
CloudRadar: A Real-Time Side-Channel Attack
Detection System in Clouds

Tianwei Zhang1(B), Yinqian Zhang2, and Ruby B. Lee1

1 Princeton University, Princeton, NJ, USA
{tianweiz,rblee}@princeton.edu

2 The Ohio State University, Columbus, OH, USA
yinqian@cse.ohio-state.edu

Abstract. We present CloudRadar , a system to detect, and hence
mitigate, cache-based side-channel attacks in multi-tenant cloud sys-
tems. CloudRadar operates by correlating two events: first, it exploits
signature-based detection to identify when the protected virtual machine
(VM) executes a cryptographic application; at the same time, it uses
anomaly-based detection techniques to monitor the co-located VMs to
identify abnormal cache behaviors that are typical during cache-based
side-channel attacks. We show that correlation in the occurrence of
these two events offer strong evidence of side-channel attacks. Com-
pared to other work on side-channel defenses, CloudRadar has the fol-
lowing advantages: first, CloudRadar focuses on the root causes of cache-
based side-channel attacks and hence is hard to evade using metamor-
phic attack code, while maintaining a low false positive rate. Second,
CloudRadar is designed as a lightweight patch to existing cloud sys-
tems, which does not require new hardware support, or any hypervisor,
operating system, application modifications. Third, CloudRadar pro-
vides real-time protection and can detect side-channel attacks within
the order of milliseconds. We demonstrate a prototype implementation
of CloudRadar in the OpenStack cloud framework. Our evaluation sug-
gests CloudRadar achieves negligible performance overhead with high
detection accuracy.

Keywords: Attack detection · Side-channel attacks · Performance
counters · Cloud computing · Mitigation

1 Introduction

Infrastructure-as-a-Service (IaaS) cloud systems usually adopt the multi-tenancy
feature to maximize resource utilization by consolidating virtual machines (VMs)
leased by different tenants on the same physical machine. Virtualization tech-
nology is used to provide strong resource isolation between different VMs so
each VM’s memory content is not accessible to other co-tenant VMs. However,
confidentiality breaches due to cross-VM side-channel attacks become a major
concern. These attacks often operate on shared hardware resources and extract
c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 118–140, 2016.
DOI: 10.1007/978-3-319-45719-2 6

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 119

sensitive information, such as cryptographic keys, by making inferences on the
observed side-channel events due to resource sharing. CPU caches are popular
attack surfaces that lead to cross-VM side-channel attacks. Several prior work
have shown the possibilities of cross-VM secret leakage via different levels of
CPU caches [10,14,15,21,42,45,46].

Mitigating side-channel attacks in clouds is challenging. Past work on defeat-
ing side-channel attacks have some practical drawbacks: they mostly require sig-
nificant changes to the hardware [6,20,39,40], hypervisors [17,18,31,33,35,48]
or guest OSes [48], making them impractical to be deployed in current cloud dat-
acenters. Other work have proposed to mitigate these attacks in cloud contexts
by periodic VM migrations to reduce the co-location possibility between vic-
tim VMs and potential malicious VMs [25,47]. These heavy-weight approaches
cannot effectively prevent side-channel leakage unless performed very frequently,
making them less practical as VM co-location takes on the order of minutes [34]
while side-channel attacks can be done on the order of milliseconds [21,42].

In this paper, we propose to detect side-channel attacks as they occur and
prevent information leakage by triggering VM migration upon attack detec-
tion. However, side-channel attack detection is non-trivial. To do so, we must
overcome several technical challenges in the application of traditional detection
techniques, like signature-based detection and anomaly-based detection, to side-
channel attacks. Signature-based side-channel detection exploits pattern recog-
nition to detect known attack methods [4,5,13]. While low in false negatives for
existing attacks, it fails to recognize new attacks; anomaly-based detection flags
behaviors that deviate significantly from the established normal behaviors as
attacks, which can potentially identify new attacks in addition to known ones.
However, differentiating side-channel attacks from normal applications is diffi-
cult as these attacks just perform normal memory accesses which resemble some
memory intensive applications.

To overcome these challenges, we design CloudRadar , a real-time system to
detect the existence of cross-VM side-channel attacks in clouds. There are two
key ideas behind CloudRadar : first, the victim has unique micro-architectural
behaviors when executing cryptographic applications that need protection from
side-channel attacks. So the cloud provider is able to identify the occurrence of
such events using a signature-based detection method. Second, the attacker VM
creates an anomalous cache behavior when it is stealing information from the
victim. Such anomaly is inherent in all side-channel attacks due to the inten-
tional cache contention with the victim to induce side-channel observations. By
correlating these two types of events, CloudRadar is able to detect the stealthy
cache side-channel attacks with high fidelity.

We implement CloudRadar as a lightweight extension to the virtual machine
monitors. Specially, it (1) utilizes the existing host system facilities to collect
micro-architectural features from hardware performance counters that are avail-
able in all modern commodity processors, and (2) non-intrusively interacts with
the existing virtualization framework to monitor the VM’s cache activities while

120 T. Zhang et al.

inducing little performance penalty. Our evaluations show that it effectively
detects side-channel attacks with high true positives and low false positives.

Compared to past work, CloudRadar has several advantages. First,
CloudRadar focuses on the root causes of cache-based side-channel attacks and
hence is hard to evade using different attack code, while maintaining a low
false positive rate. Our approach is able to detect different types of side-channel
attacks and their variants with a simple method. Second, CloudRadar is designed
as a lightweight patch to existing cloud systems, which does not require new
hardware support or hypervisor/OS modifications. Therefore CloudRadar can be
immediately integrated into modern cloud fabric without making drastic changes
to the underlying infrastructure. Third, CloudRadar exploits hardware perfor-
mance counters to monitor VM activities, which detects side-channel attacks
within the order of milliseconds with negligible performance overhead. Finally,
CloudRadar requires no changes to the guest VM or the applications running in
it, and thus is transparent to cloud customers.

To summarize, CloudRadar achieves the following contributions:

• The first approach to detect cache side-channel attacks using techniques that
combine both signature-based and anomaly-based detection techniques.

• A novel technique to identify the execution of cryptographic applications,
which are of interest in its own right.

• A non-intrusive system design that requires no changes to the hardware,
hypervisor and guest VM and applications, which shows potential of imme-
diate adoption in modern clouds.

• Full prototype implementation and extensive evaluation of the proposed app-
roach and detection techniques.

