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Abstract—The Tor anonymous communication network uses self-reported bandwidth values to select routers for building tunnels.

Since tunnels are allocated in proportion to this bandwidth, this allows a malicious router operator to attract tunnels for compromise.

Although Tor limits the self-reported bandwidth, it uses a high maximum value, effectively choosing performance over high anonymity

for all users. We propose a router selection algorithm that allows users to control the trade-off between performance and anonymity.

We also propose an opportunistic bandwidth measurement algorithm to replace self-reported values that is more sensitive to load and

more responsive to changing network conditions. Our mechanism effectively blends the traffic from users of different preferences,

making partitioning attacks difficult. We implemented the opportunistic measurement and tunable performance extensions and

examined their performance both through simulation and in the real Tor network. Our results show that users can get dramatic

increases in either performance or anonymity with little to no sacrifice in the other metric, or a more modest improvement in both. Our

mechanisms are also invulnerable to the previously published low-resource attacks on Tor.

Index Terms—Anonymous communication, bandwidth estimation, path selection.
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1 INTRODUCTION

ANONYMOUS communication on the Internet seems finally
within reach. Though an initial commercial deploy-

ment of Onion Routing [1], The Freedom Network [2], was
in the end shut down, a volunteer-run replacement network
using the second-generation onion routing design—Tor
[3]—has been operational for several years and has nearly
two thousand nodes [4] and several hundred thousand
users [5] as of late 2009. Tor is used by an increasing variety
of parties: reporters communicating with sources, dissi-
dents and embassies hiding their activities from local
governments [6], people trying to get around geographic
restrictions [7], and more. However, for the average user,
the performance penalty introduced by Tor is still prohibi-
tively high for everyday use. At the same time, the
popularity of Tor has lead to development of a number of
practical attacks on the system.

Efforts to improve the performance of the Tor network
can often decrease the anonymity, and vice versa. To
address this problem, we propose a user-tunable mechanism
for selecting routers based on their bandwidth capabilities.
Rather than trying to find a compromise that satisfies both
those users who desire strong anonymity protection and
those for whom performance is more of a priority, as is
done in the current Tor design, we suggest letting users
express a preference in the trade-off between anonymity
and performance and make router selections accordingly.

We design a mechanism that effectively blends the traffic of
users with different preferences, making partitioning
attacks difficult.

At the heart of our work is the Tor load-balancing
algorithm. Currently, Tor routers self-report their band-
width capabilities, and clients choose them in proportion to
their fraction of the overall Tor capacity. This enables a low-
resource attack, where routers misreport their bandwidth to
be the artificially high and thereby capture a large fraction
of tunnels [8]. Additionally, due to constantly changing
conditions, self-reported bandwidth is frequently an over-
estimate of the actual node capacity, leading to unreliable
performance delivered to Tor users.

We propose to replace the Tor mechanism with an
opportunistic bandwidth measurement mechanism. Due to the
complete graph topology of the Tor network, each router
will have a chance to interact with most other routers and
thus observe their performance empirically. We show
through experiments that this mechanism is a suitable
replacement for self-reported bandwidth in that it accu-
rately predicts the performance of the routers and is
significantly less susceptible to low-resource attacks. Also,
since overutilized routers will show decreased perfor-
mance, it also helps reduce the long tail of the transfer
time distribution, making the worst case significantly better.

Our experiments with Tunable Tor show that users can
achieve great improvements in performance without
sacrificing much anonymity, or significantly increase
anonymity protection without any loss in performance.
They also allow for moderate improvements in both. This
improved flexibility should make Tor palatable to a wider
range of users, and thus increase anonymity for everyone
due to a larger community [9].

The remainder of this paper is structured as follows:
Section 2 examines the current implementation and points
out two important weaknesses. Section 3 analyzes these
weaknesses and proposes improvements to Tor to address
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them; it also evaluates these changes in isolation. Section 4
evaluates their performance in the real Tor network. Section 5
discusses some related work. Finally, Section 6 summarizes
our conclusions and examines future directions for this work.

2 WEAKNESSES IN THE IMPLEMENTATION OF TOR

We first present a high-level overview of the Tor network
design and then highlight two important problems in the
load-balancing algorithm. Interested readers can find more
details about the Tor protocol in [3].

2.1 Tor Design

The Tor network is based on an onion-routing [1] design,
where traffic is forwarded through several routers and
multiply encrypted, with each router removing one layer of
the encryption. The path through the network—a tunnel—is
constructed in a telescoping fashion so that each router
knows only the previous and the next router in the path. In
particular, the first (entry) router knows the source of the
tunnel, but not its destination, and the last (exit) router knows
the destination but not the source. However, if both routers
cooperate, they can use traffic analysis to link communication
over the same tunnel; hence there is little benefit to using long
paths and in practice Tor path length is set to 3.1

Tor routers are registered with a directory service. Each
router reports its IP address, public key, policies about what
traffic it will accept, and a bandwidth value that is
determined by monitoring the peak bandwidth achieved
by the router over a period of time. The directory service also
maintains statistics about the uptime of each router. The Tor
path construction algorithm, executed by the Tor client, will
first select all routers that have an acceptable forwarding
policy (e.g., many routers are unwilling to serve as exit
routers) and then choose a random router out of the list, with
the selection weighted by the reported bandwidth. This
way, traffic is roughly balanced across Tor nodes in
proportion to the bandwidth they have available. To prevent
a router from reporting an unreasonably high bandwidth, an
upper bound (currently 10 MB/s)2 is enforced.

To defend against the predecessor attack [10], recent
versions have introduced guard nodes, first described by
Wright et al. [11]. Each client picks a set of three nodes that
will be used as entry routers for all of its tunnels. Guard
nodes are chosen among stable nodes, i.e., nodes with a
high uptime that have a bandwidth higher than the median
bandwidth reported by all Tor nodes.

Fundamentally, Tor forms an overlay network for
forwarding traffic, and thus needs to address the perfor-
mance issues associated with this task. It also has an extra
requirement of preserving anonymity, making this task that
much more difficult. We next examine two shortcomings of
the Tor load-balancing scheme that motivate our work.

2.2 Advertised Bandwidth

The bandwidth values used in the load-balancing algo-
rithm are self-reported by each node and are not verified in
any way. This leaves the door open to attacks where

malicious nodes can report a higher-than-actual bandwidth
so that a larger fraction of tunnels are routed through them.
Despite the enforced upper bound, the attack can be quite
successful: Bauer et al. [8] report that a small fraction of
attacker nodes can attain the first and last node positions
(thus violating anonymity) on nearly half the tunnels,
despite using the older (and more secure) cap of 1.5 MB/s.

