
I. =ý. 1. ! •

|~ilH

Terms Meaning Section

Sets, Proof Templates, and Induction

x e A x is an element ofA 1.1
x f A x is not an element ofA 1.1
Ix x E A and P(x)} Set notation 1.1
N Natural numbers 1.1.1l

2 Integers 1.1.1
Q Rationals 1.1.1

R Real numbers I.1.1
A = B Sets A and B are equal 1.1.3
A C B A is a subset of B 1.1.5
A g B A is nota subset of B 1.1.5
A C B A is a proper subset of B 1.1.5
A 5 B A is nota proper subset of B 1.1.5
b=•a bimplies a i.1.5
a b a if and only if b 1.1.5
AUB A union B 1.3.1
AFnB A intersect B 1.3.1
UX Generalized union of family of sets X 1.3.1
nX Generalized intersection of family of sets X 1.3.1
Um Xi Xm U ... UXn 1.3.1
nt=Mxi Xm n ... n Xn 1.3.1

A - B Elements of A not in B 1.3.2
A Elements not in A 1.3.2
A D B (A U B) - (A n B) 1.3.2
P(X) Power set of X 1.3.4
X x Y Product of X and Y 1.3.4
x A y Meet ofx and y 1.3.5
x v y Join ofx and y 1.3.5
-x Complement of x 1.3.5
T Top 1.15
I Bottom 1.3.5
JAI Cardinality of A 1.5.1

Si a,, + " -". + a,, 1.7.1

Terms Meaning Section
Formal Logic

"--p Not p 2.1
pAq p and q 2.1

pvq p or q 2.1
p q p implies q 2.1
p q p is equivalent to q 2.1
S X S logically implies X 2.3.3
P 3 AKP Conjecture about complexity 2.5.6
(Vx)P(x) For all x, P(x) 2.7.2
(3x)P(x) There exists an x such that P(x) 2.7.2
(VxE V)P(x) For all X EV, P(x) 2.7.3
(3x E V)P(x) There exists an x E V such that P(x) 2.7.3
A[i . .j] Array with elements Ail, ... , A[j] 2.7.3
1 Sheffer stroke 2.4
V Exclusive or 2.4
4, Pierce arrow 2.9
(x, y) E R or xRy x is R-related to y 3.1
R-1 The inverse of the relation R 3.2.1
RoS Composition of relations R and S 3.2.2
R+ U°° Ri 3.4.4
R* URO R' 3.4.4
n =- m(modp) n - m = kp for some k E N 3.6
Idx Identity relation 3.1
Lex Less than or equal relation 3.1
Gtx Greater than relation 3.1
Gex Greater than or equal relation 3.1
[x] Equivalence class of x 3.6
min m divides n 3.8.1
R D. S Equijoin of relations R and S 3.10.2

www.brookscole.com

www.brookscole.com is the World Wide Web site for
Brooks/Cole and is your direct source to dozens of
online resources.

At www.brookscole.com you can find out about
supplements, demonstration software, and student
resources. You can also send email to many of our
authors and preview new publications
and exciting new technologies.

www.brookscole.com
Changing the way the world learns

Discrete Mathematics
for Computer Science

fo Copue Science

Gary Haggard
Bucknell University

John Schlipf
University of Cincinnati

Sue Whitesides
McGill University

THOrVIMSO3N

BROOGKS/COLE Australia Canada Mexico • Singapore • Spain
United Kingdom • United States

THOIMSO>N

BROOKS/COLE

Publisher: Bob Pirtle Production Service: Hearthside Publishing Service;

Assistant Editor: Stacy Green Anne Seitz

Editorial Assistant: Katherine Cook Text Designer: Roy Neuhaus

Technology Project Manager: Earl Perry Copy Editor: Hearthside Publishing Service;

Marketing Manager: Tom Ziolkowski Wesley Morrison

Marketing Assistant: Erin Mitchell Illustrator: Hearthside Publishing Service;

Advertising Project Manager: Bryan Vann Jade Myers

Signing Representative: Stephanie Shedlock Cover Designer: Roy R. Neuhaus

Project Manager, Editorial Production: Cover Image: DigitalVision

Cheryll Linthicum Cover Printer: Phoenix Color Corp

Art Director: Vernon Boes Compositor: ATLIS

Print/Media Buyer: Doreen Suruki Printer: Phoenix Color Corp

Permissions Editor: Chelsea Junget

COPYRIGHT ® 2006 Thomson Brooks/Cole, a part of Thomson Higher Education
The Thomson Corporation. Thomson, the Star logo, and 10 Davis Drive
Brooks/Cole are trademarks used herein under license. Belmont, CA 94002-3098

ALL RIGHTS RESERVED. No part of this work covered USA

by the copyright hereon may be reproduced or used in any Asia
form or by any means-graphic, electronic, or mechanical, Thomson Learning
including photocopying, recording, taping, Web distribution, 5 Shenton Way #01-01
information storage and retrieval systems, or in any other UIC Building
manner-without the written permission of the publisher. Singapore 068808

Australia/New Zealand
Printed in the United States of America Thomson Learning

1 2 3 4 5 6 7 09 08 07 06 05 102 Dodds Street

Southbank, Victoria 3006
Australia

For more information about our products, Canada
contact us at: Nelson

Thomson Learning Academic Resource Center 1120 Birchmount Road
1-800-423-0563 Toronto, Ontario MIK 5G4

Canada
For permission to use material from this text or

product, submit a request online at Europe/Middle East/Africa

http://www.thomsonrights.com. Thomson Learning

Any additional questions about permissions can be High Holbom House

submitted by email to thomsonrights@thomson.com. 50/51 Bedford Row
London, WC1R 4LR
United Kingdom

Library of Congress Control Number: 2004113828 Latin America
Thomson Learning

ISBN 0-534-49501-X Seneca, 53
Colonia Polanco°°• •.•%11560 Mexico D.F.

• ! Mexico

Spain/Portugal
4 EcyO'- Paraninfo

Calle Magallanes, 25
28015 Madrid
Spain

Contents

CHAPTER 1

Sets, Proof Templates, and Induction

1.1 Basic Definitions 1
1.1.1 Describing Sets Mathematically 2

1.1.2 Set Membership 4

1.1.3 Equality of Sets 4

1.1.4 Finite and Infinite Sets 5

1.1.5 Relations Between Sets 5

1.1.6 Venn Diagrams 7

1.1.7 Templates 8

1.2 Exercises 13

1.3 Operations on Sets 15
1.3.1 Union and Intersection 15

1.3.2 Set Difference, Complements, and DeMorgan's Laws 20

1.3.3 New Proof Templates 26

1.3.4 Power Sets and Products 28

1.3.5 Lattices and Boolean Algebras 28

1.4 Exercises 31

1.5 The Principle of Inclusion-Exclusion 34
1.5.1 Finite Cardinality 34

1.5.2 Principle of Inclusion-Exclusion for Two Sets 36

1.5.3 Principle of Inclusion-Exclusion for Three Sets 37

1.5.4 Principle of Inclusion-Exclusion for Finitely Many Sets 41

1.6 Exercises 42

vii

viii Contents

1.7 Mathematical Induction 45
1.71 A First Form of Induction 45
1.72 A Template for Constructing Proofs by Induction 49
1.73 Application: Fibonacci Numbers 51
1.74 Application: Size of a Power Set 53
1.75 Application: Geometric Series 54

1.8 Program Correctness 56
1.8.1 Pseudocode Conventions 56

1.8.2 An Algorithm to Generate Perfect Squares 58
1.8.3 Two Algorithms for Computing Square Roots 58

1.9 Exercises 62

1.10 Strong Form of Mathematical Induction 66
1.10.1 Using the Strong Form of Mathematical Induction 69
1.10.2 Application: Algorithm to Compute Powers 72
1.10.3 Application: Finding Factorizations 75
1.10.4 Application: Binary Search 77

1.11 Exercises 79

1.12 Chapter Review 81
1.12.1 Summary 82

1.12.2 Starting to Review 84
1.12.3 Review Questions 85
1.12.4 Using Discrete Mathematics in Computer Science 87

CHAPTER 2
Formal Logic 89

2.1 Introduction to Propositional Logic 89
2.1.1 Formulas 92
2.1.2 Expression Trees for Formulas 94
2.1.3 Abbreviated Notation for Formulas 97
2.1.4 Using Gates to Represent Formulas 98

2.2 Exercises 99

2.3 Truth and Logical Truth 102
2.3.1 Tautologies 106

Contents ix

2.3.2 Substitutions into Tautologies 109
2.3.3 Logically Valid Inferences 109

2.3.4 Combinatorial Networks 112
2.3.5 Substituting Equivalent Subformulas 114
2.3.6 Simplifying Negations 115

2.4 Exercises 116

2.5 Normal Forms 121
2.5.1 Disjunctive Normal Form 122

2.5.2 Application: DNF and Combinatorial Networks 124
2.5.3 Conjunctive Normal Form 125
2.5.4 Application: CNF and Combinatorial Networks 127

2.5.5 Testing Satisfiability and Validity 127
2.5.6 The Famous 'P Af r Conjecture 129

2.5.7 Resolution Proofs: Automating Logic 129

2.6 Exercises 131

2.7 Predicates and Quantification 134
2.71 Predicates 135

2.72 Quantification 135
2.73 Restricted Quantification 136

2.74 Nested Quantifiers 137
2.75 Negation and Quantification 138

2.76 Quantification with Conjunction and Disjunction 139
2.77 Application: Loop Invariant Assertions 141

2.8 Exercises 143

2.9 Chapter Review 147
2.9.1 Summary 148
2.9.2 Starting to Review 149

2.9.3 Review Questions 150
2.9.4 Using Discrete Mathematics in Computer Science 151

CHAPTER 3

Relations 157

3.1 Binary Relations 157
3.1.1 n-ary Relations 162

x Contents

3.2 Operations on Binary Relations 163
3.2.1 Inverses 163

3.2.2 Composition 165

3.3 Exercises 166

3.4 Special Types of Relations 167
3.4.1 Reflexive and Irreflexive Relations 168
3.4.2 Symmetric and Antisymmetric Relations 169

3.4.3 Transitive Relations 172

3.4.4 Reflexive, Symmetric, and Transitive Closures 173

3.4.5 Application: Transitive Closures in Medicine and Engineering 176

3.5 Exercises 178

3.6 Equivalence Relations 181
3.6.1 Partitions 183

3.6.2 Comparing Equivalence Relations 186

3.7 Exercises 188

3.8 Ordering Relations 191
3.8.1 Partial Orderings 191

3.8.2 Linear Orderings 194

3.8.3 Comparable Elements 196

3.8.4 Optimal Elements in Orderings 196

3.8.5 Application: Finding a Minimal Element 198
3.8.6 Application: Embedding a Partial Order 200

3.9 Exercises 201

3.10 Relational Databases: An Introduction 202
3.10.1 Storing Information in Relations 203

3.10.2 Relational Algebra 204

3.11 Exercises 211

3.12 Chapter Review 212
3.12.1 Summary 213
3.12.2 Starting to Review 215

3.12.3 Review Questions 216

3.12.4 Using Discrete Mathematics in Computer Science 217

Contents xi

CHAPTER 4

Functions 219

4.1 Basic Definitions 219
4.1.1 Functions as Rules 221

4.1.2 Functions as Sets 222

4.1.3 Recursively Defined Functions 224
4.1.4 Graphs of Functions 225

4.1.5 Equality of Functions 226
4.1.6 Restrictions of Functions 228
4.1.7 Partial Functions 229
4.1.8 1-1 and Onto Functions 231

4.1.9 Increasing and Decreasing Functions 237

4.2 Exercises 239

4.3 Operations on Functions 243
4.3.1 Composition of Functions 243

4.3.2 Inverses of Functions 245

4.3.3 Other Operations on Functions 248

4.4 Sequences and Subsequences 248

4.5 Exercises 251

4.6 The Pigeon-Hole Principle 253
4.6.1 k to 1 Functions 254
4.6.2 Proofs of the Pigeon-Hole Principle 255
4.6.3 Application: Decimal Expansion of Rational Numbers 257

4.6.4 Application: Problems with Divisors and Schedules 259
4.6.5 Application: Two Combinatorial Results 260

4.7 Exercises 262

4.8 Countable and Uncountable Sets 264
4.8.1 Countably Infinite Sets 266

4.8.2 Cantor's First Diagonal Argument 268

4.8.3 Uncountable Sets and Cantor's Second Diagonal Argument 270
4.8.4 Cardinalities of Power Sets 273

4.9 Exercises 273

xii Contents

4.10 Chapter Review 275
4.10.1 Summary 275

4.10.2 Starting to Review 277

4.10.3 Review Questions 279

4.10.4 Using Discrete Mathematics in Computer Science 280

CHAPTER 5

Analysis of Algorithms 283

5.1 Comparing Growth Rates of Functions 284
5.1.1 A Measure for Comparing Growth Rates 284

5.1.2 Properties of Asymptotic Domination 289

5.1.3 Polynomial Functions 291

5.1.4 Exponential and Logarithmic Functions 293

5.2 Exercises 296

5.3 Complexity of Programs 298
5.3.1 Counting Statements 300
5.3.2 Two Algorithms Illustrating Selection 302

5.3.3 An Algorithm Illustrating Repetition 304

5.3.4 An Algorithm Illustrating Nested Repetition 307

5.3.5 Time Complexity of an Algorithm 308

5.3.6 Variants on the Definition of Complexity 311

5.4 Exercises 313

5.5 Uncomputability 316
5.5.1 The Halting Problem 318

5.6 Chapter Review 321
5.6.1 Summary 321

5.6.2 Starting to Review 322

5.6.3 Review Questions 322

5.6.4 Using Discrete Mathematics in Computer Science 323

Contents xiii

CHAPTER 6

Graph Theory 331

6.1 Introduction to Graph Theory 331
6.1.1 Definitions 334

6.1.2 Subgraphs 336

6.2 The Handshaking Problem 338

6.3 Paths and Cycles 340
6.3.1 Hamiltonian Cycles 341

6.4 Graph Isomorphism 345

6.5 Representation of Graphs 346
6.5.1 Adjacency Matrix 346

6.5.2 Adjacency Lists 347

6.6 Exercises 348

6.7 Connected Graphs 352
6.71 The Relation CONN 352

6.7.2 Depth First Search 354

6.7.3 Complexity of Dfs 357

6.74 Breadth First Search 357

6.7.5 Finding Connected Components 359

6.8 The K6nigsberg Bridge Problem 361
6.8.1 Graph Tracing 365

6.9 Exercises 367

6.10 Trees 370
6.10.1 Definition of Trees 371
6.10.2 Characterization of Trees 372

6.11 Spanning Trees 374
6.11.1 Kruskal's Algorithm 374
6.11.2 Correctness of Kruskal's Algorithm 375

6.11.3 Kruskal's Algorithm for Weighted Graphs 376

6.11.4 Correctness of Kruskal's Weighted Graph Algorithm 378

xiv Contents

6.12 Rooted Trees 378
6.12.1 Binary Trees 380
6.12.2 Binary Search Trees 382

6.12.3 Tree Traversals 385
6.12.4 Application: Decision Trees 387

6.13 Exercises 389

6.14 Directed Graphs 392
6.14.1 Basic Definitions 393
6.14.2 Directed Trails, Paths, Circuits, and Cycles 394
6.14.3 Directed Graph Isomorphism 394

6.15 Application: Scheduling a Meeting Facility 394
6.15.1 WAITFOR Graphs 396

6.16 Finding a Cycle in a Directed Graph 397
6.16.1 Directed Cycle Detection Algorithm 397
6.16.2 Correctness of Directed Cycle Detection 398

6.17 Priority in Scheduling 399
6.171 Algorithm for Topological Sort 400
6.172 Correctness of Topological Sort Algorithm 401

6.18 Connectivity in Directed Graphs 402
6.18.1 Strongly Connected Directed Graphs 402
6.18.2 Application: Designing One-Way Street Grids 404

6.19 Eulerian Circuits in Directed Graphs 405

6.20 Exercises 406

6.21 Chapter Review 409
6.21.1 Summary 409
6.21.2 Starting to Review 411
6.21.3 Review Questions 413
6.21.4 Using Discrete Mathematics in Computer Science 416

CHAPTER 7
Counting and Combinatorics 421

7.1 Traveling Salesperson's Problem 421

Contents xv

7.2 Counting Principles 423
7.2.1 The Multiplication Principle 424

72.2 Addition Principle 426

7.3 Set Decomposition Principle 428
7.3.1 Counting the Complement 429

73.2 Using the Pigeon-Hole Principle 430

7.3.3 Application: UNIX Logon Passwords 432

7.4 Exercises 433

7.5 Permutations and Combinations 436
7.5.1 Permutations 436

7.5.2 Linear Arrangements 437

75.3 Circular Permutations 439

7.5.4 Combinations 440

7.5.5 Poker Hands 441

75.6 Counting the Complement 443

7.5.7 Decomposition into Subproblems 444

7.6 Constructing the kth Permutation 446

7.7 Exercises 448

7.8 Counting with Repeated Objects 451
7.8.1 Permutations with Repetitions 452

78.2 Combinations with Repetitions 455

7.9 Combinatorial Identities 457
79.1 Binomial Coefficients 459

79.2 Multinomials 462

7.10 Pascal's Triangle 463

7.11 Exercises 465

7.12 Chapter Review 469
712.1 Summary 470

7.12.2 Starting to Review 471

712.3 Review Questions 471

7.12.4 Using Discrete Mathematics in Computer Science 472

xvi Contents

CHAPTER 8

Discrete Probability 475

8.1 Ideas of Chance in Computer Science 475
8.11 Introductory Examples 476

8.1.2 Basic Definitions 478

8.1.3 Frequency Interpretation of Probability 480
8.1.4 Introductory Example Reconsidered 480

8.1.5 The Combinatorics of Uniform Probability Density 482

8.1.6 Set Theory and the Probability of Events 484

8.2 Exercises 488

8.3 Cross Product Sample Spaces 491
8.3.1 A Multiplication Principle 492

8.3.2 The Cross Product of Sample Spaces 495

8.3.3 Bernoulli Trial Processes 498

8.3.4 Events of Cross Product Form 500

8.3.5 Two Ways of Viewing Events 502

8.4 Exercises 505

8.5 Independent Events and Conditional Probability 507
8.5.1 Independent Events 507

8.5.2 Introduction to Conditional Probability 509

8.5.3 Exploring Conditional Probability 512

8.5.4 Using Bayes' Rule with the Theorem of Total Probability 514

8.6 Exercises 517

8.7 Discrete Random Variables 520
8.7.1 Distributions of a Random Variable 520

8.72 The Binomial Distribution 522

8.73 The Hypergeometric Distribution 522

8.74 Expectation of a Random Variable 524

8.75 The Sum of Random Variables 526

8.8 Exercises 529

8.9 Variance, Standard Deviation, and the Law of Averages 530
8.9.1 Variance and Standard Deviation 531

8.9.2 Independent Random Variables 533

Contents xvii

8.10 Exercises 539

8.11 Chapter Review 540
8.11.1 Summary 541

8.11.2 Starting to Review 542
8.11.3 Review Questions 543

8.11.4 Using Discrete Mathematics in Computer Science 545

CHAPTER 9

Recurrence Relations 549

9.1 The Tower of Hanoi Problem 549
9.1.1 Recurrence Relation for the Tower of Hanoi Problem 552
9.1.2 Solving the Tower of Hanoi Recurrence 552

9.2 Solving First-Order Recurrence Relations 554
9.2.1 Solving First-Order Recurrences Using Back Substitution 555

9.3 Exercises 558

9.4 Fibonacci Recurrence Relation 561
9.4.1 Second Order-Recurrence Relations 562

9.4.2 Solving the Fibonacci Recurrence 564
9.4.3 Rules for Solving Second-Order Recurrence Relations 566

9.5 Exercises 567

9.6 Divide and Conquer Paradigm 568

9.7 Binary Search 568
9.71 Correctness 569
9.72 Complexity 570

9.8 Merge Sort 571
9.8.1 Correctness 571

9.8.2 Example 572
9.8.3 Complexity 572

9.9 Multiplication of n-Bit Numbers 573

9.10 Divide-and-Conquer Recurrence Relations 576
9.10.1 Complexity of Divide-and-Conquer Recurrence Relations 579

xviii Contents

9.11 Exercises 579

9.12 Chapter Review 580
9.12.1 Summary 581

9.12.2 Starting to Review 582

9.12.3 Review Questions 582

9.12.4 Using Discrete Mathematics in Computer Science 583

APPENDIX

Appendix A 587

Appendix B 591

Index 595

Preface

As the discipline of computer science has matured, it has become clear that a study of dis-
crete mathematical topics is an essential part of the computer science major. The course in
discrete structures has two primary aims. The first is to introduce students to the rich math-
ematical structures that naturally describe much of the content of the computer science
discipline, including many structures that are frequently used in modeling and implement-
ing solutions to problems. The second is to help students develop the skills of mathematical
reasoning to learn new concepts and material in computer science. This learning takes place
not only while they are students but also after graduation and throughout their professional
life.

During the past few years, researchers in areas of computer science as diverse as
the analysis of algorithms, database systems, and artificial intelligence have made ever-
increasing use of discrete mathematical structures to clarify and explain key concepts and
problems. As a reflection of this emphasis, careful discussions of applications such as a
relational database system, the complexity of a computation, and normal forms of propo-
sitions are included in this text. The discussions of these topics build on a strong, focused
development of fundamental ideas about sets, logic, relations, and functions as well as
graph theory and combinatorics.

The diagram that follows gives an indication of the order in which the material can
be covered. The six chapters referred to in the box contain the fundamental topics. These
chapters are used to guide students in learning how to express mathematically precise ideas
in the language of mathematics.

The two chapters dealing with graph theory and combinatorics are also core material
for a discrete structures course, but this material always seems more intuitive to students
than the formalism of the first four chapters. Topics from the first four chapters are freely
used in these later chapters. The chapter on discrete probability builds on the chapter on
combinatorics. The chapter on the analysis of algorithms uses notions from the core chap-
ters but can be presented at an informal level to motivate the topic without spending a lot of
time with the details of the chapter. Finally, the chapter on recurrence relations primarily
uses the early material on induction and an intuitive understanding of the chapter on the
analysis of algorithms.

xix

xx Preface

PREFACE

Chapter 1: Sets,
Proof Templates
and Induction

Chapter 2: Formal Logic
Chapter 3: Relations

Chapter 4: Functions

Chapter 6: Graph Theory Chapter 7: Counting and -
Chapter 5: Analysis of Combinatorics

Algorithms Chapter 8: Discrete

I Probability

Chapter 9: Recurrence
Relations

The material in Chapters 1 through 4 deals with sets, logic, relations, and functions.
This material should be mastered by all students. A course can cover this material at differ-
ent levels and paces depending on the program and the background of the students when
they take the course. Chapter 6 introduces graph theory, with an emphasis on examples
that are encountered in computer science. Undirected graphs, trees, and directed graphs
are studied. Chapter 7 deals with counting and combinatorics, with topics ranging from the
addition and multiplication principles to permutations and combinations of distinguishable
or indistinguishable sets of elements to combinatorial identities.

Enrichment topics such as relational databases, languages and regular sets, uncom-
putability, finite probability, and recurrence relations all provide insights regarding how
discrete structures describe the important notions studied and used in computer science.
Obviously, these additional topics cannot be dealt with along with the all the core material
in a one-semester course, but the topics provide attractive alternatives for a variety of pro-
grams. This text can also be used as a reference in courses. The many problems provide
ample opportunity for students to deal with the material presented.

To the Student

A major aim of this book is to help you develop mathematical maturity-elusive as this
objective may be. We interpret this as preparing you to understand how to do proofs of
results about discrete structures that represent concepts you deal with in computer science.
A correct proof can be viewed as a set of reasoned steps that persuade another student,
the course grader, or the instructor about the truth of the assertion. Writing proofs is hard
work even for the most experienced person, but it is a skill that needs to be developed
through practice. We can only encourage you to be patient with the process. Keep trying
out your proofs on other students, graders, and instructors to gain the confidence that will
help you in using proofs as a natural part of your ability to solve problems and understand
new material.

Solutions for the odd numbered Exercises are included on the CD that comes with the
text. These solutions provide models for solving problems.

Preface xxi

Outline for One-Semester Course
This text contains much more material than can be covered in a typical one-semester

course. This diversity of material, however, allows a much broader range of courses to
use the text. For a program that requires a one semester (13-14 weeks) study of discrete

topics, the following outline provides coverage of the fundamental material:

Chapter 1: Sets, Proof Templates, and Induction (8 lectures)
Basic Definitions
Operations on Sets
The Principle of Inclusion-Exclusion
Mathematical Induction

A Second Form of Induction

Chapter 2: Formal Logic (4 lectures)
Introduction to Propositional Logic

Truth and Logical Truth
Predicates and Quantification

Chapter 3: Relations (5 lectures)
Definitions and Operations
Special Types of Relations
Equivalence Relations
Ordering Relations

Chapter 4: Functions (4 lectures)

Basic Definitions
Operations on Functions

The Pigeon-Hole Principle

Chapter 5: Analysis of Algorithms (2 lectures)
Comparing Growth Rates of Functions
Complexity of Programs

Chapter 6: Graph Theory (4 lectures)

Definitions
Connected Graphs
The Kbnigsberg Bridge Problem
Trees
Spanning Trees
Directed Graphs (Optional)

Chapter 7: Counting and Combinatorics (4-5 lectures)

Counting Principles
Permutations and Combinations
Permutations and Combinations with Repetitions

Combinatorial Identities (Optional)
Pascal's Triangle (Optional)

With a semester comprising about 40 lectures, this schedule provides time for exams
and additional time to modify the course to respond to particular curricular and/or student
needs. The one chapter that is quite often left to other courses is Chapter 5. If time permits,

xxii Preface

however, this material gives a good overview of the relationship between programs and
their complexity.

Many variations can be made based on what other courses are included in the
program. In some programs, topics in Chapters 1 through 4, particularly basic properties
of sets and functions, will be covered in prerequisite courses and may be reviewed quickly
in a discrete mathematics course. The sections on Induction, the Principle of Inclusion-
Exclusion, and the Pigeon-Hole Principle, however, should normally be covered. In other
programs, if material on the analysis of algorithms has already been discussed in computer
science courses, then Chapter 4 might be a review, to a certain extent, and take less time.
Optionally, material on directed graphs might be eliminated. Depending on the needs of
the program, the lectures saved above may be spent on other material on the book.

Outline for a One-Quarter Course
With only 30 lectures in a one-quarter course, the syllabus presented earlier needs to be cut
to about 27 lectures.

Provided the material of Chapter 5 is covered in other computer science courses, this
chapter can be omitted without difficulty. If other mathematics courses explain the idea of
a function, the only necessary material in Chapter 4 is the Pigeon-Hole Principle, which
can save at least one lecture. Finally, eliminating the material on directed graphs should
allow the basic ideas of graph theory to be covered in four lectures. In addition, the nine
lectures scheduled for Chapters 1 and 2 may be shortened one or two lectures.

Incorporating these suggestions, the following is a possible syllabus for a one-quarter
course (10 weeks):

Chapter 1: Sets (7 lectures)
Basic Definitions
Operations on Sets
The Principle of Inclusion-Exclusion
Mathematical Induction
A Second Form of Induction

Chapter 2: Formal Logic (3 lectures)
Introduction to Propositional Logic
Truth and Logical Truth
Predicates and Quantification

Chapter 3: Relations (4 lectures)
Definitions and Operations
Special Types of Relations
Equivalence Relations
Ordering Relations

Chapter 4: Functions (3 lectures)
Basic Definitions

Operations on Functions
The Pigeon-Hole Principle

Chapter 6: Graph Theory (4 lectures)
Definitions

Preface xxiii

Connected Graphs
The Konigsberg Bridge Problem
Trees
Spanning Trees

Chapter 7: Counting and Combinatorics (4 lectures)
Counting Principles
Permutations and Combinations
Permutations and Combinations with Repetitions

In both sample syllabi the number of lectures committed to material should leave time
for two or three exams and for review days. In addition, instructors should find time to
spend a full day on problems of special interest without being forced to give up material
from the outline.

Help Requested

The authors have tried their best to make the text as error-free as possible. Needless to say,
we are not perfect and likely have missed some problems that really need to be corrected
to improve the text. We would appreciate it very much if any errors would be brought
to our attention. (We intend to provide a small reward for the first notice of any problem
brought to our attention.) Send comments to haggard@bucknell.edu along with your snail-
mail address. We will acknowledge any help we receive and let you know if anyone else
has already noticed the problem you uncovered. We will be very grateful for any help we
receive as we intend to make this text the best learning tool we can. A collection of the
changes we make will be posted at http://www.eg.bucknell.edu/-discrete/errorfile.pdf.

Gary Haggard
John Schlipf

Sue Whitesides

Sets, Proof Templates,
and Induction

The concept of a set underlies most of modem mathematics and much of computer sci-
ence. To use sets as a foundation for all the other structures in this text, we first need to
understand both the language used to describe sets and the operations normally associ-
ated with sets. The language of sets is very precise. When we use this language carefully,
we gain precision in expressing problems and describing solutions to problems. Under-
standing basic operations on sets and the properties of these operations is a model for the
approach that is used to introduce most other discrete structures in this text. In extending
our understanding of operations on sets, we will learn proof techniques to explore other
discrete mathematical topics, such as relations, functions, and graphs. We will use these
proof techniques, for example, to prove that algorithms are correct and to determine how
well we have chosen an algorithm for a given task.

This chapter has five main sections. The first introduces the notion of a set and the
language for describing collections of elements. In addition, this section introduces several
proof templates that are guides to both understanding and constructing proofs. The second
deals with the common operations on sets: unions, intersections, complements, products,
and the power set of a set. Some additional proof templates are introduced that are drawn
from proofs in this section. The third provides a way to count the number of elements in
a collection of sets in which some of the sets may contain some of the same elements that
the other sets contain. The fourth and fifth deal with important proof techniques called the
Principle of Mathematical Induction and the Strong Form of Mathematical Induction. We
use induction to find the set of elements for which a statement about the integers is true.

An important application of the Principle of Mathematical Induction, in both its forms,
is to show how algorithms can be proven to be correct without any execution by a computer.

Basic Definitions

The idea of a set is simple: A set is a collection of elements. The set {white, red,
green) contains the names of the colors white, red, and green and nothing else. The set
{0, 1, 2, 3, 4, 5, 1003456792311 contains seven integers. The set {red, yellow, blue) con-
tains the names of primary colors. A set of stamps stored in loose-leaf notebooks on a shelf

I

2 CHAPTER 1 Sets, Proof Templates, and Induction

is usually called a stamp collection. The set of past presidents of the United States consists
of

fGeorge Washington, John Adams, Thomas Jefferson, ...

The "..." is called an ellipsis and indicates that the list contains other elements.
What is the basic characteristic of a set? For any set A and any element b, either b is

in A or b is not in A. If you ask whether an element is in a set, the answer is either yes or
no.

Is 0 in {1, 21? No.
Is 0 in {0, 1, 2, 3, 4, 5, 1003456792311? Yes.
Is New York in {Liverpool, London, Los Angeles I? No.
Is green in {red, yellow, blue)? No.
Is New York in {England, France, United States)? No.

In mathematical terminology, 0 is an element of {0, 1, 2, 3, 4, 5, 1003456792311, and
green is not an element of {red, yellow, blue).

The expression "is an element of" is denoted by the symbol E, a form of the Greek
letter epsilon. For example, we write

0 E {0, 1,2,3,4,5, 1003456792311

and

green 0 {red, blue, yellow)

The slash through the E symbol means not, just as it does in A. Is a member of, is con-
tained in, or simply is in means the same as "is an element of." Mathematics, like ordinary
language, is full of synonyms.

Despite its frequent use, the term set is not defined in terms of other concepts. Like
the terms point and line in plane geometry, set is a primitive concept. Just assume there are
elements, there are sets, and that for a set A and an element b, the assertion b E A is either
true or false.

An important distinction needs to be made between I and I 1}. They are not the same.
By itself, I is a number but not a set, and { 11 is the set containing the element 1. Similarly,
{1} and {{1}} are not the same thing: 1 E {1}, but {1) 0 {1}. So, also, {1} E {{1)), but 1 V
I{l1}. Similarly, the set {1, 2) has two elements, 1 and 2, but {{1, 2)} has only one element,

{1, 2).
The number of times an element is listed and the order in which elements are listed

are both unimportant. For example, the elements of {2, 3} are 2 and 3. The elements of
{3, 2, 21 are also 2 and 3. Consequently, these two sets contain the same elements. That is,
these two sets are equal, as we shall see later.

1.1.1 Describing Sets Mathematically

We present three different methods to describe a set. The first is by a list of all the elements.
The second is by a description of some property the elements have. The third is by a
description based on some other sets. In all these methods, we use the symbols { and I
to indicate that a set is being defined. The "language" used to describe sets is called set-
theoretic notation.

Basic Definitions 3

Set-Theoretic Notation

Three methods to describe the set with elements 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 are:

1. List the elements in braces: {0, 1, 2, 3, 4, 5, 6, 7, 8, 91. We can also abbreviate this
list as 10, 1, 2,..., 9}.

2. Describe the elements in terms of some property they satisfy:

{x : x is an integer and x > -1/2 and x < 19/2)

This notation is read as "the set of (all) x such that x is an integer and x is greater
than minus one-half and x is less than nineteen halves." The colon is read as "such
that." The description following the colon tells what property these x's have.

3. Describe the elements as the set of all elements in some other set that satisfy some
property. Here, if Z denotes the set of integers, then the set can be defined as

{x E Z : x> -1/2 andx < 19/21

Methods 2 and 3 are almost the same. Method 3 is preferred, however, because in
some really peculiar circumstances, method 2 can cause trouble.1

There is a particular disadvantage to using ellipses with method 1. If someone writes

A = {0, 1,2,..., 71

it is assumed everyone will understand what is intended-that is, the set A contains the
elements 0, 1, 2, 3, 4, 5, 6, and 7. Frequently, however, the intended pattern is not as
obvious as the person using the ellipsis thinks. Suppose

A = {2, 4,..., 655361

What are the other elements? Guessing what was meant requires understanding the pattern
that gives rise to the elements listed. Since 65536 = 216, one conjecture might be

A = {2', 22, 2', 24, 25, 26, 2', 28, 2', 210, 211, 212, 213, 214, 215, 2161

It could just as well be conjectured that

A = {, 2 22 2222} = {2, 4, 16, 655361

There are endless other possibilities, with no real way to choose among them. (Nobody
said the pattern had to be simple.) This notation should only be used when it is obvious
from the context exactly what is meant.

1 After Cantor defined set theory, researchers found some paradoxes. The most famous is Russell's paradox,
which is similar to the so-called "liar's paradox": "This sentence is a lie." Work through it: If it is false, then it is
true, and if it is true, then it is false.

Russell's paradox is this. Let x be the set of all sets that are not elements of themselves. Now, is x an element
of itself?

Work through it: If it is, then it is not, and if it is not, then it is. What's wrong? Most modem set theorists assert
that using definition method 2 is at fault-note that Bertrand Russell (English mathematician and philosopher,
1872-1970) used that form in defining x. The set of all sets which are not elements of themselves is deemed "too
big" to be a set. By using definition method 3, we avoid constructing sets which are "too big."

Because we are not going into axiomatic set theory, however, we will be unable to avoid method 2 entirely in
this book.

4 CHAPTER 1 Sets, Proof Templates, and Induction

We often list the elements of a set in a way that shows an obvious association between
the natural numbers and the elements of the set. For example, 1, 2, 22, 2', 24 We call
such a set a sequence. We can refer to a sequence by ao, al, a2 In the above example,
we have ao = 1, al = 2, a2 = 22 ... , a, = 2n The notion of a sequence will be
examined more carefully in Section 4.4. At this time, we just need to have a way to refer
to sets of this form.

Special Sets
There are special names for certain common sets of numbers. Some of them are listed here.

Special Sets

N: the set of natural numbers, or the set of non-negative integers {0, 1, 2, 3, 4,
Z: the set of integers, or {. .. ,-3, -2, -1, 0, 1, 2, 3 ... }.
Q: the set of rational numbers, or the set of fractions of integers with nonzero de-

nominator, such as I or 9-7
R: the set of real numbers, or the set of numbers written with a decimal point, such

as 7r = 3.14159. .. , -2.715, or 2.35353535....
0: the empty set, or the set I } with no elements.

In some circumstances, it is convenient to write the set of squares of natural numbers
as {x2 : x e N} rather than as {x : x E N and for some k E N, x = k2}.

1.1.2 Set Membership

To prove an element is a member of a set, you must prove that the element shares the
property that defines membership. For example, we can define the notion of a number
being a prime without knowing that any particular number is a prime. We must then show
that any number we think is a prime has the defining property. First, we need to know what
a divisor is before we can define a prime. For integers m and n, we say m is a divisor of n,
denoted as mIn, if there is a natural number k such that n = m . k. A natural number p is
prime if p : 1 and its only divisors are 1 and p. Let P = {n : n E N and n is a prime). In
Example 1, we will show that P is nonempty.

Example 1. Prove that 3 is a prime-that is, that 3 E P.

Solution. We must show 3 has the property that its only divisors are 1 and 3. Since the
only other possibility is 2 and 2 does not divide 3, 3 is therefore a prime. U

A divisor of an integer is also called a factor.