The rest of this paper is organized as follows: Sect. 2 presents the back-
ground of cache side-channel attacks and defenses, and other detection systems
based on performance counters. Section 3 presents the design challenges and sys-
tem overview. Section 4 discusses the signature-based methods to detect cryp-
tographic applications. Section 5 shows the anomaly-based method to detect
side-channel activities. Section 6 presents the architecture and implementation
of CloudRadar . Section 7 evaluates its performance and security. We discuss the
limitations of CloudRadar and potential evasive attacks against it in Sect. 8.
Section 9 concludes.

2 Background and Related Work

2.1 Cache Side-Channel Attacks

In cache-based side-channel attacks, the adversary exfiltrates sensitive informa-
tion from the victim via shared CPU caches. The sensitive information are usu-
ally associated with cryptographic operations (e.g., signing or decryption), but
may also be extended to other applications [46]. Such sensitive information are

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 121

leaked through secret-dependent control flows or data flows that lead to attacker-
observable cache use patterns. The adversary, on the other hand, may exploit
several techniques to manipulate data in the shared cache to deduce the victim’s
cache use patterns, and thereby make inference on the sensitive information that
dictates these patterns. Two cache manipulation techniques are well-known for
side-channel attacks:

Prime-Probe Attacks: The adversary allocates an array of cacheline-sized,
cacheline-aligned memory blocks so that these memory blocks can exactly fill up
a set of targeted cache sets. Then the adversary repeatedly performs two attack
stages: in the prime stage, the adversary reads each memory block in the array to
evict all the victim’s data in these cache sets. The adversary waits for some time
interval before performing the probe stage, in which he reads each memory block
in the array again, and measures the time of memory accesses. Longer access
time indicates one or more cache misses, which means this cache set has been
accessed by the victim between the prime and probe stages. The adversary
will repeat these two steps for significant amount of times to collect traces that,
hopefully, overlap with the victim’s execution of cryptographic operations, for
offline analysis. This technique was first proposed by Percival [27], and then
applied to the cloud environment in [14,21,28,45].

Flush-Reload Attacks: This type of attacks assumes identical memory pages
can be shared among different VMs, so that the adversary and victim VMs
may share the same pages containing cryptographic code or data. The adver-
sary carefully selects a set of cacheline-sized, -aligned memory blocks from these
shared pages. Then he also conducts two stages repeatedly: in the flush stage,
the adversary flushes the selected blocks out of the entire cache hierarchy (e.g.,
using the clflush instruction). Then it waits for a fixed interval in which the vic-
tim might issue the critical instructions and fetch them back to the caches. In the
reload stage, the adversary reloads these memory blocks into the caches and
measures the access time. A short access time for one memory block indicates
a cache hit, so this block has been accessed by the victim during the interval.
By repeating these two stages the adversary can obtain traces of the victim’s
memory accesses and deduce the confidential data. This Flush-Reload tech-
nique was first proposed in [11], and further demonstrated in different virtualized
platforms with different variants [9,10,15,46].

2.2 Defenses Against Side-Channel Attacks

Previous studies propose to defeat cache-based Side-channel attacks in one of
these three ways:

– Partitioning caches: One straightforward approach is to prevent the cache
sharing by dividing the cache into different zones by sers or ways for different
VMs. This can be achieved by hardware [6,19,40] or software methods [17,31].

122 T. Zhang et al.

– Randomization: This idea is to add randomization to the attacker’s mea-
surements, making it hard for him to get accurate information based on his
observations. This includes random memory-to-cache mappings [39,40], cache
prefetches [20], timers [18,35] and cache states [48].

– Avoiding co-location: New VM placement policies were designed [1,12] to
reduce the co-location probability between victim and attacker VMs. Zhang
et al. [47] and Moon et al. [25] frequently migrated the VMs to add difficulty
of VM co-location for the attackers.

These approaches, when applied in the cloud setting, require significant
modification of computing infrastructure, and thus are less attractive to cloud
providers for practical adoption. In our study, we aim to build atop existing cloud
framework a lightweight side-channel attack detection system to detect, and then
mitigate, the attacks as they take place, while doing so without modifying guest
OS, hypervisor or hardware.

2.3 Intrusion Detection Using Hardware Performance Counters

Hardware performance counters are a set of special-purpose registers built into
×86 (e.g., Intel and AMD) and ARM processors. They work along with event
selectors which specify certain hardware events, and update a counter after a
hardware event occurs. Most modern processors provide a Performance Monitor
Unit (PMU) that enables applications to control performance counters. One of
the basic working modes of PMUs is the interrupt-based mode. Under this work-
ing mode, an interrupt is generated when the occurrences of a given event exceed
a predefined threshold or a predefined amount of time has elapsed. Therefore, it
makes both event-based sampling and time-based sampling possible.

Performance counters were originally designed for software debugging and
system performance tuning. Recently, researchers exploited performance coun-
ters to detect security breaches and vulnerabilities [2,5,23,32,36,37,41,43]. The
intuition is that the performance counters can reveal programs’ execution char-
acteristics, which can further reflect the programs’ security states. Besides, per-
formance counter detection introduces negligible performance overhead to the
programs. Related to ours were signature-based side-channel attack detection
using performance counters [4,5,13], which, unfortunately, could be easily evaded
by smarter attackers by slightly changing cache probing pattern.

3 Design Challenges and Overview

In this paper, we explore an oft-discussed, but never successfully implemented,
idea: exploiting hardware performance counters available in commodity proces-
sors to detect side-channel attacks that abuse processor caches. We first system-
atically explore the design challenges and then sketch our design of CloudRadar .

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 123

Threat Model and Assumptions. We focus on cross-VM side-channel threats
in public IaaS clouds based on Last Level Caches (LLC) that are shared between
processor cores. We assume the adversary is a legitimate user of the cloud service
who is able to launch VMs in the cloud and has complete control of his VMs.
We further assume the attacker is able to co-locate one of his VMs on the same
server as the victim VM, and the two VMs will share the same processor package,
thus the LLC, with non-negligible probability. We consider both Prime-Probe
side-channel attacks and Flush-Reload side-channel attacks, which represent
all known LLC side channels in modern computer systems.