Even when nodes are honest, the reported values can be

a poor predictor of the available bandwidth at a node due to

changing network conditions and other factors. This makes

Tor performance highly variable. Recent studies of Tor (see

Fig. 1) show that, although the Tor network provides

reasonable bandwidth on most connections, the perfor-

mance curve has a long tail. In particular, while the median

bandwidth is 19 KB/s, the 90th percentile bandwidth is less

than a third of that, at 6 KB/s, and there is a significant

fraction of tunnels that perform worse still. This presents a

poor user experience, especially to users who are browsing

the web (the majority of connections in Tor [12]), with

connections frequently slowing down. Furthermore, com-

paring these results with those from 2007 in Fig. 10 shows

that the situation is, if anything, getting worse over time

despite the influx of new routers.

2.3 User Heterogeneity

The Tor load-balancing algorithm provides a single, static

compromise between performance and anonymity. Users

who are highly anonymity sensitive (e.g., whistle blowers)

might wish to distribute all of the tunnels uniformly across

all routers, to prevent (purportedly) high-bandwidth

routers from having a higher chance of compromising their

traffic. Users who are less privacy-sensitive and are using

the network for casual web browsing (e.g., users who want

to hide their browsing activities from their neighbors) might

value performance more and would be more willing to use

high-bandwidth routers more often. By using the same path

selection algorithm for both of these, the Tor router

selection algorithm sacrifices the needs of both classes.3
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Fig. 1. Cumulative distribution function of the time required to transfer a
1 MB file over the Tor network in July 2009 (18,422 trials).

1. There are some small benefits to using 3 rather than 2, a full discussion
of which is beyond the scope of this paper.

2. On 30 August 2007, the Tor project released a version of Tor that
changed this upper bound to 10 MB/s from its previous value of 1.5 MB/s,
increasing network utilization at the cost of increased vulnerability to low-
resource routing attacks.

3. In fact, a recent discussion on the or-dev mailing list about raising the
upper bound of reported bandwidth hit precisely the stumbling block of not
being sure which of these two groups to serve [13]; the determination was
eventually made to significantly raise the limit.



3 PROPOSED IMPROVEMENTS

To address these issues, the fundamental questions of an
overlay network must be readdressed: first, how is the
performance of a router measured; and second, given a list
of measured routers, how is the route selected. In this work,
our performance metric is the bandwidth available to a Tor
tunnel rather than other performance characteristics such as
latency or jitter. Our reason for focusing on bandwidth is
threefold. First, bandwidth is already a key factor in Tor
design. Second, bandwidth is typically a property of a node
rather than a link between two nodes, since the bottleneck is
likely to be close to the node rather than in the intermediate
network [14], [15]. This makes measurements and optimiza-
tions much more feasible than for link properties, since for
N nodes there are OðN2Þ links. Additionally, a scheme that
optimizes latency is bound to leak at least some information
about the starting point of a path, whereas it is possible to
optimize bandwidth without such information leaks.
Finally, the overwhelming majority of Tor traffic, by both
data volume and number of connections, is from web and
peer-to-peer traffic [12]—applications that are relatively
insensitive to jitter, and where latency can be treated simply
as a part of the total transfer time; when low bandwidth
makes this transfer time large, latency effects are negligible.
Finally, most latency in Tor comes from poor congestion
control handling; observed end-to-end latencies signifi-
cantly exceed the total network latency. Other work [16]
attempts to address this problem.

3.1 Router Measurement

A simple way to measure the available bandwidth at a router
is to perform a probe. Though crude, this mechanism is likely
to present a reasonably accurate picture of the performance of
a node; probing to determine node availability and therefore
reliability is done for high-latency anonymous-communica-
tion networks by Echolot [17]. Fig. 2a shows the correlation
between probed router bandwidth and subsequently
achieved tunnel bandwidth in the real Tor network when
the probed router is the bottleneck router for that tunnel. The
probe results are a good predictor of tunnel performance;
however, probes themselves use up valuable bandwidth,
which is a scarce resource in the Tor network. In particular,
probes need to appear identical to real traffic, lest a node give
priority to probe traffic to enhance its performance, and thus
need to generate significant data transfers. Furthermore,
since it is not realistic for all nodes to probe all other nodes,
this task must be delegated to a small collection of probing
agents, which can act as a point of failure or compromise. For
these reasons, we consider bandwidth estimation via active
probing to be impractical.

We propose instead that opportunistic monitoring be
used to measure bandwidth capacity; that is, each router in
the Tor network keeps track of the bandwidth it has recently
seen for each of its peers. In practice, Tor routers commu-
nicate with a large set of routers over a short period of
time—we observed up to 800 routers contacted within a
single day—and thus can accumulate a large set of statistics.
These statistics can then be aggregated by each router to a
single observation per peer and then uploaded to the
directory server (as the self-reported bandwidth is cur-
rently). The directory server can in turn aggregate these
N2 observations into N router evaluations. The process for

these aggregations is discussed below in Sections 3.1.1 and
3.1.2. The final evaluations are then distributed by the
directory servers as the current self-reported evaluations are.
Fig. 2b shows the accuracy of bandwidth prediction for a
single router in the real Tor network; comparing this with
Fig. 2c, we can see that observation by a single client
approaches the accuracy of the advertised bandwidth figures

730 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2011

Fig. 2. Accuracy of active probing, passive observation, and self-
reporting for bandwidth estimation in the real Tor network, as measured

by the log-log correlation (r). In all cases, the router under test is the
middle router, and the same entry and exit routers are used to minimize
confounding effects. (a) Accuracy of probing for bandwidth prediction in

the real Tor network ðr ¼ 0:629Þ. (b) Accuracy of passive observation for
bandwidth prediction in the real Tor network ðr ¼ 0:481Þ. (c) Accuracy of

advertised bandwidths for bandwidth prediction in the real Tor network
ðr ¼ 0:569Þ.



employed in the current Tor network; by aggregating
statistics across multiple Tor routers, a client can obtain an
even more accurate picture of the network, and at the same
time be less susceptible to attacks.

This approach has the additional advantage that, because
each peer considers the individual bandwidth it receives, an
overloaded router will produce lower measurements;
whereas the aggregate bandwidth observed by a router
will stay the same or even increase in the case of overload.
Using frequent updates of opportunistic measurements can
thus help balance the load by using overloaded routers less
frequently. In the extreme case, such dynamic load
balancing can cause route oscillations [18], but an update
frequency of about once a minute provides sufficient
damping that we do not anticipate that this will be a
problem; Figs. 3 and 4 support this claim.