1.1.3 Equality of Sets

In mathematics, precise language is important if we are all to understand the same meaning
for a statement. For example, what does it mean for two sets to be equal?

Basic Definitions 5

Definition 1. Let A and B be sets. Then, A = B or A is equal to B if both A and B have
the same elements.

The word if has a special meaning when used in definitions. Definition 1 states that
A = B if A and B have the same elements. Since the word if is inside a definition, it is
implied that A A B whenever the condition is not satisfied. Thus, "A = B" is just a short
way to say "A and B have the same elements."

Example 2.

(a) {nEZ:n 2 - n-2=01={nEZ:(n-2)(n+1)=0}={2,--1}.
(b) {n ENn: 2 n-2=0}={2}because-1 0lN.
(c) {x N: (x + 1)2 - (x - 1)2 -4x =0) =Nbecause

(x+1)2 -(x-1)2 -4x=x 2 +2x+l-x 2 +2x-l-4x
=0

is an algebraic identity (true for all x).

The empty set 0 can be described in several ways; for example,

{x E N : x <x).
The set of continents south of Antarctica.
The set of round squares.

Why is {x e N : x < xJ equal to the set of round squares? We know that if two sets
are equal, then they must have the same elements. So, if

{x E N : x < x} A the set of round squares

then there is an element in one of these sets that is not in the other set. This cannot be true,
however, since neither set has any elements at all.

1.1.4 Finite and Infinite Sets

Some sets, like {0, 1, 2, 3}, have the property that a person could list their elements
and finish listing them. We can describe this condition a little more formally: Ei-
ther the set has no elements, or its elements can be matched with the elements of
some subset {1, 2 n} of the natural numbers. Such sets are called a finite set. So,
{Liverpool, London, Los Angeles) is a finite set-that is, elements could be matched as

1 (Liverpool), 2 (London), and 3 (Los Angeles)

The empty set 0 has zero elements, so it is also finite.
Some sets are infinite sets, or not finite sets, like Z, R•, and N'. There is no way to

match all the elements of Z with a set {1, 2, n for any fixed n.

1.1.5 Relations Between Sets
Besides equality, another important relation between sets occurs when all the elements of
one set are also elements of a second set.

6 CHAPTER 1 Sets, Proof Templates, and Induction

Definition 2. Let A and B be sets. A is a subset of B, written as A C B, if every element
of A is also an element of B. A is a proper subset of B, written A C B, if A c B but
A#B.

"Is not a subset" is denoted with 9, whereas "is not a proper subset" is denoted
with ýt. For example, {1, 2, 3} 7 {1, 3, 4}, since 2 E {1, 2, 31 and 2 0 {1, 3, 4}. Similarly,
11, 4} 5 11,2, 3}, since 4 e (1, 4} and 4 0 11,2, 3). Also, (1,2,3,2, 1} C {1, 2, 3}, but
{1, 2, 3, 2,41} ý1 [1, 2, 3}1.

We now state formally two facts that follow immediately from the definitions.

Theorem 1. Let A be a set.

(a) A C A.
(b) 0 c A.

Proof.

(a) To say that A C A, according to Definition 2, means that each element of A is an
element of A, which is clearly true.
(b) Since 0 has no elements, the statement "for every element x, if x E 0, then x e A"
cannot be false, because 0 has no elements. In this case we say the statement is vacuously
true. U

We use the filled box that appears at the end of a Proof for a theorem or the end of
Solution for an example as a separator. In some instances, when an example includes a
discussion, we also use this to separate the example from the following text.

The idea behind proving that one set is a subset of a second set involves proving that
every element of the first set is an element of the second set. It would not be very convenient
if each element of the first set had to have its own proof of membership in the second set.
Example 3 uses a proof that each element of the first set is an element of the second set by
simply proving the result for a completely arbitrary element of the first set. A completely
arbitrary element is one that has no property to use in the proof except that it is a member of
the first set. An "arbitrary element of a set" is a (hypothetical) element whose only property
is that it belongs to that set. In mathematics, the phrase "let x E A" means "x is my name
for an arbitrary element of A." Assuming that we are dealing with a completely arbitrary
element allows us to prove the membership of every element with a single proof.

Example 3. Prove that the sets A = (2 1, 22 , 2', 24 and B = (2, 4, 6, 8, satisfy
AC B.

Solution. An arbitrary element of A is of the form 2i for some i E 11, 2, 3, .1..1. An
arbitrary element of B is of the form 2. j for some j c {1, 2, 3, . . .). Clearly, 2' = 2. j
for the integer j = 2i-1. Since an arbitrary element of A is an element of B, we conclude
AC B. U

If and Only If
Mathematical statements about how facts are related, including many mathematical the-
orems, are implications. For example, "if you eat your carrots, you will grow big and
strong," or "if Sally is in the science lab, then she is doing her chemistry experiment," or
"if x > 1, then x2 > x" are all implications. An implication starts with a hypothesis that
is assumed to be true and then uses various means to prove a conclusion. We denote an
implication as a =ý b, where a is the hypothesis and b is the conclusion. Two implications

Basic Definitions 7

are used in the standard mathematical expression if and only if. The statement

a if and only if b

means that if a is true then b is true (a =# b) and that ifb is true then a is true (b => a).
Equivalently, it means that a and b are either both true or both false.

In a proof of an if and only if statement, a proof of "if a, then b" is usually labeled
(=>), whereas a proof of "if b, then a" is usually labeled (.=). The if and only if statement
is often denoted by .=*. The arrow notation is used in Theorem 2.

Theorem 2. Let A and B be sets. Then, A = B if and only if A C B and B C A.

(What the Proof entails:) We must prove two things. The first that A = B implies that A C
B and B C A. The second is that if A C B and B c A, then A = B.

Proof

(==•) Prove that if A = B, then A C B and B C A. Suppose A = B. Then, A C B and
B C A by Theorem 1.

(•<=) Prove that if A C B and B C A, then A = B. To prove this, begin by supposing
that A C B and B C A. Then, for any x, if x E A, x E B, since A c B. Furthermore, if
x E B, then x e A, since B C A. Therefore, the sets A and B have the same elements. By
Definition 1, A = B. 0

1.1.6 Venn Diagrams
In most discussions, attention is limited to elements and subsets of a fixed set. For example,
elementary arithmetic is usually limited to elements and subsets of Z (the integers) or of
Q (the rationals). In a study of some period of history, attention may be limited to the set
of all persons living at that time. In computer science, it may be the set of all file names on
a hard disk. Such sets are called universal sets, or universes. They are the "universes of
discourse" for a time.

There is a very convenient type of diagram, called a Venn diagram, for illustrating set-
theoretic relationships. Start with a rectangle, and let the points in the rectangle represent
the elements of a universal set, as shown in Figure 1.1.

U

Figure 1.1 Venn diagram of a universal set U.

Subsets of the universal set are represented by circles or ovals in the rectangle, as
shown in Figure 1.2. For example, suppose that A, B, and C are subsets of the universal
set U. The region within the circle for A represent the elements of A, and similarly for B
and C. Figure 1.2 shows A, B, and C where A C B. A and C have no elements in common,
and B and C have elements in common but neither is a subset of the other.

8 CHAPTER 1 Sets, Proof Templates, and Induction

U

I
CM

Figure 1.2 Sample Venn diagram.

Venn diagrams are frequently used to build intuition for proofs. The diagrams are
designed to present fairly general pictures of what is known, and these pictures can often
help a person to see set-theoretic relationships. A good Venn diagram can be very useful,
but a Venn diagram itself is not a proof. In particular, if a mistake is made in drawing the
Venn diagram, it is often possible to think that a property is true when it really is not. In
especially complicated cases, it may be very difficult to see whether the picture is correct.
The picture may be vague on certain points as well. For example, Figure 1.2 suggests
that there are elements of B that are in neither A nor C. This may or may not be true.
Nevertheless, a good Venn diagram is valuable both in suggesting whether a statement
could be true and in motivating and illustrating the proof.

Theorem 3. Let A, B, and C be sets. If A C B and B C C, then A C C.

U
C

Figure 1.3 A c B and B c C.

(The Venn diagram in Figure 1.3 is drawn so that A # B and B # C, but this is not nec-
essarily true. The Venn diagram suggests that if you start with an element of A, then that
element is in B. Then, if the element is in B, it suggests that it is also in C. The proof will
proceed using these two steps.)

Proof We must prove that if A C B and B C C, then A C C. Let x E A, and prove that
x E C. (Think of this as starting the proof by picking x arbitrarily from A.) Then, since
A C B, x E B. We now have x E B, and we are given that B C C. So, it follows that
x E C. Since every element of A is an element of C, it follows that A c C. U

1.1.7 Templates

The proofs in this section use very typical techniques that you will see throughout the book.
When you try to construct a proof, getting started is always a bit daunting. The templates
shown here will give you ideas about what you need to do in a proof. The templates will
describe what is needed to prove that an element is in a set, that one set is or is not a subset

Basic Definitions 9

of another set, and that two sets are or are not equal. First, we state a template for proving
that an element is a member of a set.

Let A be a given set. To prove x E A, show that x has the property that defines mem-
bership in A.

Example4. LetA={n:nENandn=3k+5forsomekEN}.ls23EA?

Solution. To show that 23 c A, we must find a natural number ko such that

23 = 3k0 + 5

since every element of A has the form 3k + 5 for some k E N. To find out if there is such
a k, we simply solve the equation for ko and see if the solution is an integer.

3k 0 + 5 = 23

3k 0 = 23 - 5

ko = 18/3 = 6

Since 6 is a natural number, we know 3- 6 + 5 = 23 E A. 0

We use the template for element membership in a set to develop a template for proving
that one set is a subset of another set.

To prove that one set is a subset of another (A C_ B), show that every element x of A
is also in B.

Example 5. Let

A = In n = 2k + 5 for some k E NJ

and

B = {n n = 2j + 1 for some j c N}
Is A C B?

Solution. By writing out a few of the elements in each of these sets, we can at least get
an idea about whether we think A C B. The first six elements of A are 5, 7, 9, 11, 13, and
15. The first six elements of B are 1, 3, 5, 7, 9, and 11. The difference between the two sets
seems to be the initial values. To show that A C B, we must take an arbitrary element of
A, say, n = 2k0 + 5 for some ko E N, and show that this can be written as 2j + 1 for some

10 CHAPTER 1 Sets, Proof Templates, and Induction

j e N, which would prove that 2k0 + 5 = 2j + 1 E B. The algebra needed to see if this is
possible involves solving for j in terms of ko. This computation

2j+] =2k0 +5

2j =2k0 +5-1 =2k0 +4

j =k0+2

shows that for any ko, the needed j is ko + 2, which is clearly an element of N. This says
that we can write an element of A as 2k0 + 5 = 2(ko + 2) + 1 for k0 + 2 E N. Therefore,
since an arbitrary element of A is an element of B, we have A C B. U

If the condition in Template 1.2 is not satisfied-that is, for two sets A and B, we
have A Z B-this means that there is an element in A that is not an element of B. We
summarize this observation in Template 1.3.

To prove that one set is not a subset of another (A g B), show that some element x of

A is not in B.

Example 6. Let

A={ncN:n=2k -3forsomek EN)

and

B = {n: n N and n = j2 + 3 for some j E NJ

Prove that A g B.

Solution. We must find some element of A that is not an element of B. If we list
the first few elements of A and B, perhaps a candidate element will appear. A =
{-3, -1, 5, 15, 47 }, and B = {3, 4, 7, 12, 19, . .. 1. An obvious candidate is -3, since
-3 E A and -3 V B. We need to show that there is some fixed integer of the form 2k0 - 3,
for ko e N, that can be written as j2 + 3 for some choice ofj c N. If such a j existed, we

would have 2k0 - 3 = j2 + 3. In the case ko = 0, the element j would have to satisfy

-3 = j 2 +3 or j 2 + 6 = 0 for -3 to be in B. Since no such j exists, -3 0 B. U

One last possibility for set inclusion: One set can be a subset of a second subset, but
not every element of the first set need be an element of the second set. This proper inclusion
is formalized in the next template.

To prove that one set is a proper subset of another (A C B), first prove that A __ B,
and then show that some element x of B is not in A.

Basic Definitions 11

Example 7. Let

A = {n c N n > 2 and n = 4j - 5 for some j e N}

and

B = in E N n > 0 and n = 2k + 1 for some k e NJ

Prove that A C B.

Solution. To show that A C B, we must show that every element of A is an element
of B. Let n = 4j0 - 5 be an arbitrary element of A for some fixed jo E N. To show that
n c B, we must show that n = 2k + 1 for some k e N. We see if this is possible by solving
for k:

2k+1 =4j 0 -5

2k = 4 jo - 6

k = 2j 0-3

Now, 2jo - 3 > 0, since jo > 2. Since 2(2jo - 3) + 1 = 4j 0 - 5, every element of A is
an element of B, and A C B.

For 0 E N, 2.0 + 1 = 1 e B. If 1 E A, then 1 = 4j - 5 for some j G N. By solving
for j, we find that j must be equal to 3/2, which is not a natural number. Therefore, no j
exists. Therefore, 1 E B, and 1 0 A. It follows that A C B. 0

The next step is to deal with set equality and set inequality.
In the case that we have two set descriptions and want to know that the sets are

equal, there are actually two things to prove. The proof that two sets are equal follows
Template 1.5.

Example 8. Let

A =In : n = 2j for some j E N}

and

B = {n : n = 2k + 2 for some k E Z and k > - 1)

Prove that A = B.

Solution. To show that an arbitrary element of A, say, 2jo for some jo e N, is an element
of B, we must find a k E Z such that k > -1 and 2jo = 2k + 2. Solving for k gives k =
jo - 1. Since jo > 0, k = j0 - 1 > - 1, and 2k + 2 e B. To show that an arbitrary element

12 CHAPTER 1 Sets, Proof Templates, and Induction

of B, say, 2ko + 2 for some k0 E Z and ko > -1, is an element of A, we must find a
j E N such that 2j = 2k0 + 2. This implies that j must satisfy j = ko + 1 if 2k0 + 2 is an
element of A. Since ko > -1, we have ko + 1 > 0, and k0 + 1 defines an element of A.
Because A C B and B C A, it follows that A = B. U

There are often many different descriptions for a single set. One problem is to make
sure that the set description that is given in fact describes the set intended. The idea of a
proof to show that two sets are not equal is given in the next template.

The way to show that A C B is false is to find an element x such that x G A and x g B.
Showing that B C A is false is done analogously, but only one of these implications needs
to be shown to prove that A A B.

Example 9. Let

A = {n: n E N and n = 4j2 - 3 for some j G N}

and

B = {n E N: n = 2k 2 - 3 for somek E N}

Prove that A A B.

Solution. To show that A : B, it suffices to find an element in A that is not an element
of B. We will show that 1 is such an element.

We can write 1 = 4(1)2 - 3. Therefore, 1 E A. If 1 E B, then 1 = 2k 2 - 3 for some
k : N. If this were so, then the element k would satisfy the equation k2

- 2. Since no such
k exists in N, 1 0 B. I

Other Proofs

In Theorem 2 (Section 1.1.5) we needed to prove two things to conclude the result. This
kind of a proof is typical when you are trying to prove that two statements are simply
different ways of saying the same thing. In Theorem 2 we found that set equality could be
stated either in terms of element membership or in terms of the subset relation. The proof
is formalized in Template 1.7.

Exercises 13

To prove "if a, then b" and "a if and only if b" results, use one of the two forms:

Form 1: To prove "if a, then b," assume a and derive b.

Form 2: To prove "a if and only if b," prove "if a, then b," and then prove "if b,
then a."

In a proof of an if and only if statement, a proof of "if a, then b" is usually labeled
(=#), whereas a proof of "if b, then a" is usually labeled (4=). The if and only if
statement is often written using •.

rnExercises
1. Let X be the set of all students at a university. Let A be the set of students who are first-

year students, B the set of students who are second-year students, C the set of students
who are in a discrete mathematics course, D the set of students who are international
relations majors, E the set of students who went to a concert on Monday night, and F
the set of students who studied until 2 AM on Tuesday. Express in set theoretic notation
the following sets of students:

(a) All second-year students in the discrete mathematics course.

Sample Solution. {X E X : x E B and x c C}.

(b) All first-year students who studied until 2 AM on Tuesday.
(c) All students who are international relations majors and went to the concert on

Monday night.
(d) All students who studied until 2 AM on Tuesday, are second-year students, and are

not international relations majors.
(e) All first- and second-year students who did not go to the concert on Monday night

but are international relations majors.
(f) All students who are first-year international relations majors or who studied until

2 AM on Tuesday.
(g) All students who are first- or second-year students who went to a concert on Mon-

day night.
(h) All first-year students who are international relations majors or went to a concert

on Monday night.

2. Find at least two different ways to fill in the ellipses in the set descriptions given.
For example, {2, 4 ... , 121 could be written either {2n : 1 < n < 6 and n G N} or
{n+ I :n E {1,3,5,7, 111}.

(a) {1, 3,..., 311
(b) 11, 2,..., 26)
(c) {2, 5,..., 321

14 CHAPTER 1 Sets, Proof Templates, and Induction

3. Write three descriptions of the elements of the set {2, 5, 8, 11, 14).
4. How many elements does each of the following sets have?

(a) A= 0
(b) B = {0}
(c) C = {(0, 1), {1, 2)}
(d) D - {0, 1, 2, {0, 1}, (1,21, {0, 1, 2}, A)
(e) E = (0, {{1, {3, 5), {4, 5,7}, 8)))

5. Which of the following pairs of sets are equal? For each pair that is unequal, find an
element that is in one but is not in the other.

(a) (0, 1, 2) and {0, 0, 1, 2, 2, 11
(b) (0, 1, 3, 11,2}) and (0, 1, 2, (2, 3))
(c) {{1, 3, 5), {2, 4, 6), f5, 5, 1, 3}) and {{3, 5, 1}, {6, 4, 4, 4, 2), {2, 4, 4, 2, 6))
(d) {{5, 3, 5, 1,51, (2, 4, 6), 15, 1, 3, 3)) and {{1, 3, 5, 1), {6, 4, 2), (6, 6, 4, 4, 6))
(e) 0 and{xe N:x > landx 2 =x)
(f) 0 and (0)

6. This problem concerns the following six sets:

A-={0,2,4,61 B-=11,3,5) C={0,1,2,3,4,5,6,7}

D---0 E=EN F={{0,2,4,6))

(a) What sets are subsets of A?
(b) What sets are subsets of B?
(c) What sets are subsets of C?
(d) What sets are subsets of D?
(e) What sets are subsets of E?
(f) What sets are subsets of F?

7. Let A={n:nn N and n=2k+1 for some kEN},B={n :n EN and n=
4k + 1 for somek e N), and C = (MeE N m = 2k - 1 andk E N and k> 1). Prove
the following:

(a) 35 E A
(b) 35 e C
(c) 35 € B
(d) A = C
(e) B C A
(f) B C C
(g) B C A
(h) B C C

8. Let A={n :n eN and n=3k+2 for some keN},B={n:n EN and n=
5k- 1 for some k E N such that k> 5), and C= {m EN•:m =6k-4 andkE N

and k > 1). Prove the following:

(a) C C A
(b) A # B
(c) B 5 C
(d) A : C
(e) C C A

Operations on Sets 15

9. Describe in words the difference between 0 and {0}.
10. Let A, B, and C be sets.

(a) Prove that if A C B and B c C, then A C C.
(b) Prove that if A C B and B C C, then A C C.
(c) Prove that if A C B and A Z C, then B Z C.

rnOperations on Sets

In many areas of computer science and mathematics, from formal logic to object-oriented
programming, the operations to be performed must be considered in the context of a spe-
cific set. For example, familiar operations, such as addition, subtraction, multiplication,
and division, are performed within a specific set of numbers, such as the integers, ratio-
nals, or reals. This section discusses operations on sets and introduces the most common
operations: union, intersection, difference, complement, product, and power set of a set. We
study the laws these operations satisfy as well as how they interact with one another. We
then extend our discussion to lattices and boolean algebras. Lattices and boolean algebras
have two operations defined on their elements such that a set of special axioms for these
operations holds. An example of a lattice is a family of sets with the operations defined as
set union and set intersection.

1.3.1 Union and Intersection

The two simplest operations on sets involve combining two sets into one (union) and find-
ing common elements in two sets (intersection). These operations obey many of the gen-
eral rules that addition and multiplication with real numbers also satisfy. The first operation
consists of combining two sets into a set containing the elements of both sets.

Definition 1. Let A and B be sets. The union of A and B, denoted A U B, is

{x :x E A orx G B}

U

MA

B

Figure1.4 AUB.

The Venn diagram for set union (shown in Figure 1.4) illustrates what was stated in
the definition. We do, however, need to clarify the meaning of the word or in the definition.
When mathematicians say x E A or x E B, they generally mean x E A or x E B or both.
This interpretation is called the inclusive or because it includes the possibility that both
may be true.

16 CHAPTER 1 Sets, Proof Templates, and Induction

Example 1.

(a) 11, 2, 31 U 13, 4, 5) = 11, 2, 3, 3, 4, 5} = {1, 2, 3, 4, 5}.
(b) {1, 2, {1, 2, 3}} U {1, 2, 3, 11, 21) = {1, 2, 3, {1, 2}, {1, 2, 311.
(c) NUZ=Z.
(d) For any set A, A U 0 = A.

Why was the definition of the union of three or more sets not given? The more
general union operation, for any finite number of sets, is handled by the assumption that
A U B U C means (A U B) U C. Therefore, it is only necessary to find unions of two sets
at a time, and that has already been defined. The shaded region in Figure 1.5 shows the
union of three sets.

U

a
B

C

Figure 1.5 Au B U C.

The next theorem proves some fundamental results about set union.

Theorem 1. Let A, B, and C be sets. Then:

(a) AUA=A.
(b) ACAUBandBCAUB.
(c) A U B = B U A. (Commutative Law for Union)
(d) A U (B U C) = (A U B) U C. (Associative Law for Union)

(What the proof entails.) Parts (a) and (b) follow directly from the definition of union.
The proof of (c) will be given. Since the proof of (d) uses an argument similar to the one
used in (c), it will be left as an exercise for the reader. Part (c) says that the order in which
the union of two sets is formed does not matter. Part (d) states that A U B U C makes sense
even without parentheses.

Proof (c) Follow the template for set equality to prove that (i) A U B C B U A and (ii)
B U A C A U B. For (i), use the template for set inclusion to prove that for any x E A U B,
it follows that x E B U A.

Suppose that x e A U B. Then (ia) x e A or (ib) x E B. In case (ia), since x E A,
by Definition 1 we have x e B U A. In case (ib), since x E B, by Definition 1 we have
x e B U A. This completes the proof of (i).

The proof of (ii) is analogous. U

What do we mean when we say that one proof is analogous to another? In this context,
it means that the two proofs have essentially the same logic. Here, for example, one can
form the proof of part (ii) from the proof of part (i) by interchanging A and B.

The second important set operation, intersection, forms a set from the elements
common to two sets.

Operations on Sets 17

Definition 2. Let A and B be sets. The intersection of A and B, denoted by A n B, is

{x :xE A and x E B)

The intersection of A and B is shaded in Figure 1.6.

U

Figure 1.6 A n B.

Example 2.

(a) {1,2, 3} n {3,4,51 = 13).
(b) {1, 2, 31 n 14, 5, 6) = 0.
(c) N•nZ =N.
(d) For any set A, A n 0 =0.
(e) {1, 2, 3) n {{1, 2, 3}1 = 0. (The first set has three elements, 1, 2, and 3, whereas the

second set has only one element, (1, 2, 31.)

Theorem 2 proves some fundamental results about set intersection. Like set union, set
intersection satisfies the commutative and associative laws.

Theorem 2. Let A, B, and C be sets.

(a) ANA=A.
(b) ANBCAandANBCB.
(c) A n B = B n A. (Commutative Law for Intersection)
(d) A n (B n C) = (A n B) n C. (Associative Law for Intersection)

(What the proof entails.) Parts (a) and (b) follow directly from the definition of inter-
section. Part (c) says that the order in which the intersection of two sets is formed does not
matter. Part (d) states that A n B n C makes sense even without parentheses.

Proof (c) Again, follow Template 1.5 (Set Equality). Prove that (i) A n B C B n A
and (ii) B n A C A n B. For (i), follow the template for proving one set is a subset of
another. That is, assume x E A n B, and show x E B n A.

Suppose x E A n B. Then, x E A and x E B. Equivalently, x E B and x E A, since
no order is implied by the word and. Therefore, x E B n A. The proof of (ii) is analogous.
(d) This part is left as an exercise for the reader. 0

The distributive laws for addition and multiplication for real numbers have analogues
with the operations of union and intersection with sets, as Theorem 3 shows.

Theorem 3. (Set Distributivity) Let A, B, and C be sets. Then:

(a) A U (B n C) = (A U B) n (A U C). (Distributive Law for Union)

(b) A A (B U C) = (A n B) U (A n C). (Distributive Law for Intersection)

18 CHAPTER 1 Sets, Proof Templates, and Induction

Proof. The proofs are left as an exercise for the reader. U

The intersection of two sets may not contain any elements. If there are no elements in
a set intersection, we call the sets disjoint.

Definition 3. Let A and B be sets. Then, A and B are disjoint sets if A n B = 0.

Example 3.

(a) Verify that {1, 2, 31 and 14, 5, 6} are disjoint.
(b) Verify that {1, 2, 31 and {{1, 2, 3}} are disjoint.
(c) For any set A, verify that A and 0 are disjoint.

The reader may be asking whether there is any reason or need to prove additional
theorems about the union and intersection operations on sets. There are two reasons to
prove additional theorems. First (and most obviously), the results will be needed later.
Second, proofs of these results are fairly easy examples of proofs, and they provide good
models for constructing other proofs. Additional opportunities to write proofs will be given
in the exercises.

Theorem 4 shows how set inclusion and the operations of union and intersection are
related.

Theorem 4. Let A, B, and C be sets. Then:

(a) If AC B or AC C, then AC B U C.
(b) IfBCAandCCA, thenBUCCA.
(c) IfACBandA C, thenACBNC.
(d) IfBCAorCCA, thenBnCCA.

(Motivation for the proof.) For part (a), there are two cases: (i) A C B, and (ii) A C C.
The Venn diagrams (see Figure 1.7) illustrate both parts of (a) and will help in understand-
ing the proof.

U U

9D P

Figurel.7 A.AcB • AcBUC. B.AcC • AcBuC.

For part (b), one Venn diagram suffices (see Figure 1.8).

U
A

Figurel.8 BcAandCcA=4BuCcA.

Operations on Sets 19

Proof. (a) Suppose that A C B or A C C.

Case 1: A C B. Follow Template 1.2 (Set Inclusion) for proving that one set is a subset
of another. Show that every element of A is also an element of B U C.

Let x E A. The goal is to show that x e B U C. Since x E A and A C B, we have
x E B. But,

BUC = {x x E B orx E C}

Therefore, x E B U C.

Case 2: A C C. The proof is analogous to that in part (a).
(b) Suppose x E B U C. Then, either x E B or x c C.

Case 1: x E B. Since B C A, it follows that x c A.

Case 2: x E C. Since C C A, it follows that x E A. Therefore, B U C C A.
(c)-(d) Exercises for the reader. M

The proof of Theorem 4 shows how a template can be used. It also demonstrates
another proof technique: proof by cases. The assumption was that A C B or A C C. The
proof breaks down into the two ways that this could happen: (1) A c B, or (2) A C C.
Each case was handled separately. This is a general approach: If there are relatively few
ways that some assumption can be met, then one can handle them separately.

Let's review what Theorem 4 asserts. Contrast the following two statements:

(a) "If A is a subset of both B and C, then A is a subset of their union."

IfA C BorA C C, thenA C BUC

(b) "If A is a subset of the union of B and C, then A is a subset of either B or C."

IfA C BUC, thenA C BorA CC

Theorem 4 asserts that statement (a) is true. Theorem 4 does not assert statement (b). In
fact, statement (b) is false in general. How would it be shown that statement (b) is false?
Statement (b) asserts that some relationship is true for all sets A, B, and C. To prove it to
be false, then, we must find just one example where it is false. That is, we must find three
sets A, B, and C such that A c B U C but (i) A Z B and (ii) A 7 C (see Exercise 9 in
Section 1.4).

The theorems proved so far can easily be used to show something that is not entirely
obvious.

Theorem 5. (An Absorption Law) Let A and B be sets. Then,

A U (A n B) = A

Proof As usual, prove that A U (A n B) C A and A C A U (A n B). For the first part,
we have A C A by Theorem 1 in Section 1.1.5 and A n B c A by Theorem 2(b) in Secton
1.3.1. These two conditions imply that A U (A n B) C A by Theorem 4(b) in Section 1.3.1.
For the second part, start with A C A, which gives A C A U (A n B) by Theorem 4(a) in
Section 1.3.1. U

This result is one that is needed later. When we discuss boolean algebras and their
relation to electrical circuits, this Absorption Law is particularly useful.

20 CHAPTER 1 Sets, Proof Templates, and Induction

Generalized Unions and Intersections
The definitions of union and intersection make good sense for any finite number of sets,
because the operations are associative. There are occasions, however, when one would
like to express the idea of the union of an infinite collection of sets. This leads to the
generalization of the notion of set union and intersection given in the next definition.

Definition 4. Let X be a set of sets. Then,

UX = {x x is contained in some set in X}

and

NX = {x x is contained in every set in X)

If

X = {X0, X1 . Xn...

That is, the elements of X are indexed with the natural numbers, the union of sets UX is
usually written as

U7oXi = XO U X 1 U X 2 U ... U X, U ...

and the intersection of sets nX is usually written as

nr=oXi = X0 n X1 nX 2 n ... n X, n ...

Example 4.

(a) Ui = (-I/i, I/i) C JR where i E N - {0}. Then, UlUi = (-1, 1), NF1 =iUi = {o}.
(b) Vi = (i, i + 2) g R, where i ••N - {0}. Then, U?= Vi = (1, oo), N _.

1.3.2 Set Difference, Complements, and DeMorgan's Laws

In Venn diagrams, pairs of sets are often drawn so that it appears as if there are elements
in each of the sets that are not in the other set. Often, it is important to find these elements.
This operation on sets is called set difference. In other instances, we are interested in the
elements that are not in a set. The operation of finding these elements is called comple-
mentation. Finally, we would like to understand how union and intersection interact with
the operation of set difference and complementation. The relationships are described by
DeMorgan's Laws. We start this section by defining set difference.

Definition 5. Let A and B be sets. The set difference of A and B, denoted A - B, is

{x:x E A andx ý BI

U

0rA

B

Figure 1.9 A - B.

Operations on Sets 21

Example 5.

(a) Let A ={1, 2. 10} and B = {3, 5, 7, 9}. Then, A - B = {1, 2, 4, 6, 8, 101.
(b) Let A =N and B = {2i i E NJ. Then, A - B = {2i + 1: i E N}.

The difference A - B is also sometimes call the relative difference. The Venn dia-
gram (shown in Figure 1.9) gives an intuitive understanding of this notion. Remember that
Venn diagrams suggest relations between or among sets but are not actually proofs of rela-
tionships between or among sets. Theorem 6 proves some key relationships involving the
difference of two sets, A - B and B - A.

Theorem 6. Let A and B be sets. Then:

(a) A - B and B - A are disjoint, A - B and A n B are disjoint, and A n B and B - A
are disjoint.

(b) A=(A--B) U(ANB).

(c) AUB=(A-B) U(ANB) U (B - A).
(d) ACBifandonlyifA--B=0.

Proof. If you look at a Venn diagram for two sets and identify A - B, B - A, and A n B,
it looks like the sets are disjoint. This theorem says that your intuition from the diagram is
correct. The proofs of (a)-(d) are left as exercises for the reader. U

Complement of a Set
Recall that a universal set is a set that contains as a subset every set currently being dis-
cussed. In a context in which there is a universal set, another set theoretic operation can be
defined.

Definition 6. Let U be a universal set and A be a subset of U. The complement of A,
denoted A, is

{x : x E U andx ý A}

Sometimes, to emphasize that U is a universal set, A is also called the absolute difference.

With this definition, we can restate Definition 5 as A - B = A nf B. Some important
identities concern complements, especially how they interact with other set-theoretic oper-
ations.

Theorem 7. Let U be a universal set and A and B be subsets of U. Then:

(a) A = A. (A is the complement of A.)
(b) A C B if and only if B C A.
(c) A = B if and only if A = B.

(What the proof entails.) Part (a) tells us that the complement only produces something
new the first time it is applied. Part (b) says that if A is a subset of B, then set inclusion
goes the other way for the complements; that is, the complement of B is contained in the

complement of A. In part (c), we prove that if two sets are equal, then their complements
are equal.

22 CHAPTER 1 Sets, Proof Templates, and Induction

Proof. (a) Show that (i) A _ A and (ii) A C A. To prove (i), suppose x E A. Then, x E U
and x € A. But, then x E A. To prove (ii), suppose x e A. Then, x G U, but x € A. So,

X E A.
(b) (•) Show that if A C B, then B C A. Prove the result by contradiction (see Template
1.3). Assume that for some subsets A and B of U, A C B and B 7 A, and derive a con-
tradiction. Since B 7 A, there is some x E B - A. Pick such an x. Since x 0 A, it follows
that x e A. Since A C B, we have x e B. But, it was assumed that x E B; hence, x has the
property that x 0 B. Since both x c B and x g B were proved, this gives a contradiction.
(.@) The proof is analogous to the proof of (•:) using (a).
(c) Exercise 11 in Section 1.4. U

A Computer Representation for Sets

Let U = {1, 2, 3, 4, 5, 6} be a set, and let X C U. A bit representation for X is a six-digit
binary number x1x2x3x4x5x6 with bit xi for 1 < i < 6 defined as

10f if (X

0 for i 0 X

For example, if B = (2, 3, 61, then B = 011001. The operations of union, intersection,
and complement can be carried out using operators UNION, INTER, DIFF, and COMP
that operate on binary numbers bit-by-bit. Let B, C c U with B = blb 2b3b4b5 b6 and C =
c1c2c3c4c5C6. Define the union as UNION(B, C) = xix2x3x4x5x6 where for 1 < i < 6,

1 if bi = I or ci = I
xi 0 otherwise

Define the intersection as INTER(B, C) = X1X2X3X4X5X6, where for 1 < i < 6,

1 ifbi = 1 and ci = 1
xi 0 otherwise

Define the complement as COMP(B) =- XX2X3X4X5X6, where for 1 < i < 6,

1 ifbi=0
Xi 0 otherwise

Define the relative difference as DIFF(B, C) = X1X2X3X4X5X6, where for 1 < i < 6,

1 if bi =1 Iand ci = 0
xi 0 otherwise

Example 6. Let B = {1, 2, 3, 4, 51 and C = {3, 4, 5, 6, 7, 81 be subsets of the universal
set U = [1, 2,..., 9). Find UNION(B, C), INTER(B, C), COMP(C), and DIFF(B, C).

Solution. BUC={1,2,3,4,5,6,7,8}. BfnC={3,4,51. C={1,2,9). B-C=
11, 21. Therefore,

UNION(B, C) = 111111110
INTER(B, C) = 001110000

COMP(C) = 110000001
DIFF(B, C) = 110000000 U

Operations on Sets 23

DeMorgan's Laws
DeMorgan's Laws are among the most important and useful results about sets. These laws
describe how union, intersection, and complement are related. Figure 1.10 indicates what
the laws tell us.

MA B A B

AuB=ArB ArB=AuB

Figure 1.10 DeMorgan's Laws.

Theorem 8. (DeMorgan's Laws) Let U be a universal set, and let A and B be subsets
of U. Then:

(a) (A U B) = A n B. (DeMorgan's Law for Union)
(b) (A (B) = A U B. (DeMorgan's Law for Intersection)

Proof.
(a) Show that (i) (A UB) c A WB and (ii) A n B c (A U B).

(i) Pick an arbitrary x E (A U B). Since x e U - (A U B), it follows that x 0 A U B.
For x not to be in this union means it may not be in either of the sets. So, x 0 A
and x 0 B. Hence, since x e U - A = A and x E U - B = B, it follows that x
A (2B.

(ii) Pick an arbitrary X E A n B. Then, x e A, so x 0 A. Also, x E B, so x § B.
Therefore, x g (A U B), and consequently, x e (A U B).

(b) The proof is left for the reader. N

Theorem 8 resembles the ways that and and or interact with not (which are also called
DeMorgan's Laws in logic). For example, "not (x is greater than 3 or x is odd)" is equiva-
lent to "x is not greater than 3, and x is not odd." A more thorough study of logic is given
in Chapter 2.

Example 7. Verify DeMorgan's Laws for the sets A = 11, 2, 3, 4} and B = {3, 5, 6, 8}
when the universal set is U = {1, 2, 3, 4, 5, 6, 7, 8).

Solution. AUB={l,2,3,4,5,6,8}={7}. -A={5,6,7,81. B={1,2,4,7}.
An B = {7}. It now follows that A U B = A; B. U

DeMorgan's Laws are important tools for proving results about how union, intersec-
tion, and complementation interact. The notion of the symmetric difference is a particular
instance of this. Symmetric difference identifies the elements of two sets that are not in
their intersection. This set (A U B) - (A n B) is shown in Figure 1.11.