3.1 Design Challenges

Signature-Based Detection. Signature-based detection approaches are
widely used techniques in detecting network intrusion and malware, by compar-
ing monitored application or network characteristics with pre-identified attack
signatures. Similarly, to detect side-channel attacks, signatures of side-channel
attacks must be generated from all known side-channel attack techniques and
used to compare with events collected from production systems. Prior work [4,5]
has preliminarily explored such ideas. Particularly, Demme et al. demonstrated
in a simplified experiment setting that classification algorithms could success-
fully differentiate normal programs from Prime-Probe attack programs. The
advantage of this approach is that they have high true positive rate in detecting
known attacks. However, such detection method is very fragile and easy to evade
by clever attackers. It also fails to recognize unknown attacks even with only sub-
tle changes from existing ones. For instance, the attacker can change the mem-
ory access pattern (e.g., sequential order, access frequency) in a Prime-Probe
attack to evade signature-based detection.

Anomaly-Based Detection. In anomaly-based detection, the normal behav-
iors of benign applications are modeled and any substantial deviation from such
models are detected as attacks. To detect side-channel attacks using such tech-
niques, one can build models for benign application behaviors. Then for each VM
to be monitored, we check if its behaviors conform to the models in the database.
Compared to signature-based detection, anomaly-based detection can potentially
identify “zero-day” attacks in addition to known ones. However, the difficulty
of applying the anomaly-based approach to side-channel attacks stems from the
challenge of precisely modeling benign application activities using performance
counters. Cache side-channel attacks resemble benign memory intensive applica-
tions (e.g., memory streaming application [24]), and therefore they are difficult
to be differentiated using only hardware performance counters. False positive or
false negative rates can be extremely high due to imprecise application behavior
modeling. We are not aware of successful side-channel detection methods that
are based on anomaly detection.

124 T. Zhang et al.

3.2 Design Overview

We design a side-channel attack detection system, CloudRadar , that combines
both anomaly-based and signature-based techniques. The only features used by
CloudRadar are hardware event values read from the performance counters avail-
able in commercial processors. The key insight that motivates CloudRadar is
derived from our prior research in side-channel attacks: in cache side-channel
attacks, to effectively exfiltrate secret information from the victim’s sensitive
execution, the attacker needs to repeatedly conduct side-channel activities (e.g.,
Prime-Probe or Flush-Reload) and deduce his own cache uses based on the
execution time of his own memory activities. Then he can make inferences on the
victim’s cache use pattern by looking at the statistics of his use of caches (e.g.,
cache hits and cache misses). As such, the attacker’s cache use patterns must be
different when the victim executes sensitive operations so that the attacker can
differentiate them in his own analysis. Our intuition is that if such distinction
can be detected by the attacker using timing channels, it can be detected by the
cloud provider using performance counters.

We design CloudRadar to monitor all VMs running on a cloud server and col-
lect their cache use patterns using hardware performance counters. Once anom-
aly in cache use patterns are detected by CloudRadar , these anomalies will be
correlated with the sensitive operations (usually cryptographic operations) in
the co-located protected VM (i.e., VMs owned by customers paying for such
services). Strong correlation will serve as a good indicator of cache-based side-
channel attacks.

Two key technical challenges in our design are (1) identifying the execu-
tion of the protected VM’s sensitive operations without asking the customers
to modify their applications and (2) detecting untrusted VM’s abnormal cache
use patterns. We aim to achieve both by using only values read from perfor-
mance counters. To do so, we first propose to use signature-based techniques to
detect sensitive applications of the protected VM, because they are conducted
by honest parties and will not attempt to evade detection intentionally—a per-
fect target of signature-based detection techniques. Second, we propose to use
anomaly-based detection techniques to detect abnormal cache patterns due to
side-channel activities, as they are expected to vary due to different attack tech-
niques and intensity. As side-channel attack detection is done via correlation
with sensitive operations, false positives that are common challenges to anomaly
detection techniques can be ruled out. We will highlight our design of these two
components in Sects. 4 and 5.

4 Signature Detection of Cryptographic Applications

As sensitive operations that are targeted by side-channel attacks are usually
cryptographic operations, we consider detection of cryptographic applications in
this paper. Our working hypothesis here is that all cryptographic applications
have unique signatures that can be easily identified by performance counters. In
this section, we validate our hypothesis by a set of preliminary experiments.

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 125

4.1 Cryptographic Signature Generation

To generate signatures for detecting cryptographic applications, we need to select
a proper hardware performance feature that uniquely characterizes a certain
execution phase [30] of such applications.

Feature Selection. Modern processors allow a large number of events to be
measured and reported by performance counters. The signature generated from
a proper hardware event should satisfy two requirements: (1) uniqueness: the
signatures of different applications should be highly distinguishable; (2) repeata-
bility : the signature of a cryptographic application should be identical each time
it is generated, regardless of the platform’s configurations and the inputs.

We consider different events from three main categories: CPU events, cache
events and kernel software events. We use the Fisher Score [7] to test the repeata-
bility and uniqueness of these events in identifying cryptographic applications.
Fisher Score is one of the most widely used methods to select features quickly. It
finds the optimal feature so that the distances between data points in the feature
space of different classes are maximized, while the distances between data points
in the same class are minimized.

To test the uniqueness of an event, we use performance counters to measure
the number of this event every 100µs during the execution of six representative
cryptographic applications (i.e., asymmetric cryptography: ElGamal and DSA
from GnuPG; symmetric cryptography: AES and 3DES from OpenSSL; hash:
HMAC from OpenSSL and SHA512 from GnuPG). We select 10 consecutive
counter values (collected from 10 × 100µs) from the beginning of each applica-
tion to form a timing sequence as one training data point. We repeat this 100
times for each cryptographic application. For each hardware event we consid-
ered, we calculate the Fisher Score using 600 training data points from the six
cryptographic applications to test the uniqueness of this event in distinguishing
different applications. Table 1 (Inter-class F-Score column) shows the results.
Note a larger inter-class F-Score indicates a better uniqueness of this event.
We can see some CPU events (instructions, branches and mispredicted branch
instructions) and cache events (L1I load misses) are better candidates for signa-
ture generation. They vary significantly for different cryptographic applications.
The events that rarely happen during the cryptographic execution (e.g., context
switches and page faults), or remain identical for different cryptographic appli-
cations (e.g., CPU cycles or clock) fail to satisfy the uniqueness requirement.

To test the repeatability of an event, we repeat the above experiments on three
servers with different hardware and software configurations. For each crypto-
graphic application, we calculate the Fisher Score from 300 training data points
collected from three servers. Table 1 (Intra-class F-Score column) shows the aver-
age Fisher Score of the six cryptographic programs. A smaller Intra-class F-Score
indicates the signature with this event is more repeatable. We are able to find
some events with good repeatability (e.g., instructions, branches and mispre-
dicted branch instructions).

126 T. Zhang et al.

Table 1. Fisher scores for different events.