We must also consider how to aggregate observations,
both multiple observations of a router by a single node, and
multiple observations of a router by multiple nodes. The
naı̈ve approach is for each node to use the maximum of its
own observations, but this approach has two flaws. First,
each router using its own view of the network creates the
possibility of partition attacks (described in [19]), where an
attacker focuses all of its bandwidth on nodes of interest.
Thus, these nodes, and only these nodes, are more likely to
select the attacking nodes when creating tunnels. Addition-
ally, aggregating observations via their maximum allows
“spotlight attacks” [20], where an attacker focuses all of its
bandwidth of one node at a time for a single measurement
interval, ignoring all other nodes. Assuming the maximum
age of measurements is long enough, the attacker can thus
convince the entire network that its bandwidth is many
times the actual value.

In the following sections, we discuss observation
aggregation and propose two novel methods of evaluating
node bandwidth before going on to evaluate their pre-
dictive power.

3.1.1 Bandwidth Observation Aggregation

The first question to be addressed is that of aggregating
multiple observations of a single router by the same node. It
seems clear that we would like our aggregated value to be
as close to the actual bandwidth of that peer as possible;
taking the maximum observed value over a long interval
gives a high probability that there will be a measurement
when the measuring node is sole consumer of the router’s
bandwidth and therefore a fairly accurate value. However,
even for much shorter observation lifetimes such as the
current Tor value of one day, this approach is vulnerable to
spotlight attacks as described above.

Another possibility is using a moving average of recent
observations such as an exponentially weighted moving
average (EWMA):

Bnew ¼ ð1� �ÞBold þ �Bobs:

This way, if an attacker ignores a node for a sufficient period
of time, that node’s estimation of the attacker will drop and it
will be less likely to select that node. However, this approach
suffers from lessened accuracy in the face of bandwidth
fluctuations: a congested router that offers lower bandwidth
to its peers for a period of time will either have its reputation
fluctuate rapidly (for small values of �) or drop slowly and

recover slowly (for higher values of �). Neither of these
scenarios is good for the load balancing of the network.

We propose instead a variant on an EWMA that we call a
Min-Max Weighted Moving Average, or MWMA:

Bnew ¼ ð1� �ÞmaxðBold; BobsÞ þ �minðBold; BobsÞ:
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Fig. 3. The accuracy of various prediction mechanisms for a sample of
the trials. The x ¼ y line is included for reference. (a) Actual node
bandwidth versus achieved bandwidth (r ¼ 0:223). (b) Current Tor
bandwidth measurement versus achieved bandwidth (r ¼ 0:176).
(c) Median-of-five bandwidth measurement versus achieved bandwidth
(r ¼ 0:680). (d) EigenSpeed bandwidth measurement versus achieved
bandwidth (r ¼ 0:881).



This allows the bandwidth estimation to increase rapidly,
but still decay slowly if a router is providing poor service,4

combining the benefits of maximum-based aggregation
with those of EWMA-based aggregation.

3.1.2 Combining Measurements Across Hosts

As discussed previously, having each node rely solely on its
own observations to make router selection decisions leads to
the possibility of an attacker manipulating that node’s view
of the network and therefore their tunnel selection. In order
to prevent this, nodes can share their observations of their
peers. In this section, we present two methods of doing this.

1. For the first, we exploit the fact that, while an
attacker might be able to manipulate a node’s view
of the network, it must know which node to target in
order to do so. To prevent this foreknowledge, nodes
can ask a random peer for its view of the network.
Thus, an attacker might be able to affect the network
view of a node, but it will only affect the router
selection of a different, random node. By periodically
changing its source for network data, a node can be
reasonably certain that an attacker is not intention-
ally altering its view of the network. However, there
remains the possibility that an attacker is blindly
presenting bogus data to anybody who asks or to
certain targets when they ask. More benignly, there
is the possibility that the router queried has recently
joined the network and has not yet had time to
gather observations for many of its peers. Happily,
the solution to both of these problems is the same:
instead of querying a single peer, a node queries
five5 and takes the median of the reported values.
This substantially reduces the probability of making
decisions on poor or malicious data. However, since
nodes are making routing decisions based on

different data, partition attacks remain theoretically
possible. This scheme also has the advantage of
being conceptually simple and simple to implement.
This is the method proposed in an earlier version of
this work [21].

2. A second approach is to use principal component
analysis to compute a consensus vector from the
N �N observation matrix. In our other work, we
have designed a secure bandwidth evaluation
system that accomplishes this task, called Eigen-
Speed [22]; we will present a summary of its
operation here. In EigenSpeed, a node updates its
own observation vector by incorporating the ob-
servations of other nodes, weighted by their ob-
served bandwidth. The intuition behind this is that
nodes that have higher bandwidth capacity can
estimate other nodes’ capacities more accurately
since they are unlikely to be a bottleneck; further-
more, weighting the observations from nodes that
have demonstrated a high bandwidth more highly
forces attackers to spend resources to attack the
system. This update process is iterated until the
process converges (to the principal eigenvector of
the observation matrix). We previously showed that
EigenSpeed requires a small number of iterations to
converge, and incorporated defenses from potential
attacks on the PCA algorithm by malicious nodes;
see [22] for more details.

In the next sections, we examine how these bandwidth
evaluation metrics perform and how they affect the
performance of the network as a whole.

3.1.3 Evaluation of Predictive Power

To evaluate the effectiveness of the bandwidth evaluation
algorithms, we first consider the correlation between the
evaluated bandwidth of a node and the subsequently
observed bandwidth of tunnels passing through that node.
To minimize confounding effects, we consider the evalu-
ated bandwidth of a tunnel to be the minimum of the
evaluated bandwidths of the routers it passes through.

To generate the data in this section, we used a custom-
written flow-level simulator of the Tor network. We created
a 1,000-node network, with actual bandwidth data obtained
from the Tor network [3]. For each tick of the simulator, it
simulated 10,000 flows, with intermediate routers chosen at
random weighted by their bandwidths as evaluated by
each metric.6 Routers allocated their bandwidth between
their flows using fair queuing. For each scenario, the
simulation ran for 1,440 ticks, simulating one day’s worth
of one-minute flows. Each of the graphs in Fig. 3 shows the
flows for the final tick of the simulation, after each
algorithm has a full day to make observations. Note that
each router is splitting its bandwidth between 20-30 flows
on average, so direct observation of the available band-
width of a peer is unlikely.