AF B

Figure 1.11 Elements in two sets that are not in the intersection: A U B - A n B.

24 CHAPTER 1 Sets, Proof Templates, and Induction

We can define the elements of two sets that are not in their intersection in terms of
unions, intersections, and complements of the sets. After the definition of this set, we
will show that the operation of forming this set satisfies both the commutative and the

associative law.

Definition 7. Let A and B be sets. The set

A G B = (A - B) U (B - A)

is the symmetric difference of A and B.

Example 8. Let A = {1, 2,3,41 and B ={3, 4,5, 6}. Then, A • B = {1, 2,5,61.

Some obvious facts about the symmetric difference are collected in Theorem 9.

Theorem 9.

(a) For any set A, we have A B 0= A.
(b) For any set A, we have A EA = 0.
(c) For any two sets A and B it follows that A E B = B & A.

Proof. (a) and (b) follow directly from the definition.

(c) SinceAEB=(A-B) U(B-A)=(B-A)U(A-B)=B ®A

the result follows. U

In Theorem 9(c), it is shown that E is a commutative operation. The next theorem
shows how you prove that symmetric difference is also an associative operation.

Theoreml0. A E(BDC)=(AEB)EDC.

Proof

(A E B) E C = ((A ED B) - C) U (C - (A E B))

= (((A - B) U (B - A)) - C) U (C - ((A - B) U (B - A)))

To simplify the proof, we will reduce the two terms on the right side separately. When we
have reduced these two terms, we can combine the reductions to complete a reduction of
(A G B) q C.

The first step will be to replace various expressions of the form X - Y with X n Y
where X and Y represent any pair of the sets A, B, and C:

((A - B) U (B - A)) - C = ((A n B) U (B n A)) n C

=(An W n C) U (An B n C) (Distributive Law)

The second term involves a few more steps than the first term:

C - ((A - B) U (B - A)) = C n ((A n B) U (B nA))

= C n ((A n B) n (B Af A)) (DeMorgan's Law)

= C n ((A U B) n (B U A)) (DeMorgan's Law and A = A)

= C n (((A U B) A B) U ((A U B) n A)) (Distributive Law)

= C n (((A n B) U (B n B)) U ((A n A) U (B A A))) (Distributive Law)

Operations on Sets 25

=CO((ANiB)U(BNA)) (ANfA=BNB=o)

= (C n A nf B) U (C n A n B) (Distributive Law)

Putting the reduced form of these two terms together gives a new description of
(A D B) E C.

((AeB)®C) = (AnBNC)u(ANBNeC)u(AnBnC)U(AnBnC)

By similar steps, the term A E (B E C) can be reduced to these same expression. We
leave this reduction to the reader. After this second reduction, we can conclude

A ED (B ED C) = (A ED B)C E

The Logic of Statements
Theorem 8(b) is closely tied to an issue in the logic of sentences. The issue is the relation-
ship between an if-then statement and its converse, its inverse, and its contrapositive. A
statement such as "if a, then b" can be rewritten as "if b, then a," and you might wonder
if the first statement is true whether or not you can deduce anything about the truth of the
second. We start with a statement such as "if a, then b." The obvious variants of this state-
ment are "if b, then a," "if not a, then not b," and "if not b, then not a." What we would
like to understand is whether any one of these statements being true (or false) implies that
any other of these statements is true (or false). Consider the statement

"If George is a horse, then George is an animal."

The inverse of this statement is

"If George is not a horse, then George is not an animal."

The converse of this statement is

"If George is an animal, then George is a horse."

And, finally, the contrapositive of the statement is

"If George is not an animal, then George is not a horse."

The statement and its contrapositive are both true, whereas the inverse and converse are
probably false (depending on who George is).

As another example, consider the following:

Statement: "If my cat is a horse, then my cat is an animal."
Inverse: "If my cat is not a horse, then my cat is not an animal."

Converse: "If my cat is an animal, then my cat is a horse."
Contrapositive: "If my cat is not an animal, then my cat is not a horse."

As the two examples illustrate, the if-then statements are equivalent statements to their
contrapositives. It can be shown that in general, based on logic alone, a statement is true
if and only if its contrapositive is true. In writing a proof, it may be easier to use the
contrapositive of a statement than to use the statement itself. A proof of the contrapositive
of your objective is called an indirect proof. In the cat/horse example, the statement and
its contrapositive are vacuously true, but the inverse and converse are false. An if-then

26 CHAPTER 1 Sets, Proof Templates, and Induction

statement is normally not equivalent to its inverse or to its converse, but the converse and
inverse are always equivalent to each other.

1.3.3 New Proof Templates

The first new proof idea was used in Theorem 4 (Section 1.3.1). In Theorem 4(a) there were
two possibilities in the hypothesis. We needed to prove that regardless of which possibility
was true, the conclusion followed. The proof was actually two proofs! In general, there can
be any number of cases. The proof technique is outlined in Template 1.8.

To prove a theorem by cases:

1. List all possible cases that will cover every circumstance in which the hypothesis

might hold.
2. For each possible case, prove the conclusion separately.

The proof of Theorem 4 is a simple proof by cases; we will present more complicated
examples later. As you proceed, be aware of the following recommendations in using a
proof by cases:

1. Make sure you need to use a proof by cases. If you break a proof into cases, you must
normally treat each case separately, which tends to make your proof long. If you don't
need to break the proof into cases, your proof will often be shorter. If only one step
of your proof needs to be broken into cases, then break only that step into cases. Even
more risky is breaking cases into subcases. Suppose you write a proof breaking into four
cases, and each case breaks into four subcases, and each subcase breaks into four sub-
subcases. That gives you 4.4.4 = 64 cases in all to prove, and that almost inevitably
makes your proof longer than it otherwise might be.

2. Make sure you list all possible cases. The proof of Theorem 4(a) in Section 1.3.1, con-
sisted of only two possible cases, and they were obvious from the problem. However,
problems sometimes break down into more than two cases, and when they do, it is easy
to miss some cases.

3. You need to prove that your list of cases covers all possible cases.
4. When claiming that two cases are analogous, make sure that one case is truly analogous

to another. There may well be logical subtleties that arise in one case that didn't arise
in an earlier case. (Indeed, that is often why we break a problem into cases in the first
place!) Before saying that two cases are analogous, think carefully through the details
to make sure they are!

The discussion following Theorem 4 pointed out another proof technique. In dis-
cussing the statement of Theorem 4(a), it was pointed out that it is useful to understand
what a theorem does not say. Quite often, it is not true that what seems intuitively to be

Operations on Sets 27

quite reasonable is, in fact, true. In the case discussed following Theorem 4, a counterex-
ample would give a concrete instance of sets that satisfy the hypothesis of the alternate
statement, whereas the same sets do not satisfy the conclusion. This proof idea is shown in
Template 1.9.

To disprove results starting "for every x c A," find an x that can be proven to be in A
and for which the result fails.

Theorem 7 in Section 1.3.2 proved that if A C B, then B C A by assuming that A C
B and B K A. We then showed this led to a contradiction. The format for this proof is
summarized in Template 1.10.

To prove an assertion a by contradiction, use one of the following two forms:

Form 1: Assume assertion a is false, and prove that some other assertion b is false

where assertion b is known to be true.
Form 2: Assume assertion a is false. For some assertion b, prove that both assertion

b is true and assertion b is false.

The statement of Theorem 7(b) can be construed as saying that a statement and its con-
trapositive have the same truth value. For example, think of "A C B" as being translated
"if x E A, then x E B." Similarly, think of "B C A" as "if x 0 B, then x 0 A." How
would an if-then statement be proved to be true or false just when its contrapositive is?
The answer is almost exactly the way that Theorem 7(b) was proved. The idea of this proof
technique is summarized in Template 1.11.

To prove a theorem using an indirect proof, prove "if p, then q" by proving "if not q,
then not p."

28 CHAPTER 1 Sets, Proof Templates, and Induction

1.3.4 Power Sets and Products

We started by introducing you to thinking about sets of objects and not just individual
objects. After introducing sets, we made precise what it means for one set to be a subset
of another. We can also take one more step, however, and think of the set consisting of all
subsets of a set.

Definition 8. Let A be a set. The power set of A, denoted P(A), is

P(A) = {X: X C A)

Example 9.

(a) P(0) = (0). Even though 0 has no elements, P(0) has the one element 0.
(b) P(P(0)) = P({0)) = {0, 1011.
(c) P({1, 2}) = {0, {1), {2), {1, 2}}.
(d) P({l, 2, 3}) = {0, (1}, (2), (3), {1, 2}, {2,3}, {1, 3), (1, 2,3)).
(e) P({1, 2, 13)1) = {0, (1}, (2), {{3)), {1, 2), {2, {3}}, {1, (3)), (1,2, (3111.
(f) P({{1, 2, 3}1) = {0, {1, 2, 311. This is true, because the set {{1, 2, 3}} has only one ele-

ment, {1, 2, 3}. So, there are only two subsets of {{1, 2, 3}}, one that contains {1, 2, 31
and one that does not.

Products of Sets

The next operation on sets is familiar, because it is the formalism behind the way we are
used to seeing points in two-dimensional space represented as ordered pairs.

Definition 9. For any sets X and Y, the product X x Y is the set of all ordered pairs
(a, b) such that a E X and b E Y. When X = Y, this set is also denoted X2 . Similarly,
the product of n sets X1 Xn is the set of all ordered n-tuples (xl, ... , Xn) of elements
such that xI E X 1..... and Xn G Xn . When n copies of the same set X are used, the re-
sulting Cartesian product X x ... x X is the set of all ordered n-tuples of elements in X,
denoted Xn.

Example 10. Let X = (0, 11 and C = [a, b}. Then, X x C = ((0, a), (0, b), (1, a),
(1, b)), and C x C = I(a, a), (a, b), (b, a), (b, b)}. The product of two sets is sometimes
referred to as the Cartesian product.

1.3.5 Lattices and Boolean Algebras
The design of computer chips involves very complex interactions of very small components
or building blocks called gates. The complete design that is of a computer chip is called
a combinatorial circuit. The mathematical structure we will introduce here can be used to
design, represent, and optimize combinatorial circuits. We will look more closely at gates
and combinatorial circuits in Chapter 2, but we first need to understand the underlying
mathematical structure.

Definition 10. A lattice is a set X with two operations, called meet, denoted as A, and
join, denoted as v, that satisfy the following properties for all x, y, z E X :

Operations on Sets 29

"x A y = y A x Commutative Law for Meet

"x V y = y V x Commutative Law for Join

"x A (y A z) = (x A y) A z Associative Law for Meet

"x V (y V z) = (x v y) V z Associative Law for Join

"x A (x V y) = x Absorption Law for Meet

"x V (x A y) = x Absorption Law for Join

To say that something is a lattice, we must explicitly say (i) what the set of objects
is and (ii) what the meet and join operations are. After specifying these, we must show
that meet and join so interpreted satisfy all the required axioms. Meet and join can be any
operations on the set so long as the axioms are satisfied. The operations of meet and join can
be as simple as union and intersection defined on a set of sets. Whatever the operations are
defined to be, however, the first task is to show that the operations satisfy the Commutative
and Associative Laws.

Example 11. Let X be a set, and let L = P(X). Let join be defined as the union of two
subsets of X and meet as the intersection of two subsets of X. Then, L together with union
and intersection is a lattice.

Solution. By Theorems 1 and 2 in Section 1.3.1, the Commutative and Associative Laws
hold. To prove that the Absorption Law holds, we use the result of Theorem 5 in Section
1.3.1. E

The next example shows that the interpretation of meet and join can be rather different
from unions and intersections.

Example 12. Let X C _R. Let meet be defined as the minimum of two elements of X and
join as the maximum of two elements of X. Then, X together with the minimum and the
maximum operations is a lattice.

Solution. The Commutative Law for Meet in this context says that the minimum of two
real numbers is the same regardless of the order in which you consider the elements. The
remainder of the Commutative and Associative Laws for Meet and Join are straightforward
to verify. The Absorption Law for Meet says that the minimum of an element x together
with the maximum of the two elements x and y where y is any other element is just x.
This just says that either x is the minimum of {x, x} or the minimum of Ix, y} where
y > x. In either case, the result follows. The remaining details are left as Exercise 21 in
Section 1.4. U

There are two additional properties that are used to distinguish different kinds of lat-
tices. The first of these laws, the Distributive Law, is familiar in the context of union and
intersection.

Definition 11. Let X with the operations meet (A) and join (v) be a lattice. X is a dis-
tributive lattice if the following two properties are satisfied for all x, y, z G X:

"x A (y V z) = (x A y) V (x A z) Distributive Law for Meet

"x V (y A z) = (x V y) A (x V z) Distributive Law for Join

30 CHAPTER 1 Sets, Proof Templates, and Induction

The Distributive Laws for Meet and Join are proved for the interpretation of meet as
intersection and join as union in Theorem 3 (Section 1.3.1).

The final property we need is stated abstractly in terms of two special elements that
must be identified in the set of elements forming a lattice. The usual way to prove this
result is to assume that the lattice has this property and then determine what these special
elements must be.

Definition 12. Let X together with the operations meet (A) and join (v) be a lattice. X is
a complemented lattice if

1. There are two (unequal) elements, one called the minimum element, denoted I (read
bottom), and the other called the maximum element, denoted T (read top), such that
for every x E X,

xAT=x, xAL=_L, xvT=T, andxvL=x

2. For each x E X, there is an element -x E X such that x A -x = -L and x v -x = T.

Example 13. Let A be a set, and let X = P(A). The lattice on X with meet defined as
intersection and join defined as union is a complemented lattice.

Solution. Let T = A and -L = 0. Since for any B E X we have BnT=BOA = B,
B nl1=B n 0=0, B UT=B UA=A, andBU-_=B U 0 =B, Xisacomple-
mented lattice. M

The definition does not tell you what elements of a lattice should be -L and T or what
the relationship between -x and x is. For the lattice of subsets of a set A, we can use 0 =1L
and A itself as T. We also define -x as the complement of x. With these definitions of T,
-L, and --x for this lattice, you can show that the lattice is complemented. The details are
left as Exercise 23 in Section 1.4.

The mathematical structure that is of importance in computer science can now be
defined.

Definition 13. A boolean algebra is a complemented, distributive lattice.

The boolean algebra used by computer scientists to model combinatorial circuits is
based on the set of elements {0, 11 and the operations shown in Table 1.1 where v is the
meet and A is the join.

Table 1.1 Operations for a

Boolean Algebra

V 0 1 A 0 1

0 0 1 0 0 0
1 0 1

Example 14. Let B be a set of elements assigned values from the set {0, 1 }, and let the
operations v and A be defined on B as described in Table 1.1. B together with v as meet
and A as join forms a boolean algebra.

Exercises 31

Here, it turns out that there is only one possible choice for each of T, 1, and -':

T=1, 1_=0, --0=1, and-1 =0

Indeed, there is always only one possible choice (see Exercise 24 in Section 1.4). Thus, in
any boolean algebra, we may refer to T, 1, and each -x without ambiguity.

Solution. The proof requires showing that no matter what value x, y e B have, the ax-
ioms of a boolean algebra hold. As an example, we will show that the operation meet is
commutative. Let x, y E B. Then,

y x

V 0 1 v 0 1

X 0 0 1y 0 0 1

We can simply check that for all possible pairs, x V y = y V x for the meet operation.
Similar proofs are needed for the other axioms and will be left for the reader. N

In Section 2.1.4, we will consider this boolean algebra by another name. In place of 1
and 0, we will call the values of the elements TRUE and FALSE. The operations will be or
and and. Then, for example, we can interpret a variable x to be TRUE if there is a current
flowing in a wire X-and similarly, y to be TRUE if there is a current flowing in wire Y.
This turns out to be a very natural way to look at computer circuits.

* Exercises

1. Let A ={1, 2, 3 ... , 10), B = {2, 3, 6, 81, and C = {3, 5, 4, 8, 2}. Find the follow-
ing:

(a) BUC
(b) BnC
(c) B - C
(d) A - B
(e) A - C

2. Let U={0,1,2,3,4,5, 6,7,8,9), A={0,1,2,3}, B={0,2,4}, and C=
{0, 3, 6, 9).

(a) FindAUB, AnB, A, (A n B), and (B U C) - A.
(b) Find P(A), P(B), 7P(A n B), P(A) n P(B).
(c) Is P(A U B) = P(A) U P(B)? Prove your answer.
(d) Why doesn't P(A) make sense?

3. Let A = {0, 3) and B = {x, y, z}. Find the following:

(a) A x B
(b) A x A x B
(c) B x A
(d) B x A x B

32 CHAPTER 1 Sets, Proof Templates, and Induction

4. Let X = {2, 4}, Y = {1, 4}, and Z = {0, 4, 8}. Construct the following sets:

(a) X x Y
(b) X x Y x Z
(c) Y x Z
(d) ZxYxX
(e) ZxXxY

5. Prove Theorem l(d).
6. Prove Theorem 2(d).
7. (a) Draw Venn diagrams to illustrate Theorems 3(a) and 3(b).

(b) Prove Theorem 3(a).
(c) Prove Theorem 3(b).

8. (a) Draw Venn diagrams to illustrate Theorems 4(c) and 4(d).
(b) Prove Theorem 4(c).
(c) Prove Theorem 4(d).

9. Find three sets A, B, and C where A C B U C but A 7 B and A • C.
10. (a) Draw Venn diagrams illustrating the four parts of Theorem 6.

(b) Prove Theorem 6(a).
(c) Prove Theorem 6(b).
(d) Prove Theorem 6(c).
(e) Prove Theorem 6(d).

11. Prove Theorem 7(c).
12. (a) Prove Theorem 9(b) using as a model the proof of Theorem 9(a).

(b) Prove Theorem 9(b) using Theorem 7(c).
13. Let A = {1, 2, {{l, 2}}}.

(a) How many elements does A have? How many elements does 'P(A) have? How
many elements does 7P(P (A)) have?
In parts (b)-(m) determine, whether each of the following is true, and if not,
explain why not.

(b) I E A
(c) {1,2leA
(d) {{1,21) E A
(e) 0EA
(f) Ie EP(A)
(g) {1,2} e P(A)
(h) {{1,2)} e P(A)
(i) 0 E P(A)
(j) 1 E P(P (A))
(k) {1, 2} E P(P (A))
(1) {{1, 211 E P(P(A))
(m) 0 e P'(P(A))

14. For each of the following statements, find the corresponding inverse, converse, and
contrapositive.

(a) If the stars are shining, then it is the middle of the night.
(b) If the Wizards won, then they scored at least 100 points.
(c) If the exam is hard, then the highest grade is less than 90.

Exercises 33

15. Which of the following statements are correct? Prove each correct statement. Disprove
each incorrect statement by finding a counterexample.

(a) A and B are disjoint if and only if B and A are disjoint. (Read the statement
carefully-the order in which the sets are listed might matter!)

(b) A U B and C are disjoint if and only if both the following are true: (i) A and C are
disjoint and (ii) B and C are disjoint.

(c) A n B and C are disjoint if and only if both the following are true: (i) A and C are
disjoint and (ii) B and C are disjoint.

(d) A U B and C are disjoint if and only if one of the following is true: (i) A and C
are disjoint or (ii) B and C are disjoint.

(e) A n B and C are disjoint if and only if one of the following is true: (i) A and C
are disjoint or (ii) B and C are disjoint.

(f) Let U be a universal set with A, B C U. A and B are disjoint if and only if A and
B are disjoint.

16. For (a) and (b), prove the stated result. For (c) and (d), find a counterexample to show
that these conjectures are false.

(a) AE)B=(AUB)-(ANB)

(b) A n (B e C) = (A n B) ® (A n C)
(c) (AOB)@(CND)C(AEC)fA(BED)

(d) (A U B) @ (C U D) _ (A U C) ® (B U D)

17. Given any four integers xI, X2, X3, and x4, none of which is even and none of which is
a multiple of 5, prove that some consecutive product of these integers ends in the digit
1. A consecutive product is one term, two terms in a row, three terms in a row, or all
four terms in a row using the order in which the integers appear in the list xl, x2, X3, X4.
(Hint: Use a proof by cases.)

18. Prove by contradiction that 7 is a prime number.
19. Prove by contradiction that V/2 is not a rational number.
20. Prove by contradiction that Z has no smallest element.
21. Complete the proof of Example 12.
22. For parts (a) and (b), let U be any set, and let X = P(U).

(a) Prove that X with the operations n for meet and U for join is a distributive lattice.
(b) Prove that X with the operations U for meet and n for join is a distributive lattice.

23. Let U be any set, and let X = P(U). Prove that X with the operations U for meet and
n for join is a complemented lattice.

24. Recall that in the definition of a boolean algebra, we did not require that T, I, and
each -x be specified; we merely said they must exist. So, it is natural to ask whether
there might be several elements that could equally well be chosen as T or I or, for
some element x of the boolean algebra, several different possible choices for -x. Show
that in a complemented lattice:

(a) There is only one possible choice of elements T and I satisfying the definition
of a complemented lattice. (Hint: Suppose there were two possible choices for T,
say, T"1 and T 2 . Evaluate T 1 A T 2 in two different ways.)

(b) For each element x of a complemented, distributive lattice, there is only one possi-
ble choice for -x that satisfies the definition of -x. (Hint: Suppose there were two
choices, say, -xl and -x2, for --x. Find two ways to evaluate --xl A x V -X2.)

34 CHAPTER 1 Sets, Proof Templates, and Induction

25. Prove that in a boolean algebra
a V (b Ac) = (a v b) A C

if and only if
a V (b A (a V c)) = (a v b) A (a V c)

and
a A (b V (a A c)) = (a A b) V (a A c)

This property of a boolean algebra is called modularity.
26. Prove that in a boolean algebra, DeMorgan's Laws hold; that is,

-,(x V y) = -x A -,y

-,(x A y) = -X V -'y

27. Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 101 be a universal set. Let A, B, C C U such that

A = {1, 3, 4, 81, B = {2, 3, 4, 5, 9, 101, and C = {3, 5, 7, 9, 101. Use bit representa-
tions for A, B, and C together with UNION, INTER, DIFF, and COMP to find the bit

representation for the following:

(a) AUB
(b) ANBNC

(c) (AUC) nB
(d) (A-B) UC
(e) AAn(B-(CnB))
(f) A-(B-C)
(g) (AUB) U(C-B)

rnThe Principle of Inclusion-Exclusion

A great deal can often be learned just by counting the elements in a set. Unfortunately, it
turns out that even though counting is sometimes very easy, it is sometimes very difficult,
especially if the set whose elements are being counted has a very complicated description.

As we show later, the Principle of Inclusion-Exclusion is a widely used method for count-
ing the number of elements in the union or the intersection of sets.

1.5.1 Finite Cardinality

Before we focus on counting elements in unions of sets that are not disjoint, we need to
make clear some fundamental ideas about how we compute the number of elements in a set.

Definition 1. (Informal) For a finite set, the cardinality of A is the number of elements

in A. If A is infinite, then the cardinality of A is infinite. The cardinality of A is denoted
by IA I.

Example 1. 1{1, 2,311 = 3. 101 = 0. 1IP(0) I = 1. i{{1, 2,3}}I = 1. IZI is infinite.

This definition should be viewed as a temporary one. The topic of cardinality will be
dealt with in Chapter 4, in which this informal definition will be replaced with a more
formal one. In Chapter 4, the idea of two sets having the same cardinality (I X I = I Y I)
will be extended to include sets with infinitely many elements. The informal definition of
cardinality suffices for finite sets; and in this section, only finite sets are considered.

The Principle of Inclusion-Exclusion 35

Theorem 1. (Basic Counting Theorem) Let A and B be subsets of a finite universal
set U.

(a) Let B C A. Then:

i. IBI<IAI.
ii. IA-BI=IAI-IBI.
iii. IBI = IAlifandonlyifB =A.

(b) Let A and B be disjoint finite sets. Then, I A n B I = 0, and I A U B I = IA + I B
(c) IAI=IUI-IAI.

Proof. The proof is left to the reader. M

Example 2. The population of Atlanteas is 830, of which 250 are adult females and 380
are children.

(a) How many adults live in Atlanteas?
(b) How many adult males live in Atlanteas?
(c) How many "females and children" live in Atlanteas?

Solution. The universal set is U = {residents of Atlanteas}. The subsets of interest are

A = {adults}, F = {adult females), M = {adult males), and C = {children}

(a) AI =IUI - ICI =830 - 380 =450 (part (c))
(b) IMI = AI - IFI = 450 - 250 = 200 (since M C A use part (a))
(c) IFUCI = IFI + ICI - IFnCI =250+380-0=630 (since FnC = 0, usepart

(b)) 0

The results in parts (a) and (b) of Theorem 1 are very special, because they make
strong assumptions about A and B. If these assumptions fail, the conclusions are generally
incorrect.

Example3. LetU={0,1,2),A={0,1},andB={1,2).

(a) Since A is not a subset of B, the hypothesis of part (a) does not hold. Neither does the
conclusion. JAI = I B I, but A # B, and IA - B I = 1 #0 = IA I - IBI.

(b) The sets A and B are not disjoint sets, so the hypothesis of part (b) does not hold. We
have IANBj= fl} = 1 #0 and IAUBI = 10,1,211 =3A4= iAI+IBI,
so neither conclusion holds.

A more interesting question is the cardinalities of I A n B I and I A U B I when neither
A nor B is a subset of the other and the sets are not disjoint. There are, of course, some
trivial truths, such as 0 < I A n B I and I A n B I < I A 1. What is interesting, however, is
the relationship between I A n B I and I A U B I. The reader should study the two examples
below and then, before reading any further, try to identify a pattern.

Example 4. Let A = {0, 1, 2, 3, 4, 5, 6, 7} and B = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13}. So,
I A I = 8, 1 B I = 10, I A n B I = 4, and I A U B I = 14.

Example 5. The population of Atlantis is 834, of which 500 are females. There are 175
people who are at least two meters tall, and only 10 of the females are at least two meters
tall. How many males are less than two meters tall?

36 CHAPTER 1 Sets, Proof Templates, and Induction

Solution. Of the 834 people, 500 are females, so 334 are males. Of the 175 people at
least two meters tall, 10 are females. This says that there are at 175 - 10 = 165 males who
are at least two meters tall.

Since there are 334 males in total and 165 of them are at least two meters tall, there
are 169 = 334 - 165 males who are less than two meters tall. The situation is shown in
Figure 1.12.

Males Females

165 10 At least two
meters tall

169 490 Less than two
meters tall

Figure 1.12 Population characteristics.

In Example 5 we first counted how many males were at most two meters tall by di-
viding the set of all Atlanteans up into two sets, one consisting of all the females and the
other consisting of all the males. We did this correctly, because we knew the number of
Atlanteans and the number of females. We then made another such count to find the num-
ber of males who were at least two meters tall. We knew the total number of Atlanteans
who were at least two meters tall and the number of females who were at least two meters
tall. A simple subtraction gave the number of males at least two meters tall. We see that in
computing the size of both sets, we knew the size of two of the sets, and the two subsets
were disjoint. This result is an application of Theorem l(b) in Section 1.5.1. We next deal
with the case in which A and B are not disjoint.

1.5.2 Principle of Inclusion-Exclusion for Two Sets

Example 6. A deck of cards has four suits: Clubs, Diamonds, Hearts, and Spades. Dia-
monds and Hearts are called red suits; Clubs and Spades are called black suits. Each suit
contains 13 cards with values Ace(l), 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King. How
many cards are black or have the value of 3?

Solution. Let A be the set of black cards and B the set of 3's. The example asks for the
size of I A U B I. Clearly, I A I = 26, and I B I = 4. The problem is that two of the 3's are
also black. In this case, I A n B I # 0. The count I A I + I B I overcounts by I A n B I. The
answer is

IAUB = IAI+IBI-IAnBI =26+4-2=28 U

The card problem in Example 6 is a special example of the Principle of Inclusion-
Exclusion that we prove in more generality next.

Theorem 2. (Principle of Inclusion-Exclusion for Two Sets) Let A and B be finite
sets. Then,

IAUBI = IAI+IBI - IAnBI

The Principle of Inclusion-Exclusion 37

The number of elements in the union of two finite sets is the sum of the number of elements
in each of the sets minus the number of elements in their intersection. A Venn diagram for

these sets is shown in Figure 1.13.

U

A B
ArnB

Figurel.13 IAuBI.

(What the proof entails.) What procedure could be used to count the elements in A U B?

First, count all the elements of A. Then, count all the elements of B. In the process,
all the elements of A n B have been counted twice, so subtract I A n B I to compen-
sate.

Proof The set AUB=(A-B) U(AAB)U(B-A), and any pair of (A-B),

(A n B), and (B - A) are disjoint (Theorem 6 in Section 1.3.2). It follows immediately
that (A - B) and (A n B) U (B - A) are also disjoint. Hence, by using Theorem l(b) of
this section, we get

IA U B I =IA - B I + I (AN B) U (B - A)I
=I[A--BI+IANBF+IB--AI

By Theorem 6(b)

IAI=IA-BI+IANBI
IBI = IAnBI-+-IB- AI

Putting the last two equations together gives

I A I+ IB I=A - BI+2. 1AAnB I+ IB -A I
IAI+IBI-IAnBI = IA-BI+IAABI+IB-AI

Now, substituting this into the equation for I A U B I, we get the required result:

IAUBI=IAI+IBI-IAnBI I

1.5.3 Principle of Inclusion-Exclusion for Three Sets

U
Figurel.14 IAuBUCI. A B

C

38 CHAPTER 1 Sets, Proof Templates, and Induction

The decomposition of two sets into disjoint subsets is fairly obvious. For three or more
sets, however, this is not as obvious a step. Figure 1.14 will help you to understand the next
theorem if you identify each of the regions of A U B U C.

The sets of interest are identified as A, B, C, A n B, A n C, B n C, and A n B n C.

Theorem 3. (Principle of Inclusion-Exclusion for Three Sets) Let A, B, and C be
finite sets. Then,

IAUBUCI = IAI+IBI+ICI-+AnBI-IAAnCI-lBnCI+IAAnBfnCI

Proof. The same style of proof as used in Theorem 2 could be used, but in this case, there
would be seven pieces to keep track of instead of three. A clearer way to proceed is to use
Theorem 2 in Section 1.5.2.

A U B U C = I (A U B) U C I (by the definition of the union of three sets)
= IA U B I + I C I - I (A U B) n C I (by Theorem 2 in Section 1.5.2)
= I A U B + I C I - I (A n C) U (B n C) I (by Distributive Law for Intersection)

= I A U B + I C I - (I A n C I + I B n C I - I (A n C) n (B n C) I) (by Theorem 2

in Section 1.5.2 on (A n C) U (B n C))

= I A U B I + I C I - I A n C - B CI + I(A n C) n (B A C)I

(removing parentheses)

=IAUBI+ICI-IAnCI-IBnCI+IAnBACI

(simplifying I(A n C) n (B n C)I)

=IAI+IBI-IAnBI÷ICI-IAnCI-IBnCI+IAnBnCI

(by Theorem 2 in Section 1.5.2 again)

=IAI+IBI+ICI-IAnBI-IAnCI-IBnCI+IAnBnCI

When the Principle of Inclusion-Exclusion is applied in the next example, the solution
becomes straightforward.

Example 7. A particular political campaign mailing is expected to appeal to three groups
of people: liberals, people earning more than $45,000 a year, and people with children un-
der five years of age. The mailing list includes 30,000 people, including 15,000 conserva-
tives and 15,000 liberals. Of the 30,000 on the mailing list, 17,500 earn more than $45,000
a year, including 10,001 of the liberals. In the set of people, 3500 have children under five
years of age, including 1000 conservatives, 2500 liberals, and 900 of those who earn more
than $45,000 a year. Only one of the liberals earns more than $45,000 a year and also has
children under the age of five. How many people on the mailing list are liberals, or earn
more than $45,000 a year, or have children under five years of age? (As usual, by or we
mean the inclusive or.)

Solution. Among people on the mailing list, let L be the set of liberals, E the set of
people who earn more than $45,000 a year, and C the set of people who have children
under five years of age (see Figure 1.15).

The Principle of Inclusion-Exclusion 39

L E U

2499 899

101

C

Figure 1.15 Counting liberals and children.

The Principle of Inclusion-Exclusion for Three Sets says that

ILUEUCI=ILI+IEI+ICI-ILAnEI-ILAnCI-IEAnCI+ ILAnE nCI

= 15,000 + 17,500 + 3500 - 10,001 - 2500 - 900 + 1
= 22,600 U

Here, as often happens, there is a different way to count this collection of elements.
First, note that of the 900 people who have children under five years of age and who
earn more than $45,000 a year, only one is a liberal; the other 899 are conservatives. So,
among the 1000 conservatives with children under five years of age, 1000 - 899 = 101
do not earn more than $45,000. There are 15,000 liberals, plus 17,500 - 10,001 = 7499
conservatives making more than $45,000 a year, plus 101 conservatives with children under
five years of age. Therefore, the answer is

15,000 + 7,499 + 101 = 22,600

The Principle of Inclusion-Exclusion is also used to solve problems in number theory.
Before we explain that example, we need to remind ourselves of one fact from number
theory: For 2, 5, and 30, it is clear that 2130 and 5130. Moreover, it is clear that 2.5 =
10130. It is not always true, however, that the product of two divisors of a number is again
a divisor of the number. For example, 5, 10, and 30 have the property that 5130 and 10130,
but 5. 10 = 50130 is false. What is true is that if m is an integer and both p and q are
primes such that pim and qim, then p. q~m.

Example 8. How many natural numbers between 1 and 30,000,000 (including 1 and
30,000,000) are divisible by 2, 3, or 5?

Solution. Let

Di = {n e- N: 1 < n < 30,000,000 and n is divisible by i}

What is I D2 U D3 U D5 I? The number is difficult to count directly, so we use the Principle
of Inclusion-Exclusion. I D2 I = 15,000,000, I D3 I = 10,000,000, and I D5 I = 6,000,000.
How about I D2 n D3 I? Since 2 and 3 are both prime, an integer n is divisible by both 2
and 3 if and only if n is divisible by 2.3 = 6. So D2 n D3 = D 6, and I D6I = 5,000,000.
Similarly,

I D2 n D5 I = I DioI = 3,000,000

I D3 Ds I = I D15I = 2,000,000

40 CHAPTER 1 Sets, Proof Templates, and Induction

and

I D2 n D3 n D 5 1 = I D301 = 1,000,000

Now, by the Principle of Inclusion-Exclusion for Three Sets,

I D 2 U D 3 U D5 I = I D21 + I I + I D - I D2 n D3 I - I D 2 n D5 I
-I D 3 n D5 1 + I D2 n D 3 n D5 I

= 22,000,000 U

Often, a problem is posed in terms of finding how many objects do not have one or
more of a set of properties. For example, suppose we were asked to find the number of
integers between 1 and 30,000,000 that are not divisible by any of the integers 2, 3, or 5.
The solution is I D2 U D3 U D5 I where D2 , D3, and D5 are defined as in Example 8. The
answer is

I D2 U D3 U D5 I= 30,000,000 - I D2 U D3 U D5 I

In Example 8 we have shown that

I D2 U D3 U D5 I = 22,000,000

so

ID2 U D3 U D51 = 8,000,000

Next, we study an example that looks quite different from counting the number of
values having some set of properties.

Example 9. (The Hat Check Problem) Three Victorian gentlemen, called G1 , G2,
and G3, arrive at a restaurant and check their top hats. The cloakroom attendant loses the
numbers on the three hats and doesn't know which hat is whose. Rather than admitting
the error, the attendant gives the three hats back to the three gentlemen at random. Let
hi represent the hat that belongs to gentleman Gi where 1 < i < 3. The notation hihjhk
represents hat hi being given to G1 by the attendant, hj being given to G2 by the attendant,
and hk being given to G3 by the attendant.

How many random assignments of hats result in at least one gentleman receiving his
own hat?

Solution. There are six ways the three hats can be handed back. The first gentleman to
request his hat back may be given any of the three hats. The second gentleman may be
given either of the two remaining hats. The third gentleman must get the last hat. Multiply
3 x 2 x 1 = 6 to get the number of possible ways.

Of those six ways to hand back the hats, obviously only one gets each hat back to
its owner. How many ways get at least one hat back to its owner? This question can be
answered using the Principle of Inclusion-Exclusion.

Let U be the set of all six ways the attendant can give the three top hats back. Let Hi,
for 1 < i < 3, be the set of all the ways where Gi gets his own hat back. Now, I H1 I = 2,
for if G1 gets his own hat back, then there are two hats to return to G2 and G3 . These
two hats can be returned to these two gentlemen in two different ways. By symmetry,
InlI = InH2 1 = I H3 1 = 2. If G1 and G2 get their own hats returned, then there is one hat

The Principle of Inclusion-Exclusion 41

left to be given to G3 . There is one way to return this hat to G3. Therefore, IH, n/H21 = 1.
By symmetry, IHt n /21 = IHt n/ H3 1 = IH2 n H3 1 = 1. Finally, IH, n H 2 n H3 1 = 1.