Category Events Inter-class F-Score Intra-class F-Score

CPU events Instructions 1.49 0.13

Branch instructions 1.55 0.14

Mispredicted branch instructions 1.11 0.15

CPU cycles 0.01 0.30

Cache events L1D load accesses 0.37 0.72

L1D load misses 0.69 0.42

L1I load misses 1.14 0.20

LLC load accesses 0.79 0.31

LLC load misses 0.05 0.36

iTLB load accesses 0.55 0.27

iTLB load misses 0.23 0.21

dTLB load accesses 0.22 0.63

dTLB load misses 0.36 0.62

Software events Context switches 0.00 0.00

Page faults 0.00 0.00

CPU clock 0.01 0.50

Based on the inter-class and intra-class Fisher Scores, we can choose the
features with both good uniqueness and repeatability for signature matching.
For instance, we can use instructions and branch instructions to conduct multi-
feature classification. Further evaluations in Sect. 7 show one single feature (i.e.,
branch instructions) is already enough to give good accuracy. So we will collect
the number of branch instructions as the feature to generate signatures in the
following sections.

Phase Selection. It has been shown in prior studies that programs run in
different phases [30]. Therefore, another question we need to solve is which phase
of the cryptographic application we should use to generate the signature. The
selected phase should be able to distinguish cryptographic applications from
non-cryptographic applications. It should also be independent of the inputs.

We conducted the following experiments: we ran the same six cryptographic
applications as above. For each cryptographic application, the cryptographic keys
and input message (for signing or encryption) are randomly chosen each time
the applications are executed. We exploit the performance counters to record
the number of branch instructions taking place in the program within 100µs
windows. Figure 1 shows the profiling results for each cryptographic application.
For comparison, we also show the profiling results for three non-cryptographic
applications: Apache, Mysql and the Network File System (NFS).

We observe that the cryptographic applications have different behaviors from
the non-cryptographic ones. Each cryptographic application exhibits three dis-
tinguishable stages, labeled in Fig. 1. (1) The first stage initializes the program

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 127

Fig. 1. Signatures of different applications based on the number of branches

and variables. Specifically, it analyzes the application’s parameters, allocates
buffers for the input and output messages, retrieves keys from passphrase or
salts, and sets up the cipher context. This stage does not depend on the inputs.
(2) The second stage computes the cryptographic operations (e.g., multiply or
square operations, checking lookup tables, etc.), the characteristics of which are
input dependent: the duration of this stage is linearly related to the length of the
plaintext/ciphertext, and the pattern depends on the values of the cryptographic
key and the plaintext/ciphertext blocks. (3) The last stage ends the application,
frees the memory buffer and reports the results. We chose the first stage as the
signature to represent a crypto application, because it is input independent. The
Fisher Score in Table 1 were also generated for this stage.

4.2 Cryptographic Application Detection

To detect the execution of the sensitive applications, CloudRadar only requires
the customers to provide the signature generated offline using performance coun-
ters (not necessarily on the same hardware) or simply the executables for the
service provider to generate the signature. At runtime, CloudRadar keeps mon-
itoring the protected VM using the same set of performance counters. It then
compares the data points collected at runtime with the signature of the crypto-
graphic application. If a signature match is found, CloudRadar will assume the

128 T. Zhang et al.

Fig. 2. DTW distances of different cryptographic programs. The lowest distance indi-
cates a signature match.

cryptographic application is being executed by the protected VM (In fact, our
evaluation in Sect. 7 shows high fidelity of this approach).

Because the cryptographic signatures and runtime measurements are tem-
poral sequences of performance counter values, we cast the signature detection
problem as a time series analysis problem: i.e., measuring the similarity between
the two sequences that represent the signature and the runtime measurement,
respectively. We adopt the Dynamic Time Warping (DTW) algorithm [29] to
calculate the distance between the two sequences. DTW is able to measure the
similarity between temporal sequences which may vary in speed: it tries differ-
ent alignments between these sequences and finds the optimal one that has the
shortest distance. This distance is called the DTW distance. We chose the DTW
algorithm because the runtime sequence may be slightly stretched or shrunk
due to the difference of the computing environment (e.g., CPU models, running
speed, interruption, etc.). DTW is powerful enough to find the similarity between
two temporal sequences even with distortion.

We normalize the DTW distance to the magnitude of the signature sequence,
which is used as the metric for pattern matching. Figure 2 shows the normalized
DTW distance of different cryptographic programs. We observe that occurrence
of cryptographic programs yields very small DTW distances, which indicates a
signature match. We defer a more systematic evaluation of the signature-based
cryptographic program detection technique to Sect. 7.

5 Anomaly Detection of Side-Channel Activities

The cache use patterns that CloudRadar monitors for anomaly detection are
characterized by the cache hit count and the cache miss count measured by
the performance counters: In Prime-Probe side-channel attacks, the attacker

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 129

Probes certain cache sets and measures if there are cache miss via timing the
accesses to this set after the victim executes. It is expected that cache misses
will be higher than normal when the protected VM executes the cryptographic
operations, since cache misses will be the tell-tale signal for the attacker to detect
these operations in the first place. In Flush-Reload side-channel attacks, the
attacker Reloads certain cache lines and tries to detect a cache hit. Cache hits
should occur more frequently during the protected VM’s sensitive operations.

To validate this hypothesis, we conducted a set of experiments to show
that abnormal cache activities in the untrusted VM can be correlated with the
protected VM’s sensitive operations. We first consider a Prime-Probe attack
against the ElGamal cipher [21]. Figure 3 shows the DTW distance (low dis-
tance indicates a signature match) between the runtime sequence and the sig-
nature sequence observed on the protected VM (top figure), correlates with
the attacker VM’s high cache miss counts (bottom figure). We next consider
a Flush-Reload attack against the RSA cipher [42]. Figure 4 shows the low
DTW distance of the protected VM correlates with the high cache hit counts
of the attacker VM. We align the top figures and the bottom figures according
to timestamps. Strong correlation can be observed in both set of experiments,
which suggest that this method can be used for side-channel attack detection.

To describe our detection algorithm more precisely, when CloudRadar detects
that the victim VM starts executing crypto applications (a low DTW dis-
tance), two short sub-sequences are selected from the entire monitored runtime
sequences in the untrusted VMs: S, data points of size w before the DTW dis-
tance reaches its minimum, and S

′, data points of size w after the minimum
points of DTW distance, where w is a parameter of the detection system. If
CloudRadar detects that the difference between any value in S

′ and any value in
S is larger than a pre-determined threshold T , CloudRadar will raise an alarm
of a possible side-channel attack. This rule can be formally expressed in Eq. 1.
We will further evaluate this side-channel detection method in Sect. 7.