Fig. 3a plots the actual bandwidth of the bottleneck node
against the bandwidth of the tunnel. We see that, due to
the load balancing of the network, the total node
bandwidth serves as a poor predictor of tunnel bandwidth;
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4. “Quickly” and “slowly” here are, of course, dependent on the
parameter �; we find empirically that � ¼ 0:15 gives good performance.

5. The number five was chosen for the same reason it is used for voting
elsewhere in Tor: first, at least three of five must have data about the node
for that node to be considered evaluated, and then the median of the (at
least) three values present is considered the evaluated value. 6. That is, by the Tor router selection algorithm.

Fig. 4. Fractional network utilization for the bandwidth evaluation
algorithms presented. Utilization using the current Tor algorithm and
using no bandwidth estimation (i.e., flat uniform router selection) are
included for comparison.



the log-log correlation7 is 0.223. This is because nodes with
more bandwidth are chosen more often, regardless of the
number of other tunnels through that node or the
bandwidth of the other nodes of the tunnels.

This helps explain Fig. 3b: since nodes report the total
traffic they observe, nodes that are overloaded stay over-
loaded and even tend to increase their reported bandwidths
slightly, but tunnels through them suffer from poor
performance. Thus, the basic shape of Fig. 3b resembles
that of Fig. 3a: tunnel bandwidth is only weakly related to
node bandwidth (log-log correlation 0.176).

As Fig. 3c shows, however, the two methods proposed in
the previous section tend to measure per-flow bandwidth,
rather than total node bandwidth. This provides a much
stronger link between predicted and observed bandwidths;
it also means that routers which become overloaded see their
evaluated bandwidths decrease, resulting in being chosen
less often and therefore recovering form the overload. The
log-log correlation here is considerably stronger, at 0.680.

Finally, Fig. 3d shows that EigenSpeed similarly mea-
sures an approximation of per-flow bandwidth. Since a
node uses measurements from the entire network to
estimate peer bandwidths, the estimations are even more
accurate than the previous scheme, giving a log-log
correlation of 0.881. Note also that the majority of flows
are now above 10 kB/s at the expense of a smaller number
falling below 1 kB/s. We will exploit this predictable flow
heterogeneity in Section 3.2.

3.1.4 Evaluation of Network Utilization

Though the proposed bandwidth metrics increase the
predictive ability of bandwidth estimations considerably,
it is critical that the choice of metric not adversely affect the
overall performance or load balancing of the network. Since
this is unclear from Fig. 3, we turn to Fig. 4, which presents
another view of the same data. For each evaluation
algorithm, Fig. 4 shows the total bandwidth achieved by
all flows at each simulator tick, averaged over a 10-minute
moving window for clarity. Included are similar curves for
the current Tor evaluation algorithm and for no evaluation
algorithm (i.e., choosing routers uniformly at random). All
the curves in this graph are scaled to the theoretical
maximum of a three-hop routing network, i.e., one third
of the total router bandwidth.

There are several things to observe in this graph. The
first is that appropriate load balancing is vital to maximiz-
ing network utilization (and therefore average tunnel
throughput). With load balancing, network utilization can
exceed 95 percent, whereas choosing routers uniformly at
random hovers at approximately half of that. The second is
that Tor, as currently implemented, does a fairly good job of
this load balancing. This is to be expected, since Tor’s router
selection was designed for the sole purpose of load
balancing. We can also see that EigenSpeed also does an
excellent job, while providing the additional predictive
power described in the previous section.

The Median-of-five algorithm performs less well, only
achieving approximately 80 percent utilization after a
single day. We theorize that this is due to the need for a
considerably denser observation matrix to achieve high
accuracy; however, lower-bandwidth nodes are less likely
to be selected (and therefore observed) for the first time,
resulting in their underutilization. Currently, since the
measurement lifetime is on the order of a day, we did not
investigate further to determine the time required to reach
high utilization,8 as a significant increase in measurement
lifetime may increase vulnerability to the spotlight attacks
discussed previously. Accordingly, for this reason and
those discussed in Section 3.1.2, we conclude that Eigen-
Speed represents the superior choice for a new bandwidth
evaluation algorithm for Tor.

In the following section, we will examine how this
bandwidth measurement can be used to further harden Tor
against malicious routers and simultaneously improve the
user experience.

3.2 Variable Router Selection Algorithm

In this section, we propose several modifications to the
router selection algorithm used by Tor in order to decrease
its vulnerability to subversion as well as provide a better
experience for all classes of users; we call this algorithm
Tunable Tor, due to its user-configurability.

As described in Section 2.3, there is a trade-off between
selecting routers for optimal performance and providing
maximum anonymity protection. Even if the bandwidth
measurements are accurate, using high-bandwidth nodes
more frequently increases a user’s exposure, and some
users will wish to pick uniformly from all routers. Others
may be willing to expose themselves even more than the
current Tor design in order for increased performance. We
propose giving users control over this trade-off by letting
them select a point on the anonymity-performance scale
either globally (i.e., in the Tor configuration file), or
depending on the task.

Providing such flexibility not only helps existing Tor
users, but attracts new users to the network as well,
improving anonymity for all by increasing the anonymity
set [9]. However, care must be taken to avoid partitioning
attacks. If it is easy to identify what level of privacy a user is
aiming for, the anonymity set may be in fact reduced. For
example, if only privacy-sensitive users use poorly per-
forming routers, then attackers may wish to focus their
efforts on them. Our proposed selection function blends
traffic from both privacy-sensitive and privacy-insensitive
users by having both sets select from a common pool of
routers, but weighting their selection differently.

We define a family of functions fs : ½0; 1� ! ½0; 1�, with
parameter s, by:

fsðxÞ ¼
1� 2sx

1� 2s
:
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7. The log-log correlation between two sets of values is the simple
correlation between their logarithms. We use this metric over the linear
correlation for two reasons: first, we argue that bandwidth is inherently
perceived logarithmically; that is, the difference between 1kB/s and 2kB/s
is perceived as more similar to that between 1MB/s and 2MB/s than to that
between 1MB/s and 1.001MB/s. Second, the range of values spans four
orders of magnitude; using a linear correlation would dramatically
overweight higher x values.

8. Analytically, the problem is quite complex: the expected time before
all queries are expected to return a valid value for an N-router network
represents an N-copy, N-coupon coupon-collector’s problem with hetero-
geneous probabilities determined by the router selection algorithm. A
cursory search of the literature reveals no good closed-form approximations
for this type of problem.