By the Principle of Inclusion-Exclusion, we compute I H1 U H2 U H31 as

I H, U H2 U H3 I = I H1 I + I H2 I + I H3 I- HI n1H21 - I H, nn 31

-I 12 n H3 I + I H, nn 2 n H31

=2+2+2-1-1-1+1=4

That is, of the six possible ways to hand back the hats, in four of them at least one gentle-
man gets his own hat back. 0

1.5.4 Principle of Inclusion-Exclusion for Finitely Many Sets
Notice the alternating plus and minus signs in the Principle of Inclusion-Exclusion. For the
union of three sets, add the sizes of all the individual sets (intersections of one set), subtract
the sizes of the intersections of two sets, and add the size of the intersection of all three
sets. This alternation continues for computing the size of the union of more than three sets.

To state the next theorem neatly, we define two terms. Neither term is commonly used,
but each is quite understandable in the context of the Principle of Inclusion-Exclusion.

Definition 2. Let A 1, A2,..., A, be sets. An odd intersection from

A 1, A2,..... A.

is an intersection of an odd number of the Ai 's. An even intersection is an intersection of
an even, positive number of Ai 's.

Example 10. Let A 1 , A2, A3 , A4 , and A5 be sets. Odd intersections are:

n = 1 : A 1 , A2 , A3 , A4 , A5

n = 3: A 1 n A 2 n A3 , A1 n A2 n A4 , A, A A2 n A 5 , A1 n A3 n A4 ,
A1 A A3 A A5 , A 1 n A4 n A 5 , A2 n A3 A A4 , A2 n A3 n A 5 ,
A2 n A4 n A5, A3 A A4 n A5

n = 5: A, A A2 A A3 A A4 n A5

Even intersections are:

n=0:0
n =2 : A1 A A2 , A2 A A3 , A3 A A4 , A4 A A5 ,

A, n A3 , A2 A A4, A3 A A5,
A 1 n A4 , A2 n A5 ,
A1 A A5

n = 4: A1 n A2 n A3 A A4 , A 1 A A 2 A A3 A A5 ,
A1 n A3 n A4 n A5 , A2 A A3 n A4 n A5 U

Theorem 4. (Principle of Inclusion-Exclusion For Finitely Many Sets) Let A1 , A2,
A.... A, be finite sets (n > 1). Then, I A, U A2 U ... U An I equals the sum of the

cardinalities of all odd intersections from A1 , A2 ... , An (including single sets) minus
the sum of the cardinalities of all even intersections from A1 , A2 An.

42 CHAPTER 1 Sets, Proof Templates, and Induction

rn Exercises

1. In a class of 35 students who are either biology majors or have blonde hair, there are
27 biology majors and 21 blondes. How many biology majors must be blonde?

2. A film class had 33 students who liked Hitchcock movies, 21 students who liked Spiel-
berg movies, and 17 students who liked both kinds of films. How many students were
in the class if every student is represented in the survey?

3. A tennis camp has 39 players. There are 25 left-handed players and 22 players who
have a two-handed back stroke. How many left-handed players have a two-handed
back stroke if every player is represented in these two counts?

4. A car manufacturer determines that automatic transmission, power steering, and a
CD player are the three most important features in generating sales. The production
schedule for the next day has these features incorporated in cars as shown in the fol-
lowing table:

Car Automatic Transmission Power Steering CD Player

A x x

B x x x

C x

D x x

E x

F x x

G x x

H x x

(a) How many cars have at least one of these features? Even though you can see the
answer, use the Principle of Inclusion-Exclusion to derive it.

(b) How many cars have two or more of these features? Again, use the Principle of
Inclusion-Exclusion to derive the answer.

5. A marketing class did a survey of the number of fast-food outlets near campus. The
results of the survey showed the following:

Type of Food Sold No. of Outlets

Hamburgers 15

Tacos 25

Pizza 21

Hamburgers and tacos 11

Hamburgers and pizza 10

Tacos and pizza 14

Hamburgers and tacos and pizza 9

Served none of these items 5

Exercises 43

How many fast food outlets are there near campus?
6. At the beginning of the semester, an instructor of a music appreciation class wants to

find out how many of the 250 students had heard recordings of the music of Mozart,
Beethoven, Haydn, or Bach. The survey showed the following:

Composer Listened to by Students No. of Students

Mozart 125

Beethoven 78

Haydn 95

Bach 62

Mozart and Beethoven 65

Mozart and Haydn 50

Mozart and Bach 48

Beethoven and Haydn 49

Beethoven and Bach 39

Haydn and Bach 37

Mozart, Beethoven, and Haydn 22

Mozart, Beethoven, and Bach 19

Mozart, Haydn, and Bach 18

Beethoven, Haydn, and Bach 13

Mozart, Beethoven, Haydn, and Bach 9

How many students had listened to none of the composers?
7. A marketing class did a sample survey to find out how many of a class of 125 people

owned CDs of the Beatles, Alabama, or Bob Marley. The results of the survey showed
the following:

Recording Artist No. of Students Owning CDs

Beatles 65

Alabama 46

Bob Marley 29

Beatles and Alabama 18

Beatles and Bob Marley 21

Bob Marley and Alabama 12

Beatles, Bob Marley, and Alabama 9

How many of the students owned no CD featuring these performers?

44 CHAPTER 1 Sets, Proof Templates, and Induction

8. The language department wanted to know how many of the 2000 students at the uni-
versity were not studying a language. Class rosters showed the number of students
studying some combination of French, German, and Spanish, as recapped in the fol-
lowing table:

Language No. of Students

French 75

German 68

Spanish 199

French and German 32

French and Spanish 41

German and Spanish 11

French and German and Spanish 7

How many students were not studying a language?
9. How many integers between 1 and 250 are divisible by 3 or 5?

10. In the game of tic-tac-toe, every game ends with one player winning or with a draw.
In a tic-tac-toe tournament, the players merely count the number of times they win
or draw. The match winner is the player with the larger total. If a match between two
players A and B consists of 25 games, player A has a score of 19, and player B has a
score of 23, how many draws were there?

11. There are 76 students enrolled in Anth229, Intermediate Anthropology. Each of these
students is also required to enroll in either one or both of Bio1313, Physiology, and
Engl218, Victorian Poets. Of these 76 students, there are 35 in Bio1313 and 49 in
Engl218. How many students are enrolled in all three classes?

12. The enrollment for the four courses Bio1212, Polil 15, Econ313, and Fina215 is 108,
203, 315, and 212, respectively. No student is in all four of these courses. No student is
in the three courses Biology 212, Fina215, and Poli 115. No student takes Econ313 and
Fina215 in the same semester. Polil 15 and Fina215 are not allowed in the same term.
There are 39 students in both Bio1212 and Poli 115, and 48 students in both Polil115
and Econ313 as well as in the two courses Bio1212 and Econ313. Bio1212, Poli115,
and Econ313 have a common enrollment of 73. Bio1212 and Fina215 have a common
enrollment of 67. How many different students are enrolled in these four courses?

13. How many numbers between 1 and 1000 are not divisible by 3, 7, or 9?
14. How many integers between 500 and 10,000 are divisible by 5 or 7?
15. (a) How many numbers between 1 and 70,000,000, including both 1 and 70,000,000,

are divisible by 2, 5, or 7?
(b) How many numbers between 1 and 6,000,000, including both 1 and 6,000,000,

are divisible by 4, 5, or 6?

16. Determine how many numbers between 1 and 21,000,000,000, including 1 and
21,000,000,000, are divisible by 2, 3, 5, or 7.

17. How many numbers between 1 and 21,000,000, including both 1 and 21,000,000, are
divisible by 2, 3, or 5 but not by 7?

18. Find the number of integers between 1 and 1000, including both 1 and 1000, that are
not divisible by any of 5, 6, or 8.

Mathematical Induction 45

19. Find the number of integers between 1 and 1000, including 1 and 1000, that are not
divisible by any of 4, 5, or 6.

20. Find the number of integers between 1 and 1000, including 1 and 1000, that are not
divisible by any of 4, 6, 7, or 10.

21. (a) Extend Example 9 to cover four Victorian gentlemen and four top hats. With four
gentlemen, there are 4 x 3 x 2 x 1 = 24 ways to give the hats back.

(b) Modify part (a) to ask the number of ways, with four gentlemen and four hats, that
at least two gentlemen can get their own hats back.

(c) Solve Example 9 using an alternative proof that counts the number of ways that
no gentleman gets his own hat back and subtracts that value from the total number
of ways for the hats to be given back.

(d) Challenge: Solve part (b) using the same methods as for part (c).

rnMathematical Induction

Mathematical induction is a powerful and fundamental technique for proving results about
all natural numbers. It is most important when it is possible to write down a proof for each
individual natural number but difficult-or even impossible-to give a single direct proof
that works for all natural numbers. This proof technique also often is used to prove that
algorithms are correct and to determine expressions for the complexity of algorithms.

1.7.1 A First Form of Induction

One of the easiest methods (algorithms) for sorting a list of numbers into increasing order
is called selection sort. This algorithm first finds the smallest element in the list and then
interchanges it with the first element. After removing the smallest element from further
consideration, the algorithm finds and removes from consideration the smallest element
remaining (those elements other than the element now first in the list). This process is
repeated until the list has just one element remaining. Since finding a smallest element
in a set with n elements requires n - 1 comparisons, a selection sort, operating on n + 1
numbers, always makes

n +(n - 1) +(n -2) +..+ I

comparisons.

Example 1. Carry out a selection sort on the list 2, 1, 4, 3, 5.

Solution. In step i of the process, the ith smallest element is found among the elements
in positions i, i + 1 ... 5 and is interchanged with the element in position i where 1 <
i < 4. (See Selection Sort Steps on page 46.)

To appreciate how many comparisons are needed, it is necessary to find a simpler way
to write the expression for the total number of comparisons. 0

How do you go about adding up all the natural numbers from 0 to n where n can be
5, or 500, or 5000, or any other number? We all know how to do it in a tedious fashion for
any particular n, but that brute force method does not give an easy way to appreciate the
size of the sum for arbitrary n. (Nor does it give a way to compute the sum quickly.) The
problem is to find a simpler way to express the sum.

46 CHAPTER 1 Sets, Proof Templates, and Induction

Selection Sort Steps

Initial order 2 1 4 3 5

Step One 2 1 4 3 5 Identify smallest (nonboxed element) in
four comparisons

W 2 4 3 5 Swap2with I
Step Two [] 2 4 3 5 Identify smallest (nonboxed element) in

three comparisons
EL [4 3 5 No swap needed

Step Three W [4 3 5 Identify smallest (nonboxed element) in
two comparisons

[] [4 5 Swap4with3
Step Four [] [[4 5 Identify smallest (nonboxed element) in

one comparison
W] [5 No swap needed

Step Five J] M M [4] 5 Identify smallest (nonboxed element) in
zero comparisons

Final Order 1 2 3 4 5 Number of comparisons = 4 + 3 + 2 + 1 + 0

One way to proceed is to try to find a pattern for small instances of the problem: Add
up, say, the natural numbers from 0 to n for n = 0, 1, 2, 3, 4, and try to find a pattern.
Patterns can be very misleading, however, because a pattern that may look correct for the
first few numbers may very easily fail later on. If a possible pattern is found, it is necessary
to prove whether it works in general. Consider the sums for the first few integers:

0=0

0+1 = 1

0±1+2 = 3

0+1+2+3=6

0 + 1 + 2 + 3 + 4 10

0+1+2+3+4+5=15

To find a different form for the problem often requires an idea that is not particularly
obvious. In this case, if you multiply each of the sums by two and then factor the doubled
value, you can hopefully see a pattern emerging. This transformation of the sums gives

2.0= 0=0.1

2.(0+1)= 2=1.2

2.(0+1+2)= 6=2.3

2.(0+1+2+3)= 12=3.4

2.(0+ 1 +2+3+4) = 20=4.5

The pattern that seems to be emerging is

2.(0+1+2+--.+n) =n.(n+1)

Mathematical Induction 47

It is not obvious that this formula is true for all n. It is true for n = 0, 1, 2, 3, and 4, but as
yet, we have no reason to believe it is true for, say, n = 12, or 347, or any of the integers
for which we have not shown it to be true.

What is needed is a method to prove that the conjectured formula is correct for all
n e N. The standard method of proof for a result claimed to hold for every natural num-
ber is called mathematical induction. Such proofs use an axiom of arithmetic called the
Principle of Mathematical Induction. This is not like Template 1.2 (Set Inclusion), since
we are not proving the same thing for every element of N. For example, for the sum of the
first n integers, suppose we want to prove the sum is 6 for n = 3 but 15 for n = 5. Before
stating the general principle, we present an example showing how the principle is used to
prove that our conjectured formula for adding the natural numbers from 0 to n is true for
all natural numbers n.

Theorem 1. For any natural number n,

n . (n + 1)

2

Proof. Step 1: (Base step) Prove the result for n = 0, the smallest natural number.
The sum on the left-hand side of the equals sign is just the sum of all the natural numbers
starting at 0 and going up to 0-that is, it is just 0. The number on the right-hand side is
0. (0 + 1)/2, which is also 0. Therefore, the two sides are equal, and the result is true for
n =0.
Step 1: (Inductive step) Let n be any natural number for which the result is true. Prove
the result is also true for n + 1. The assumption that the result is true for n is called the
inductive hypothesis or inductive assumption. Assuming the result is true for n means
that

n.(n + 1)
2

Use this assumed-correct result to prove the required result for n + 1-that is, to prove that

(n + 1). (n + 2)
2

To prove this, we start by regrouping the terms on the left-hand side:

0+ l + 2+...+n+(n+ l)=(O+ I + 2 +...+n)+(n+ 1)

By the inductive hypothesis, the result is true for n, so we can substitute n(n + 1)/2 for the
terms in the first pair of parentheses on the right-hand side. We get

(0 + I+ 2- . -n) -- (n + 1) (n + 1) + (n + 1) (using the inductive hypothesis)
2

(n ± 1) ±2 (n + 1) (simplifying the algebra)

2
(n + 1). (n + 2)

2

This means the formula is true for n + 1.

48 CHAPTER 1 Sets, Proof Templates, and Induction

Since we have proved that the formula is true for n = 0 and is true for n + 1 whenever
it is true for n, we can conclude that the formula is valid for all natural numbers. This
reasoning is call the Principle of Mathematical Induction. 0

Let T= {n E N : 0+... +n = n(n + 1)/2}:

1. Since 0 E T by the base step, by the inductive step, 0 + 1 = 1 E T.
2. Apply the inductive step again: since 1 E T, 1 + 1 = 2 E T.
3. And again: since 2 c T, 2 + 1 = 3 E T.

To prove that 100 E T, apply the inductive step 100 times. To prove that 10,000 E T,
apply it 10,000 times. For any specific natural number n, one can show that n E T by
showing that 0 E T and then applying the inductive step n times. An inductive proof is
often visualized as an infinite line of dominoes, with the dominoes being pushed over one
at a time starting with the first one. Figure 1.16 gives another way of thinking about what
happens in an inductive proof.

0 1 2 3 4 5 6 7 8 9 10 11

Figure 1.16 Falling dominoes.

A First Form of the Principle of Mathematical Induction

The Principle of Mathematical Induction gives a method for writing a single proof that
proves all natural numbers are in T. Sometimes, this statement of the Principle of Mathe-
matical Induction is called its first form.

Principle of Mathematical Induction

Let T be a subset of the natural numbers (that is, T C N), and let no E N. Suppose

(Base step) no E T, and

(Inductive step) for all natural numbers n such that n > no, if n e T, then
n+1 E T.

Then, every natural number greater than or equal to no is in T. That is,

T = {n : n E N and n > no]

Mathematical Induction 49

In the proof of Theorem 1, T was defined to be the set of all natural numbers for which
the formula

n

Y- i = n(n + 1)/2
i=O

is true. So, in that case, we choose no = 0. The base step of that proof showed that no =

0 E T. The inductive step showed that if n E T, then n + 1 (" T. Now, by the Principle of
Mathematical Induction, T = {n e N: n > no = 0} = N.

We give a picture of what is involved in an inductive proof in Figure 1.17.

Base step Inductive step

0M

Principle of Mathematical Induction

Values for which the property is TRUE

Figure 1.17 The parts of an inductive proof.

1.7.2 A Template for Constructing Proofs by Induction

Template 1.12 should help you to understand and construct a proof by induction.

To construct a proof using the Principle of Mathematical Induction, choose an no E
N appropriate to the problem. Let T- = In E N : n >_ no and property P holds for n}I:

"* (Base step) Prove that no e T.
"* (Inductive step) Let n E 7, and prove that n + 1 E T. The assumption that n E

T is called the inductive hypothesis.
"* Infer by the Principle of Mathematical Induction that every natural number n > no

is in T.

50 CHAPTER 1 Sets, Proof Templates, and Induction

The examples that follow show the power of this proof method. Some of the inequal-
ities verified here by induction will appear again in later chapters when we consider the
complexity of programs.

Example 2. For any natural number n such that n > 2, show that n + 1 < n2 . Since we
wish to prove our result for every n such that n > 2, we must choose no = 2 and let

T= {n E N: n > 2 andn + 1 < n 2j

According to our template, the proof now has three essential parts: (i) a base step, (ii) an
inductive step, and (iii) an application of the Principle of Mathematical Induction.

For the base step, we must prove that no c T. In this case, we must prove for no = 2
that no + 1 < n2. When the proof of the base step is complete, we know T 0 0, because
no E T. We would then like to know what elements greater than no are also in T. The
elements of T other than no are found using the inductive step and the Principle of Math-
ematical Induction.

The inductive step begins by picking an arbitrary element n of T. We then write
out property P for n to see what this assumption tells us. Here, it means n > 2 and
n+l <n2.

To complete the inductive step, we must show that n + 1 e T. We write out property
P for n + 1 to see what we need to prove. In this case, it means that n + 1 > 2 and (n +
1) + 1 < (n + 1)2. We must then figure out how to prove that property P holds for n + 1
knowing that property P is true for n. When we complete this proof, the Principle of

Mathematical Induction tells us that for all n such that n > no, we have n E T.

Solution. Let no = 2. Let T = {n e N : n > 2 and n + 1 < n 2). Prove by induction that
n E T provided n > 2.

(Base step) To show that no E T, show that 2 > 2 and 2 + 1 < 22. Both are obviously
true. Therefore, 2 e T.

(Inductive step) Let n > no. Show that if n e T, then n + 1 E T. That is, assume n > 2
and n + 1 <n 2, and prove that (i) n + 1 > 2 and (ii) (n + 1) + 1 < (n + 1)2. To prove
(i), observe that since n e T, we have n > 2. Therefore, n + 1 > 2. To prove (ii), use the
following chain of equalities and inequalities:

(n + 1)2 = n2 + 2n + I
> (n + 1) + 2n + 1 (using the inductive hypothesis: n 2 > n + 1)

> (n + 1) + 1 (using the inductive hypothesis: n > 2 > 0)

Therefore, n + I E T.
By the Principle of Mathematical Induction, T = {n E N : n > 2}. 0

You can see the parts of the template being used as you study Example 3. Identify the
steps of the template as they appear in this example.

Example 3. Recall that n! = n . (n - 1). (n - 2)... 2. 1. For any natural number n such
that n > 4, prove that n! > n2 .

Solution. Let no = 4. Let T = {n E N : n > 4 and n! > n2}. Prove by induction for
every natural number n that n E T provided that n > 4.

Mathematical Induction 51

(Base step) Show that 4 e T. Since 4! = 24 and 42 = 16, we have 4! > 42, so 4 E T.

(Inductive step) Let n E T, then show that n + 1 e T. As before, it is trivial to show
that n + 1 > 4, so it only remains to show that (n + 1)! > (n + 1)2. To prove this, use the
following chain of equalities and inequalities:

(n + 1)! = (n + 1) .n! (definition of n!)

> (n + 1). n2 (using the inductive hypothesis)

> (n + 1). (n + 1) (use Example 2 in Section 1.7.2 with n > 4 > 2)

= (n + 1)2

Therefore, n + 1 E T.
By the Principle of Mathematical Induction, T = {n E N : n > 4}. 0

You should now show that no could not be chosen smaller.
In Examples 2 and 3 in Section 1.7.2 we did not prove the results were true for all

n E N. It is quite typical that important relations may not be true for some finitely many
small integers and, instead, are only true for all integers greater than or equal to some
"large" integer.

1.7.3 Application: Fibonacci Numbers

A famous and often-studied sequence of numbers, called the Fibonacci numbers, was
defined by Leonardo Fibonacci (1170-1250, born in Italy).2 The first few numbers in this
sequence are

1, 1,2,3,5,8, 13, 21....

Denote the nth Fibonacci number by Fn, and let the first element of the sequence be
denoted as Fo. The defining rule for the elements of this sequence is Fo = F1 = 1 and
Fn = Fn- 1 + Fn- 2 for n > 2. After the initial values given for F0 and F1 , the following
Fibonacci numbers can be found by adding together the two previous Fibonacci numbers;
for example, F2 is the sum of F1 and F0 . The first six Fibonacci numbers are

Fo = F1 = 1

F2 = F1 + Fo = 2

F3 = F2 + F 1 = 3

F4 = F3 + F2 =5

F5 = F4 + F3 = 8

We computed the nth Fibonacci number for n > 2 by adding together the preceding two
Fibonacci numbers. A definition of this sort is called a recursive definition, because the
value we want is given in terms of previously computed values. (We could not compute a
value for F4 directly from the value 4 as we could if the sequence were defined as G(n) =

4 . n.) The resulting sequence is called a recursively defined sequence.
The Fibonacci numbers are probably best known as a source of recreational mathemat-

ics but are also the source of inspiration for searching and sorting methods. Many results
concerning Fibonacci numbers are proved by induction. Example 4 shows a typical proof.

2 We will abbreviate born to b. for other famous persons.

52 CHAPTER 1 Sets, Proof Templates, and Induction

The Fibonacci numbers were defined by Leonardo of Pisa, filius (son of) Bonacci,
who lived around 1200. Leonardo developed the sequence in predicting the size of
a population of rabbits. F, is the number of pairs of rabbits he predicted one would
have n months after buying a pair of baby rabbits under the assumption that a pair of
rabbits matured in one month and produced a pair of offspring each month thereafter.

Month (n) Old Pairs New Pairs F.

0 I

2 4 2
3

4

5

Furthermore, he assumed that the rabbits always produced a male and a female as
each pair of offspring. So, Fo = 1 for the pair just purchased. F1 = 1, because after
one month, the original pair has just matured and are only now ready to start breeding.
F2 = 2, because the original pair has just had one pair of offspring. F3 = 3, because
the original pair has had another pair of offspring and the first offspring have just
matured and are only now ready to start breeding. What happens during month n?
All the rabbits alive during month n - 1 are still alive. In addition, all the rabbits alive
during month n - 2 have matured, and each pair has had one pair of offspring. Hence,
Fn = Fn-1 + Fn-2.

Example 4. Show that the identity F1 + F3 + F5 + .. + F2n- 1 = F2n - 1 is true for
all n > 1.

Solution. Let no = 1. Prove the identity by induction on n. Let

T={nEN:n> landFl+F 3 +...+F 2n-1 =F 2n-1}

Prove that T = {n E N : n > 11.

(Base step) Prove the result for n = 1. The left-hand side in this case is just the sum
of all the Fibonacci numbers starting with F1 and ending with F(2 . I-1). There is just one
such Fibonacci number, F 1, and the value of the left-hand side is 1. The right-hand side is
F 2 . 1 - 1 = F2 - 1 = 2 - 1 = 1. So, the two sides are equal, and 1 E T.

Mathematical Induction 53

(Inductive step) Let n > no. Show that if n E T, then n + 1 e T. Since n > 1, n + 1 >
1. Assume for n that

F1 +k F3 +t.. + F2n-1 = F2n - I

and prove that

F1 + F3 + ... + F2n-1 + F2(n+l)-l = F 2(n+l) - 1

The required computation is

F1 + F3 + • • + F2n- 1 + F 2(n+l)-i
= (F1 ± F3 + + F2n-l) + F2(n+1)-1 (making the formula for n clear)
= F2n - 1 + F2(n,+I)- (using the inductive hypothesis)
= (F2 n + F2 (n+l)) - 1 (rearranging terms)
= F2n+ 2 - 1 (using the definition of F2z,+2)
= F 2 (n+l) - 1

Therefore, n + 1 E T.
By the Principle of Mathematical Induction, T = {n e N : n > 1). E

1.7.4 Application: Size of a Power Set

The next result was referred to in the discussion of computer switches in Section 1.3.4 and
will be proved several times in the book using several different ideas. Recall that 2(X),
the power set of X, is the set of all subsets of X.

Theorem 2. (Size of a Power Set) Let X be any finite set with n elements. Then, 2(X)
has 2' elements.

The proof of Theorem 2 can be proved by induction on the number of elements in
X. First, we prove an auxiliary result called a lemma. A lemma is the same as a theorem,
except that the result is not particularly important in its own right but only gives a step in
another proof. Just as procedures divide programs into manageable parts, lemmas are tools
for dividing a proof into smaller, more comprehensible pieces.

Lemma 1: Let X be any set, and let b ' X. If X has (exactly) n subsets, then X U [b}
has exactly 2n subsets.

Proof. List the subsets of X:

S 1, S 2 , S 3 ,. Sn

54 CHAPTER 1 Sets, Proof Templates, and Induction

Each of these is also a subset of X U (b). Now, create n more subsets of X U [b):

S, U {b}, S2 U 1b} ... , Sn U (b}

Obviously, each Si U {b} is also a subset of X U {b}. Now, we have a list of 2n subsets of
X U {b}:

S1, S2,..., Sn, S1 U {b), S2 U {b},..., Sn U (b}

Show that (i) no subset of X U (b} appears twice in this list and (ii) every subset of X U {b}
appears in this list.

Once these two assertions have been proven, it will follow that these 2n subsets are all
the subsets of X U {b), so X U {b} has 2n subsets. We prove (ii) and leave the proof of (i)
as Exercise 32 in Section 1.9 for the reader.

To prove (ii), follow Template 1.1 (Element Membership in a Set). Let S be an ar-
bitrary subset of X U {b}. If b 0 S, then S C X, so S is one of the Si's. If b e S, let
S' = S - 1b}. Then, S' C X, so S' is some Si, and then S is Si U (b} (for the same i). In
either case, S is on the list. U

Proof of Theorem 2. Let T = {n c N : for every finite set X with n elements, P'(X) has
2" subsets}. We will prove by induction that T = N.

(Base step) Let no = 0. The only set with zero elements is 0. The only subset of 0 is 0,

so P(0) has I = 20 elements. Therefore, 0 E T.

(Inductive step) Let n > 0. Show that if n E T, then n + 1 E T. Using the hypothesis
that every set with n elements has 2' subsets, prove that every set with n ± 1 elements
has 2n"+ subsets. Let X be an arbitrary set with n + 1 elements. Pick one element y E X,
and let Z = X - (y}. Then, Z has n elements, so by the hypothesis, Z has 2' subsets. By
Lemma 1, X = Z U [y} has 2.2" = 2n+1 subsets. Therefore, n + 1 E T.

By the Principle of Mathematical Induction, T = N. U

1.7.5 Application: Geometric Series

A finite geometric series, or just a geometric series, is the sum of terms of the form a. r
where a, r E R - (0), r : 1, and 0 < i < n. For example,

n

Sari =a +a.r +a.r2 +.+.a rn

i=0

is a geometric series. As another example, let a = 5, r = -3, and n = 5, giving

5 + 5. (-3) + 5. (-3)2 + 5. (-3)3 + 5. (-3)4 5.(-3)5

as a geometric series. Although

20

L 3. 2'

i=5

Mathematical Induction 55

does not look like a geometric series, it is easy to transform this finite geometric series into
a more familiar looking expression:

20
E 3.2i = 3.32+3.64+...+3.220
i=5

= 96.1 +96.2+.-. +96.215
15

= 196.2/
i=O

A very useful feature of a geometric series is that we can find a closed form for its sum.
Here, we focus on the sum of a finite geometric series. The sum of an infinite geometric
series is usually studied in a calculus course, since the limiting process is needed. Although
it seems to be unrelated at first, we will begin by proving that for any n E N, 1 - xn+1 has
1 - x as a factor. After proving this by induction, we will apply the result to summing the
finite geometric series.

Theorem 3. For any natural number n and for any real number x, prove that
(1 - x) (I + x + X2 +''". + Xn) = I - xn+lI

Solution. This result is just a familiar factoring rule. The ellipses usually suggest that a
proof by induction is needed. Fix an arbitrary x E R. Let no = 0 and

T"={n EN:foranyx ER,(I -x)(±+x+x 2 +x 3 +...+xn)= -xn+1 I

(Base step) Show that 0 E T. Substituting 0 for n gives (1 - x)(1) = 1 - x as required.

(Inductive step) Let n > 0. Show that if n E T, then n + 1 E T. Since n E T, it is as-
sumed that

(I - x)(1 + x + x2 + x3 +.. + xn) =1-xn+l

We must prove that n + 1 E T or that
(1 -x) (I +x + x2 + x3 +.- +xn+l) = xn+2

Use the following chain of equalities to complete the proof:
(1 -x)(l +x +x 2 +x 3 +... +xn +xn+l)

(1 - x)(1 + x + x 2 + x 3 +... + xn) + (I - x)xn+l (making the formula for n clear)
- xn+1 + (1 - x)xn+l (using the inductive hypothesis)
- xn+1 + xn+l - xn+2 (simplifying the expression)

- -xn+2

Therefore, n + 1 E T.
By the Principle of Mathematical Induction, T = N. U

Corollary 1: For r E R•with r 0 1,

n 1 rn+l
Y- a-ri =a.

i=0

Proof. n oari =a r a -rn+l_i4= a= a ,)-=0 ri = a " 1-r •

56 CHAPTER 1 Sets, Proof Templates, and Induction

Corollary 1 gives a formula for finding the sum of a finite geometric series.

Example 5.

(a) 1 + 3 + 32 + 33 +... + 3 = (1 - 3n+1)/(-2) = (3n+l - 1)/2.
(b) 2+10+50+...+1250=2+2.5+2-52+2.53+2.54

= 2(1 - 55)/(-4)
= 1562

The next example shows how to compute the sum when the first term does not clearly
correspond to what is expected for a term of the form a • r°.

Example 6. Find the sum of

3.2+3.22 +3.23 +... +3.2n

Solution. Rewrite the expression with 3 . 2 = 6 as a factor of each term:

(6.2' + 6.21 +... +6.2n-1)

We now have a geometric series with n terms with a = 6 and r = 2. The sum is

n-1

E 6.2i = 6. (1 - 2n)/(-1) = 6. (2 - 1)
i=0

Program Correctness

An important problem in computer science is to prove that a program executes correctly
for all possible data sets. There is no simple way to do this. In fact, it is impossible in
principle to prove correctness for very complicated programs. Many techniques, however,
are useful for proving the correctness of a wide variety of programs.

One method for checking the correctness of a program is to test the program on lots of
data to make sure it comes up with the right answers in each case. Obviously, this technique
is useful, but it can be used only to find errors, not to establish correctness. The problem is
that if no errors are found by running a program on test data, the only conclusion one can
draw with any assurance is that the program works correctly on all the data tested.

Another useful technique is to prove mathematically that the algorithms (the principles
behind the program) are correct. Such proofs are often proofs by induction.

Before we examine some algorithms, we need to explain how we will present the steps
of an algorithm. The language we use is called a pseudocode, because it is a mixture of
normal language and the precise syntax of a programming language.

1.8.1 Pseudocode Conventions

A variable will simply be a name that will represent a place in a computer to store a value.
When we use a variable, like X, we are referring to the value that is stored in the location
the machine assigns to X. A simple assignment statement of the form

variable = expression

Program Correctness 57

computes the value of the expression on the right-hand side of the equal sign and then stores
the result in the location indicated by the name on the left-hand side. To cause branching
in the code, we use a condition test of the form

if condition then
S1

else
S2

When this code is executed, the condition is evaluated to be either TRUE or FALSE. If the
condition is TRUE, then the code represented by S1 is executed, the code represented by
S2 is not executed, and the execution then continues at the first command following S2 . If
the condition is FALSE, then the code represented by S2 is executed, the code represented
by S1 is not executed, and the execution then continues at the first command following S2.

For a statement that can cause repetition of a block of code, we generally use a for
construct. The code

for i = 1 to n do
S

starts by initializing i to the value 1. If the value of i is less than or equal to n, the commands
represented by S will then be executed. The code S may or may not use i as a variable. At
the end of executing this indented code, i will be incremented by 1 and then tested to see
if it is still less than or equal to n. If this condition for the current value of i is evaluated
as TRUE, the loop is executed again using the new value of i. When the condition is tested
with a value of i for which the condition is evaluated as FALSE, the program continues at
the next line following the code represented by S. We often refer to such code as a for loop.
To display a result, we use the word print followed by a list of the names of the storage
locations whose values are to be displayed (think of print on the screen or of output to a
printer). Comments in the code will appear as /* any text as a comment */. Comments are
skipped over when the program is executed.

With just these four instructions (assignment, condition, repetition, and printing) for
pseudocode, we can write instructions that could easily be turned into valid code in some
programming language.

An additional way to cause repetition of a block of code is with use of a while loop:

while condition
S

A while statement is a command to execute the code indented below the while state-
ment over and over again as long as the condition written just after the word while is
evaluated as TRUE. If this condition is evaluated as FALSE when the loop is first reached,
the indented statements are executed zero times, that is, they are not executed.

Many authors use the word algorithm to describe only strategies for programs that
will ultimately stop. Others would say there is no "output" unless it stops. We include our
apologies for our use of the word and present the following program as algorithm. The
algorithm will use a while loop to "repeat forever" a block of code, since the condition
in the while statement can never be false. This is just an instruction to execute the while
loop without stopping-or until someone turns off the computer. In this case, it is called
an infinite loop, since it could go on forever!

58 CHAPTER 1 Sets, Proof Templates, and Induction

1.8.2 An Algorithm to Generate Perfect Squares

We now demonstrate how you can generate all the perfect squares. A perfect square is any
integer n that is equal to k2 for some integer k. For example, 1 is a perfect square, because
it is equal to 12. In addition 9 is a perfect square, because 9 equals 32. For the Perfect
Squares algorithm, we give an intuitive argument that the program is correct.

INPUT:
OUTPUT: List of perfect squares

Counter = 0
while (TRUE) /* repeat forever */

Counter = Counter + 1
print Counter. Counter

To understand the Perfect Squares algorithm, trace its execution for the first few values
of Counter. The algorithm starts with Counter equal to 0 and then repeats the last two in-
structions forever. The first time through, the algorithm adds 1 to Counter, giving Counter
the value of 1, and prints 1 • 1. The second time through, it adds 1 to Counter, increas-
ing Counter from 1 to 2, and prints 2. 2. The third time, it adds 1 to Counter, increasing
Counter from 2 to 3, and prints out 3 .3. And so forth. It is obvious that the algorithm
works. In fact, for any natural number k, after the kth time through the loop, Counter is set
to k and the first k perfect squares have been printed.

1.8.3 Two Algorithms for Computing Square Roots

There are many algorithms for finding the square root of an integer. The two algorithms
presented here use different strategies for finding a better and better approximation of a
square root. The first was found on ancient Babylonian cuneiform tablets. The second is a
variant of one that has been taught in schools. A fundamental problem with any approxi-
mation algorithm is to have a bound on how far an approximation is from the true value.
For both algorithms presented here, we can prove a result about the bound using induction.

Square Root I
The Square Root I algorithm provides a method of finding an approximation to the square
root of an integer. In this case, the first approximation is a value less than the desired result.
Each iteration of the procedure gives a larger value than the previous one.

Program Correctness 59

RESULT: Approximation of v/-1

Root = 4

DecimalPlace Value = 1
for i = I to 8 do

DecimalPlace Value = DecimalPlace Value/ 10
/* Search for the digit at the decimal place.*/

Digit = 9
/* 9 is the largest possible value for Digit. *1

AddOn = Digit. DecimalPlace Value
while((Root + AddOn) • (Root + AddOn) > 17) do

1* Digit is too big, so try a smaller value. "1
Digit = Digit - 1
AddOn = Digit . DecimalPlaceValue
/* At the end of the while loop the next digit is found. */

Root = Root + AddOn
print Root

The code starts by approximating Vii by 4. The variable DecimalPlace Value is used
to keep track of which decimal digit is being added to the approximation. When i is equal
to n, DecimalPlaceValue will be equal to 10-n. The first value added to the previous ap-
proximation is Digit. 10-n where Digit is 9. The while loop sees if adding Digit. 10-n

gives a new value for the approximation by computing

(Root + Digit. 10-n)2 < 17

If the value of Digit gives

(Root+ Digit. 10-n)2 > 17

a new, smaller value of Digit is tried. At some point, Digit will take on a first value, say
Digitfirst, for which

(Root + Digitfirst. 10-n)2 < 17

The new approximation for Vii will be formed by adding Digitfirst 10'- to Root to form
the next approximation. The first iteration of the for loop gives the value 1 for Digitfir,.
Consequently,

Root = 4 + . 10-1 = 4.1

for i = 1. Now, in the second iteration, Digitfist takes the value 2, so

Root = 4.1 + 2.10-2 = 4.12

60 CHAPTER 1 Sets, Proof Templates, and Induction

The process continues to add decimal digits to the intial approximation for as many itera-
tions of the for loop as are required by the code. For the code shown, the final approxima-
tion is Root = 4.12310562 and Root Root = 16.9999999536.

For Square Root I, we can find an explicit formula for a bound on the error after n
iterations. Let Rn denote the value of Root after n iterations of the for loop. The error term
is defined as En = /1 - Rn for n E N.