Alarm: v′ − v > T, ∀v ∈ S, v′ ∈ S
′ (1)

Fig. 3. Prime-Probe attack Fig. 4. Flush-Reload attack

130 T. Zhang et al.

6 Implementation

6.1 System Architecture Overview

CloudRadar is provided by the cloud operator as a security service to the cus-
tomers who are willing to pay extra cost for better security, as in Security-
on-Demand cloud frameworks [16,44]. Figure 5 shows the architecture of
CloudRadar , and the workflow of detecting side-channel attacks. We implement
CloudRadar in the opensource cloud software OpenStack platform. Two types
of servers, the Cloud Controller and regular Cloud Servers, are relevant to our
discussion.

The Cloud Controller is a dedicated server to manage the provided security
services and coordinate the interaction between service users (cloud customers
paying to use the side-channel detection service) and the Cloud Servers. The
Signature Database is used to store signatures of crypto programs. The Con-
troller Server is built upon the OpenStack Nova module. We modified the Nova
API to enable the customers to request for the side-channel detection services.

CloudRadar ’s functionality within a Cloud Server is tightly integrated with
the host OS. As shown in Fig. 5, CloudRadar consists of three modules, with
each one running on a dedicated core. The Victim Monitor is responsible for
collecting the protected VM’s runtime events, which will be fed to Signature
Detector to detect the cryptographic programs using our signature-based tech-
nique; The Attacker Monitor is responsible for collecting cache activities of
the other VMs, using anomaly-based detection approach to identify side-channel
attackers. We used the Linux perf event kernel API for the PMU to manage the
performance counters, therefore no change is needed to the hypervisor itself.

6.2 Operations

CloudRadar includes four steps, as shown in Fig. 5 with different paths. Each
step is described below:

Fig. 5. Architecture overview of CloudRadar

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 131

Step 1: Generating Cryptographic Signature. In this step, the customer
who seeks side-channel detection services for his protected VM can indicate to
the Cloud Controller what sensitive applications to be protected, by providing
the signatures generated offline using performance counters (not necessarily on
the same hardware) or simply the executables. Then the Cloud Controller will
run these crypto programs on a dedicated server with the same configuration as
the Cloud Server that hosts the protected VM, and use performance counters
to generate the signatures for the customer. The signatures will be stored in the
Signature Database for future reference. They will also be sent to the Cloud
Server that hosts this VM.

Step 2: Detecting Cryptographic Applications. This step takes place at
runtime. In this step, the Victim Monitor monitors the protected VM using
performance counters. It periodically (e.g., every 100µs) records the event counts
(e.g., branch instructions) as a time sequence, while the Signature Detector
keeps comparing the most recent window of data points in the sequence with the
signature. If a signature match is found, the Signature Detector can identify
the protected VM is performing a cryptographic application, and signal this
result to the Attacker Monitor.

Step 3: Monitoring Cache Activities. This step happens concurrently with
Step 2. The Attacker Monitor exploits performance counters to monitor all
untrusted VMs simultaneously. One challenge is that not enough performance
counters are available on the servers to monitor all VMs, if this number is large:
most of the Intel and AMD processors support up to six counters, and the number
of counters does not scale with the number of cores. So when there are a lot of
VMs on the server, the Attacker Monitor cannot monitor them concurrently.

To solve this problem, we use a time-domain multiplexing method: Attacker
Monitor identifies active vCPUs that share LLC with the protected VM as the
monitored vCPUs, and then measures each of them in turn. Specifically, in each
period, the Attacker Monitor uses a kernel module to check the state and
CPU affinity of each vCPU of each VM from its task struct in the kernel. The
Attacker Monitor marks the vCPUs in the running state that are sharing the
same LLC with the protected VM as monitored. Then it sets up performance
counters to measure each monitored vCPU’s cache misses and hits in turn. When
the Attacker Monitor is notified that a cryptographic application is happening
in the protected VM, it will compare each monitored vCPU’s cache misses and
hits before and during the cryptographic application, as specified in Sect. 5. If
one vCPU has an abrupt increase in the number of cache misses or hits during
the cryptographic application, the Attacker Monitor will flag an alarm.

Step 4: Eliminating Side Channels. Once the Attack Monitor notices that
one co-tenant VM has abnormal cache behavior exactly when the protected VM
executes cryptographic applications, it will raise alarm for side-channel attacks.

132 T. Zhang et al.

It will migrate this malicious VM to a different processor socket which does
not share the Last Level Cache (LLC), or another cloud server (i.e., via VM
migration [25,47], to cut off the cache side channels. In addition, the Cloud
Controller will report this incident to the cloud provider for further processing,
such as shut down the malicious VM or eventually block the attacker’s account.

7 Evaluation

We used four servers to evaluate the security and performance of CloudRadar .
A Dell R210II Server (equipped with one quad-core, 3.30 GHZ, Intel Xeon
E3-1230v2 processor with 8 GB LLC) is configured as the Controller Server.
Two Dell PowerEdge R720 Servers are deployed as the host cloud servers: one
is equipped with one eight-core, 2.90 GHz Intel Xeon E5-2690 processor with
20 GB LLC; one is equipped with two six-core, 2.90 GHz Intel Xeon E5-2667
processors with 15 GB LLC. We also use another Dell 210II server as the client
machine outside of the cloud system to communicate with cloud applications.
Each VM in our experiments has one virtual CPU, 4 GB memory and 30 GB
disk size. We choose Ubuntu 14.04 Linux, with 3.13 kernel as the guest OS.

7.1 Detection Accuracy

We measure the detection accuracy of cryptographic signature detection and
cache anomaly detection.

Accuracy of Cryptographic Operation Detection. To detect a crypto-
graphic operation, we used the branch instruction counts as the signature. We
consider the detection of a cryptographic application as a binary classification,
and measure its true positive rate and false positive rate. True positive happens
when a cryptographic application is correctly identified as such. We used the
same six cryptographic applications from Sect. 4.1. CloudRadar first generates
a signature for each application. In the detection phase, the victim VM gen-
erates a random memory block and feeds it to the crypto application. We run
the experiment 100 times, and measure the number of times CloudRadar can
correctly identify the cryptographic under different thresholds. False positive is
defined as non-cryptographic applications identified as cryptographic. We select
30 common linux commands and utilities [26] which do not contain cryptographic
operations. In each experiment the victim VM run these commands in a random
order. We repeated the experiment 100 times and measure the number of times
false positives take place under different thresholds. We plot the ROC (Receiver
Operating Characteristic) curves to show the relations between the true positive
rate and false positive rate.