Note that this family of functions is well-defined for all
s 6¼ 0. For s ¼ 0, we define fs to be its point-wise limit as
s! 0; i.e., f0ðxÞ ¼ x.

To choose a router given a selection function fs, a list of
routers and their rankings must first be obtained; while this
ranking can be based on any metric,9 we propose the
opportunistically probed available bandwidth metric de-
scribed in Section 3.1. This list can be of all routers in the Tor
network, or only those matching certain criteria (fast, stable,
exit, etc.). If this list is indexed from 0 to n� 1, then the
router selected is that with the index bn� fsðxÞc, where x is
selected uniformly at random from ½0; 1Þ. Note that this
procedure is obtaining a value of a random variable from the
normalized exponential distribution with parameter � ¼ �s.

The Cumulative Distribution Function (CDF) of the
probability of choosing any given router is shown in Fig. 5
for different values of s; a similar CDF of router selection for
the current Tor router selection is included for comparison.10

This procedure is then repeated for any other routers to be
selected, enforcing the restriction that duplicate selections
are not allowed, nor are nodes within the same/16 subnet or
node family.

There are several features to note about this algorithm.
First, the chance of a router being selected is based on the
ranking of its metric, rather than on the metric itself. This
means that an attacker cannot simply add a router with a
very large amount of available bandwidth to the network
and attract a large fraction of all circuits; instead, many
routers must be added, each with enough bandwidth to rank
highly. Second, fs is well defined for all real s. This means
that, should a reason arise for preferring routers with low
bandwidth, a negative s can be used. Also, while there are, in
principle, no bounds on the strength of a preference for high
bandwidth (i.e., how large an s can be chosen), too high a
value can result in nearly always choosing the most highly
ranked router. In this paper, values of s from 0 to 15 are

examined for completeness; a value of s ¼ 15 implies that the
most highly ranked router in a set of n ¼ 1;700 (a typical
number of routers available in the Tor network at any given
time) will be chosen 23 percent of the time.11 It should be
stressed, however, that a practical upper bound for s is 10,
which results in the most highly ranked router being chosen
less than four percent of the time in the above scenario.

In practice, we observe an additional problem: due to
routers frequently joining and leaving the network, a router
often lacks any data on the bandwidth of a significant
fraction of the total router population. In order to bootstrap
data for these routers, we divide the population into those
routers for which we have data (i.e., known routers) and
those routers for which we do not (i.e., new routers) as a
first step in choosing a router. A population-weighted coin
toss is used to choose between these groups; if the
population of new routers is chosen, we choose a router
uniformly at random, and if the population of known
routers is chosen, we use the algorithm described above.
This modified algorithm is the one used for the evaluations
in Section 4.

3.2.1 Discovering the Selection Level: Single Path

One obvious concern that arises in the context of tuning the
router selection algorithm according to the privacy needs of
the user is that these needs might be leaked, allowing an
attacker to focus on those users who demand the most
privacy: such attacks as those described by Murdoch and
Danezis [24] become much more feasible with only a few
flows to focus on. In this section and the following one, we
examine the ability of an attacker to fingerprint the
selection level chosen by the user. To do so, we consider
two scenarios: fingerprinting a single tunnel, and finger-
printing a correlated series of tunnels.

For this first scenario, the threat model we address is that
of a single malicious router, the controller of which wishes
to identify the selection level of tunnels which pass through
it. To perform this evaluation, a large number (n ¼ 100;000)
of paths are chosen according to the proposed router
selection algorithm, with equally probable selection levels;
these paths were then used to train a naı̈ve Bayesian
classifier. This classifier then attempted to determine the
most likely selection level12 of a single tunnel for another
data set (again, n ¼ 100;000). The results of this classifica-
tion are shown in Fig. 6: the extreme levels (i.e., 0 and 15)
are most likely to be identified correctly, but even in these
cases, the probability of correct identification is no more
than 0.21; the intermediate levels are correctly identified
much less frequently.

Fig. 7 shows the mean guess that was guessed for each
selection level over the same data set, along with the
standard deviation. For comparison, it also shows the same
statistics for a data set where the selection level for both the
training set and the test set were chosen from a skewed
distribution where level 0 (maximum anonymity) is chosen
20 percent of the time, level 15 (maximum performance) is
chosen 52 percent of the time, and all other levels are chosen
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Fig. 5. Cumulative distributions of routers selected by ranking for some
selection levels; note that these curves represent 1� f�1

s ð1� xÞ. The
equivalent curve for the Tor router selection algorithm is included for
comparison purposes.

9. And in fact, Sherr et al. [23] do apply this selection function to a variety
of other metrics.

10. Tor’s CDF is, of course, dependent on the bandwidths of the
currently available routers; this CDF is based on a static snapshot of router
bandwidths.

11. It follows from the definition of fs that the most highly ranked of a set
of n routers will be chosen with a probability of log2ð2s�1=nþ 1Þ=s.

12. This classification is based on a single router, which could be the
intermediate router or the exit router, since the entry guard is not affected
by selection level.



two percent of the time. Over all trials, the average absolute
error in the predicted selection level was 4.568 for the
uniform distribution and 4.567 for the skewed distribution.

Also, note that this sort of fingerprinting requires that the
attacker be able to determine which routers form the tunnel;
the ability to do so implies either a widespread passive
adversary, a malicious router on the selected path, or a
compromised or malicious destination web site.

3.2.2 Discovering the Selection Level: Multiple Paths

For the next scenario we examine, the threat model is an
attacker who is able to correlate (potentially many) tunnels
at a single selection level. This may be due to a user using a
pseudonym for their connection, or by including linkable
information, such as cookies.13 Under this threat model, the
attacker slowly accrues correlated exit routers. To identify
which selection levels at which these routers were chosen,
we employ a known-distribution Kolmogorov-Smirnov
(K-S) test14; specifically, for each data set we attempt to
confirm the null hypothesis that the data could arise from
each of the possible selection levels at the 95 percent level.

For each selection level, 500 exit routers were chosen one
at a time; after each choice, the K-S test was performed for
the data collected so far, and the range of selection levels
passing the test was recorded for each new observation. This

experiment was repeated 100 times for each selection level.
Fig. 8 shows the average range of selection levels passing
this test for some representative selection levels as the
number of correlated tunnels increases. We can see that, for
each data set, the possible range of selection levels is initially
very broad, but it decreases with additional observations. It
decreases most quickly for the lower selection levels: the
possible selection level range is reduced to only three
possibilities after only 50 observations at selection level 1,
but it takes nearly five times as many observations to reduce
the possibilities that far for selection level 13.