Theorem 4. Prove that for Square Root I, the error bound Ec for R, satisfies the inequal-
ity En < 10' for each n e N.

Proof Let n0 =0. LetT= {n eN: Rn < A1 < Rn + I O-n.

(Base step) For n = 0, the result follows, since Root is 4 and the for loop is not executed.
Clearly, 4 < -17 < 5, so 6o = /17 - 4 < 1 = 10-0. Therefore, 0 e T.

(Inductive step) Choose n > no such that n e T. Now, prove that n + 1 E T. That is,
assume Rn < 17 < Rn + 10-n, and prove that Rn+± < /17 < Rn+1 + 10-(n+'). By
the inductive hypothesis,

Rn < /17 < R, + 10-n = Rn + 10. 10-(n+1)

The search for Digit finds the largest integer Digit where Rn +I Digit. 10-(n+1) < -17.
Since Digit is the largest such integer,

Rn + Digit. 10-(n+l) < /17 < (Rn + Digit. 10-(n+)) + I0-(n+l)

Since Digit + 1 has the property that

(Rn + (Digit + 1). 10-(n+l))2 > 17

then

Rn + Digit. 10-(n+1) = Rn+ < VI7 < Rn + Digit. 10-(n+0) + 10-(n+1)

= Rn+1 + 10-0+1)

as desired, and n + 1 e T.
Therefore, T = N by the Principle of Mathematical Induction. U

Square Root II
The Square Root II algorithm produces an approximation of the square root of an inte-
ger by generating approximations that are alternately larger than the square root and then
smaller than the square root. Each iteration of the procedure, however, brings the value of
the approximation closer to the true value of the square root.

Program Correctness 61

RESULT: Approximation of hi

Root = 4
for i = 1 to 4 do

Root = (Root + 17/Root)/2
print Root

The computation starts by assigning 4 to Root. The value in Root at any time will
represent the current approximation to N/1. For each iteration of the for loop, the current
approximation is improved by evaluating the expression

(Root + 17/Root)/2

and storing the "better" approximation in Root. This process continues until the for loop
has been executed four times. The value of Root after each of the first four iterations is
shown in Table 1.2.

Table 1.2 Output from Square Root II

Values of Root for I= 1, 2, 3, 4

1 Root

1 4.125
2 4.12310606060606
3 4.12310562561768
4 4.12310562561766

With any iterative algorithm, it is important to know with each iteration that the error
gets smaller. Let Rn denote the value of Root after the for loop has been executed n times.
Then, as before En = /P7 - Rn is the error in the calculation after n executions of the for
loop. The error can be either positive or negative.

Theorem 5. Prove that for Square Root II, the error bound cn for Rn satisfies the inequal-
ity IEI < (1/2)6.2n-3 for each n E N.

Proof. Letno =0. LetT= {n e N: 16nI < (1/2)6"2n-3}.

(Base step) Since (4.1)2 - 16.81 and (4.125)2 = 17.015625, it follows that

4.1 <V i7 < 4.125

Now, Ro = 4, so

4.1 -R 0 < V_7-Ro <4.125-Ro

co < 0.125 (Ro = 4)
CO < (1/2)6"2°-3

62 CHAPTER 1 Sets, Proof Templates, and Induction

Therefore, 0 E T.
(Inductive step) The remainder of the proof is left as an exercise for the reader. 0

Exercise 39 in Section 1.9 explores other properties of this algorithm.

rnExercises
Assume that all variables not given an explicit domain are elements of N.

1. Show that for n = 0, 1, 2 the following is true:

F2 +2 2 +3 2 +..+n2 =n(n+l)(2n+1)/6

2. Find all the elements of {0, 1, 2, 31 that, when substituted for n, satisfy:
1 1 1 - n

1-- + +--.-• + ""+
1.2 2.3 n(n+l) n+1

3. Write out the information that describes what the inductive step assumes and what the
step must prove for proving

12 + 22 + 32 +... +n 2 = n(n + 1)(2n + 1)/6

with no given.
4. Write out the information that describes what the inductive step assumes and what the

step must prove for proving

15±+2 5+3 5±+...±+fn5=!nl6 +In 5 +5 n4 _ 1 n2
6 2 12 12

with no given.
5. Write out the information that describes what the inductive step assumes and what the

step must prove for proving that 6 divides n3 + 5n with no given.
6. Write out the information that describes what the inductive step assumes and what the

step must prove for proving that 120 divides n5 - 5n 3 + 4n with no given.
7. Show for n = O, 1, 2 that

(n + 1)(2n + 1)(2n + 3)/3 + (2n + 3)2 = (n + 2)(2n + 3)(2n + 5)/3

8. Show that

(n + 1)(2n + 1)(2n + 3)/3 + (2n + 3)2 = (n + 2)(2n + 3)(2n + 5)/3

9. Show that

n2 + n + 2(n + 1) = (n + 1)2 + (n + 1)

10. Show that
n

E F2i+i = F2n+2 - 1
i=0

forn = 1,2, 3,4.
11. For which elements n E {0, 1, 2, 3, 4, 51 does 6 divide n3 + 5n?
12. Show that 8 divides k2 - Ifor k e {1, 3, 5, 7}.

Exercises 63

13. Find the smallest n E N such that 2n 2 + 3n + 1 < n 3.

14. Prove by induction for n > 0:

2+4+6+...+2n =n 2 +n

15. Prove by induction:

(a) 12 +2 2 +3 2 +...+n 2 =n(n+1)(2n+1)/6forn >0
(b) 13 +2 3 +3 3 +..+n 3 = (+2+3+...--+n) 2 forn >0
(c) 14 +2 4 +3 4 +... + n4 = n (n + 1) (2n + 1) (3n2 + 3n - 1)/30 for n > 0
(d) 15 +2 5 +3 5 +...+n 5 =ln 6 +an6 +n 4 - nzforn_>0

122 n_ nfo
16. Prove by induction:

(a) 0.2 0°1.2 1 +2.2 2 +3.2 3 +...+n.2n =(n-1)2n+1+2forn >0
(b) 12 +32 +52 + .. ± + (2n + 1)2 - (n + 1) (2n + 1) (2n + 3)/3 for n > 0
(c) 12 -2 2 +32 + ... + (-1)n-1 n2 = (-1)n-' n (n + 1)/2 for n > 0
(d) 1.2±2.3+ 3.4+...+n.(n+ 1)=n(n+ 1)(n+2)/3forn >0
(e) 1.2.3+2.3.4+ 3.4.5+...+n.(n+ 1).(n+2)=n(n+ 1)(n+2)

(n + 3)/4 for n > 0

17. Prove by induction:
1 1 1
(a) + _ + + n (n-l) fornnl>--(b) 1 2 23 .. = 2 f- 2

18. Prove by induction that 8 divides (2n + 1)2 - 1 for all n E N.
19. Prove by induction for n > 0:

(a) 3 divides n3 + 2n
(b) 5 divides n5 - n
(c) 6 divides n 3 - n
(d) 6 divides n 3 + 5n

20. Prove by induction for all n E N:

(a) 7 divides n7 - n

(b) 11 divides n 11 - n
(c) 13 divides n 13 - n
(d) 120 divides n5 - 5n 3 + 4n

21. Prove by induction: The sum of the cubes of any three consecutive natural numbers is
divisible by 9.

22. Show that any integer consisting of 3n identical digits is divisible by 3n. Verify this for
222; 777; 222,222,222; and 555,555,555. Prove the general statement for all n e N by
induction.

23. Prove by induction that the following identities are true for the Fibonacci numbers:

(a) y 0 F2i +1 = F2n+2 - 1 for n > 0
(b) y•n I Fi2 = Fn"- Fn,+l I for n _> I
(c) Fi=0 Fn+z-lforn>0

24. Find the Fibonacci numbers F 8 through F 15. Prove the following results for the Fi-
bonacci numbers:

(a) F3n and F3n+l are odd, and F3n+2 is even for n > 0
(b) Fo + F2 + ... + F2 n = F2 n+l for n > 0

64 CHAPTER 1 Sets, Proof Templates, and Induction

(c) Fo + F3 + + F3 = F3n+2/2 for n > 0
(d)F 1 =Fn " - (-1)n forn >_ 0

25. The Lucas numbers are defined as LO = 2, L, = 1, and Ln = Ln-1 + Ln-2 for n >
2. Prove the following identities for Lucas numbers.

(a) Lj + L2 + .. • + Ln = Ln+ 2 - 3 for n > 1
(b) L2 2 2 ... 2-forn>2
(c) L 2 + L 4 + - "- +L 2 n = L 2n+l - 1 for n > 2

26. Find the value of the following sums:

(a) 2 + 2 - 3n(b) I-1+1-+ +(In
(c) -2 + 4- 8 + 16 + ... + (-2)11

(d) 1.03 + (1.03)2 + (1.03)3 +-... + (1.03)n

27. Find a rational number representing each of the following repeating decimals:

(a) 0.537537537537537537537537537...
(b) 31.25469696969696969696969...

28. A fixed dose of a given drug increases the concentration of that drug above nor-
mal levels in the bloodstream by an amount Co (measured in percent). The effect
of the drug wears off over time such that the concentration at some time t is Coe-kt

where k is the known rate at which the concentration of the drug in the bloodstream
declines.

(a) Find the residual concentration R, the accumulated amount of the drug above nor-
mal levels in the bloodstream, at time t after n doses given at intervals of to hours
starting with the first dose at t = 0.

(b) If the drug is alcohol and 1 oz. of alcohol has Co = 0.05%, how often can a "dose"
be taken so that the residual concentration is never more than 0.15%? Assume
k = (1/3) ln(2).

29. (a) Prove by induction that 2n > n for all n > 0.
(b) Prove that 2n > n directly from Theorem 2 in Section 1.7.4, without explicit use of

induction. (That is, Theorem 2 in Section 1.7.4 itself was proved using induction,
but you should not have to do any additional induction.)

(c) Prove by induction that 2" > n3 for n > 10.
30. Prove by induction:

(a) There is a natural number k such that n! > n3 for all n > k. (Try to find the least
such number k.)

(b) n! > n 4 for n > 7.

31. Let T = {n E N : sin(n •7r) = 0}. Prove that T = N. (Hint: sin(a + b) = sin(a) •
cos(b) + cos(a) , sin(b).)

32. Prove assertion 1 from Lemma 1.
33. (a) Suppose you take out a mortgage for A dollars at a monthly interest rate I and

a monthly payment P. (To calculate I: if the annual interest rate is 12%, divide
by 12 to get a monthly rate of 1%, then replace the percentage with the decimal
fraction 0.01.) Let An denote the amount you have left to pay off after n months.
So, A0 = A by definition. At the end of each month, you are first charged interest

Exercises 65

on all the money you owed during the month, and then your payment is subtracted.
So,

An+, = An(1 + I) - P

Prove by induction that

An, A - P)(I +/)n + -P

(b) Use this to calculate the monthly payment on a 30-year loan of $100,000 at 12%
interest per year. (Note that the formula is inexact, since money is always rounded
off to a whole number of cents. The derivation here does not do that. We use 12%
to make the arithmetic easier. You should consult a local bank to find a current
value.)

34. Sometimes, induction is not necessary for a proof, but an inductive proof can be sim-
pler than a noninductive proof. This is true for Examples 2 and 3 of Section 1.7.2.

(a) Find proofs of Examples 2 and 3 using familiar algebra but no explicit induction. 3

(b) Optional: Find proofs of Examples 2 and 3 using calculus. (To some students
calculus may be more familiar than induction, but it is certainly more complicated
theoretically!)

35. Prove Theorem 4 of Section 1.5.4 in full generality. You may use Theorem 3 of Section
1.5.3, since it has already been proven. (Hint: Use induction on the number of sets).

36. For natural number exponents and nonzero bases, most of the familiar laws of expo-
nents can be proved by induction on the exponents using the facts that b° = I (for
b # 0) and bn+l = b . bn. Assuming that m and n are natural numbers and both r and
s are nonzero real numbers, prove the following:

(a) rm+n = rm rn
(b) rmn = (rm)n.
(c) If r > 1, then r m > rn if and only if m > n.

(d) If n,. r, s > 0, then rn > sn if and only if r > s.

37. A common use of induction is to prove various facts that seem to be fairly obvious but
are otherwise awkward or impossible to prove. These frequently involve expressions
with ellipses. Use induction to show that:

(a) X U (X 1 n X2 fnX3 n... n Xn) = (X U X1) n (X U X2) n... n (X U X,)
(b) X n (X 1 U X 2 U X3 U-.- U Xn) = (X n X1) U (X n X2) U ... U (X n X,)
(c) (XI nX 2 n...nlXn) = X1 U X2 U ... U Xn
(d) (X 1 U X2 U ... U X,) = X1 n Y2 n ... n A n

38. (a) Prove that x E X0 n X1 n ... n Xn if and only if x e Xi for every i such that
0<i <n.

(b) Prove that x E X0 U X1 U ... U X, if and only if x E Xi for some i such that
0< i <n.

(c) Use part (a) to give another proof of Exercise 37(a).

3 We say explicit induction since, in the development of arithmetic from the foundations, almost everything about
+ and • is proved by induction, including the familiar algebra needed for this problem.

66 CHAPTER 1 Sets, Proof Templates, and Induction

39. Refer to the Square Root II algorithm.

(a) Finish the proof of Theorem 5.
(b) Show that En+l = -- ,2 /(2R,). (Hint: Simplify VT1 - (Rn + (17/Rn))/2.)

(c) How close do you think the value printed is to the actual value of VP-7? Approxi-
mately how many decimal digits in accuracy is that?

40. Challenge: Exactly where is the mistake in the following proof that all personal com-
puters are the same brand? Let T = {n E N : n > 1 and in every set of n personal
computers, all the personal computers are the same brand). Prove by induction that for
every natural number n such that n > 1 is in T.

(Base step) 1 E T, since, trivially, if a set of personal computers contains only one
computer, then every (one) computer in the set has the same brand.

(Inductive step) Suppose n E T. We need to show n + I E T. So, let P be any set
of n + 1 personal computers. Pick any computer c e P; we need to show that every
computer in P is the same brand as c. So, let d be any computer in P. If d = c,
then, trivially, d and c are the same brand. Otherwise, c E P - {d}. The set P - {d}
contains n computers, so by inductive hypothesis, all the computers in P - {d} are
the same brand. Furthermore, d e P - {c}, and, also by inductive hypothesis, all the
computers in P - {c} are the same brand. Now, let e be a computer in both P - {cl
and P - {d}. Then, d is the same brand as e, and c is the same brand as e. Therefore,
d is the same brand as c.

41. Using the Principle of Mathematical Induction, prove each of the following different
forms of the principle:

(a) Induction with a possibly negative starting point: Suppose that S C Z, that some
integer no E S, and that for every n E Z, if n e S and n > no, then n + 1 E S.
Then, for every integer n > no, we have n E S.

(b) Induction downward: Suppose that S C Z, that some integer no E S, and that for
every n e Z, if n E S and n < no, then n -1 e S. Then, for every integer n < no,
we have n e S.

(c) Finite induction upward: Let no, nI E Z, no < nI. Suppose that S C Z, no E S,
and for every n e Z, if n e S, n > no, and n < ni, then n + 1 e S. Then, every
integer n where no < n < nI is in S.

(d) Suppose S C N is infinite, and suppose that for every n E N, if n + 1 E S, then
n c S. Prove that S = N.

Strong Form of Mathematical Induction

The Fundamental Theorem of Arithmetic states some familiar results about factoring
integers. Part of the Fundamental Theorem of Arithmetic is the result that every integer
n > 1 can be factored as a product

n = P1 "P2." Pk

Strong Form of Mathematical Induction 67

for some prime numbers P1, P2 ...- Pk. The pi's are not required to be distinct, and
k simply denotes the number of factors needed to express p. For example, 4 = 2.2 is a
factorization of 4 into two primes. If k = 1, then n is a prime, and n = n is a factorization
into primes. We just define the term factorization into primes to include the one-prime
case.

The proof that every integer n > 1 can be factored into primes goes as follows: If n is
prime, then n = n is a factorization of n into primes. Otherwise, if n is not a prime, then n
can be factored as n = k -m for some integers m and k where n > m, k > 1. Since k and
m are both less than n, we can conclude that m and k can be factored. We would now use
the factorizations of m and k to form a factorization of n.

This is not an application of an inductive hypothesis as induction has been presented
so far. The problem is that the Principle of Mathematical Induction only uses the result for
n - 1 to prove the result for n = (n - 1 + 1). Here, the result for n has to be proved from
the same result for two smaller numbers k and m, neither of which (it turns out) is n - 1.
In fact, k, m < n/2.

The Strong Form of Mathematical Induction has a somewhat different form of in-
ductive hypothesis: It assumes the result for all natural numbers k where no _< k < n-
with no E N just as before-and then proves the result for n. This was what we needed
for factoring-whatever k, m are, we get to apply the inductive hypothesis to both of
them.

We now give a formal statement of this new form of induction and then complete the
proof that every integer can be written as a product of primes.

Strong Form of Mathematical Induction

Let T C N and no E N. Suppose that for all natural numbers n > no, if no, no +
1 n - l E T, then n E T. Then, every natural number n > no is in T.

If no is equal to zero, then the Strong Form of Mathematical Induction proves that
T-=N.

The Strong Form of Mathematical Induction is also sometimes called Complete In-
duction or Course of Values Induction. It is the inductive hypothesis which is "stronger"
not the principle itself. Indeed, any theorem provable with the strong form of induction is
also provable with the first form, but such proofs may require some awkward complica-
tions.

To use the strong form of induction, one must prove the if-then statement that

if no, no + 1 n - 1 c ET, then n E T

Virtually always, the proof is broken into cases. For some values of n, including no, the
result is proven directly; this set of cases is sometimes called the base step. For the other
values of n, the result is proved using the assumption that no, no + 1 n - 1 E T. This
is called the inductive step, and that assumption is called the inductive hypothesis.

68 CHAPTER 1 Sets, Proof Templates, and Induction

Inductive step

Base step no0 n0+1 n0+2 ni -

base
cases___________________ __

Assumed true cases

iStrong Form of Mathematical Induction)

Values for which the property is TRUE

Figure 1.18 Typical proof using the Strong Form of Induction.

Using Figure 1.18 as a guide, we now return to proving the result about factoring
integers. As noted above, the proof breaks into two cases: one case for prime numbers n,
and one case for nonprimes.

Theorem 1. (Part of the Fundamental Theorem of Arithmetic) Every natural num-
ber n such that n > 1 can be factored into a product of one or more primes.

Proof. The proof will use the Strong Form of Mathematical Induction. Let no = 2, and
let

T = {n E N : n > 1 and n = p1 • P2 " Pk for some prime numbers pl, P2, ... , Pk-

Let n be any natural number greater than or equal to 2.

(Base step) The base cases deal with any n that is a prime. Since n is prime, n = n is a
factorization of n into the product of one prime.

(Inductive step) In this step, we will prove the result for any n that is not a prime. As-
sume that for all m where 2 < m < n, m E T. Now, prove n E T.

Since n is not prime, n can be factored as n = k . m where k 0 1 and m : 1. It follows
easily that 1 < k < n and that 1 < m < n. Hence, by the inductive hypothesis, k, m E T.
So, k and m can be factored into products of primes:

k = pi • P2 ... Pi and m=q1•q2 .. •qj

Then,

Strong Form of Mathematical Induction 69

n = pi "P2""Pi Aqlj q2...qj

so n can be factored into a product of primes. Therefore, n E T.
By the Strong Form of Mathematical Induction, T = {n e N : n > 1}. 0

1.10.1 Using the Strong Form of Mathematical Induction

The Strong Form of Mathematical Induction is often used to prove a closed form for the
elements of a recursively defined sequence like the Fibonacci sequence. A closed form
for the elements is a representation for each term that can be computed without knowing
any other element(s) of the sequence. Exercise 16 in Section 1.11 is to show that the nth
Fibonacci number can be computed as

(I+-f)ln±-1 Il,-)n\ l1 11V ~ l~- 5
Fn =--I"---/I"

.,/5- \2 1-

for each n E N. This expression is a closed form for the Fibonacci sequence.
The next example is similar to the result about Fibonacci numbers, but the computa-

tions are less complex. The verification of the closed form for the Fibonacci numbers is
left as an exercise.

Example 1. The terms of a sequence are given recursively as

ao=0, al =2, and an = 4 (al1-a,-2) forn_>2

Prove by induction that bn = n. 2' is a closed form for the sequence. That is, prove that
an = bn for every n E N.

Solution. Let no = 0 and T = {n E N : bn = an}. In this case, two elements of the se-
quence, ao and al, are defined directly. As is fairly typical, these special cases constitute
the base cases for the proof.

(Base step) The two base cases are n = 0 and n = 1 Evaluating b0 and bj gives bo = 0
and b1 = 2. Thus, ao = bo and al = bl, so 0, 1 E T.

(Inductive step) We now deal with any n such that n > 2. Assume that for all k where
0 < k < n, k E T. Prove that n E T by showing an = bn. Since n > 2, n - 1, n - 2 > 0,
son - 1, n -2 E T.

an = 4 (an-I - an-2) (by definition of an)

= 4((n - 1)2n-1 - (n - 2)2n-2) (by inductive hypothesis)

= 4(n- 2n-1 - 2n-1 - n. 2n-2 + 2. 2n-2)

= 4(n(2n- - 2n-2) - (2n-1 - 2.2n-2))

= 4(n(2. 2n-2 - 2n-2) - (2.2n-2 - 2. 2n-2))

=4.n.2n-2 = n.2n

Therefore, bn = an and n E T.
By the Strong Form of Mathematical Induction, T = N. That is, bn = n 2n is a closed

form for the terms of the recursively defined sequence. E

70 CHAPTER 1 Sets, Proof Templates, and Induction

Constructing a proof by induction using the Strong Form of Induction requires a dif-
ferent template than the one for the first Principle of Mathematical Induction. This new
template makes clear what is being done at each step, but be careful: There is more variety
in the form of proofs using the Strong Form of Induction than in proofs using the ordinary
Principle of Mathematical Induction.

Temlat 1.3 Uin h Strn For of Mahmaia

To construct a proof using the Strong Form of Mathematical Induction, choose an
no E N appropriate to the problem. Let

T = {n E N : n > no and property P holds of n}

(Base step) Show explicitly that property P holds for certain numbers n, called the
base cases. no should be one of those values; the choice of the other values depend on
the problem.

(Inductive step) For all n > no not covered in the base case, assume that property
P holds for all k = no, no + 1 n - 1, and prove that property P holds for n.

Infer by the Strong Form of Mathematical Induction that

T = {n E N : n > no)

Using the Strong Form of Mathematical Induction

As in an ordinary inductive proof, an inductive proof using the strong form of induction
has three essential parts: (i) a base step, (ii) an inductive step, and (iii) an application of the
Strong Form of Mathematical Induction.

Translating the problem includes specifying no and clearly defining the set T whose
elements the inductive proof will determine-that is, clearly stating the property P to be
verified. This definition does not tell us that any number is in T.

The first step of the proof is called the base step, and it involves proving the result for
the base case(s). Identify one or more values for which property P can be verified directly.
Often, one might verify it directly for values no, no + 1, no + 2,, n for some n1 > no.
In the base step of the proof, prove directly that no, no + 1 n 1 E T. As in Example 1,
the base cases often correspond to the initial conditions specified in the problem.

The inductive step is usually quite different in the Strong Form of Mathematical Induc-
tion from the inductive step in the Principle of Mathematical Induction. Begin by letting
n > no be an arbitrary natural number that is not covered in the base case. Assume that
no, no + 1 n - 1 E T. To complete the inductive step, use that assumption to show
that n E T. Again, start by writing out property P for n to see what is to be proved. There
is no real formula for the next part of the inductive proof. Figure out how to prove property
P holds for n knowing that property P holds for no, no + 1 n - 1. When that is done,
use the Strong Form of Mathematical Induction to infer that for all n > no, n E T.

Strong Form of Mathematical Induction 71

In practice, you may often try to work out the Inductive step first. You will then see
certain values-and you may as well assume that no must be one of them-for which the ar-
gument doesn't use the inductive hypothesis. These values are identified as the base cases.

Example 2. The terms of a sequence are given recursively as

ao=l, al=1, and an =2.anl_+3.an_2forn>>2

Prove by induction that bn = ½.3n + ½ . (- 1)n is a closed form for the sequence.

Solution. Letno =OandT= {n eN :b, =an}.

(Base step) Identify n = 0, 1 as the base cases. The defined values in such a definition
often are the base cases. Evaluate b0 and bl directly:

bo = 1(30 + (-1)O) = 1(1 + 1) = 1 = ao

bl = 1(31 + (-1)1) = 1(3 - 1) = 1 = al

So, 0, 1 e T.

(Inductive step) Now, let n > 2, and assume for k = 0, 1,...,n - 1 that k E T. Prove
that n e T by showing that an = bn:

an = 2at-I + 3an-2 (by definition of an)

= 2. 1 (3n-1 + (-1)n-1) + 3. 1(3Q 2 + (-1)n-2) (by inductive hypothesis)
2 2

= 3fn-1 + (-1)n-1 + 3 . 3n-2 + 2(-- 2-

2 2

We know that (-I)n-2 = (-1)n, (-1)n-1 - -(-1)n, and 3n-1 = 3 . 3n-2. So,
3 3

an = 3.3fn-2 +- 3. 3fn-2 -)n + 3-(_1)
2 2

=29"3 n-2 +- I(_-1)n

2 +
1 3n + I(-1)n

2 2
=bn

as desired. Therefore, n E T.
By the Strong Form of Mathematical Induction, T = N. That is, b, = •n +-

(- 1)n is a closed form for the terms of the recursively defined sequence. 02

Unlikely as it might seem, we can use the Strong Form of Mathematical Induction to
show which amounts of postage can be made from a fixed number of several denominations
of stamps.

Example 3. The country of Oz issues only 3-cent and 8-cent stamps. What amounts of
postage are possible with just these two kinds of stamps?

Solution. Obviously, some packages will require a lot of surface area to affix all the
required postage! By experimentation, we can find out that all of 0, 3, 6, 8, 9, 11, 12, 14,
15, 16, 17, 18, 19, 20, and 21 cents are possible. Since we are getting all amounts of 14

72 CHAPTER 1 Sets, Proof Templates, and Induction

cents or greater, we conjecture that all amounts except 1, 2, 4, 5, 7, 8, 10, and 13 cents are
possible.

We conjectured that all values starting at 14 are possible, so we handle all n < 14
separately. We noted that 0, 3, 6, 8, 9, 11, and 12 cents are all possible. Amounts of 1, 2,
4, 5, 7, 8, 10, or 13 cents are impossible: To get any of those amounts, one would need to
use, at most, 4 stamps (why?), and we can list all the possible combinations of 0-4 stamps
to show that none add up to 1, 2, 4, 5, 7, 8, 10, or 13 cents.

Let

T = {n e N: n > 14 and n = k .3 + .8 for some k, 1 E NJ

We must then prove that every natural number n > 14 is in T.

(Base step) After some experimentation, we decide the base cases are 14, 15, and 16.
Sincel4 = 2.3+ 1.8, 15 = 5.3+0.8, andl6 =0.3+2.8,wehavel4,15,16 G T.

(Inductive step) Let n > 14, and assume that 14, 15, 16. n - 1 E T. Now, prove
that n E T.

Since 14, 15, and 16 are base cases, every possible value for n that is not a base case
and is greater than or equal to 14 is also greater than or equal to 17. For n > 17, we have
n - 3 > 14. So, by the inductive hypothesis, for some k, I E N, n - 3 = k 3 + 1. 8. Then,

n = (n-3)+3 = k-3+1.8+3 = (k+1).3+8.I

So, n E '-, as desired.
By the Strong Form of Mathematical Induction, T = {n E N : n > 14}. 0

There are some other values for which Oz can make postage-for example, 3, 6, 8, 9,
11, and 12. When we looked carefully at the inductive step, we saw we would have to be
able to go back three from any n for which we were proving the postage amount could be
made. We were then more clear on what the base cases would need to be. Consequently,
the base step proved postage can be made for n = 14, 15, and 16. It is not unusual that the
base cases are identified by trying the inductive step of the proof. Note that in the proof
of the inductive case above, before applying the inductive hypothesis to n - 3, we checked
that n - 3 > no. Not making that check is a very easy way to make an error. In this case,
had we not made that check, we might have started with n = 12, asserted that n - 3 = 9
was in T, and proceeded as with the inductive case above-and we would have "proved"
something that was actually false.

1.10.2 Application: Algorithm to Compute Powers

Suppose you want to compute xn for some nonzero real number x and some natural number
n. One way is to multiply together n copies of x, a task that requires n - 1 multiplications.
Are there faster ways to complete this computation? We will prove that the following al-
gorithm computes xn using far fewer multiplications for large values of n.

Strong Form of Mathematical Induction 73

INPUT: A nonzero real number x and a natural number n
OUTPUT: The value of xn

FastPower(x, n) 1* The initial call */

FastPower (base, expont) 1* The recursive procedure */
if (expont = 0) then

return 1
else

if (expont is odd) then
return base . FastPower(base . base, (expont - 1)/2)

else
return FastPower(base . base, expont/2)

The algorithm presented uses a programming feature called recursion. In this algo-

rithm, a call to the algorithm FastPower is part of its own code. In a programming language
that supports this feature, the compiler will keep track of which version of FastPower is
being executed and which values should be used for the arguments. For more details about
how recursion is implemented in a programming language, the reader should consult a
manual for a language such as Java, C, or C++.

The reader should trace through the algorithm by hand for some sample values of
base and expont. For example, a computer executing this algorithm to compute 25 will go
through the following steps:

FastPower(2, 5) identifies 5 as odd and computes

2 . FastPower(2.2, (5 - 1)/2) = 2 . FastPower(4, 2)

To execute FastPower(4, 2) requires the execution of

FastPower(4.4, 2/2) = FastPower(16, 1)

Now, expont = 1 is odd, so the program computes

16. FastPower(16.16, (1 - 1)/2) = 16. FastPower(256, 0)

When FastPower(256, 0) is executed, the program starts the return process. Fast-
Power(256, 0) returns 1 to FastPower(16, 1). The returning value using FastPower(16, 1)
is 16 . FastPower(16, 1) = 16. This value is FastPower(4, 2), which must be multiplied by

2 before that value is returned to FastPower(2, 5). Thus, FastPower(2, 5) = 32.
The flow of control for this example is shown in Figure 1.19 on page 74.
Even though the example computation for 25 works correctly, it is, however, not quite

obvious that the FastPower algorithm correctly calculates powers for every nonzero base

74 CHAPTER 1 Sets, Proof Templates, and Induction

FastPower (2, 5)

\return 32

base expont

call: 2 5

\return
32

base expont

call 2: 4 2

return 16

base expont
call 3: 16 1

\return 1

base expont
call4: 16 1

Figure 1.19 Flow of control for FastPower (2, 5).

and every exponent. Using the Strong Form of Mathematical Induction, we now prove that
the algorithm is correct for all cases.

Theorem 2. The FastPower algorithm returns the value base' for base E R - {0}, and
n E N.

Proof. The proof is by induction on the value of n. Let no = 0 and

T = {n e N : for every base e R - {0}, FastPower(base, n) = base}

Prove by the Strong Form of Mathematical Induction that T = N.

(Base step) For n = 0, the algorithm returns 1, as required. So, 0 G T.

(Inductive step) Let n > 0. Assume that for all k such that 0 < k < n, k E T. Now,
prove that n E T.

This case breaks into two subcases:

Case 1: n is odd. So, n = 2k +± for some k e N. Clearly, 0 < k <n. By familiar
properties of exponentiation,

base2k+l = base base2k

= base. (base
2)k

By the inductive hypothesis, since k < n, the algorithm correctly computes bk for any b.
In particular, it computes (base2))k; thus, base. (base2)k = base 2k+l.

Case 2: n is even. The proof is analogous to the proof of Case 1. In either case, n E T.
By the Strong Form of Mathematical Induction, T = N. 0

FastPower is actually used in many computer science applications when the exponent
is known to be an integer. Special computer chips are used in cryptography for doing

Strong Form of Mathematical Induction 75

arithmetic of numbers up to approximately 300 digits. These chips essentially compute
powers this way, with one modification: FastPower, as written, makes a recursive call-it
invokes (another copy of) itself. To calculate 25, for example, the procedure was called
four times (the original call and three recursive calls). There is computer overhead in each
of these calls. It turns out that the special chips have had the recursive calls replaced with
a loop, producing the program actually used. Interested readers should try writing this
algorithm nonrecursively.

1.10.3 Application: Finding Factorizations

The Fundamental Theorem of Arithmetic was proved at the beginning of this section. As
important as the result is, however, it does not provide any insight regarding how one goes
about finding such a factorization. The two algorithms here explore factoring integers. The
first looks for the largest odd divisor. In a theorem we will prove later, the proof does
not provide a method for finding the largest odd divisor but, instead, uses the Fundamental
Theorem of Arithmetic to guarantee the existence of such a factor. When you actually want
to find the elements that the theorem only says will exist, you can use the first algorithm as
a method for doing this step of the proof. The second algorithm takes the guarantee of the
Fundamental Theorem of Arithmetic that a factorization exists and actually finds it. Later,
you will be asked to prove that these algorithms are correct. At this point it, however, is
important to understand what the algorithms are doing.

Largest Odd Divisor

A while loop controls the iterations in Largest Odd Divisor algorithm, because each it-
eration reduces the number being considered by a factor of 2 until only an odd number
remains.

INPUT: Integer value N > 0
OUTPUT: Largest odd divisor of N

LargeOdd (N)
while (Mod(N, 2) = 0)

N= N/2
print N

In this code, the condition mod(N, 2) = 0 returns TRUE when N is divisible by 2 (N
is even). The code returns FALSE when N is not divisible by 2 (N is odd). The first test of
the condition simply asks if the original number is odd. If the number is odd, it is certainly
the largest odd factor, and N is printed. If the condition is TRUE and N is even, then the
code controlled by the while loop divides N by a factor of 2. The resulting value (N/2)
is used in the condition the next time the while statement is executed. If the condition is
TRUE, the division by 2 is repeated. Eventually, the condition in the while statement with

76 CHAPTER 1 Sets, Proof Templates, and Induction

the value N/2k, where 2 k is the highest power of 2 that is a factor of N, will be evaluated
as FALSE, because the value tested is odd. In this case, the process terminates by printing
the final value of N/2k. For example, if N = 78, the condition Mod(78, 2) = 0 is TRUE
and N is replaced by 78/2 = 39. Now, when the condition Mod(39, 2) = 0 is tested, the
condition is FALSE. The while loop is exited, and the value of N/2 = 39 is printed.

Theorem 3. Prove that the Largest Odd Divisor algorithm is correct.

Proof Exercise for the reader. 0

Factorization
Often, a small insight that does not seem particularly significant can make a big difference
in developing an algorithm. In the code for PrintFactors, the idea is that if an integer n can
be factored as j • k where 1 < j, k < n, then either j or k is in the range I to n-n. To find
a factor of n, we can focus on finding a value between 2 and In rather than a value from
2ton - 1.

INPUT: Integer N > I
OUTPUT-: Factors of N

PrintFactors (N) /* Initial call */

PrintFactors (n) /* The recursive procedure *!
RootN =
TrialFactor = [RootNj
while (mod(n, TrialFactor) :A 0) do

/* If TrialFactor is a divisor of n, the loop
will be executed zero times. */
TrialFactor = TrialFactor - 1

if (TrialFactor < 1) then
print n

else
PrintFactors(TrialFactor)
PrintFactors(n/TrialFactor)

The procedure PrintFactors is designed to display the factors of any integer. For
example, we know that the factors of 12 are 2, 2, and 3. The value of RootN is ini-
tially assigned the value L,/2] = 3. Therefore, the first time through PrintFactors, we
set TrialFactor equal to 3, and we test Mod(n, TrialFactor) 0 0. The condition is FALSE,
which means that 3 is a factor of n. TrialFactor is greater than 1, so we call PrintFactors(3)
and PrintFactors(12/3). PrintFactors(3) prints the factor 3. PrintFactors(4) starts by set-

Strong Form of Mathematical Induction 77

ting TrialFactor equal to 2. Because now Mod(n, TrialFactor) A 0 is FALSE, we call
PrintFactors(2) and PrintFactors(4/2). These two calls to PrintFactors both print a 2,
completing the factorization of 12.

When you trace the execution of a procedure, some visual help to see how control
passes from one step to another can be valuable. In Figure 1.20 we show how 376 is fac-
tored. The while loop determines whether there is a factor for n starting with I/n and
working down to 1. The figure displays the flow of control after the while loop has been
executed. Each time the while loop identifies a factor, it prints the factor and terminates.
This is seen when PrintFactors(2) is executed. If the while loop identifies a factor of n
such that

n = TrialFactor. (n/TrialFactor)

and TrialFactor is greater than 1, then it executes PrintFactors again on both TrialFactor
and n/TrialFactor. This is indicated, for example, in the case of PrintFactors(4) that must
execute both PrintFactors(2) and PrintFactors(4/2) when the while loop identifies 2 as a
factor.

