” connections back into test set
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Detection Performance

 Compare new hybrid method with:
 Decision Tree misuse detection method

 1-class SVM anomaly detection method

 Conventional Hybrid approach
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Any Questions?
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