When attempting to identify the selection level, it is not
at all obvious when enough observations have been made to
make the correct identification. One possibility is to stop as
soon as only a single level passes the K-S test. Fig. 9 shows
the results of this approach; we can see that it works
moderately well for intermediate selection levels, identify-
ing the selection level correctly as much as 80 percent of the
time. However, selection levels closer to the extrema are
identified much less accurately: selection level 1 is mis-
identified as selection level 0 nearly 80 percent of the time.
One possible explanation for this phenomenon is that
selection level 0 collects all of the long tail that would fall
into negative selection levels; we can see a similar effect
happening at the other extreme, with selection level 13
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Fig. 6. Actual selection level and most likely selection level according to
a naı̈ve Bayesian classifier.

Fig. 7. Mean and standard deviation of guessed level by actual selection
level according to a naı̈ve Bayesian classifier, for both a uniform and
skewed distribution of selection levels.

Fig. 8. Average range of possible selection levels according to a known-
distribution Kolmogorov-Smirnov test.

13. We emphasize that these possibilities are not weaknesses in Tor, but
rather failures in user education similar to that described in [6].

14. Credit is due to Matt Wright for suggesting the use of the
Kolmogorov-Smirnov test in this attack.

Fig. 9. First unique matching selection level according to a known
distribution Kolmogorov-Smirnov test.



being misidentified as selection level 15 a substantial
fraction of the time. Also, note that several moderate to
high selection levels are occasionally misidentified as
selection level 0. This seems to occur when more than one
router selected early is ranked poorly.

Another possible application of this attack is to gather
correlated pairs of exit routers and websites (rather than
pairs of exit routers and users, as above). If enough data
were gathered, it might be possible to automatically
determine which websites are visited at high anonymity
levels and note them for further investigation. Since any
website would likely be visited with a variety of selection
levels, suspicious sites would be those with a visitor
selection level distribution biased towards higher levels.
Determining the mix of selection levels visiting a website is
more complex and computationally intensive, and we do
not investigate it further here.

4 WHOLE-SYSTEM EVALUATION

In order to evaluate the degree to which the proposed
changes meet the dual goals of improving user experience
and increasing resistance to subversion, we evaluated them
according to two categories of metrics: performance and
anonymity. We examine each of these categories below.

4.1 Performance

In order to obtain an accurate picture of what the
performance of a Tor network using these proposed
improvements would look like, we ran tests using a single
client modified to use the Tunable Tor algorithms in the real
Tor network and a simulator where all clients use the
modified algorithms. The relative agreement between the
two sets of results argues for their fidelity.

4.1.1 Performance in the Real Tor Network

To evaluate the performance of the proposed modifications
to the Tor protocol, a large number of tests were performed
over the Tor network; each trial involved downloading a
1 MB file over HTTP using an exit router connected via a high-
bandwidth connection to the hosting server; the web server,
the exit router, and the client are kept fixed, while the

intermediate routers are ranked according to passive
observation as described in Section 3.1 and then chosen
according to the algorithms described in Section 3.2. The
results shown for Tunable Tor are based on approximately
20,000 trials over the period from 17 July 2007 to 26 September
2007; those for vanilla Tor are based on approximately 40,000
trials over the period from 22 January 2007 to 26 March 2007.
The router selection levels were chosen uniformly at random
from the integers between 0 and 15.

Fig. 10 shows the CDFs of the file transfer times for
vanilla Tor and Tunable Tor at several selection levels. The
CDF captures many elements of user experience; since Tor
changes tunnels by default every 10 minutes, a user can
expect to get the 95th percentile performance several times a
day. Note that, as expected, vanilla Tor outperforms
Tunable Tor at selection level 0; this is due to Tunable Tor
disregarding router performance at that level in the aim of
maximizing the equality of router selection. However, at
selection level 5, Tunable Tor has a significantly higher
fraction (69 percent) of trials below the one-minute mark
than vanilla Tor (62 percent). At the higher selection levels,
Tunable Tor outperforms vanilla Tor across the board;
notably, at selection level 15, 85 percent of trials fall below
the one-minute mark.

To further examine the long-tail statistics of the data,
Fig. 11 presents the 90th percentile and median of the
transfer times for both known routers (those for which we
have bandwidth data) and all routers (including those for
which we lack bandwidth data) by selection level as well as
vanilla Tor. Note that vanilla Tor’s lack of relative load
information can be seen here in its poor long-tail
performance: in times of high load, routers still advertising
their full capacity (see Fig. 3a) become overloaded,
resulting in poor performance. Tunable Tor, by compar-
ison, switches away from those routers which tend to
become overloaded, resulting in much better performance
at high selection levels. Though the difference is more
dramatic in the 90th percentile, this effect can be seen in the
median as well.

Finally, Fig. 12 examines the mean transfer time
together with 95 percent confidence intervals at various
selection levels; this corresponds to the user experience for
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Fig. 10. Cumulative distribution of transfer times for a 1 MB file for vanilla
Tor and several selection levels. For Tunable Tor, note that Selection
Level 0 corresponds to maximum anonymity, while Selection Level 15
corresponds to maximum performance.

Fig. 11. The 90th percentile and median of transfer times by selection
level for known routers and all routers. Lines for vanilla Tor are included
for comparison.



downloading a single, relatively large file. As before,
vanilla Tor is included for comparison.15 Again we see the
deleterious effect of Tor’s long tail: even though, as Fig. 10
shows, the median time is only 35 seconds, the mean time
is more than twice of that, at 84 seconds. For Tunable Tor,
the mean time decreases with increasing selection level, as
expected.

One important conclusion that can be drawn from our
results is that the Tor load-balancing algorithm does not
effectively distribute load among the high- and low-
bandwidth nodes: our trials that preferentially choose
high-bandwidth nodes see much higher performance and
a reduced long tail, showing that these nodes have more
spare capacity than the low-bandwidth ones. This, of
course, raises a question of how Tor would work if all
users were to use our proposed path selection algorithms;
we address this question next.

4.1.2 Performance in a Simulated Tor Network

To study the effect of the proposed changes in a network
where all clients are choosing paths using the Tunable Tor
algorithm and evaluating routers using the EigenSpeed
algorithm, we used the flow-level simulator described in
Section 3.1.3. The mix of selection levels is based on the
assumption that most users will prefer maximum perfor-
mance, with a smaller fraction preferring maximum
anonymity and a much smaller fraction tuning their
performance to each of the intermediate selection levels;
under this assumption, the results are relatively insensitive
to the exact mix of selection levels used.