PrintFactors(3 76)

Executes Executes

PrintFactors(8) PrintFactors(47)

Execute / Executes Prints 47

PrintFactors(2) PrintFactors(4)
Prints 2 Execute/ Executes

PrintFactors(2) PrintFactors(2)

Prints 2 Prints 2

Factors: 2, 2, 2, 47

Figure 1.20 Flow of control for PrintFactors(376).

Theorem 4. Prove that the algorithm PrintFactors is correct.

Proof. Exercise for the reader. U

1.10.4 Application: Binary Search

If you think about how you look for a name in a phone book, you will have a good idea
of what the code in the BinarySearch algorithm does. A common process is the following:
You open a phone book to about the page where you think the name should appear. If you
have turned past the name you want, you continue this process with the first part of the
phone book. Otherwise, you have not gone far enough in the phone book, so you continue
this process using the pages from that point forward to the end of the phone book. More
mechanically, you could think of a program always choosing a page halfway through those

78 CHAPTER 1 Sets, Proof Templates, and Induction

that could possibly contain the name. If the name is not on the middle page, the search
continues either in the first half of the pages being considered or in the last half of the pages
being considered. This strategy is just what BinarySearch does by repeatedly halving the
range of pages that it thinks could contain the name. Eventually, the process comes to a
page that must either contain the name or the process knows that the name does not occur
in the phone book.

INPUT: Name to be found in the phone directory City
OUTPUT: Message indicating whether or not Name was found

BinarySearch(Name, City)
FirstPage = the page number of the first page of City
LastPage = the page number of the last page of City
PageFound = FALSE
NameFound = FALSE
while (FirstPage < LastPage and PageFound = FALSE) do

MiddlePage = [(FirstPage + LastPage)/2]
if (Name falls between the first name on page MiddlePage

and the last name on page MiddlePage) then
PageFound = TRUE

else
if (Name is alphabetically less than

the first name on page MiddlePage) then
LastPage = MiddlePage - 1

else
FirstPage = MiddlePage + 1

if (PageFound = TRUE) then
Examine all names on page MiddlePage
if (Name is found on MiddlePage) then

NameFound = TRUE
else

NameFound = FALSE
if (NameFound = TRUE) then

Print a message saying Name is on MiddlePage
else

Print a message saying Name is not in City

Example 4. Determine whether Joe Smith is in a phone book with 521 pages. For this
problem, suppose Joe Smith appears on page 326.

Exercises 79

Solution. We start with FirstPage = 1 and LastPage = 521. MiddlePage = L(1 +
521)/2] = 261. Since Joe Smith should appear after page 261, we let FirstPage = 262.
Now, MiddlePage = L(262 + 521)/2J = 391. Since Joe Smith is not on page 391 and we
are beyond the page we want, we let LastPage = 390 and compute MiddlePage = L(262 +
390)/2J = 326. We find Joe Smith on this page and return an appropriate message.

Theorem 5. Prove that the algorithm Binary Search of Phone Directory is correct.

Proof. Exercise for the reader. M

U Exercises

Assume that all variables not given an explicit domain are elements of N.

1. The terms of a sequence are given recursively as ao = 2, al = 6, and a, = 2a,_1 +
3 a,-2 for n > 2. Find the first eight terms of this sequence.

2. The terms of a sequence are given recursively as p0 = 3, pI = 7, and Pn = 3 Pn-1 -

2 Pn-2 for n > 2. Find the first eight terms of this sequence.
3. The terms of a sequence are given recursively as a0 = 0, al = 4, and a, = 8 an-i -

16 an-2 for n > 2. Find the first eight terms of this sequence.
4. Prove that with just 3-cent and 5-cent stamps, you can make any amount of postage

less than 35 cents (any natural number of cents) except 1 cent, 2 cents, 4 cents, and 7
cents.

5. The terms of a sequence are given recursively as p0 = 1, p1 = 2, and Pn = 2 p,-1 -

Pn-2 for n > 2. Write out the information that the inductive step assumes and what
the step must prove in proving b, = 2- 3n is a closed form for the sequence. Suppose
no = 0 and the base cases are 0 and 1.

6. The terms of a sequence are given recursively as P0 = 3, pi = 7, and pn" = 3 Pn-1 -

2 Pn-2 for n > 2. Write out the information that the inductive step assumes and what
the step must prove in proving bn = 2 n+2 - 1 is a closed form for the sequence. Sup-
pose no - 1 and the base cases are 0 and 1.

7. The terms of a sequence are given recursively as ao = 0, a1 = 4, and a, = 8 an- -I

16 an-2 for n > 2. Write out the information that the inductive step assumes and what
the step must prove in proving bn = n 4n is a closed form for the sequence. Suppose
no = 1 and the base cases are 0 and 1.

8. Given that bn- 1 = 2 3 n-1 and bn-2 - 2. 3 n-2, prove that if bn = 2bn- 1 + 3bn-2,
then bn = 2. 3n provided n > 2.

9. Given that bn 1 - 2 n+l - 1 and bn- 2 = 2' - 1, prove that if bn = 3bn-1 - 2bn-2,
then b_ = 2n+2 - 1 provided n > 2.

10. Given that bn- 1 = (n - 1)4 n-1 and bn-2 = (n - 2)4 n-2, prove that if bn = 8bnI -

16b,- 2 , then bn = n4' provided n > 2.
11. The terms of a sequence are given recursively as ao = 2, al = 6, and an = 2 an-I +

3 an-2 for n > 2. Prove by induction that b, = 2. 3n is a closed form for the sequence.
12. The terms of a sequence are given recursively as p0 = 3, pl = 7, and Pn = 3 Pn-I -

2 Pn-2 for n > 2. Prove by induction that bn = 2 n+2 - 1 is a closed form for the
sequence.

80 CHAPTER 1 Sets, Proof Templates, and Induction

13. The terms of a sequence are given recursively as ao = 0, a1 = 4, and a, = 8 anI --

16 an-2 for n > 2. Prove by induction that bn = n 4n is a closed form for the sequence.
14. The terms of a sequence are given recursively as po = 1, P1 = 2, and Pn = 2 Pn-I -

Pn-2 for n > 2. Prove by induction that bn = 1 + n is a closed form for the
sequence.

15. (a) Prove that with just 3-cent and 5-cent stamps, you can make any amount of postage
(any natural number of cents) except 1 cent, 2 cents, 4 cents, and 7 cents.
(Hint: That you can make 0-cent postage is obvious. You need to prove two things:
(i) that you can assemble any amount of postage except 1 cent, 2 cents, 4 cents,
and 7 cents; and (ii) that you cannot assemble these four amounts. Be careful about
whether you use the Principle of Mathematical Induction or the Strong Form of
Mathematical Induction.)

(b) What amounts of postage can be assembled with 4-cent and 7-cent stamps only?
(c) What amounts of postage can be assembled with 8-cent and 10-cent stamps only?
(d) What amounts of postage can be assembled with 7-cent, 8-cent, and 10 cent stamps

only?
(e) What amounts of postage can be assembled with 2-cent and 5-cent stamps only?

16. Prove by induction that

1 +V5ý 1 I - 5n+l
Fn = V-= - 2

is a closed form for the Fibonacci sequence.
17. Prove that Fn+m = Fn " Fm + Fm-1 i Fn- 1 for m > 1. Prove the following

corollaries:
(a) Fn-1 [F2n-1.

(b) Fn- 1 F3n-1.
(c) F2 + F 2 is a Fibonacci number.n~l

18. In how many ways can you climb a ladder with n rungs if at each step you can go
up either one or two rungs? The terms of a sequence are given recursively as al = 1,
a2 = 2, and an = an-1 + an-2 for n > 2. Prove by induction that bn = Fn+l gives
the terms of this sequence where Fn+i is the (n + 1)st Fibonacci number.

19. The Lucas numbers are defined as LO = 2, LI = 1, and Ln = Ln-1 + Ln- 2 for n > 2.
Prove that Ln+ -- Fn- 1 + Fn+l for n > 2.

20. Trace through the execution of the procedure FastPower on the following inputs:

(a) base = 3, expont = 9.
(b) base = 2, expont = 10.
(c) base = 5, expont = 6.
(d) Count the number of multiplications needed in (a)-(c).

21. What exactly is wrong with the following "proof" that for every real number x > 0,
x = 2x:
Suppose the result is true for all real numbers y where O<y < x.
Case 1: x = 0. Then, 2x = 2- 0 = 0 = x.
Case 2: x > 0. Then, 0 < x/2 < x. So, by hypothesis, x/2 = 2(x/2) = x. Doubling
both sides, deduce that x = 2x. So, the result holds for every real number x > 0 by
the Strong Form of Mathematical Induction.

Chapter Review 81

22. Challenge: There is a third principle related to induction, the Principle of Well-
Ordering for the Natural Numbers. It is the following: If T C N and T A 0, then
T contains a minimum element; that is, there is a natural number no E T such that for
all natural numbers k < no, we have k g T.

(a) Use the Principle of Well-Ordering for the Natural Numbers instead of the Strong
Form of Mathematical Induction to prove that

n . (n + 1)
2

(Hint: Let T={n EN:0+l+2+...+n n.(n+1)/2}.)
(b) Use the Principle of Well-Ordering for the Natural Numbers instead of the Strong

Form of Mathematical Induction to prove that every integer n such that n > 1 can
be factored into a product of one or more primes.

(c) Using the Principle of Well-Ordering for the Natural Numbers, prove one of the
forms of the Principle of Mathematical Induction.

(d) Using one of the forms of the Principle of Mathematical Induction, prove the Prin-
ciple of Well-Ordering for the Natural Numbers.

23. The Binary Search of Phone Directory algorithm in Section 1.10.4 looks for any page
(if any) containing a name Name in a telephone book City. The portion of the algorithm
used in searching for the page is called BinarySearch. Prove that the algorithm works
correctly.

* Chapter Review

The language of sets was introduced. The basic operations of union, intersection, set dif-
ference, and complementation were studied. The properties of these operations were given
as well as the properties of these operations when they are used with each other. One im-
portant way that union, intersection, and complementation interact is through DeMorgan's
Laws. Finally, the power set of a set and the product of two sets are introduced. The proof
techniques used with sets are highlighted as templates for an idea of how to approach sim-
ilar proofs. The chapter then moves to the topic of determining the number of elements in
a set of overlapping sets using the Principle of Inclusion-Exclusion. The last two sections
introduce extremely important proof techniques for proving results about the natural num-
bers. Both the Principle of Mathematical Induction and the Strong Form of Mathematical
Induction are explained and used in constructing proofs of statements about natural num-
bers. The basic idea of a pseudocode that is used to present algorithms is described for use
throughout.

Set operations are used as examples of operations that define boolean algebras and
lattices. Induction is used to study Fibonacci numbers and geometric series. Important
examples regarding the use of induction in both forms in proving an algorithm is correct are
given. For example, algorithms for computing powers, finding factorizations of an integer,
and carrying out an efficient search are proven to be correct algorithms.

82 CHAPTER 1 Sets, Proof Templates, and Induction

1.12.1 Terms, Theorems, Algorithms, and Templates

1.1 Summary
TERMS

algebraic identity is a member of real numbers
empty set is an element of set
equal is contained in set-theoretic notation
factor is in subset
finite set is not an element of universal set
if and only if natural numbers universe
implication not finite sets vacuously
infinite set proper subset Venn diagram
integers rational number

THEOREM

A = B if and only if A C B and B C A

TEMPLATES

Template 1.1 Element Membership in a Set Template 1.5 Set Equality

Template 1.2 Set Inclusion Template 1.6 Set Inequality
Template 1.3 Set Non-Inclusion Template 1.7 Implications and If and Only If
Template 1.4 Proper Set Inclusion

1.3 Summary
TERMS

absolute difference disjoint sets minimum element
analogous distributive lattice power set
bit representation equivalent statements product
boolean algebra inclusive or proof by cases
bottom indirect proof relative difference
complement intersection (n) set difference
complementation inverse statement
complemented lattice join (v) symmetric difference
contrapositive lattice top
converse maximum element union (U)
counterexample meet (A)

THEOREMS

Absorption Law for Join Commutative Law for Intersection
Absorption Law for Meet Commutative Law for Join

An Absorption Law Commutative Law for Meet
Associative Law for Intersection Commutative Law for Union
Associative Law for Join DeMorgan's Law for Intersection
Associative Law for Meet DeMorgan's Law for Union
Associative Law for Union DeMorgan's Laws

Chapter Review 83

Distributive Law for Intersection Distributive Law for Meet
Distributive Law for Join Distributive Law for Union

TEMPLATES

Template 1.8 Proof by Cases Template 1.10 Proof by Contradiction
Template 1.9 Disproof by Counterexample Template 1.11 Indirect Proof

1.5 Summary

TERMS

cardinality number of divisors
even intersection odd intersection
hat check problem

THEOREMS

Basic Counting Theorem Principle of Inclusion-Exclusion for
Principle of Inclusion-Exclusion Three Sets
Principle of Inclusion-Exclusion for Principle of Inclusion-Exclusion for Two

Finitely Many Sets Sets

1.7 and 1.8 Summary

TERMS

algorithm inductive step
base step infinite loop
condition lemma
correctness mathematical induction
Fibonacci numbers perfect square
finite geometric series pseudocode
first form recursive definition
for loop recursively defined sequence
geometric series selection sort
inductive assumption while loop
inductive hypothesis

THEOREMS

Principle of Mathematical Induction
Size of a Power Set

ALGORITHMS

Perfect Squares
Square Root I
Square Root II

TEMPLATES

Template 1.12 Using the Principle of
Mathematical Induction

84 CHAPTER 1 Sets, Proof Templates, and Induction

1.10 Summary
TERMS

base cases prime numbers
base step(s) recursion
closed form recursive call
inductive hypothesis recursively defined sequence
inductive step

THEOREMS

Fundamental Theorem of Arithmetic
Strong Form of Mathematical Induction

ALGORITHMS

Compute Powers Binary Search of Phone Directory
Largest Odd Divisor Compute F,
Print a Prime Factorization of an Integer

TEMPLATE

Template 1.13 Using the Strong Form of
Mathematical Induction

1.12.2 Starting to Review

1. Which of the following set descriptions gives the set {2, 8, 14, 20, 26, 32)?

(a) {n E N :n = 2x + 6 for some integer x such that I < x < 6)
(b) {n e N: n = 6x + 2 for some integer x such that I < x < 6)
(c) {n E N n = 6x + 2 for some integer x such that 0 < x < 6}
(d) None of the above

2. Let B = {2, 3, 6, 9, 111 and C = {1, 4, 6, 11, 15). Which of the following sets are not
any of B U C, B fl C, and B - C?

(a) {1, 6, 9, 151
(b) {6, 11)
(c) {2, 3, 9}
(d) None of the above

3. What is the contrapositive of the statement "If the sun is shining, then it is time to go
outside."

(a) If the sun is shining, then it is not time to go outside.
(b) If it is time to go outside, then the sun is shining.
(c) If it is not time to go outside, then the sun is not shining.
(d) None of the above.

Chapter Review 85

4. Of 26 students who are either females or biology majors, there are 17 females and 23
biology majors. How many females are biology majors?

(a) 12
(b) 17
(c) 14
(d) 9

5. Describe each of the following sets in the format {x : property of x I.

(a) A = {0,2,4, 6, 8,...}
(b) B ={ 1,2,5, 10, 17,26,37,50,....

(c) C = {1,5,9, 13, 17, 21,...}
(d) D - {1, 1/2, 1/3, 1/4, 1/5, . ..)
(e) E = {lemon, lime, 1, 3, 5, 7,

6. For U ={1, 2, 3,..., 9, 10},let A = {1, 2, 3, 4, 5), B = {1, 2, 4, 8}, C ={1, 2, 3, 5,
71, and D = {2, 4, 6, 8}. Determine the elements of each of the following sets

(a) (AUB) nC
(b) AU(BAnC)
(c) CUD
(d) CAD

(e) (AUB)-C
(f) AU(B-C)
(g) (B-C)-D
(h) B - (C - D)
(i) (A U B) - (C n D)

7. List the subsets of each of the following sets:

(a) A = {1, 2, 31
(b) B = {1, {2, 31}
(c) C = {{1, 2, 31)

8. Find a counterexample to A C B ý* A U B = A.
9. List the first eight terms of the sequence defined as co = 1, Cl = 3, and c, = c, 1I +

2Cn-2 for n > 2.
10. Let A be a subset of some universal set U. If A contains 58 elements and A contains

37 elements, how many elements are in U?

1.12.3 Review Questions
1. Let A={1,2,4,7,81, B={1,4,5,7,91, and C={3,7,8,9}. Let U=

{1, 2, 3, 4, 5, 6, 7, 8,9, 10). Find set expressions using these sets and the opera-
tions of union, intersection, absolute difference, and relative difference to represent
the following sets:

(a) {2, 7, 91
(b) {3, 5, 6, 7, 9, 10}

86 CHAPTER 1 Sets, Proof Templates, and Induction

2. A survey of reading habits was proposed for the city of Lewisburg. Let U be the sample
set of adults in Lewisburg, F the set of females in the sample, B the set of readers who
have finished five or more books in the past year (called regular book readers), and P
the set of readers who read some of every issue of a periodical during the past year
(called the regular periodical readers). Use set notation to identify the following sets
of readers:

(a) Females who regularly read books or periodicals
(b) The men who read both books and periodicals regularly
(c) Adults who regularly read either books or periodicals, but not both
(d) The women who do not read either books or periodicals regularly
(e) The men who read books but not periodicals regularly

Now, describe in words the following sets:

(f) FnP
(g) F nBnP
(h) F n B n P
(i) FnBnP
0) Fn(PUB)-Fn(PnB)

3. For sets A and B, prove that A U (B - A) = A U B.
4. For sets A and B, prove that A n B = 0 ý* A C B.
5. Prove by induction that 3 + 11 + .. + (8n - 5) = 4n2 - n for n E N and n > 1.
6. Prove by induction that 2n + 1 < 3n - 1 for n E N and n > 3.
7. Prove that for every n E N that n3 + n is even.
8. Prove by induction that 73 1 (8 n+2 + 9 2n+1) for every n e N.
9. Prove that b, = 5 • 2' + 1 is a closed form for the recursive relation ao = 6, al =

11, and an = 3an--I-- 2an-2 for n > 2.
10. Let S C N and 3 e S. Also, assume that if x E S, then x + 3 e S. Prove that

13-n : n E NJ c S.

11. The country of Xabob uses currency consisting of coins with values of 3 zabots and
5 zabots. If you cannot combine some number of these coins to pay a bill, the item is
free. For what number of zabots are items free? Prove your answer.

12. Challenge: The name Strong Form of Mathematical Induction suggests that that form
really is a logically different assertion than the Principle of Mathematical Induction.
In fact, however, this is not so. It is not too difficult to prove one form from the other.

(a) Assuming the Strong Form of Mathematical Induction, prove the Principle of
Mathematical Induction. You need to do the following: Assume the hypothesis of
the first form of the Principle of Mathematical Induction, and using just the Strong
Form of Mathematical Induction, prove the conclusion of the (first form of the)
Principle of Mathematical Induction. So, assume T C N, some no E T,
and for every n > no, if n E T, then n + 1 e T. Then, using the Strong
Form of Mathematical Induction but not the (first form of the) Principle
of Mathematical Induction, prove that T = N. (For a statement of the first
form of the Principle of Mathematical Induction, see Section 1.7.1) (Hint: Let
T, = T U {0, 1 no - 1}. Prove, using the Strong Form of Mathematical In-

Chapter Review 87

duction but not the Principle of Mathematical Induction, that T' = N. Then, use
that to show that every natural number n > no is in T.)

(b) Assuming the (first form of the) Principle of Mathematical Induction, prove the
Strong Form of Mathematical Induction. You need to do the following: Assume
'T C N and that for all n E N, if all k < n are in T, then n (" T. Prove, using
the Principle of Mathematical Induction but not the Strong Form of Mathemati-
cal Induction, that T = N. (Hint: Let T' = {n E N : for all k < n, k E T}. Prove
T' = N, and then use that to prove T = N.)

13. How many students are in Math347? From the survey of all the students, it was found
that 43 had taken Econl03, 55 had taken Soci213, 30 had taken Musil 11, 8 had taken
both Econl03 and Soci2l3, 13 had taken both Econl03 and MusilIl, 15 had taken
Soci213 and Musil 11, and 8 had taken none of the courses. No one had taken all three
courses.

14. How many integers between 1 and 250, including 1 and 250, are divisible neither by 3
nor by 7 but are divisible by 5?

1.12.4 Using Discrete Mathematics in Computer Science

1. Prove that the Largest Odd Divisor algorithm outputs the largest odd divisor of N for
all integers N > 0.

2. Prove that the PrintFactors algorithm factors natural numbers N > 1 into primes.
Prove that, in fact, its output is a list of one or more primes whose product is N.
So, for N = 24, the outputs are the numbers 2, 2, 2, and 3, in some order.

3. Consider the Binary Search of Phone Directory algorithm. This algorithm looks for
the page (if any) containing a name Name in a telephone book City. The portion of
the algorithm used in searching for the page is called BinarySearch. Prove that the
algorithm works correctly.

4. The summation shown arises in determining how long it takes part of one particular
method, called heapsort, to sort a list of numbers into increasing order. More pre-
cisely, heapsort often is written with a preprocessing step called heapify. (Preprocess-
ing means that this step is performed once before the main step of the program.) This
summation arises in determining how long it takes to "heapify" a list of 2n numbers:
0.2n + 1 "2n-1 + 2"2n -2 + 3"-2n-3 +" q-..+(n -- 1) .2' +n-n 20 = 2n+1 -- n -- 2

Prove by induction that the summation is correct for n > 0.
5. Show by induction on n that for b E N, b > 2,

n

(b - 1). E bi = bn+l - 1
i=O

Interpret this identity in the context of number representation in the base b using the
standard positional notation. Start by seeing what this means for b = 10 and n = 4.

6. (a) In the calculation of baseexpont using FastPower, how many copies of the algorithm
will be invoked?

(b) Show that if the FastPower algorithm is invoked n times (that is, n total invoca-
tions, including both the original invocation from the outside and the recursive
invocations), somewhere between 0 and 2n multiplications will be performed.

88 CHAPTER 1 Sets, Proof Templates, and Induction

(c) A simpler algorithm to calculate 1.00110°0 is to multiply 1000 copies of 1.001
together, using 999 multiplication in all. Using parts (a) and (b), estimate how
many fewer multiplications the FastPower algorithm performs.

7. Let X and Y be two lists sorted in nondecreasing order. Suppose that for some positive
integer n, there is a combined total of n numbers in the two lists. Prove that X and
Y can be merged into a single list of n numbers in nondecreasing order using at most
n - 1 comparisons.

8. Prove that the following code to compute Fibonacci numbers is correct:

INPUT: n E N
OUTPUT: Fn

recursiveFibonacci(n)
if n = 0 then

recursiveFibonacci(O) = 1
else

if n = 1 then
recursiveFibonacci(1) = 1

else
recursiveFibonacci(n) = recursiveFibonacci(n - 1)

+ recursiveFibonacci(n - 2)

9. Prove that, at most, n + 1 comparisons are required to determine if a particular number
is in a list of 2n numbers sorted in nondecreasing order.

10. Prove that exactly n - 1 multiplications are needed to compute the product of n dis-
tinct real numbers in a fully parenthesized expression, regardless of how parentheses
are used.

Formal Logic

It is an old dream to write a formal, mathematical description of the laws of human thought.
The goals are to identify what it is that makes certain arguments correct and to identify
correct arguments only from their logical form. Work toward these goals is ancient. It
began with the early Greeks and was extensively developed by Aristotle (384-322 BC). The
study was again actively pursued in the Middle Ages. During the nineteenth and twentieth
centuries, the field developed rapidly, with explosive growth starting around 1930. The
understanding of formalized reasoning is one of the major topics of formal logic, and it
has been extensively applied to studying mathematical proofs. In computer science, formal
logic has many applications in areas such as database theory, artificial intelligence, program

language design, and automated verification of software and hardware. In database theory,
logic is used to formalize the definitions of queries. In artificial intelligence, logic is used
to formalize human inference. Proving a program to be correct can use logic-based notions
such as loop invariants and both pre- and postconditions. Formal logic also plays a major
role during many phases in the design of electronic computers, including the design of
efficient combinatorial networks or circuits.

This chapter provides an introduction to formal logic. First, we give the basic defini-
tions of propositional logic. These cover the usual material expected of a discrete math-
ematics course-propositional logic and logical truth. Next, we introduce normal forms
in propositional logic, particularly simple ways to write formulas, a topic that is now of
special interest in computer science. One application of normal forms is in combinatorial
network design. Examples of the relationship between normal forms and combinatorial
networks will be explained as well. Finally, we discuss an extension of propositional logic

involving predicates and quantifiers. These are key ideas in an extension of propositional
logic to predicate logic. An important part of predicate or first-order logic is to express, in
a single statement, how elements in a set of values can make the statement true.

Introduction to Propositional Logic

The simplest variant of formal logic is propositional logic. Its basic object is a sim-
ple, declarative sentence, called a proposition. Propositional logic is concerned with
combining sentences, such as "The world is round" and "Columbus was right" to form
"If the world is round, then Columbus was right."

89

90 CHAPTER 2 Formal Logic

A proposition is something that is either true or false; it is not both. "The cover of this
book is pink" is a proposition. "Napoleon spent at least one day of his life in Paris" and
"Either the butler did it with a bottle or the colonel did it with a lead pipe" are also propo-
sitions. On the other hand, "Justice," "The Queen's birthday," "Whoever is the stronger,"
and "Why is the world almost round?" are neither true nor false and, therefore, are not
propositions.

In formal notation, the letters p, q, r, and s (plus those letters subscripted with natural
numbers, such as pl, q2, and r127) are used to stand for, or to denote, propositions. Such
a variable is called a proposition letter. We consider proposition letters to be essentially
the same as boolean (logical) variables in a programming language. T and F are propo-
sitional constants-that is, propositions with fixed truth values of TRUE and FALSE,
respectively.

Propositional logic is concerned with certain ways in which simple sentences can be
combined into more complex sentences. Several standard operations are used on proposi-
tions to form other propositions. Such an operation is called a propositional connective.
The common propositional connectives are shown in Table 2.1.

Table 2.1 Propositional Connectives

Connective Sample Use Common Translation

- -'p "not p"
A pAq "p and q"

V pvq "p or q (or both)"
Sp -*q "if p, thenq" or "p implies q"

p + q "p if and only if q," or "p is equivalent to q"

Example 1. Let p denote "Henry eats halibut" and q denote "Catherine eats kippers."

(a) The proposition -p is read "Henry does not eat halibut."
(b) The proposition p A q is read "Henry eats halibut, and Catherine eats kippers."
(c) The proposition p -* q is read "If Henry eats halibut, then Catherine eats kippers."
(d) The proposition p ** q is read "Henry eats halibut if and only if Catherine eats

kippers."
(e) The proposition (-'p) v (-'q) is read "Henry does not eat halibut, or Catherine does

not eat kippers."
(f) The proposition p ++ ('q) is read "Henry eats halibut if and only if Catherine does

not eat kippers."

Example 2. Let p denote "Henry eats halibut," q denote "Catherine eats kippers," and r
denote "I'll eat my hat."

(a) Write a proposition that reads "If Henry eats halibut but Catherine does not eat kippers,
then I'll eat my hat."

(b) Write a proposition that reads "Either Henry eats halibut or Catherine eats kippers, but
not both."

Introduction to Propositional Logic 91

Solution.

(a) (p A -q) -- r. Since and and but usually both get translated as A, the difference be-
tween the two English words is usually an issue not of what is the case but, rather, of

what we would have expected to be the case.
(b) (p v q) A -(p A q).

This proposition is "logically equivalent to" the proposition in Example 1 (f), meaning

that p <-+ (-q) is an equally good answer. We shall discuss logical equivalence in the next
section. 0

Definition 1. Let p, q, and r be propositions. The proposition -p is the negation of
p. The proposition p A q is the conjunction of p and q, and p and q are called its con-
juncts. The proposition p V q is the disjunction of p and q, and p and q are called its
disjuncts. The proposition p -+ q is a conditional, or an implication, with hypothesis p
and conclusion q. The proposition p +-* q is an equivalence or a biconditional.

Since the English language is often ambiguous, and the meanings of words can vary
from context to context, the English translations of the symbols we have just introduced
(--, A, v, -+, and ++) do not define the meanings of the symbols precisely. A precise def-
inition of each symbol is given by a truth table, which provides the truth value for the
result of applying the operation on each possible set of truth values for the operands. As
mentioned, we shall use the symbols T and F to denote the truth values TRUE and FALSE

as well as to denote propositional constants. Table 2.2 shows the truth table for negation.

Truth Table for

p
Table 2.2 Truth Table for Negation T F

F T

Table 2.2 is read as follows: For any proposition p, if p is T, then -'p is F, and if p
is F, then -p is T. This assignment of truth values agrees with the common usage of the
word not. Truth tables for the other propositional connectives are shown in Table 2.3.

Truth Table for A Truth Table for v

p q pAq p q pVq

T T T T T T
T F F T F T
F T F F T T

Table 2.3 Truth Tables for Logical F F F F F F
Connectives Truth Table for -* Truth Table for +

p q p--q p q p*- q

T T T T T T
T F F T F F
F T T F T F
F F T F F T

92 CHAPTER 2 Formal Logic

As an example of using the truth table for A, suppose you know that both p and q are
T. Look in the truth table for A to find the row where both p and q have the value T. Then,
look across that row to find the truth value of p A q. In this case, p A q has the value T.
Now, suppose in another instance you know that p is T and q is F. The second row of the
table for A has the value T for p and F for q. In that row, the truth value given for p A q
is F.

It is helpful to consider how the truth table for -- relates to common usage of "if...
then." A simple requirement of a notion of "if ... then" is that "if ... then" statements
should be usable in arguments. If it is true that "The carriage had mud on its tires" and is
also true that "If the carriage had mud on its tires, then it is raining outside," then one can
correctly infer that "It is raining outside." The truth table definition of -+ is that p -+ q is
F just in case it would lead from a true hypothesis to a false conclusion. The truth table for
--> also corresponds to the template for proving an "if... then" result that was introduced

in Chapter 1.

2.1.1 Formulas

More complicated propositional expressions, called formulas or well-formed formulas
(wffs), can be built from the proposition letters using the propositional connectives and
parentheses. When we say 0 = (p A q) -+ r, we mean that 0 is the string of symbols
(p A q) --> r. For the following formulas, we would like to know when the conclusion is

necessarily true:

S= (p A q) --* r, which can be paraphrased as "If p and q are both true, then r is also

true."
01 = (p V q) -- r, which can be paraphrased as "If p or q (or both) is true, then r is also

true."

42 = (p -- r) -* ((p A q) --* r), which can be paraphrased as "Suppose that if p is T,
then r is T Then, if p and q are both T, then r is T."

In the last formula, we translated two of the --- 's as if... then and one as suppose ... then.
We did that to make the reading easier. One advantage of a formal notation is that it lets us
express concepts that cannot be expressed easily and unambiguously in everyday language.

Example 3. Translate the following sentences into a formula in propositional logic: "If
Mr. Holmes told the truth and Mr. Watson did not hear anything, then it cannot be both that
the butler did it and that the butler returned to his hotel room that night."

Solution. Actually, there are many translations, depending on which parts of the sentence

are chosen to be represented by proposition letters and on which proposition letters are
chosen to represent them.

Let p denote "Mr. Holmes told the truth," q denote "Mr. Watson did not hear any-
thing," r denote "the butler did it," and s denote "the butler returned to his room that
night." The sentence can now be translated into propositional logic as

) = (p A q) - (-(r A s))

The reader is urged to do Exercise 1 in Section 2.2 before going on to the rest of the
section.

Introduction to Propositional Logic 93

The formal definition of a formula is an inductive definition of a set of strings. The
base cases correspond to the base step of an inductive proof. The closure rules correspond
to the inductive step.

Definition 2. A formula is any string of symbols that is formed using the following rules:

1. Base cases: Every proposition letter is a formula. T and F are formulas.

2. Closure rules: Let 4 be a formula. Then, (--4)) is a formula. For formulas 4 and V,
(0 A f), (0 V *), (0 -* *s), and (0 *+ *t) are formulas.

According to the base case alone, p, q, and T are formulas. From the base case and
just one application of the closure rules, one can show that (p A q), (p v p), (p --+ T),
and -q are formulas. From the base case and two applications of the closure rules, one can
show that (-(p A q)) and (q <-* (p -+ T)) are formulas.

It often seems that in elementary logic, most theorems are proved by induction on
some integer related to formulas, such as the number of symbols, the number of parenthe-
ses, the number of propositional connectives, or the number of times the closure rules of
Definition 2 were applied to generate the formula. (Let this be a hint for the Exercises.)

Theorem 1. (Principle of Induction on Formulas) Let T be a set of formulas such
that:

Base cases Each proposition letter is in F, and T and F are in T.

Closure rules If 4, Vtare formulas in F7, so are

(-0), (4 A *t), (0 V Vt), (4 -- Vt), and (4 - Vt)

Then, F is the set of all formulas.

Proof. Let T = {n E N : all formulas formed using n elements of {-, V, A, -+, +-+} are
in F71. If we prove T = N, then all formulas are in F. We will use the strong form of
mathematical induction to complete this proof.

(Base step) Let n = 0. All formulas using 0 instances of elements of {-, V, A, -- , --}
are just the proposition letters and the two logical constants T and F. Because these are
just the elements in the base cases used to define T, all these elements are in F, and 0 E T.

(Inductive step) Let n > 0 and assume that 0, 1 n - 1 c T. To prove n E T will be
a proof by cases (see Template 1.8, Proof by Cases). We use a proof by cases because a for-
mula formed using n instances of elements of {-, v, A, -+, ++-J is of one of the following
forms:

(a) -0, where 4 is formed using n - 1 elements of {-, V, A, -*, +}
(b) 4 V *, where 4 and Vt are each formed using fewer than n elements of

I-•, V, A,--+, ++}
(c) 4 A *,, where 4 and * are each formed using fewer than n elements of

{-, V, A, -+, +-}
(d) 4-+ V*, where 4 and V are each formed using fewer than n elements of

t', V, A, --*, +-*}

(e) 4) *,- , where 4 and Vt are each formed using fewer than n elements of
{-, V, A, -+, ++1

The details of the proof in each of these cases are left as an exercise. U

94 CHAPTER 2 Formal Logic

The theorem that follows is included because it is an example of an easy application of
the Principle of Induction on Formulas: It may look rather uninteresting and technical: It
deals only with counting the parentheses in a formula. Suppose, however, you were writing
a computer program to check something about logical formulas. In this case, you would
need to pay close attention to the parentheses. (Of course, you would have to worry about
more sophisticated issues than just counting the parentheses.) Or, consider the job of a
person writing a compiler for a computer language. The compiler code will have to pay
close attention to)'s, I's, and }'s, because having them misplaced causes difficulties for the
program.

Theorem 2. Every formula has an equal number of right and left parentheses.

Proof. Let .F be the set of formulas that have an equal number of right and left parenthe-
ses. Prove by induction on formulas that F is the set of all formulas.

(Base cases) Each proposition letter is in F7, since it is a formula with no left parentheses
and no right parentheses. Similarly, T, F E F-.

(Closure rules) Let 4, V1 E T. Let) have n left parentheses and n right parentheses and
* have m left parentheses and m right parentheses. Then:

(a) (-4') has n + 1 left parentheses (n in 0 plus one more in front) and n + 1 right paren-
theses (n in 40 plus one more following), so (-0) E F.

(b) (40 A *,) has m + n + 1 left parentheses (m in 4,, n in 4', and one more in front)
and m + n + 1 right parentheses (m in *, n in 4', and one more following), so
(0 A E) eF.

(c) (0 v 4,), (40 - 4,), and (4' - 4,) each have m + n + 1 left parentheses and m + n +
1 right parentheses, so each is in F7.

Therefore, by the Principle of Induction on Formulas, it follows that F7 is the set of all
formulas. U

2.1.2 Expression Trees for Formulas

An expression tree is simply a visual representation for the way that a formula is built
from propositions and logical operators. A proposition is represented by a single node,
simply a filled-in circle, as shown in Figure 2.1.

P0p

Figure 2.1 Representation for p.

For an expression involving two propositions and a logical operator, the propositions
are represented by nodes at the same level, and then at a higher level, a node represents
the result of applying the operator to the two propositions. The nodes representing the
propositions and the node representing the result of the operation are joined by lines. For
example, the final picture for p V q is shown in Figure 2.2.

Introduction to Propositional Logic 95

pvq

p q

Figure 2.2 Representation for p v q.

To introduce the representation structure for a more general formula, we will de-
scribe how you build an expression tree from the top down. To build an expression tree
from an expression, first place the final expression at the top of the representation, and
then put the expressions that are operated on to form the final expression underneath.
Join by lines the nodes representing the expressions operated on and the node represent-
ing the result of the operation. The process can continue until the lowest level contains
only propositions. The resulting picture or representation of an expression is an expression
tree.

The expression tree structure gives exactly the same information as the parentheses
in the formula about the order of execution, but the expression tree sometimes gives a
better picture. Because this representation is so useful in evaluating an expression, we
will give several more examples and then a formal description of how you can build an
expression tree from the bottom up. The expression tree of ((p A q) A r) is shown in Fig-
ure 2.3.