We explored the effect of changing performance counter sampling granu-
larities (i.e., period with which performance counter value is taken) on detec-
tion accuracy. We choose two different sampling granularities: 100µs and 1 ms.
Figure 6 shows the ROC curves of the six cryptographic applications under these

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 133

two granularities. From this figure we can see 100µs gives better accuracy than
1 ms: CloudRadar can achieve close to 100 % true positive rate with zero false
positive rate when the DTW threshold is set between 0.3 and 0.4. For 1 ms,
Elgamal and DSA application can be detected with less accuracy, while SHA512,
AES, HMAC and 3DES cannot be differentiated from non-cryptographic appli-
cations with reasonable false positive and false negative at the same time.

The optimal sampling granularity depends on the length of the cryptographic
application’s initialization stage: if the sampling period is much shorter than the
initialization stage, the signature will contain more data points, thus yielding
more accurate results. In our experiments, the initialization stages of Elgamal,
DSA, SHA512, AES, HMAC and 3DES last for 10 ms, 5 ms, 1.6 ms, 2 ms, 2 ms
and 2 ms respectively. So a granularity of 100µs can give good results for all the
six applications, while 1 ms granularity performs worse, especially for SHA512,
AES, HMAC and 3DES whose signatures only contain two data points.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 ra
te

false positive rate

100us
1ms

(a) Elgamal

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 ra
te

false positive rate

100us
1ms

(b) DSA

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 ra
te

false positive rate

100us
1ms

(c) SHA512

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 ra
te

false positive rate

100us
1ms

(d) 3DES

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 ra
te

false positive rate

100us
1ms

(e) AES

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 ra
te

false positive rate

100us
1ms

(f) HMAC

Fig. 6. ROC curve of crypto detection under two sampling intervals.

Accuracy of Cache Side-Channel Attack Detection. We measure the
true positive rate and false positive rate of side-channel attack detection. True
positive is the cases where side-channel attacks that are correctly identified.
We test the Prime-Probe attack [21] and Flush-Reload attack [42]. False
positive is defined as benign programs that are falsely identified as an attack.
We select different common linux commands and utilities as benign applications.
We change the threshold and draw the ROC curves to show the relations between
true positive and false positive rate.

134 T. Zhang et al.

We first considered different window sizes w for S and S
′ (Sect. 5). Figure 7

shows the attack detection accuracy under three window size: w = 1, 3 and 5.
In these experiments, we set the sampling granularity as 1 ms (this sampling
rate is different from that of signature detection). From these results we see
that CloudRadar has an excellent true positive rate: with appropriate thresholds
(100–300 events per 1 ms), the true positive rate can be 100 %. However, it also
has false positives. When w = 1, the false positive rate can be as high as 20 %–
30 %. False positives are caused by the coincidence that a benign application
experiences a phase transition at exactly the same time as the victim application
executes a crypto operation. CloudRadar will observe changes in the benign
application’s cache behavior and think it is due to interference with the victim.
Then it will flag this benign VM as malicious. We can increase w to reduce the
false positive rate without affecting the true positive rate: when w = 5, the false
positive rate is close to 0 while true positive rate is 100 %.

Fig. 7. ROC curve of attack detection under different window lengths.

We also tested different sampling granularities. Figure 8 shows the ROC
curves of detecting two attacks under two different sampling intervals: 1 ms and
100µs. The window size is 5 data points. We can see the 1 ms interval is bet-
ter than the 100µs. This is because when the sampling interval is small, the
number of cache events occurring within a sampling period is comparable to the
measurement noise. So the measurements under this sampling granularity are
not very accurate. It is interesting to note that we need different granularities to
sample the victim’s CPU events (100µs) and attacker’s LLC events (1 ms). This
is because victim’s CPU events occur more frequently than the attacker’s LLC
events. So at the granularity of 100µs, sampling the victim can give finer infor-
mation, while sampling the attacker will introduce large Signal-to-noise ratio
(SNR), making the results less accurate.

7.2 Performance

Detection Latency. Table 2 reports the detection latency of CloudRadar under
different window sizes w and sampling granularities. This detection latency is
defined as the period from the time the victim VM starts to execute sensitive

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 135

Fig. 8. ROC curve of attack detection under different sampling intervals.

operations (i.e., start of the second stage in Fig. 1) to the time an alarm for
side-channel attacks is flagged. We see that CloudRadar can identify the attack
on the order of milliseconds. Considering side-channel attackers usually need at
least several cryptographic operations to steal the keys, this small latency can
achieve our real-time design goal. We also observe that smaller window sizes
and finer granularity can effectively reduce the detection latency, at the cost of
slightly lower accuracy.

Table 2. Detection latency (µs) under different window sizes and sampling intervals

(µs) granularity = 1 ms granularity = 100µs

w = 1 w = 3 w = 5 w = 1 w = 3 w = 5

Prime-Probe 1021.41 3065.86 5110.04 120.49 361.97 603.03

Flush-Reload 1021.50 3064.38 5107.57 122.48 363.27 605.30

Performance Overhead. We select a mix of benchmarks and real-world appli-
cations to evaluate the performance of CloudRadar . Our benchmarks can be
categorized into three types: (1) crypto programs (AES, SHA, HMAC, BF and
MD5 from OpenSSL; ElGamal, RSA and DSA from GnuPG); (2) CPU bench-
marks (mcf, gobmk, omnetpp, astar, soplex and lbm from SPEC2006; canneal
and streamcluster from PARSEC); (3) Cloud applications from CloudSuite [8]
(data analytics, data caching, data serving, graph analytics, media streaming,
software testing, web searching and web serving).

We test the performance penalty due to CloudRadar and show the normalized
run time of each of the benchmark applications in Fig. 9 (results are average of 5
runs, error bars show one standard deviation). The results suggest CloudRadar
has little impact on the performance of the monitored VM: even in the worst
case, performance overhead is within 5 %.