Fig. 13 shows the cumulative distribution of transfer
times for representative selection levels. Though the
absolute times differ (due to differences in the offered
load), the trend is the same as that seen in Fig. 10. Selection
level 0 (i.e., maximum anonymity) performs noticeably
worse than the other selection levels; this may indicate that
even a slight bias towards higher performance routers can
make a difference in performance out of proportion to its
effect on anonymity. Fig. 14 supports this: selection level 0
has a 90th percentile transfer time, nearly four times that of

selection level 1. The median transfer time statistic shows a

similar though smaller difference between selection level 0

and selection level 1. Section 4.2 shows that the decrease in

anonymity between these two levels is relatively small;

therefore, it may be the case that selection level 1 is a better

default for “high anonymity” than is selection level 0. These

experiments also confirm that selection levels higher than

10 are a good value for the “high performance” selection

level; when a similar mix of selection levels was tested with

15 as the highest selection level, some higher selection levels

actually performed more poorly than some intermediate

levels due to congestion at the highest-bandwidth routers.
Looking at the mean transfer times in Fig. 15, we see a

similar pattern: selection level 0 takes, on average, more

than twice as long as selection level 1. Increasing selection

levels provide diminishing returns, supporting our earlier

suggestion that selection level 10 is impractical. (Note that,

due to the high number of trials performed, the confidence

intervals for these sample means are quite small.)
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Fig. 12. Mean transfer times with 95 percent confidence intervals for
known routers by selection level; the mean time for vanilla Tor is
included for comparison.

Fig. 13. The cumulative distribution of transfer times for a 1 MB file by
selection level as determined using a flow-level simulator. Twenty four
percent of the clients are using selection level 0, 49 percent are using
selection level 10, and three percent are using each of the remaining
levels.

Fig. 14. The 90th percentile and median transfer times for a 1 MB file by
selection level as determined using a flow-level simulator. The 90th
percentile time for Selection Level 0 is 1,243 seconds; the data point is
omitted for reasons of scale. The selection mix is that of Fig. 13.

15. Due to the larger data set, the confidence interval is sufficiently small
(�2 seconds) as to be omitted.



We also tested the flow-level simulator where all flows
used the Tor selection algorithm. As seen in Fig. 13, the
long-tail behavior that we observed in the real Tor
network has disappeared. This highlights the difference
between our simulator and the Tor network: the simulator
assumes that all clients send constant-rate flows and that
bandwidth is perfectly balanced between them. In the real
Tor network, flows are bursty and congestion causes
significant performance degradation [16]. This motivates
future research on higher-fidelity modeling, perhaps using
packet-level simulator that can fully capture the complex
behavior of the Tor routers.

That aside, the other points of comparison remain similar
between simulation and real-world measurements. Lower
selection levels underperform the default Tor algorithm in
terms of mean and 90th percentile transfer times; interest-
ingly, the median transfer time is better than Tor even at the
most anonymous level 0. Users who choose selection level 3
and above will notice performance better than Tor on all of
the metrics, and users at selection level 10 get a drastic
performance improvement. We also compared the overall
utilization levels of the network between the tunable
selection levels and vanilla Tor; at 96.3 percent and
95.8 percent, respectively, they were similar.

4.2 Anonymity

We next analyze the effects of tunable path selection on
anonymity. One measure of anonymity is how many routers
an intelligent attacker must subvert in order to have a high
probability of compromising a tunnel. Throughout this
section, our threat model is an attacker who can compromise
some fraction of the routers in the Tor network, or
alternately, eavesdrop on all of their traffic. While these
two threats are, for the most part equivalent, compromising
of the routers allows for the “false advertising” attack
described below, while eavesdropping does not.16

Intuitively, it is clear that if routers are chosen uniformly
at random, more routers must be compromised in order to
achieve a high probability of tunnel compromise, while
skewing the selection towards certain routers requires
fewer to be compromised (because the attacker can choose
to compromise the more popular routers). To quantify this
intuitive notion, we choose the Gini coefficient. The Gini
coefficient is a measure of equality [25] (equality of selection
probability, in this case), used frequently in economics. A
Gini coefficient of 0 represents perfect selection equality
(i.e., all routers are chosen with equal frequency), while a
coefficient of 1 represents perfect inequality (i.e., the same
router is always chosen). We have also considered using the
entropy as a metric, due to its popularity in the study of
anonymous systems, but rejected it because entropy
measures uncertainty, rather than equality or uniformity.17

Fig. 16 shows the observed Gini coefficient for various
selection levels as well as the Gini coefficient of vanilla Tor
over a similar sample size. There are several points worth
noting: first, the equality is the highest at selection level 0
and lowest at selection level 15, as expected. The reason that
selecting uniformly from all routers present at any given
time (as selection level 0 does) still gives a coefficient
significantly different from 0 is that the router population
over time is itself nonuniform; since some routers are
present more often than others, they are proportionally
more likely to be chosen. Second, using this metric, the bias
in Tor’s current router selection metric is apparent: all the
selection levels below 13 have a more balanced selection
than does vanilla Tor. Finally, it is informative to compare
Fig. 16 with Fig. 12; the inherent trade-off between
performance and anonymity becomes quite apparent and
the need to allow the user to chose the appropriate point
along this continuum for their needs is clear.

To further examine the effects of selection inequality, we
consider the success of an attacker who controls a certain
fraction of the top performing routers. This can be acquired
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Fig. 16. Gini coefficient of router selection equality by selection level.
The Gini coefficient for the router selection equality for vanilla Tor is
included for comparison.

Fig. 15. The mean transfer times for a 1 MB file with 99 percent
confidence intervals, by selection level as determined using a flow-level
simulator. The selection level mix is described in Fig. 13.

16. Another possible threat model is that of an attacker introducing
additional routers to the network. For small number of added routers, this
is equivalent to the threat model given; however, the threat presented by
botnets is different: if an attacker can inject sufficient routers to control the
majority of the network, these schemes fail to protect the user. This
vulnerability to botnets is shared by all networks of this type, and is beyond
the scope of this paper.