((p A q) A r)

(P
r

p q

Figure 2.3 Expression tree of ((p A q) A r).

The expression tree of ((-'p) v q) -+ (r -* p) is shown in Figure 2.4.

((-•p) v q) ---> (r -4 p)((-p) v q)v (r --->p)

(-'P) q r P

Figure 2.4 Expression tree of (((Hp) v q) -+ (r - p)).

Definition 3. (Expression Tree for a Formula) The expression tree for a proposition
letter p, for T, or for F consists of a single node as shown:

p T F

96 CHAPTER 2 Formal Logic

If 0p is a formula with expression tree To, then an expression tree for T(-O) is

(0)I
If 40 and * are formulas with expression trees To and Tk, respectively, then an expression
tree for T(O^*) is

()A

Expression trees for (40 v u), (4v -), and (4' *-) are defined analogously to the way
the expression trees is defined for (4 A 4'). The corresponding expression trees are

V W) (-- 4) (- 4 W)

It can be proved that each formula has exactly one expression tree. This principle
sometimes allows arguments that manipulate expression trees to be used as a replacement
for induction on formulas. Some examples can be found in writing formal proofs for the
theorems on substitution.

For any expression tree T and any node x in the expression tree, the portion T, of the
tree at or below x forms another expression tree-namely, the expression tree for x.

Definition 4. Let X be a formula with expression tree T, and let * be a formula with
expression tree U. Then, X is a subformula of *' if, for some node x of U, TX = Ux.

Example 4. For the expression tree T, determine the subformulas defined by p and
(-(p V q)).

(r A (-'(-(p v q))))

r (-(-'(p v q)))

(-(p v q))

S(p v q)

p q
T

Introduction to Propositional Logic 97

Solution. The subtrees Tp and T(-(pvq)) are as shown:

0 (-~(p vq))

TP q(p vq)

p q
T(-•(p v q))

The term syntax refers to the rules for forming grammatically correct strings of sym-
bols of a language. The rules specified here in the definition of the terms formula and
subformula are examples of rules for forming correct strings of symbols for propositional
logic. In the next section, we will discuss the semantics of propositional logic-that is,
what the strings of symbols mean-though we have already begun discussing semantics
by giving the truth tables.

2.1.3 Abbreviated Notation for Formulas

A formula such as

((((-(-p)) A (-'q)) A r) V (((--(-,q)) A (-.r)) A s)) *+ (s - p)

has so many parentheses that the reader can easily get confused. Just as in ordinary arith-
metic, however, formulas in informal usage are abbreviated by dropping some of the paren-
theses or by using different styles of parentheses, such as brackets. Some widely accepted
conventions are summarized in Table 2.4.

Table 2.4 Common Abbreviations and Other Informal Usage

1. Drop the outermost set of parentheses, simplifying (-p) to -p and (p v q) to
pvq.

2. In a series of conjunctions nested to the left, such as (p A q) A r, drop the paren-
theses, writing p A q A r. Similarly, with disjunctions, abbreviate (p V q) v r to
p V q V r.

3. A -, symbol always applies to as little as possible. That is, - is the highest priority
operation, and -a v b means (-a) v b.

4. The remaining operations are often given priorities as follows, from highest to
lowest: A, v, -->, and *-. Thus:

(a) -a A b V c A d abbreviates (((-a) A b) v (c A d)).
(b) a- b v b A c abbreviates (a -*(b (bv(b A c))).
(c) a + b-+-C cd abbreviates (a *+ (b -* (c A d))).
(Caution: Use this rule sparingly to omit parentheses. Overuse of the rule creates
almost-unreadable formulas. When in doubt, leave the parentheses in.)

5. In formulas with nested parentheses, it is common to replace some of the paren-
theses with other symbols, usually brackets that is, ([and 1). So, the formula in
Section 2.1.3 might be written as

[(--p A -q A r) V (--q A -r A s)] +-> [s -+ p]

98 CHAPTER 2 Formal Logic

2.1.4 Using Gates to Represent Formulas

At the basic hardware level, computer memory has two states, which are identified as the
two logical values or boolean values of T and F. Computer operations are thought of as
being composed of operations on these boolean values and, hence, as operations of propo-
sitional logic. In describing computer circuits, a specialized notation for propositional logic
is used. Special physical devices, called gates, implement the A, v, and - operations. A set
of gates to represent a circuit is called a combinatorial circuit or combinatorial network.

Think of a gate as representing an operation and of the wires going into the gates as
representing its operands. For example, a A gate will let current flow out if and only if both
operands (that is, both wires coming in) carry current. Notation for these gates is shown in
Figure 2.5.

pvq p pv q p -11 -- q
q q

Figure2.5 AND, OR, and NOT gates.

A combinatorial circuit is, roughly, the analogue of a formula. Boolean circuit nota-
tion for the formula

((p A q) A r)

is shown in Figure 2.6.

pq
q (p~q)^rr

r

Figure 2.6 AND gates.

For the formula

((p A p) A p),

instead of having three separate p's as in an expression tree, the gate to represent it has one
line that splits, as shown in Figure 2.7.

(P~)^p

P

Figure 2.7 Another form of AND gates.

Since gates are used to describe computer circuits that will be implemented in a device
or printed on a chip, it is common to represent more than one formula in the same diagram,
as shown in Figure 2.8. The arrow in Figure 2.8 indicates that the output from gate C is
an input for both gates A and B. Each of the "output wires" (A and B) corresponds to the
output of a different propositional formula, as described earlier.

Exercises 99

yY

X

y

r

S
l

B
t

z

Figure 2.8 Multiple formula representation.

Exercises

1. Translate the following expressions into propositional logic. Use the following propo-
sition letters:

p = "Jones told the truth."
q = "The butler did it."
r - "I'll eat my hat."
s = "The moon is made of green cheese."
t - "If water is heated to 100 0C, it turns to vapor."

(a) "If Jones told the truth, then if the butler did it, I'll eat my hat."
(b) "If the butler did it, then either Jones told the truth or the moon is made of green

cheese, but not both."
(c) "It is not the case that both Jones told the truth and the moon is made of green

cheese."
(d) "Jones did not tell the truth, and the moon is not made of green cheese, and I'll

not eat my hat."
(e) "If Jones told the truth implies I'll eat my hat, then if the butler did it, the moon is

made of green cheese."
(f) "Jones told the truth, and if water is heated to 100 0 C, it turns to vapor."

2. Translate the following expressions of propositional logic into words using the follow-
ing translation of the proposition letters:

p = "All the world is apple pie."
q = "All the seas are ink'"
r = "All the trees are bread and cheese."
s = "There is nothing to drink."
t = "Socrates was a man."
u = "All men are mortal."
v = "Socrates was mortal."

100 CHAPTER 2 Formal Logic

(a) (p A q A r) --> s
(b) (t A u) -- v

(c) -s -) -'v
(d) p A (q A r) V (t A u) V (--S V -- V)
(e) ((p V t) A (q v u)) +-+ (S A V)

One must sometimes be a bit creative in using language to make the results compre-
hensible.

3. Let p denote the proposition "Jill plays basketball" and q denote the proposition "Jim

plays soccer." Write out-in the clearest way you can-what the following proposi-
tions mean:

(a) -'p
(b) p A q
(c) pvq
(d) -pAq
(e) p --+ q
(f) p *q

(g) --q -_ p

4. Let p denote the proposition "Sue is a computer science major" and q denote the
proposition "Sam is a physics major." Write out what the following propositions mean:

(a) -q
(b) q A p
(c) pvq
(d) -q A p
(e) q - p
(f) p÷-q

(g) -q -+ p

5. Jim, George, and Sue belong to an outdoor club. Every club member is either a skier

or a mountain climber, but no member is both. No mountain climber likes rain, and all
skiers like snow. George dislikes whatever Jim likes and likes whatever Sue dislikes.

Jim and Sue both like rain and snow. Is there a member of the outdoor club who is a
mountain climber?

6. Let proposition p be T and proposition q be F. Find the truth values for the following:

(a) pvq
(b) q A p
(c) -p V q
(d) p A -q
(e) q -+ p
(f) -p -q
(g) -q -- p

7. Let proposition p be T, proposition q be F, and proposition r be T. Find the truth

values for the following:

(a) pvqvr
(b) p v (-q A -r)
(c) p ---. (q V r)
(d) (q A -'p) +- r

Exercises 101

(e) -r --*(p A q)
(f) (p -q) - -r

(g) ((p A r) -+ (-q v p)) --* (q v r)

8. Find the expression tree for the following formulas:

(a) (pAq) vr
(b) (p -- q) -- r
(c) p - (q -- r)

9. Find the expression tree for the following formulas:

(a) -p A (--q v r)
(b) p v (-q A -r)
(c) ((p v q) <4 r) * p
(d) (--q A-,r) <-> (p -- (q V r))

10. Find the expression tree for the formula

(p -+ ((-'p) -+ q))

11. Find the expression tree for the formula

((-(p A q)) V (-(q A r))) A ((-(p *-+ (-'(-s)))) V (((r A s) V

12. Find the expression tree for the formula

((((-,(-'p)) A (-q)) A r) V (((-(-,q)) A (-,r)) A s)) +- (s -+ p)

13. Find a boolean expression to represent the following combinatorial circuits:

A

(a)
B

A
B

(b) A
B

C

D

14. Draw a combinatorial circuit for each of the following boolean expressions:

(a) (x A y) V -'Z
(b) (x A y) V (-x A y)
(c) -(-x V y) V (x A Z)
(d) ((x A y) V (y A Z)) V -Z
(e) (x V -(x V y)) V (-x A -y)

15. Find a boolean expression to represent each of the following combinatorial networks
shown.

102 CHAPTER 2 Formal Logic

x
(a) _

z

(b) Y

x

z

(c) Z

Yz

16. Prove Theorem 1, the Principle of Induction on Formulas. (Hint: If ¢ V 4 is a formula
containing n occurrences of the logical operators, then 0 and V' each are formulas
containing fewer than n logical operators. By the inductive hypothesis, both 0 and Vf
are in J7, so by the closure rules, 0 v VV is in .F.)

17. (a) What is the relationship between the number of propositional connectives in a
formula and the number of parentheses? Prove your answer.

(b) What is the relationship between the number of A's, V's, -*'s, and +*'s in a for-
mula and the number of proposition letters in the formula? Prove your answer.

(c) What is the relationship between the number of -,'s in a formula and the number
of proposition letters in the formula? Prove your answer.

(d) How many left parentheses may a formula contain? Prove your answer.
(e) How many total symbols may a formula contain? Count each occurrence of each

proposition letter as one symbol, so (P123 A P123) contains five symbols-that is,
(, P123, A, P123, and). For example, can a formula contain exactly two symbols?
Exactly 17 symbols? Prove your answer.

Truth and Logical Truth

The semantics of a language is the relationship between strings of symbols in a language
and their meaning. Consider a formula, such as

4' = (-'p V q) --* (r -+ p)

Truth and Logical Truth 103

How can the truth value for the formula be determined? Since this discussion is formal
logic, one must first define what it means for 0 to be T or F. Of course, this definition, to
be useful, must match most people's intuitions.

To start, one must know what p, q, and r stand for. At first sight, one might expect to
be told what sentences they stand for, such as

p = "Mr. Holmes never made a mistake."
q = "The professor is not a criminal."
r = "Mrs. Hudson suspected the thief from the start."

For ordinary applications, that is exactly where one begins, but for the study of proposi-
tional logic, this is an unnecessary detail. In propositional logic, it matters not at all what
sentences the proposition letters represent, only what the truth values of the sentences are.
(This will become apparent as you see how truth values are assigned to complex formulas).
Remember, F is shorthand for FALSE and T for TRUE. So, the starting point in proposi-
tional logic is an assignment of truth values to the proposition letters. For example, p may
be assigned the value T, and q and r may be assigned the value F.

Definition 1. Let P be the set of proposition letters. An interpretation is an assignment
I of a truth value (T or F) to every proposition letter in P. For r E P, the assignment of a
truth value to r is denoted I (r).

Example 1. Let P be the set of proposition letters, and let p, q, and r E P and X = P -
{p, q, r}. Let I be the following assignment of truth values to elements of P: I(p) = F,
I(q) = F, l(r) = T, and I(x) = F for every x e X. Then, I is an interpretation.

An interpretation must assign a truth value to every proposition letter. (This is a tech-
nicality, just as it appears to be. Requiring this now simplifies the discussion a bit later.)

Once the interpretation I of the proposition letters is fixed, the interpretations of all
other formulas can be computed by induction on formulas. We illustrate this here with
an expression tree. The process is different from the way that arithmetic expressions are
evaluated, because a value is found in a simple, bottom-up fashion.

Example 2. Determine whether the formula

0 = (-p V q) --* (r --+ p)

is T or F for an interpretation I where I(p) = T and I(q) = 1(r) = F. (Remember: All
other proposition letters have value F.)

Solution. Mark the leaves of the expression tree of 0 with the truth values as shown in
Figure 2.9.

((-p) v q) -- (r -- p)

((-'p) v q) (r - p)

(-P) qFrF pT

p T

Figure 2.9 Expression tree.

104 CHAPTER 2 Formal Logic

Now, use these truth values to move up the tree toward the root, using the truth tables for
the propositional connectives (see Tables 2.2 and 2.3 in Section 2.1). First, work one level
up from the leaves. The truth table for - says that if p is T, then -p is F. The truth table
for --* says that if r is F and p is T, then r -) p is T.

Next, use the truth table for v to compute a truth value for -p v q. Since the truth
value of -p is F and the truth value of q is F, the result is F.

Finally, use the truth table for --+ to assign a truth value to the entire formula. The truth
value of an implication for which the hypothesis is F and the conclusion is T is just T.
Therefore, T is the truth value of 4). The steps of this evaluation are shown in Figure 2.10.

((-p) v q) - (r - p) T
((-p) vq F r-p

(-'p) F q FTr F T

PT

Figure 2.10 Step 3 of evaluating a formula.

The truth value of the entire formula 4) is denoted by I (4)). In the case shown here,
1 (4) = T. 0

Formally, what happened in Example 2 is an induction on formulas. The interpretation
I specified the truth values for the proposition letters. The truth I (0) for more complex
formulas 4) is defined using the truth values for simpler formulas and the truth tables for -,
A, V, --*, and --* as shown here:

1. 1(T) = T, and I(F) = F

2. I(-0) = T ifI(0)=F

I F ifl()=IT

F otherwise

SF if1(0)==I(*)=F

4.(v)} = T otherwise

5 . 1 F ifI(0)=Tandl()=F
T otherwise

6. 1 T ifI(4)=(i)
F if I(4))#(Ifr)

Since each formula 4) has exactly one expression tree and these rules define the truth
value of each node on the tree in terms of the truth values of the nodes with edges joining
them to this node, there is only one way to calculate I (4)).

Definition 2. Let I be an interpretation of P. A formula 4) is true in I if 1(4)) = T, and
0 is false in I if 1 (4) = F.

Truth and Logical Truth 105

In Example 2, if I is the interpretation with I(p) = T and I(q) = I(r) = F, then
(-p V q) -). (r -- p) is true in I.

Example 3. Let

0 = ((-p V q) -- (r -+ p))

Find I (0b) for all interpretations 1.

Solution. Three proposition letters-p, q, and r-are in the formula. Hence, the truth of
the formula depends only on I(p), I(q), and I(r). Each of I(p), I(q), and 1(r) can be
one of T or F, so there are 23 = 8 possible interpretations.

The calculation of the truth value for each of the eight interpretations can be shown
concisely in a truth table. Start out with a truth table that has eight rows, one for each
interpretation:

p q r

1o T T T
I1 T T F
12 T F T
13 T F F
14 F T T
15 F T F
16 F F T
17 F F F

Next, assign truth values to larger and larger subformulas until the formula itself is evalu-
ated.

We now repeat the evaluation of the formula

0 = (--p V q) -+ (r -+ p)

using this method. Evaluating -p and r -+ p, we get

p q r -p --pVqr- p (-ppvq)- (r- p)

Io T T T F T
Il T T F F T
12 T F T F T
13 T F F F T
14 F T T T F
15 F T F T T
16 F F T T F
17 F F F T T

and in two more steps, we complete the evaluation of the formula:

106 CHAPTER 2 Formal Logic

p q r -'p -pvq r-+p (-'pvq)- (r--+p)

Io T T T F T T T

I1 T T F F T T T
12 T F T F F T T
13 T F F F F T T
14 F T T T T F F
15 F T F T T T T
16 F F T T T F F
17 F F F T T T T

By convention, we put the truth value directly under the operation performed. The truth
values in the right-most column of the table are the truth values of each of the inter-
pretations of this formula. The truth tables show that 4) is T in the interpretations I0,

1,, 12, 13, 15, and 17. The truth table also shows that 0 is F in the interpretations 14
and 16. 0

2.3.1 Tautologies

Propositional logic is the study of propositions and the propositional connectives. It is the
study not only of one particular interpretation of a formula but also of what can be deduced
about all interpretations of a formula. Of particular interest are those formulas that are true
"by virtue of pure logic." Definition 3 captures the notion of "true by virtue of pure logic,"
at least as closely as is possible from the standpoint of propositional logic.

Definition 3. Let 4) be a formula. Then, 4) is a tautology, or is logically valid, if it is T in
every interpretation. 40 is satisfiable if it is T in some interpretation, and it is unsatisfiable
if it is T in no interpretation. Unsatisfiable formulas are also called contradictions.

A formula is a tautology if and only if all entries under the formula in its truth table
evaluation are T. For example, "John is married, or John is not married" is a logical truth.
"John is married, or John is a bachelor" is not a logical truth, since it depends on the
meaning of the word bachelor.

"John is married, and John is not married" is unsatisfiable, since the proposition "John
is married" cannot be both T and F. On the other hand, "John is married, or John is a
bachelor" is clearly satisfiable. Of course, every tautology is also satisfiable.

Example 4. Construct a truth table to show that (p A q) -) p is a tautology.

Solution. The truth table for (p A q) -) p is

p q p pAq ((p Aq) -+ p)

T T T T

T F F T
F T F T
F F F T

Since all entries under ((p A q) -+ p) are T, the formula is a tautology. 0

Truth and Logical Truth 107

The reader should note that, intuitively, (p A q) -* p "asserts" that if p and q are both

T, then p is T. Thus, we expect it to be a tautology.

Example 5. Construct a truth table to show that p -- (p V r) is a tautology.

Solution. The truth table for p -+ (p v r) is

p r pvr (p-+ (pvr))

T T T T
T F T T
F T T T

F F F T

Again, all entries in the final column are T, so the formula is a tautology. U

This tautology also "asserts" an obvious truth. If p is T, then it is true that either p is

T or r is T (or both).
The next two examples show how logical connectives can be expressed in terms of

each other.

Example 6. Construct a truth table to show that (p --* q) ++ (-p V q) is a tautology.

Solution. This formula shows how -- can be expressed using v and -.

p q p--+q -p -ppVq (p-+q) *(-pVq)

T T T F T T
T F F F F T
F T T T T T

F F T T T T

Since the formula involving only -). is T(F) if and only if the formula involving - and V
is T(F), all the entries in the final column are T, so the formula is a tautology. U

Example 7. Construct a truth table to show that

(p +- q) --* ((p -+ q) A (q -÷ p))

is a tautology.

Solution. This formula shows how to express +* in terms of A and -+.

(p •* q) +-

p q p*+q p--+q q-+p (p-q) A(q--.p) ((p --+ q) A (q - p))

T T T T T T T
T F F F T F T

F T F T F F T
F F T T T T T

All the entries in the final column are T, so the formula is a tautology. U

108 CHAPTER 2 Formal Logic

Table 2.5 lists many commonly used tautologies. The reader should study them care-
fully and determine what they "assert." The names should suggest analogies to other
operations. For example, V, A, and <-* all obey associative laws, just as + and do in
arithmetic.

Table 2.5 Commonly Used Tautologies

(a) (p A p) ÷ p Idempotence
(b) (p v p) ÷- p Idempotence
(c) p V -'p Law of the Excluded Middle
(d) -(p A -p)
(e) (p A (p --+ q)) -+ q Modus Ponens
(f) ((p --* q) A (q -- r)) -+ (p -+ r) The Law of Syllogism
(g) ((p V q) A -p) -- q Modus Tollendo Ponens
(h) ((p A q) A r) *÷ (p A (q A r)) Associative Law
(i) ((p V q) v r) *-+ (p V (q V r)) Associative Law
(j) ((p ++ q) *+ r) +* (p -* (q +-* r)) Associative Law
(k) (p A r) +- (r A p) Commutative Law
(1) (p V r) -•* (r V p) Commutative Law
(m) (p -• r) <* (r *+ p) Commutative Law
(n) (p A (r V q)) +* ((p A r) V (p A q)) Distributive Law
(o) (p V (r A q)) +- ((p V r) A (p V q)) Distributive Law
(p) ---- p -* p Double negative
(q) -(p A r) *-+ (-p V -r) DeMorgan's Law
(r) -(p v r) +* (--p A -r) DeMorgan's Law
(s) (p -- r) ÷ (-r - --p) Contrapositive
(t) (p -+(r - q)) - ((p A r) - q)

(u) ((--p -+ r) A (-p --+ -r)) * p Contradiction

(v) ((p A r) V r) +- r Absorption
(w) ((p V r) A r) +-* r Absorption
(x) (p *+ q) +-* ((p A q) V (-,p A -,q))

(y) -(p +-•q) * ((-p A q) V (p A -q))
(z) (p -+ F) <-* (-,p)

The two tautologies (q) and (r) in Table 2.5, called DeMorgan's Laws, are the logi-
cal analogues of the DeMorgan's Laws of set theory (Theorem 8 in Section 1.3.2). That
theorem states how the set operations of union, intersection, and complementation interact.
Here, we see how conjunction, disjunction, and negation interact with propositions.

Example 8. Let p denote "X is a bird" and r denote "X can fly." Tautology(s) from Table
2.5 states that "If X is a bird implies that X can fly" is equivalent to "If X cannot fly, then
X is not a bird."

The following theorem is the basis of many proofs, notably many proofs by contradic-
tion.

Theorem 1. A formula * is a tautology if and only if -*4 is unsatisfiable.

Truth and Logical Truth 109

Proof. (=,) Let *' be a tautology, and let I be any interpretation of the proposition let-
ters in *. Since * is a tautology, I(*) = T, so I(-*) = F. Hence, --- ' is not satisfiable.

(€=) The converse is analogous. U

A proof by contradiction shows that if I(4) = T for an interpretation, then we prove
I(--*') = T in that interpretation, which is clearly a contradiction.

2.3.2 Substitutions into Tautologies

The formula 4 = (p A (p -- q)) -* q is a tautology. Now, replace each occurrence of p
in 4 with another formula, say pl V P2. The result is the formula

01 = ((P1 V P2) A ((Pl V P2) -- q)) -- q

The reader can easily write the truth table for 01 and see that it also is a tautology. Some-
thing more general, however, is taking place here. One can think of the substitution not as
substituting the formula P, v P2 into 4 for p but, rather, as substituting the truth value for
P1 V P2 for the truth value of p in 4. Since 4 is a tautology, any truth value for p together
with any truth value for q yields a truth value of T for 4. So, 01 should also be a tautology.
This intuitive argument can be formalized to prove the following theorem. (The interested
reader is invited to prove it.)

First Substitution Principle

Let 4 be a tautology; let P1, P2, ... , Pk be any proposition letters appearing in 4,
and let X1, X2 Xk be formulas. Form a formula 4)1 by simultaneously replacing
P1 with X1, P2 with X2. Pk with Xk wherever they occur in 4. Then, 01 is a
tautology.

The requirement of simultaneous replacement is important, since it allows, say, X1 to
contain a P2 without forcing that P2 to be replaced with X2. For example, again let

4 = (p A (p -* q)) -). q

and replace p with X1 = q -* r and q with X2 = r - q. The result is

01 = (Xj A ((XI - X2)) "- X2

01l = (q -+ r) A ((q --* r) --* (r - q)) --- (r -- q)

Since 4 is a tautology, so is 01. The simultaneous replacement condition meant that the q
in X1 did not have to be replaced with X2.

2.3.3 Logically Valid Inferences

We began the study of logic to help distinguish valid from invalid arguments. We have now
covered enough material to present a formal notion of a valid argument for propositional
logic.

110 CHAPTER 2 Formal Logic

Definition 4. Let S be a set of formulas. An interpretation I satisfies S if I (4) = T for
every 0p E S. A set S of formulas is satisfiable if there is an interpretation I that satisfies S.

For example, {p, q, r} is satisfiable. It is satisfied by any interpretation I where I (p) =

I (q) = I (r) = T. However, Ip, -pp} is not satisfiable.
One intuition is that I describes the actual state of the world and that S is a set of

formulas, which can be thought of as assertions about the world. I satisfies S if each
formula in S is a true statement about (the state of) the world. Another intuition is that I is
a possible state of the world. Suppose it is known that all statements in S are T. Then, one
can check whether a possible state I of the world matches what is known-that is, whether
I satisfies the known facts S.

Theorem 2.

(a) Every interpretation satisfies 0.
(b) If S = 101, ,k} and I is an interpretation, then I satisfies S if and only if

1(0b1 A ... A 00k = T_

Proof. This Proof is left for Exercise 23 in Section 2.4. U

Definition 5.

(a) For formulas * and X, *' logically implies, X, or * tautologically implies X, if, for
every interpretation I,

if I(*) = T, then I(X) = T

We denote i/ logically implies X as 4' - X.
(b) Formulas * and X are logically equivalent, or tautologically equivalent, or equiva-

lent, if, for every interpretation I, we have I(*) = I (X).

As a natural extension of one formula logically implying another formula, we say that
for a set of formulas S, S • x means that inferring X from S is logically valid.

Example 9.

(a) pAqkpvq.
(b) p A q is logically equivalent to -'(--p v --q).
(c) p A q and p V q are not logically equivalent.

Solution.

(a) Suppose I is any interpretation. We need to show that if I (p A q) = T, I (p V q) = T.
So, suppose I (p A q) = T. Then, I (p) = T, and I (q) = T. So, I (p V q) = T, as
desired.

Truth and Logical Truth 111

(b) We show that I(p A q) always equals I(-(-p V --q)) by building a truth table of all
possibilities:

p q pAq -p -'q -pV-'q -- (-pV-q)

T T T F F F T
T F F F T T F
F T F T F T F
F F F T T T F

Note that all entries under p A q and -- (--p v --q) are identical-that is, that I(p A q)
is always equal to I(--(--p V --q)).

(c) Let I be the interpretation where I (p) = T and I (q) = F. Then, I (p A q) = F, and
I(p V q) = T. Because these two truth values are not the same, the two formulas are
not logically equivalent. M

The intuitive content of logical implication is that if Vt # X, then it is correct to infer

X from Vi in any argument. The definition of logically implies can be extended to sets of
propositions in a straightforward way. At this point, we need to understand this notion at
the level of formulas only. For example, if we have two sets of formulas R and S, then R
logically implies S if, for every interpretation I, I satisfies R if and only if I satisfies S.

Compare the formula 4) -+ * with the assertion "0) logically implies *t." The first is
just a formula. It may be T, or it may be F. We are just discussing, or mentioning, the
formula. The second is an assertion that some logical relationship holds. Nevertheless,
there is a connection between them. This connection is given in part (a) of Theorem 2.5.

Theorem 3. Let 4) and Vt be formulas. Then:

(a) 4) k Vf if and only if -) -- o* is a tautology.
(b) R [- * if and only if R U {-'Vf} is unsatisfiable.
(c) Let R = {[1, ,2 OPk}. R 1= * if and only if 01 A4 2 A ... A k - is a tautology.
(d) 0 1= *t if and only if * is a tautology.
(e) ,) and *t are logically equivalent if and only if 4) ÷ r is a tautology.

Proof. (a) (=#) First, suppose) 1= *, and let I be any interpretation. It is necessary to
show that 1(0) -+ *-) = T. The only way that 1(0) --* *) can be F is for 1(4)) to be T and
I (*f) to be F. However, if 1(4b) = T, then, since 4) logically implies *, I (*) must also be

T. Hence, 1(4) --(0) = T.
(.€=) Second, suppose ,) -- •r is a tautology. It is necessary to show that for any

interpretation I, if 1(4) = T, then I(*) = T as well. So, suppose I is an interpretation,
and suppose 1(4)) = T. Since 4) -- Vt is a tautology, 1(,) -- Vt) = T. By the truth table
for -+, if I(0) = T and I(0) --* V)=T, then I(*) = T.
(b)-(e) These proofs are left for Exercise 24 in Section 2.4. 0

The next theorem tells us that if two propositions are either always T or always F,
then they are logically equivalent.

112 CHAPTER 2 Formal Logic

Theorem 4.

(a) Suppose 4) and * are both tautologies. Then, 4) and * are logically equivalent.
(b) Suppose 4) and * are both unsatisfiable. Then, 4) and * are logically equivalent.

Proof. These proofs are left for Exercise 25 in Section 2.4. U

The result just says that since a tautology is T for every set of truth values of its
propositions, its truth value will match the truth value of any other tautology for those
same truth values. Similarly, the same holds for two unsatisfiable formulas.

In Table 2.6, we add a bit of notation; rather than just saying {p, p --+ q) ý= q, we
replace p and q with the symbols 4) and *, representing arbitrary formulas. What Table
2.6 really means is that if we replace 4), Vt, and X with any formulas, the results are logical
implications.

Table 2.6 Some Logically Valid Inferences and Their Traditional Names

Some Logically Valid Inferences

a. {4,) • 4} Modus Ponens
b. X _ X Law of Syllogism
C. { V V 4,, -0) - 4 Modus Tollendo Ponens
d. ""4) • 4 Double Negation
e. --, -- --,' •--, -- 4. Contrapositive
f. 4)-- 4 1=- --* 4 Contrapositive
g. {4 "* X, 4 - X)x} 1 - Proofby Contradiction
h. X-'4 x, -"4 "- "x} X 4I Proof by Contradiction
i. {X)v4', 4)--,, --* X} X Proofby Cases
j. {4) A 4'} * -,(",4 v -'-0) DeMorgan's Law
k. {-(4 A 4)} 1= (-4) V --,') DeMorgan's Law
1. (0) V 4r=-'(-4) A -4) DeMorgan's Law
m. (-(4) V 40) • (",) A --,) DeMorgan's Law

Example 10.

(a) Let 4) denote "X is a cat" and * denote "X is an animal." Under the assumption that 4)
is true and 4) * 4 is true, we can use Modus Ponens to conclude that X is an animal.

(b) Let 4) denote "X is a cat" and *' denote "X is a bird." If we are given that 4) v *t is true
and --4) is true, then we can use Modus Tollendo Ponens to conclude that "X is a bird."

U

As commented earlier, computer programs have been written to automate logical in-
ference. Some material relevant to this are discussed in the next section and in Section 2.4.

2.3.4 Combinatorial Networks

A combinatorial network is just another representation for a formula or a set of formulas
of propositional logic. Start with an assignment of truth values to the wires going into the
circuit-that is, to the proposition letters. The circuit computes a group of outputs that
correspond to the truth values of the corresponding formulas.

Truth and Logical Truth 113

Gates and Boolean Algebra
In Section 1.3.5, the axiom system for a boolean algebra was introduced. Example 10
showed that if B is a set of elements with values from {0, 11, and with the operations A and
V defined as

V 0 1 A 0 1

0 0 1 0 0 0
1 1 1 1 0 1

then B with A as meet and V as join forms a boolean algebra.
If we interpret the operation of v as the logical operation of OR and A as the logical

operation of AND as well as substitute T for 1 and F for 0, then these operation tables
are just the tables of AND and OR introduced in Table 2.3. The logical value T satisfies
the conditions for T, whereas F satisfies the conditions for _L. Finally, if we interpret
complementation as -x, then the conditions for complements hold. What all this means
is that there are two different but equivalent ways to represent a circuit. The first is to draw
the gates, as shown in Figure 2.11.

q

Sum

Figure 2.11 Half-adder.

The second is to represent the gates as boolean operations and the whole gate structure as
a boolean expression. In Figure 2.12, we show a circuit and its equivalent boolean expres-
sion.

P ý pA q (-p A q) v (p A -q) v (p A q)

q

p q
q

Figure 2.12 Gates for (-p A q) V (p A -q) V (p A q).

The power of this alternate representation is shown in Example 11 where we use
logic-which we can also think of as boolean algebra-to find a simpler expression to
represent this set of gates.

114 CHAPTER 2 Formal Logic

Example 11. Use logic to show that (-,p A q) V (p A -'q) V (p A q) is logically equiv-
alent to the formula p v q thus providing us with a one-gate equivalent to the circuit in
Figure 2.12.

Solution. We use the axioms for the Commutative Law, the Distributive Law, and the
basic properties of T to simplify this expression.

(-'p A q) V (p A --q) V (p A q)
=(pAq)V(-,pAq)V(pA-,q)V(pAq) ((pAq)=(pAq)V(pAq))
= ((p V -p) A q) V (p A (-'q V q)) (Distributive Law)
= (T A q) V (p A T) (property of T)
=qVp

=pvq (Commutative Law)

The simplified circuit is shown in Figure 2.13.

q

Figure 2.13 Equivalent, simpler circuit.

It is not always possible to have such clear reduction in the complexity of a combina-
torial circuit. Example 11, however, shows how computer science can use different tools in
approaching a problem.

2.3.5 Substituting Equivalent Subformulas

In many respects, logically equivalent formulas are indistinguishable from each other. The
sense in which two logically equivalent formulas are indistinguishable is stated as the Sec-

ond Substitution Principle.

Second Substitution Principle

Let 1h be logically equivalent to 02, and let *i be any formula containing t0l, possibly
several times, as a subformula. Form a new formula *' by replacing some (or possibly
all) of the occurrences of 01 in V with 02. Then, *' is logically equivalent to */'.

The Second Substitution Principle is really quite useful. Consider, for example, the
formula

0 = (--p -- q) -- r

Truth and Logical Truth 115

Since the subformula 41 = -p -- q is logically equivalent to 42 = p V q (see Example
9 in Section 2.3.1) by the Second Substitution Principle, we can transform the formula as
follows:

1 - r

2- r

(p V q) - r

Many people would find the last formula easier to understand than the original one. We
shall not prove the Second Substitution Principle; the reader is invited to prove it.

2.3.6 Simplifying Negations

When given a formula, it is often useful to find a simpler formula that is logically equivalent
to the first. Here, simpler has no fixed meaning; it just means simpler to use in some
application. For example, in programming, we write conditions saying when a loop should
continue for another pass and when a loop should stop. One equivalent way of writing that
condition may be easier than another for someone reading the program to understand. In
the context of boolean networks, simpler can mean smaller, such as having fewer gates or
taking up less area on a chip. A standard, though obviously imprecise, meaning of simpler
is "easier for people to understand." This latter notion of simpler comes up often.

Consider a piece of a program:

while (not((x < 3) or (x > 5)))

A complex formula that is negated is usually difficult to understand. Consequently,
programmers look for logically equivalent formulas where the operator not is "pushed
inside" and applied to simpler formulas. Unfortunately, in this example, one might think
the negation is logically equivalent to

while ((x > 3) or (x < 5))
{...)

which turns out to be an infinite loop. The problem, of course, is that DeMorgan's Law was
not applied correctly.

Let us rewrite the condition by letting the proposition letter p stand for x < 3 and q
for x > 5. Hence, -p is true just in the case x > 3, and -q is true just in the case x < 5.
The condition at the top of the while loop can be rewritten -'(p V q). By DeMorgan's Law,
this formula is equivalent to -p A --q. So, the proper translation would have been

while ((x > 3) and (x < 5))
f ... }I

In fact, for any formula 0, it is possible to find an equivalent formula in which nega-
tions are applied only to proposition letters. The technique can be thought of as "moving
negations inward." This technique is done in two steps.

Step 1. Find an equivalent formula containing no *-'s or --. 's. First, replace each sub-

formula of the form 4' 4- with the logically equivalent subformula

(0 -*) A (* -*)

116 CHAPTER 2 Formal Logic

This is an application of the Second Substitution Principle. Then, eliminate all --*'s as
follows: Replace each subformula of the form • - ,1 with the logically equivalent sub-

formula --4 V V.

Step 2. Apply DeMorgan's Laws,

-(p V q) <-+ (-p A -q) and -- (p A q) <-+ (-p V -q)

to "push negations" in past A and v and replace each double negation -- p formed with
the unnegated p. Ultimately, only proposition letters will be negated. By the Second Sub-
stitution Principle, the formula so formed will be equivalent to the original formula.

Example 12. For the formula

-_(-(p A --q) V (q A -- r))

use DeMorgan's Laws and the law of double negation to "push negations inside."

Solution. Start from the "outside" and work "inside."

1. This formula is of the form --,(0 V fl), where 0 = -(p A -q) and 7f = (q A -- r), so
we apply DeMorgan's Law to get the equivalent

-- '(p A --q) A -,(q A -r)

2. Apply the same techniques to the "outermost" subformulas, -- '(p A -q) and -- (q A

--r). By the law of double negation, the first is equivalent to (p A -q) and by DeMor-
gan's Laws, the second is equivalent to -q v -- r. So, the entire formula is equivalent
to

(p A -'q) A (-q V --- r)

3. Now work "inward." Again, by the law of double negation, -- r is equivalent to r, so
the entire formula is equivalent to

(p A -'q) A (-q V r)

which is in the desired form.

rnExercises
1. A restaurant displays the sign "Good food is not cheap," and a competing restaurant

displays the sign "Cheap food is not good." Are the two restaurants saying the same
thing?