136 T. Zhang et al.

0.7

0.8

0.9

1.0

1.1

1.2

CloudSuiteCPU benchmarks

1ms
100us

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

ser.sea.tes.str.ana.ser.cac.ana.
webwebsof.med.gra.dat.dat.dat.str.can.lbm.sop.ast.omn.gob.mcfDSARSAELG.BFMD5HMA.SHA.AES

Crypto

Fig. 9. Performance of different benchmarks under CloudRadar

8 Discussions

8.1 Detecting Other Side Channels

One can extend CloudRadar to detect cache-based side-channel attacks in other
cloud models (e.g., PaaS [46]), or in non-virtualization environments. The only
change we need to make is to use performance counters to monitor the processes
or threads instead of VMs. Besides, this method can be applied to other micro-
architectural side-channel attacks that exploit resource contention. We can use
performance counters to count the corresponding events that the attacker uses to
retrieve information. For instance, we can monitor the DRAM bandwidth event
to detect the DRAM side-channel attacks in [38]. Generalization of this method
beyond cache-based side-channel attacks will be future work.

8.2 Potential Evasive Attacks

There can be potential evasive attacks against CloudRadar . To evade the detec-
tion of CloudRadar , a side-channel attacker can try to reduce the cache probing
speed, so the abnormal increase in cache misses or hits may not be observed
by CloudRadar . However, the attacker needs a much longer time to recover the
keys, making side-channel attacks more difficult and less practical. An attacker
can also try to evade the detection by adding noise to CloudRadar ’s observa-
tions. However, such noise can also blur the attacker’s observations, making it
more difficult to extract side-channel information. How to design efficient evasive
attacks and how to detect such attacks will be future work.

8.3 Limitations

CloudRadar may be limited in several aspects. First, each of its three modules
(Victim Monitor, Attacker Monitor and Signature Detector) requires an
exclusive use of one physical CPU core as they keep conducting data collection
and analysis at full CPU speed. This can potentially reduce the server’s capac-
ity for hosting VMs. However, as many cloud servers today are equipped with

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 137

dozens of CPU cores, the impact is not as big as one might imagine. Besides,
public clouds usually have low server utilization (<20%) for preserving VMs’
QoS [3,22]. So using three cores will not affect VMs’ performance. Second,
due to the limited number of performance counters available in modern proces-
sors, CloudRadar has to multiplex the monitoring for each VM using the same
counter. When the number of monitored vCPUs scales up, CloudRadar may miss
attacks. We expect future generations of processors will incorporate more perfor-
mance counters and CloudRadar can make use of different counters to monitor
different VMs at the same time.

9 Conclusions

This paper designs CloudRadar , a real-time detection system to detect cache-
based side-channel attacks in clouds. CloudRadar leverages the existing hard-
ware performance counter feature to both monitor a victim VM’s cryptographic
operations and capture a potential attacker VM’s abnormal behavior during this
time. CloudRadar is designed as a lightweight extension to the cloud system and
does not require new hardware, hypervisor/OS or application modifications. The
feasibility of CloudRadar is validated by our implementation on the open source
OpenStack cloud system. Our evaluation shows CloudRadar can detect cache-
based side-channel attacks with high fidelity, while introducing little overhead
to the cloud applications.

Acknowledgements. We thank Fangfei Liu and Dr. Yuval Yarom for providing side-
channel attack codes, and the anonymous reviewers for their feedback on this work.
This work was supported in part by the National Science Foundation under grants
NSF CNS-1218817 and NSF CNS-1566444. Any opinions, findings, and conclusions or
recommendations expressed in this work are those of the authors and do not necessarily
reflect the views of the NSF.

References

1. Azar, Y., Kamara, S., Menache, I., Raykova, M., Shepard, B.: Co-location-resistant
clouds. In: ACM Workshop on Cloud Computing Security (2014)

2. Bahador, M., Abadi, M., Tajoddin, A.: HPCMalHunter: behavioral malware detec-
tion using hardware performance counters and singular value decomposition. In:
IEEE International Conference on Computer and Knowledge Engineering (2014)

3. Barr, J.: Cloud computing, server utilization & the environment (2015). https://
aws.amazon.com/blogs/aws/cloud-computing-server-utilization-the-environment/

4. Chiappetta, M., Savas, E., Yilmaz, C.: Real time detection of cache-based side-
channel attacks using hardware performance counters. Cryptology ePrint Archive,
Report 2015/1034 (2015). http://eprint.iacr.org/

5. Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A., Sethumadhavan,
S., Stolfo, S.: On the feasibility of online malware detection with performance
counters. In: ACM International Symposium on Computer Architecture (2013)

https://aws.amazon.com/blogs/aws/cloud-computing-server-utilization-the-environment/
https://aws.amazon.com/blogs/aws/cloud-computing-server-utilization-the-environment/
http://eprint.iacr.org/

138 T. Zhang et al.

6. Domnitser, L., Jaleel, A., Loew, J., Abu-Ghazaleh, N., Ponomarev, D.: Non-
monopolizable caches: low-complexity mitigation of cache side channel attacks.
ACM Trans. Archit. Code Optim. 8, 35:1–35:21 (2012)

7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-
Interscience, Hoboken (2000)

8. EPFL: Cloudsuite. http://parsa.epfl.ch/cloudsuite/cloudsuite.html
9. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+flush: a fast and stealthy

cache attack. In: Detection of Intrusions and Malware and Vulnerability Assess-
ment (2016)

10. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: USENIX Conference on Security Symposium
(2015)

11. Gullasch, D., Bangerter, E., Krenn, S.: Cache games - bringing access-based cache
attacks on aes to practice. In: IEEE Symposium on Security and Privacy (2011)

12. Han, Y., Alpcan, T., Chan, J., Leckie, C.: Security games for virtual machine
allocation in cloud computing. In: Das, S.K., Nita-Rotaru, C., Kantarcioglu, M.
(eds.) GameSec 2013. LNCS, vol. 8252, pp. 99–118. Springer, Heidelberg (2013)

13. Herath, N., Fogh, A.: These are not your grand daddys CPU performance counters:
CPU hardware performance counters for security. In: Black Hat USA (2015)

14. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: a shared cache attack that works
across cores and defies VM sandboxing - and its application to AES. In: IEEE
Symposium on Security and Privacy (2015)

15. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! A fast, cross-
VM attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014.
LNCS, vol. 8688, pp. 299–319. Springer, Heidelberg (2014)

16. Jamkhedkar, P., Szefer, J., Perez-Botero, D., Zhang, T., Triolo, G., Lee, R.B.: A
framework for realizing security on demand in cloud computing. In: IEEE Confer-
ence on Cloud Computing Technology and Science (2013)

17. Kim, T., Peinado, M., Mainar-Ruiz, G.: STEALTHMEM: system-level protection
against cache-based side channel attacks in the cloud. In: USENIX Conference on
Security Symposium (2012)