17. Because the threats to anonymity arise when attackers control some
fraction of the routers in the network, maximum anonymity is achieved
when the attacker derives no benefit from compromising one router over
another; for this reason, equality metrics, such as the Gini coefficient, are a
better metric than those based on self-information.



through either compromising the best routers, or by
inserting routers that have high bandwidth (or in the case
of vanilla Tor, pretend to). We plot the results in Fig. 17. At
high selection levels, an attacker who controls a relatively
small fraction of the most highly ranked routers can
compromise a significant fraction of tunnels.18 However,
at low selection levels, an attacker must control a much
higher fraction of Tor routers to compromise even a small
fraction of tunnels. At level 0, even when an attacker
controls the top 10 percent of routers, the chance of a
compromised tunnel is only four percent.19 It is interesting
to note that, even though vanilla Tor does relatively well for
a low fraction of compromised nodes, by the time 10
percent of routers are compromised, it performs compar-
ably to Tunable Tor at its least anonymous setting. Also,
note that an attacker does not need to compromise the
existing best nodes for vanilla Tor, but can compromise
arbitrary nodes and have them falsely advertise high
bandwidth; this is reflected in the second and third curves
for vanilla Tor, labeled “false advertising,” which reflects an
attacker changing the advertised bandwidth for each
compromised router to the previous and current maximum
believable bandwidth (1.5 MB/s and 10 MB/s, respectively)
after it is compromised. The analogous situation for
Tunable Tor, where collaborating nodes report each other
as having high bandwidth, is much less effective, since
EigenSpeed has mechanisms to detect colluding groups of
malicious nodes reporting false bandwidths and prevent
them from impacting the global consensus vector. Our
findings are similar to those by Bauer et al. [8].

5 RELATED WORK

Whereas our work optimizes tunnel bandwidth, for reasons
discussed in Section 3, considerable work has been done
studying the use of Tor paths optimized for latency as
opposed to bandwidth. Sherr et al. propose the use of

geographic coordinates to create paths that fall within
selected bounds [26] and use the family of functions fs
described in this paper for a link-based router selection
algorithm more suited to optimizing latency [23]. Renner
developed a controller for Tor to select paths according to
criteria such as avoiding ocean crossings and otherwise
minimizing latencies [27]. Reardon and Goldberg show that
modifying Tor to run DTLS over each router link and use a
single end-to-end TCP session can significantly reduce end-
to-end latency and queue lengths [16] and can improve
throughput as well. In general, the problem of measuring
and optimizing for latency, and the security implications of
doing so, is a complex one and beyond the scope of this work.

Our results regarding the variability of Tor performance
match a comparative study of Tor and AN.ON performance
[28], which also showed large standard deviations for
bandwidth values provided by Tor. Bauer et al. [8] consider
distributed probing, perhaps in the style of anonymous
auditing [29], as a means of defending from low-resource
attacks. They reject it due to the extra load imposed on the
system and the ability of malicious nodes to falsely respond
to probes. In our case, the distributed measurements are
performed opportunistically and thus impose no extra load
on the network, and they correspond to real traffic. There-
fore, a node seeking to appear as high-bandwidth has to
actually provide good performance to real users.

Extensions such as Torbutton [30], which selectively
enables or disables Tor depending on task, and FoxTor [31],
which tracks whether Tor is currently enabled, provide
users with (among other things) a cruder way to trade off
performance and anonymity. The fact that users are
toggling the use of Tor, often enough to require a
convenient way to do so and to monitor the current state,
indicates that the performance-security trade-off is a real
one, which needs to be better addressed. Other work aims
to improve Tor performance by speeding up cryptographic
operations [32], [33].

One approach to improve overall Tor performance is to
use a peer-to-peer design where all users contribute
forwarding capacity [34], [35], [36]. Tor designers avoided
peer-to-peer approaches due to Sybil attacks [37]; unfortu-
nately, existing peer-to-peer anonymous designs are either
insecure [38], [39] or not scalable [35]. New approaches such
as ShadowWalker [40], using redundant-structured peer-to-
peer topologies, show promise but remain untested.

Murdoch and Watson [41] analyzed a version of the
router selection algorithm, we proposed in Section 3.2, from
a queuing theory perspective; however, since the queuing
theory approach fails to account for the congestion control
mechanisms of TCP and the Tor network itself, the results
obtained were not a useful measure of the performance of
Tunable Tor. Furthermore, they analyzed only two scenar-
ios: one where all users were using selection level 1 and
second where all users were using selection level 15. As
previously mentioned, selection level 15 is likely too biased
towards high-bandwidth routers to be practical and is
included in our analysis mainly for completeness; selection
level 10 provides a more reasonable upper bound for users
who want high performance. They also point out that, in the
case of botnets, better anonymity might be achieved by
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Fig. 17. The fraction of tunnels compromised if an attacker compro-
mises the top given fraction of Tor routers, for vanilla Tor and for various
selection levels.

18. We consider a tunnel compromised here if the attacker controls both
endpoints.

19. As the compromised nodes are both fast and likely to be stable, we
assume that they are all eligible to be guards; thus they comprise 40 percent
of all guard nodes.



actually choosing routers with higher bandwidth. Using
tunable Tor, users can adjust their selection strategy based
on whether they believe a botnet attack or a compromise of
high-bandwidth nodes is a more likely attack.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have proposed improvements to the
existing Tor router bandwidth evaluation and router
selection algorithms. We examined these changes indivi-
dually and in combination, showing that they result in a Tor
protocol that is both more secure (since it does not use self-
reported bandwidth to choose routers for tunnel creation)
and performs better, both in terms of observed performance
and in terms of achievable anonymity. Additionally, by
allowing the user to select their preferred balance of
performance and anonymity, these improvements increase
the usability, and therefore the potential user base and
security of the Tor network.

Evaluations of these changes show that they can result in
increasing average throughput by a factor of almost three in
exchange for a modest decrease in anonymity, or they can
result in drastically improved anonymity while maintaining
similar average throughput. We also show that the improve-
ments we propose can reduce or even eliminate the long tail
of the transfer time distribution, greatly improving perfor-
mance as perceived by the users of the network.

We plan to expand on this work in the future in several
ways: first, we are currently implementing a more detailed,
packet-level simulator of the Tor network; this will increase
the fidelity of the simulation by including such effects as
variable file sizes, variable intervals between requests, and
TCP slow-start behavior. We would also like to examine the
other aspects (such as latency) of the trade-off between
performance and anonymity in anonymous networks of
varying types. Additionally, we observed a number of
interesting characteristics of the Tor network over the
course of this study which could provide insight into the
observed behavior of the Tor network, and which we would
like to study further.
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