18. Li, P., Gao, D., Reiter, M.K.: Stopwatch: a cloud architecture for timing channel
mitigation. ACM Trans. Inf. Syst. Secur. 17, 8:1–8:28 (2014)

19. Liu, F., Ge, Q., Yarom, Y., Mckeen, F., Rozas, C., Heiser, G., Lee, R.B.: Cata-
lyst: defeating last-level cache side channel attacks in cloud computing. In: IEEE
International Symposium on High Performance Computer Architecture (2016)

20. Liu, F., Lee, R.B.: Random fill cache architecture. In: IEEE/ACM International
Symposium on Microarchitecture (2014)

21. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: IEEE Symposium on Security and Privacy (2015)

22. Liu, H.: A measurement study of server utilization in public clouds. In: IEEE
International Conference on Dependable, Autonomic and Secure Computing (2011)

23. Malone, C., Zahran, M., Karri, R.: Are hardware performance counters a cost
effective way for integrity checking of programs. In: ACM Workshop on Scalable
Trusted Computing (2011)

24. McCalpin, J.D.: Stream: sustainable memory bandwidth in high performance com-
puters. http://www.cs.virginia.edu/stream/

25. Moon, S.-J., Sekar, V., Reiter, M.K.: Nomad: mitigating arbitrary cloud side chan-
nels via provider-assisted migration. In: ACM Conference on Computer and Com-
munications Security (2015)

http://parsa.epfl.ch/cloudsuite/cloudsuite.html
http://www.cs.virginia.edu/stream/

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 139

26. Natarajan, R.: 50 most frequently used unix/linux commands (with exam-
ples). http://www.thegeekstuff.com/2010/11/50-linux-commands/?utm source=
feedburner

27. Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan (2005)
28. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:

exploring information leakage in third-party compute clouds. In: ACM Conference
on Computer and Communications Security (2009)

29. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Signal Process. 26, 43–49 (1978)

30. Sherwood, T., Perelman, E., Hamerly, G., Sair, S., Calder, B.: Discovering and
exploiting program phases. IEEE Micro 23, 84–93 (2003)

31. Shi, J., Song, X., Chen, H., Zang, B.: Limiting cache-based side-channel in multi-
tenant cloud using dynamic page coloring. In: IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (2011)

32. Tang, A., Sethumadhavan, S., Stolfo, S.J.: Unsupervised anomaly-based malware
detection using hardware features. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.)
RAID 2014. LNCS, vol. 8688, pp. 109–129. Springer, Heidelberg (2014)

33. Varadarajan, V., Ristenpart, T., Swift, M.: Scheduler-based defenses against cross-
VM side-channels. In: USENIX Conference on Security Symposium (2014)

34. Varadarajan, V., Zhang, Y., Ristenpart, T., Swift, M.: A placement vulnerability
study in multi-tenant public clouds. In: USENIX Security Symposium (2015)

35. Vattikonda, B.C., Das, S., Shacham, H.: Eliminating fine grained timers in Xen.
In: ACM Workshop on Cloud Computing Security (2011)

36. Wang, X., Karri, R.: Numchecker: detecting kernel control-flow modifying rootkits
by using hardware performance counters. In: ACM/EDAC/IEEE Design Automa-
tion Conference (2013)

37. Wang, X., Konstantinou, C., Maniatakos, M., Karri, R.: Confirm: detecting
firmware modifications in embedded systems using hardware performance coun-
ters. In: IEEE/ACM International Conference on Computer-Aided Design (2015)

38. Wang, Y., Ferraiuolo, A., Suh, G.E.: Timing channel protection for a shared mem-
ory controller. In: IEEE International Symposium on High Performance Computer
Architecture (2014)

39. Wang, Z., Lee, R.: A novel cache architecture with enhanced performance and
security. In: IEEE/ACM International Symposium on Microarchitecture (2008)

40. Wang, Z., Lee, R.B.: New cache designs for thwarting software cache-based side
channelattacks. In: ACM International Symposium on Computer Architecture
(2007)

41. Xia, Y., Liu, Y., Chen, H., Zang, B.: CFIMon: detecting violation of control flow
integrity using performance counters. In: IEEE/IFIP International Conference on
Dependable Systems and Networks (2012)

42. Yarom, Y., Falkner, K.: Flush+reload: a high resolution, low noise, l3 cache side-
channel attack. In: USENIX Conference on Security Symposium (2014)

43. Yuan, L., Xing, W., Chen, H., Zang, B.: Security breaches as PMU deviation:
detecting and identifying security attacks using performance counters. In: Asia-
Pacific Workshop on Systems (2011)

44. Zhang, T., Lee, R.B.: Cloudmonatt: an architecture for security health monitoring
andattestation of virtual machines in cloud computing. In: ACM International
Symposium on Computer Architecture (2015)

45. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: ACM Conference on Computer and Commu-
nications Security (2012)

http://www.thegeekstuff.com/2010/11/50-linux-commands/?utm_source=feedburner
http://www.thegeekstuff.com/2010/11/50-linux-commands/?utm_source=feedburner

140 T. Zhang et al.

46. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel
attacks in PaaS clouds. In: ACM Conference on Computer and Communications
Security (2014)

47. Zhang, Y., Li, M., Bai, K., Yu, M., Zang, W.: Incentive compatible moving tar-
get defense against VM-colocation attacks in clouds. In: Gritzalis, D., Furnell, S.,
Theoharidou, M. (eds.) SEC 2012. IFIP AICT, vol. 376, pp. 388–399. Springer,
Heidelberg (2012)

48. Zhang, Y., Reiter, M.K.: Düppel: retrofitting commodity operating systems to
mitigate cache side channels in the cloud. In: ACM Conference on Computer and
Communications Security (2013)

	CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds
	1 Introduction
	2 Background and Related Work
	2.1 Cache Side-Channel Attacks
	2.2 Defenses Against Side-Channel Attacks
	2.3 Intrusion Detection Using Hardware Performance Counters

	3 Design Challenges and Overview
	3.1 Design Challenges
	3.2 Design Overview

	4 Signature Detection of Cryptographic Applications
	4.1 Cryptographic Signature Generation
	4.2 Cryptographic Application Detection

	5 Anomaly Detection of Side-Channel Activities
	6 Implementation
	6.1 System Architecture Overview
	6.2 Operations

	7 Evaluation
	7.1 Detection Accuracy
	7.2 Performance

	8 Discussions
	8.1 Detecting Other Side Channels
	8.2 Potential Evasive Attacks
	8.3 Limitations

	9 Conclusions
	References