2. The country of Ost is inhabited only by people who either always tell the truth or
always tell lies and who will respond to questions only with a "yes" or a "no." A
tourist comes to a fork in a road, where one branch leads to the capital and the other
does not. There is no sign indicating which fork to take, but Mr. Zed, who is a resident
of Ost, comes along. What single question should the tourist ask Mr. Zed to determine
which fork in the road to take?

Exercises 117

3. Find the expression tree for the formula

p -- ((--p) -- q)

Evaluate the expression tree if proposition p is T and proposition q is E
4. Find the expression tree for the formula

((p - --q) V q) -+ q

Evaluate the expression tree if proposition p is F and proposition q is T.
5. Find the expression tree for the formula

((((-'(-'p)) A (-'q)) A r) V (((-(-,q)) A (-r)) A s) -• (s -+ p)

Evaluate the expression tree if proposition p is T, proposition q is T, proposition r is
F and proposition s is F

6. Find the expression tree for the formula

((-,(p A q)) V (- (q A r))) A ((-'(p ++ (-(-'s)))) V ((r A s) V (-,q))).

Evaluate the expression tree if proposition p is F proposition q is T, proposition r is
F and proposition s is T

7. Find the expression tree for the formula

-,(p A q) -• (-,p V --q)

Evaluate the expression tree for all possible pairs of truth values for p and q. Use these
evaluations to prove this formula is a tautology.

8. For each of the following sets of propositions, identify a logically valid inference listed
in Table 2.6 that could be used to draw inferences from the formulas given. Identify
the rule of inference and what the inference rule implies.

(a) "If the sun is shining, then the courts will be open for play."
"If the courts are open for play, then we will play at 3 PM."

(b) "The sun is shining, or the courts are closed."
"The sun is not shining."

(c) "It is false that the sun is not shining."
(d) "If the courts are not open for play, then the sun is not shining."
(e) "If the sun is not shining, then the courts are not open for play."

"The courts are open for play."
(f) "If it is raining, then the courts are wet."

"If it is raining, then the courts are closed."
"If the courts are wet, then the courts are closed."
"The sun is shining."

9. Let 0 = "The home team is ahead." Let 7' = "The fans are happy." Let X = "The
visiting team is losing." For inference rules (a), (g), and (i) in Table 2.6, write out the
hypothesis and the conclusion for 0, V/, and X.

10. Write the truth tables for the following formulas. Use the truth table to determine
whether any of these formulas is a tautology.

(a) ((p - q) A (q -- r)) - (p ÷* r)

(b) ((p - q) (qr) -) (p -- * r)
(c) ((p q) - r) -+(p -+(q -+r))

118 CHAPTER 2 Formal Logic

(d) (p- (r V q)) ((p r) v (p q))
(e) (p- (rAq)) ((p r) v(p q))
(f) ((p- q) --> q) -+ p

11. Construct the truth table for

(p A (p -+ q) A (q -- r)) -- r

Simplify this expression to one using only A, v, and -.
12. Show that the following formulas from Table 2.5 are tautologies:

(a) (pAp) ÷*p
(b) (p A (p q)) -+ q
(c) (p - r) + (-r - -p)

13. Let 0 = (p V q) -> (r A -s). For each of the following interpretations of
p, q, r, and s, compute 1(0) using the truth tables for -, V, A, -- , and *÷:

(a) I(p) = T, I(q) = T, I(r) = T, and I(s) = F
(b) l(p) = T, I(q) = T, I(r) = F, and I(s) = F

(c) I(p) = F, 1(q) = T, 1(r) = T, and I(s) = T
(d) I(p) = F, I(q) = F, 1(r) = T, and I(s) = T

14. Let 4 = (p -+ q) -+ ((r A -s) -> q). For each of the following interpretations of

p, q, r, and s, compute 1(4) using the truth tables for -, V, A, ->, and •-*:

(a) I(p) = T, I(q) = T, I(r) = F, and I(s) = T
(b) I(p) = T, I(q) = F, I(r) = T, and I(s) = F

(c) I(p) = F, 1(q) = T, I(r) = T, and I(s) = F
(d) I(p) = F, I(q) = F, I(r) = T, and I(s) = F

15. Let 4 = (-(p A q)) + (-r V -s). For each of the following interpretations of
p, q, r, and s, compute I(0) using the truth tables for -, V, A, -+, and •÷:

(a) I(p) = T, I(q) = T, I(r) = F, and I(s) = T
(b) I(p) = T, I(q) = F, I(r) = F, and I(s) = F

(c) l(p) = F, l(q) = T, I(r) = F, and I(s) = T
(d) I(p) = F, l(q) = F, 1(r) = F, and I(s) = T

16. Simplify the following boolean expressions:

(a) (x A y) V (x A -y) V (-x A y) V (-XA-y)
(b) (XAyAZ)V(XA-yAz)V(-xAyA-Z)V(-xXA-yAZ)
(c) (xAyA-Z)V(XA-yAZ)V(XA-yA-Z)

17. Find formulas equivalent to the following formulas with all the negations "pushed
inward to the proposition letters":

(a) -- (p AT)
(b) ((p q) r)- F

(c) ((p - q) - r) -+ T
(d) (p <-> q) <- r
(e) (p * q) ++ F

(Hint: Look for a way to simplify this last one.) (Note: The method given to "push
negations inward" does not always give the shortest formula that is equivalent to the
given formula and has - applied only to proposition letters.)

Exercises 119

18. Find all truth values for which the following combinatorial circuit gives a value of
T. Interpret this combinatorial circuit in terms of mechanizing majority rule for three
parties. (Hint: If current is interpreted as a "yes" vote and no current as a "no" vote,

then you should be able to see from a truth table when at least two of the three votes
are in favor of the measure.)

x

y
x

19. Prove that a combinatorial network for

(x A y A z) V (-x A y A z) V (x A --y A z) V (x A y A -z)

can be simplified to a combinatorial network representing

(x A y) V (x A z) V (y A z)

(Hint: Replace (x A y A z) with (x A y A Z) V (x A y A z) as often as needed.)
20. A half-adder circuit was given in the text. It adds two 1-bit numbers and produces two

1-bit outputs, a sum and a carry. To add two n-bit numbers, it is tempting to try to use
n half-adders in parallel, one for each position, but this does not work. Consider the

following base-2 addition:

carries 1 1 1 1 0
1 1 0 1 02

+ 1 0 1 1 12
1 1 0 0 0 12

For example, the fourth digit of the sum, the third position from the right, is the sum of
a 1 plus a 0, plus 1 carried from the position to the right of it. So, to compute that one
position, one needs a circuit that computes the sum of three 1-digit binary numbers,
the two digits and a carry. It should output the sum (the 1's position of the sum) and a
carry (the 2's position of the sum). Such a circuit is called afull-adder

(a) Draw a full-adder circuit.
(b) Draw a circuit, with one half-adder and three full-adders, for adding two 4-digit

binary numbers.

(c) Draw a circuit that implements the multiplication table (for one-digit numbers).

21. (a) The conjunction of n formulas P1, P2, ... , Pn is defined to be the formula

(... ((Pl A P2) A P3) A ...) A Pn. For n = 0, there is a special case: The conjunc-
tion of zero formulas is defined to be T. For n = 1, that conjunction simplifies to

Pi. Let 'p be the conjunction of P1, P2 pn. Prove that for any interpretation
I, l('p) = T if and only if I(pi) = T for each i such that 1 < i < n. (Hint: Use
induction.)

120 CHAPTER 2 Formal Logic

(b) Let 0 be the formula

(... ((P I <+- P2) ++ P3) +- .)•Pn

for n > 1. For what interpretations I is I (0) = T? (Hint: The answer involves
counting how many of the pi's are true in I. Prove the result by induction on n.)

22. Two other commonly used propositional connectives are exclusive or (either one or
the other but not both are T), denoted V, and the Sheffer stroke (not both T), denoted

Their truth tables are as follows:

p q pVq p q p ý q

T T F T T F

T F T T F T

F T T F T T

F F F F F T

(a) Do commutative laws hold for V and I?
(b) Do associative laws hold for v and I?
(c) For what interpretations I is I((... ((Pl Y P2) v P3) v ...) v pn) = T?

(d) Find formulas 01 and 02, (containing only proposition letters; the propositional
constants T and F; the propositional connectives -- , v, and A; and parentheses)
that are logically equivalent to p V q and p Iq. (Compare formula x in Table 2.5 in

Section 2.3.1, where such a formula is given for p +- q.)
(e) Repeat part (d) for p v p and pIp, but find the shortest formulas you can.
(f) Find formulas logically equivalent to p A q, p V q, and --p built from p and q

using only I and parentheses.

23. Prove both parts of Theorem 2.
24. Prove parts (b) through (e) of Theorem 3.
25. (a) Prove both parts of Theorem 4.

(b) Show that the converses to both parts of Theorem 4 need not be true.
(c) Does Theorem 4(a) remain true if the word tautology is replaced with satisfiable?

Definition A formula * is an alphabetic substitution of a formula 0 if * is formed from
0 by replacing every occurrence of some proposition letter p in 4) with some proposition
letter q where q does not occur in 4). (Note: The relation of being an alphabetic substitution

is symmetric, but it is not reflexive or transitive.) Define * to be an alphabetic variant of
0 if there is a finite sequence of formulas 00, 0, on where)00 = 0, each Oi+1 is an
alphabetic substitution of 4)i, and 0,n = *.

26. (a) Show that (p v q) is an alphabetic variant of (q V p).

(b) Show that the relation of being an alphabetic variant is an equivalence relation.

(c) Show that if *r is an alphabetic variant of 0, then 0 is a tautology (respectively, is
satisfiable, is unsatisfiable) if and only if *' is a tautology (respectively, is satisfi-
able, is unsatisfiable).

(d) Show that 4 being an alphabetic variant of * does not imply that 0 and Vr are
tautologically equivalent.

27. The first stage of the method described to "push negations inward" was a method to
eliminate --*'s and ++'s. Prove that in the method to eliminate them, the process of

Normal Forms 121

substituting always stops. Consider, for example, the substitution in the formula

(p -•* q) +- (r +-* s)

If the substitution is first performed on the second <+-, the resultant formula is

((p (-- q) - (r ++ s)) A ((r +* s) -- (p +* q))

which has more *->'s to replace than in the original formula! At first sight, one might
expect that if the substitutions are made in the wrong order, the process might continue
generating more +-*'s at each stage, and the process might continue forever. (Hint: One
method is to, instead of just counting the number of - symbols, put a weight on
each *-> symbol, with the weight of the ++ symbol in * X x being dependent on the
number of +*'s in V and X. If the correct method of calculating weights is used, it can
be shown that the total weight of the +-+'s decreases with each substitution.

28. The second stage of the procedure to "push negations inward" started with a formula
whose only logical connectives are -, v, and A and constructed a tautologically equiv-
alent formula with negations applied only to proposition letters.

(a) Write an algorithm describing exactly what is done. The algorithm should work
on formulas as strings of symbols. To avoid what in this case is irrelevant detail,

the program should assume that all proposition letters are one character long and
that any symbol encountered, except for (,), A, V, and -- , is a proposition letter.
Assume that the formula contains no blanks. (It is perhaps easiest to consider the
program as a function that is passed the original formula-a string-as a parame-
ter, and then returns the equivalent formula with all the negations pushed inward.
It is easiest to use recursion to handle many subformulas.)

(b) Prove that your program from part (a) works. (Hint: if your program in part (a)
uses recursion to handle subformulas, it is natural to do this proof by induction on
formulas. However, the induction may not be straightforward.)

Normal Forms

Although two formulas may be logically equivalent, one may be "easier" for someone to
understand or to manipulate. For example, in one formula, it may be easy to determine
that the formula is satisfiable. It may be fairly obvious that one formula is a tautology but
quite difficult to conclude that from the other form of the same formula. In this section, we
discuss two special forms or representations for formulas logically equivalent to a given
formula. These forms are called disjunctive normal forms and conjunctive normal forms.
Formulas in conjunctive normal form make it easy to determine when a formula is satisfi-
able. Formulas in disjunctive normal form are easy to use when asking whether a formula
is a tautology. These special forms have assumed prominence in computer science, in both
theoretical and applied areas. The famous P 0 .A/P problem deals with conjunctive nor-
mal forms, and combinatorial networks use both conjunctive and disjunctive normal forms
to find representations of combinatorial circuits.

122 CHAPTER 2 Formal Logic

2.5.1 Disjunctive Normal Form

Consider the following two formulas:

=(p -- (q V r)) +* (q - p)

and

= (p A q) V (p A -q A r) V (-p A -,q)

The truth tables for t and t would show that these two formulas are logically equivalent.
By some measures, 7& is more complicated. For example, 0 has four propositional connec-
tives, whereas Vf has nine. Nevertheless, many people find * to be far easier to understand.
The formula * explicitly lists three cases in which the formula is true:

(1) p and q are both T.
(2) p and r are T and q is F.
(3) p and q are both F.

For all other interpretations of p, q, and r, the truth value of *r is F. It is not nearly so
obvious what 0 "says." Although 0 is shorter, it also seems to be more complex.

A formula like *t that is just a list of cases that make the formula have a truth value of
T is called a disjunctive normal form (DNF). Each of the three cases, (p A q), (p A -q A
r), and (--p A -'q), is called a term. One might think of each term as describing a single
case. The entire disjunctive normal form formula is just a disjunct of terms that make the
formula T. (The words term and disjunctive normal form will be defined formally below.)

The difference in comprehensibility is even more extreme if the formula 0 is negated.

The formula

-((p -- (q V r)) *-> (q -+ p))

is logically equivalent to the disjunctive normal form formula

(--p A q) V (p A --q A -r)

The disjunctive normal form is a disjunction of only two terms, which makes it particularly
easy to understand.

Definition 1. Let p be a proposition letter. Then, p is a positive literal, and -p is a
negative literal. A literal is a positive literal or a negative literal.

Definition 2. Let-, X-2 km be a set of m literals with m E N. A term is a conjunc-
tion

),1Ak2 A ... A Xm

of m literals. A formula f is in DNF if it is a disjunction 01 V 02 V ... V Ok of k terms
where k e N.

The disjunction of zero formulas is F. The conjunction of zero formulas is T. This is

analogous to defining the sum of zero numbers to be zero and the product of zero numbers
to be 1. For example, F v p <* p is analogous to 0 + x = x.

Normal Forms 123

Example 1.

(a) a A b A -c is a term.

(b) The formula

(a A b A c) V (-a A -,b A --c) V (a A -- c A q)

is in disjunctive normal form.
(c) T is a term. It is a conjunction of zero literals.
(d) a is a term. It is a conjunction of one literal.
(e) a A b A -"c and T are in disjunctive normal form. Each is a disjunction of one term.
(f) F is in disjunctive normal form. It is a disjunction of zero terms.

Theorem 1. Every formula is logically equivalent to a formula in DNE.

The proof of Theorem 1 is just a formalization of what is done in Example 2.

Example 2. Let VV be the formula

*I = (-(p - q)) - (q A -- r)

Determine a DNF for *.

Solution. A formula may have several equivalent formulas in DNF, but we want a sys-
tematic way to find one.

The first step in finding a DNF for * is to find the truth table for all the interpretations
of 4', as shown in Table 2.7.

Table 2.7 Abbreviated Truth Table for 4

Interpretation p q r (-(p -- q)) --* (q A -'r)

Io T T T T
I1 T T F T

12 T F T F
13 T F F F

14 F T T T
15 F T F T
16 F F T T

17 F F F T

The next step is to construct, for each interpretation Ii, 0 < i < 7, a term that is T in
that interpretation and F in all other interpretations. Such terms are listed in Table 2.8.

Interpretation Matching Term

10 pAqAr
I1 pAqA--r

Table 2.8 True Terms 12 p A -q A r
in the Interpretations 13 p A -q A -r

14 -pAqAr
15 -p A q A -r
16 -PA -q A r
17 -p A -q A -r

124 CHAPTER 2 Formal Logic

The reader should observe that these terms have the desired properties. That is, Io
satisfies p A q A r, and all seven other interpretations do not satisfy p A q A r.

Now, breaking into the cases where *r is T, we construct a disjunction of terms with
one corresponding to each interpretation where *f is T."

(p A q A r) V (p A q A -r) V (-p A q A r) V (-'p A q A -r)

v(-p A -q A r) V (-p A -q A -r)

Clearly, 4¢ is in DNF. The only question is whether 0*, is logically equivalent to r.

As a result of the construction, however, each term of 0* is T for exactly one of the
interpretations for which * is T, whereas 4r is F in all other interpretations. So, 4O, is T
when 0 is T. Each term of 0* is F in each interpretation for which *r is F. Therefore, 0*
is F in each interpretation for which V1 is F. Thus, Ok is logically equivalent to M'. U

Example 3. Let *' be the formula

r = (p - (q V r)) A (-q) A (-r) A p

Find a DNF for 4'.

Solution. It is easy to see that Vf is unsatisfiable. We see this from the truth table for 4'
shown in Table 2.9.

Table 2.9 Abbreviated Truth Table for *'

Interpretation p q r p--. (qvr) -q -r (p-- (qvr))A(-q)A(-r)Ap

1o T T T T F F F
I1 TTF T F T F

12 T F T T T F F
13 T F F F T T F
14 F T T T F F F
15 F T F T F T F
16 F F T T T F F

17 FFF T T T F

Since at least one of the formulas p -- (q V r), -q, -'r, and p is F in each interpre-
tation, the disjunct of these terms is always F. Therefore, the construction as in Example
2 that formed terms for interpretations satisfying 4', would construct no terms. Accord-
ingly, the formula generated as in Example 2 would be a disjunction of zero terms, which,
by convention, is the formula F. The formula F is in DNF and is logically equivalent
to '. U

2.5.2 Application: DNF and Combinatorial Networks

To interpret the DNF for a boolean expression, we view a term as a product or a join of
a set of literals. The DNF for a formula is viewed as a sum or a meet of a set of terms.
The DNF for a boolean expression gives us an option to use when designing combinatorial
circuits.

Normal Forms 125

Example 4. Let x, y be elements of a boolean algebra. Use the DNF for the boolean
expression (x A y) V (-x A -'y) to design a combinatorial circuit.

Solution. The boolean expression is in DNF. Therefore, the combinatorial circuit is

y ~

X
ý"• • "X A "•y

Y

2.5.3 Conjunctive Normal Form

Consider again the formula used as a motivating example for DNFs:

(p -). (q V r)) ++ (q -- p)

The formula is logically equivalent to the formula

(p V -q) A (-'p V q V r)

This logically equivalent formula is in conjunctive normal form (CNF). It consists of
a conjunction of two formulas that are disjunctions of literals. In this example, it is the
conjunct of (p v --q) and (-,p v q v r). Each disjunction of zero or more literals can be
thought of as a restriction on when the formula can be T. The first restriction is that at least
one of p and -q must be T. The second is that at least one of -'p, q, and r must be T.
This can be thought of as a list of rules that must all be met for the formula to be satisfied.
Thus, CNF formulas are often easy to understand.

Definition 3. Let O 1, -2 m be a set of m literals with m E N. A clause is a disjunc-
tion

Xl1VX2 V ... V -m

of m literals. A formula 0 is in CNF if it is a conjunction

01A 02 A'..A Ok

of k clauses 01, 2,.. Ok where k E N.

126 CHAPTER 2 Formal Logic

Example 5.

(a) a v b v -c is a clause.
(b) T is in CNF. It is a conjunction of zero clauses.
(c) F is a clause. It is a disjunction of zero literals.
(d) a is a clause. It is a disjunction of one literal.
(e) The disjunction of clauses shown is in CNF:

(a v b V c) A (-'a V -,b v -c) A (a V -'c V q)

(f) a v b v -'c and F are in CNE Each is a conjunction of one clause.

Theorem 2. Every formula is logically equivalent to a formula in CNF.

The proof of Theorem 2 is just a formalization of what is done in Example 6.

Example 6. Find the conjunctive normal form for the formula

V1 = (-'(p -+ q)) - (q A -- r)

Solution. The process starts by finding a formula in DNF that is equivalent to --,r.
The following is an abbreviated truth table for -',*. We will misuse the word

interpretation exactly as we did in Example 2 in Section 2.3.

Interpretation p q r -'((-(p - q)) -+ (q A -,r))

I0 T T T F
Ii T T T F

12 T F T T
13 T F F T
14 F T T F

15 F T F F
16 F F T F
17 F F F F

Now, put -- VI into DNF:

0 =* = 02V 03 = (pA-'q Ar) V (pA--q A-'r)

So, *' is logically equivalent to

-'((p A -q A r) V (p A -'q A -,r))

Push the negations inside, first past the v using DeMorgan's Law:

-'(p A -q A r) A -(p A -'q A -,r)

then past the internal A's, again using DeMorgan's Law:

(-'p V -,-q V -r) A (-p V -- q V -'-r)

and finally, eliminate the double negations:

(-'p V q V -r) A (-p V q V r)

Since 0-* was in DNF, negating and pushing the negations inside creates a formula in
CNF logically equivalent to */. 0

Normal Forms 127

Example 7. Let * be the formula

* = -((p -- (q V r)) A (-q) A (-r) A p)

Find a CNF for *1.

Solution. The negation of * is equivalent to

(p - (q V r)) A (--q) A (-"r) A p

which in Example 3 was shown to have F as a DNE So, * is equivalent to -F, and
pushing negations inward gives the CNF formula T. U

2.5.4 Application: CNF and Combinatorial Networks

To interpret the CNF for a boolean expression, we view a clause as a meet of a set of
literals. The CNF for a formula is viewed as a join of a set of clauses. The CNF for a
boolean expression gives us another option to use when designing combinatorial circuits.

Example 8. Let x, y be elements of a boolean algebra. Use the CNF for the boolean
expression (x A y) V (-,x A --y) to design a combinatorial circuit.

Solution. The truth table for the expression is
x y Ix Ay ('-,x A-y) (x Ay) V(-X A-"y)

S T F T

T F F F F
F T F F F

S F T T

The DNF for - ((x A y) V (-,x A -,y)) is just

(x A -y) V (--x A y)

Therefore, the CNF for (x A y) V (-,x A -y) is

-- ((x A -y) V (-.x A y)) = -'(x A -y) A -- (-'x A y)
=(--X V •--y) A (----X V -y)

= (-'x V y) A (x V -y)

The combinatorial circuit for this boolean expression is

Y
X X V - (X V -,y) "A (-X V y)

x @•• xv Y F
y U

2.5.5 Testing Satisfiability and Validity

It turns out to be very easy to tell when a formula in DNF is satisfiable. This is one reason
why a DNF is often nice to work with.

128 CHAPTER 2 Formal Logic

Example 9.

(a) Show that

4 = (a A -'b) V (-'a A -"C A b) V (a A -'a)

is satisfiable.
(b) Show that

¢ - (a A --b A b) v (--a A -c A b A c) V (a A -a)

is unsatisfiable.

Solution.

(a) To find an interpretation I where 1 (4) = T, it is enough to find an interpretation where
one of the terms is true. In this case, there is an interpretation where the first term is
true. If I (a) = T and I (b) = F, then I (a A -b) = T and, hence, 1(40) = T.

(b) In this case, 4 is unsatisfiable, because every term is F in every interpretation L. For
example, in the first term, we require both I (-b) and I (b) to be T in an interpretation.
In the second term, we require both I (c) and I (-'c) to be T in an interpretation. In
the third term, we require both I(a) and I (-a) to be T in an interpretation. These
conditions are clearly impossible in any interpretation. U

Similarly, it is easy to tell when a formula in CNF is a tautology.

Example 10.
(a) Show that

4 = (a V -b) A (-a V -c V b) A (a V -a)

is not a tautology.
(b) Show that

4 - (a V -b V b) A (-a V -c V b V c) A (a V -a)

is a tautology.

Solution.

(a) If I(a) = F and I(b) = T, then l(a v-b) = F, so 1(0) = F.
(b) The first clause is a tautology, since b v -b alone is a tautology. The second clause is

a tautology, since c V -c alone is a tautology. The third clause is also a tautology.

Theorem 3.

(a) Let 41,42 4k be clauses for k e N. Let

4 =41 A42 A--. A4k

Then, 4 is a tautology if and if every 4i is a tautology.
(b) Let k.,.2 km be literals for some m. Let

Oi =)11 V X2 V .- Vm

Normal Forms 129

Then, Oi is a tautology if and only if Oi contains two literals,)Xa and Xb, where X-a = ')b

and 1 <a A b <im.

Proof. The proofs of parts (a) and (b) just formalize what was done in Example 10. U

2.5.6 The Famous P 5# VAP Conjecture

How easy is it to test whether a formula in DNF is satisfiable or whether a formula in
CNF is a tautology? One way to check whether a CNF formula q5 is satisfiable is to write
its truth table, but this can be a time-consuming process. A formula 4 with n symbols
may contain more than n/4 different proposition letters. The truth table has to have a
row for each assignment of T's and F's to these n/4 proposition letters-thus, 2 n/4 rows.
Hence, for some formulas, the size of the truth table is exponentially larger than the size
of the formula. Consequently, this does not give a practical way to check satisfiability. Just
check how many rows that is for n = 1000, because it's common, for example, in computer
hardware verification applications to have more than 1000 variables.

Another way is to find an equivalent formula 0' in DNF. Now, the construction given
in the proof of Theorem 1 (Section 2.5.1) requires writing down the truth table for •, so
that method is too slow. Maybe, however, there is a faster way to find such a formula •' in
DNF. If so, that may provide a way to check satisfiability. Unfortunately, this approach also
is not, in general, practical: The shortest such formula 0' may itself be far longer than 0.

It turns out that there is a reasonably fast algorithm for checking satisfiability for CNF
formulas

0 = ()X0 V XI) A (P 2 V ;- 3) A ... A (X2n V X2n+l)

where each clause contains at most two literals-formulas in what is called 2-CNE
However, if the clauses are allowed to contain even three literals (3-CNF), then the an-
swer is unknown. This problem is called the 3-satisfiability problem.

The 3-satisfiability problem is one of a large group of problems called H/P-complete
problems, which will be discussed further in Section 5.3.5. Another famous AHP-complete
problem is a form of the traveling salesperson problem, which will be discussed in Chapter
7. The commonly believed conjecture, called the P A HP conjecture, is that no HVP-
complete problems can be solved, in general, by algorithms that are even remotely prac-
tical. However, the conjecture is neither proved nor disproved (at least as of the time this
book was written), and it appears to be a very hard mathematical problem. It is considered
by many to be the most important unsolved problem in theoretical computer science-and
one of the most important unsolved problems in all of mathematics.

2.5.7 Resolution Proofs: Automating Logic

The ancient dream of automating reasoning will require a computer program to be able to
arrive at conclusions using rules of inference such as those shown in Table 2.6. One attempt
to automate reasoning in a special context was made by John R. Robinson, who used a
single inference rule called resolution. This inference rule deals exclusively with formulas
in CNF (clauses). As a simple example of this inference rule, called the resolution rule,
suppose the two clauses

130 CHAPTER 2 Formal Logic

p v -q and r v q

are given. What conclusion is possible for the conjunction of these two clauses as a hy-
pothesis? In the resolution system, we are interested in the implication

((p V -,q) A (r V q)) -- (p V r)

It is easy to prove using a truth table that this implication is always T. With this inference
rule, we can then use the clause p V r as another clause in the resolution system. The reso-
lution rule uses only this inference rule with formulas in CNE We often display this rule as

p V --q
r Vq

p vr

Definition 4. Let two clauses cl 4 v p and c2 = Vf v --p be given where p is a propo-
sition letter and 0k and 't are clauses. The resolvant of cl and C2 on p is the clause 01 V V1.

Example 11. Let cl = p v --q v r and c2 = -'p v r v s V t. The resolvant of clauses Cl
and C2 on p is

-,qvrvrvsvt=--qvrvsvt

In a resolution proof or resolution refutation, we imagine the conjunction of a set of
clauses being the hypothesis for an implication. The resolution rule can be used to see if
the set of clauses is satisfiable. If the conjunction of the set of clauses is F, then the set of
clauses is unsatisfiable. We formalize the idea of this proof technique in the next definition.

Definition 5. Let S be a set of clauses. A resolution refutation of S is a sequence of
clauses ro, rl, , rk such that:

(a) each ri is either an element of S or a resolvant of rj and rk where 0 < j 7• k < i < k,
and

(b) rk = F.

Example 12. Let S be the set of clauses {p, -p v --q, -'p v q v r, -,r}. Give a resolu-

tion refutation of S.

Solution. The right-hand column of the following table just explains why each step is
valid. The left-hand column simply numbers the lines so that we can refer to them later.

Proof Step Clause Justification

ro p Element of S
rl --p V -q Element of S
r2 --q Resolvant of ro and rl on p

r0 --,p V q V r Element of S
N q V r Resolvant of ro and r3 on p
r5 r Resolvant of r4 and r2 on q
r6 -- r Element of S

r7 F Resolvant of r5 and r6 on r U

Exercises 131

Example 13. Let S = {p V q, p V --q, -p v q, -- p V -q}. Give a resolution refutation
for S (plus comments, as noted in Example 12 above).

Solution.

Line Proof Step Justification

ro p V q Element of S
rl -pvq Element of S
r2 q Resolvant of ro and rT on p
r3 p v -q Element of S
r4 --p V -q Element of S
r5 -q Resolvant of r3 and r4 on p
r6 F Resolvant of r2 and r5 on q U

A proof method is sound if everything that is provable is true or satisfiable. Here,
that means that for any set S of clauses, if there is a resolution refutation of S, then S is
unsatisfiable.

A proof method is complete if everything that is true is provable. If there is a resolution
refutation of a set of clauses S, then S is not complete, since some things that are not true
are provable-that is, any set of clauses for which there is a resolution refutation.

rn Exercises

1. Write DNFs and CNFs corresponding to each of the following truth tables:

(a) p q r Truth Value (b) p q r Truth Value

T T T T T T T F
T T F T T T F T
T F T T T F T F
T F F F T F F T
F T T F F T T F
F T F F F T F F
F F T T F F T T

F F F F F F F T

(c) p q r Truth Value (d) p q r s Truth Value

T T T T T T T T F
T T F T T T F T F
T F T F T T F F T
T F F T T F T F T
F T T F F T T T F
F T F F F T T F T
F F T T F T F T T
F F F F F F F F T

132 CHAPTER 2 Formal Logic

(e) p q r s Truth Value (f) p q r s Truth Value

T T T T F T T T F T
T T F T T T T F F F

T F T F T T F F F T
F T F T F F T T F T
F T F F T F T F T F
F F T F F F F T F F
F F F F F

2. Find formulas in DNF equivalent to each of the following formulas:

(a) -(p A T)
(b) ((p - q) -+ r) - F
(c) ((p q) r)- T
(d) (p q) +-). r
(e) -- (p <+- q) +-* r
(f) ((p v q) --> r) A (r -- '(p v q))

(g) (-,r) -- (((p v q) --+ r) -+ -q)

3. Which of the following DNF formulas are satisfiable? If the formula is satisfiable, give
an interpretation that satisfies it. If it is not satisfiable, explain why not.

(a) (aAbAc)v(cA-,cAb)
(b) (aAbAcAdA-,b)V(cAdA-.CAeAf)
(c) (aAbAc)V(-aA-,bA-,c)

4. Find formulas in DNF equivalent to each of the following formulas, and find at least
two interpretations that make each formula satisfiable:

(a) ((p -- q) -- r) -+ F
(b) -- (p -- q) + r
(c) (-"r) -+ (((p v q) -* r) --* -q)

5. Find formulas in CNF equivalent to each of the following formulas:

(a) -(p A T)
(b) ((p -- q) -- r) - F
(c) ((p q) r)- T
(d) (p - q) +-+ r
(e) -- (p +-+ q) +-+ r

(f) ((p v q) --+ r) A (r --* (p v q))

(g) (-r) -* (((p v q) -+ r) -* -q)

6. For the following formulas find equivalent formulas in CNF and DNF form. Draw
combinatorial networks corresponding to the original formulas and their equivalent

CNF forms.

(a) (pAq) +* (pAr)
(b) ((p - q) -+ r) -- p

7. Which of the following formulas in CNF are tautologies? Explain, as in Example 6.

(a) (avbVc)A(cv--cvb)
(b) (avbvcvdv-'b)A(cvdv-'cvevf)
(c) (avbvc)A(-'aV-bv-c)

Exercises 133

8. Find a CNF for each of the following formulas, and prove that each formula is a
tautology.

(a) (p Ap) +-p
(b) (p A (p -* q)) - q
(c) (p -+(r - q)) - ((p A r) -)- q)

(d) (p -- r) (--r - p)

9. (a) Show that the following formula in CNF is unsatisfiable:

(p V q) A (p V --q) A (-'p V q) A (-p V --q)

(b) Show that the following formula in CNF is unsatisfiable:

(p V q V r) A (p V -q V r) A (-p V q V r) A (--p V --q V r)
A (p V q V -'r) A (p V -q V --r) A (-'p V q V -"r) A (-p V -,q V -,r)

Can you find an easier argument than just writing the entire truth table?
(c) Generalize the above to some class of CNF formulas on an arbitrary number n > 1

of proposition letters, and prove it by induction on n.
10. (a) Prove that the formula -p is not equivalent to any formula built from the proposi-

tion letters T and F using only A and V plus parentheses.
(b) Prove that the formula p V q is not equivalent to any formula built from the propo-

sition letters using only +*.
(c) Prove that there is a formula not equivalent to any formula built from the proposi-

tion letters using only v. (See Exercise 22 in Section 2.4.)
(d) Prove that there is a formula not equivalent to any formula built from the proposi-

tion letters using only -) plus parentheses.
11. Write pseudocode for a program that, given a formula 0, finds (i) a logically equivalent

formula 0' in CNF and (ii) a logically equivalent formula 0" in DNF The algorithm
should be recursive (similar to an induction on formulas) and should not involve the
construction of truth tables. Prove the algorithm works. This gives an alternate proof
of the theorem that every formula is equivalent to a formula in CNE

Definition A k-term is a conjunction of k literals. A k-DNF formula is a disjunction of
k-terms.

12. (a) Show that every formula containing only k (different) proposition letters is equiv-
alent to a k-DNF formula.

(b) Show that p ++ q is not equivalent to any 1 -DNF formula.
(c) Show that for every natural number k (including 0), there is a formula contain-

ing only k + 1 (different) proposition letters that is not equivalent to any k-DNF
formula.

13. (a) Find the resolvant of (p V q) and (-'p V r) on p.
(b) Find the resolvant of (p V q V r V s) and (-p V -q V t) on p.
(c) Find the resolvant of (p V q) and -p on p.
(d) Find the resolvant of (p) and (-p) on p.
(e) Which resolvant above from parts (a) through (d) is a tautology? Which is tauto-

logically false?
14. Write resolution refutations of the following sets of clauses. Include line numbers and

justifications, as in Example 12.

134 CHAPTER 2 Formal Logic

(a) 1p, -p V q, --p V -q V r, -•r
(b) {-p, p V q, -q v -r, p V r}
(c) {p V q, -'p v r, -q V r, -p V s, -q V s, -r V -x}
(d) {p V q V r, p v q v-r, p v-q v r, p v-q v-r,-p v q V r, -pv q v -r,

-'p V -'q V r, -'p V -'q V -'r}.

15. (a) Show that if r is the resolvant of two clauses Cl, c2 on proposition letter p, then

{Cl, C2} = r

(Hint: For each interpretation, break into cases, depending on whether p is T or
F in each interpretation.)

(b) Prove that if there is a resolution refutation of a set S of clauses, then S is unsatis-
fiable. (Hint: Use strong induction on the length of the resolution refutation.)

16. The length of a clause is the number of literals in the clause. The length of a CNF
formula is the sum of the length of its clauses. The number of excess literals in a CNF
formula is the length of the formula minus the number of clauses in the formula.

(a) Show that if an unsatisfiable set S of clauses contains only clauses of length 0 and
1, it has a resolution refutation. (Hint: Prove the following: If S contains a clause
of length 0, it has [trivially] a resolution refutation. If, for some proposition letter
p, S contains both p and -- p, then S has a resolution refutation. Otherwise, S is
satisfiable.)

(b) Show that if a set {(;1 V)`2 V ... V X)k V Xk+Il} U S (k > 1) of clauses is un-
satisfiable, so are {I 1 V X2 V Xk} U S and {)k+l} U S. (Hint: For the first half,
prove that if an interpretation I satisfies {[)1 V) 2 V ... V)1} U S, it also satisfies
{) 1 V X2 V ... V -k V Xk+l} U S.)

(c) Show that for k > 1, the number of excess literals in {)1̀ V X2 V ... V)k} U S and
the number of excess literals in {)k+ } U S are both less than the number of excess
literals in {A1 V) 2̀ V .. V 4k V k+0} U S.

(d) A resolution derivation of a clause rk from a set S of clauses is a sequence
ro, rl, r2 rk of clauses where each ri is either an element of S or a resolvant
of two previous rj 's. (Thus, resolution refutation of S is just a resolution deriva-
tion of F from S.) Show that if there is a resolution derivation of A from S and a
resolution refutation of S U {[I, then there is a resolution refutation of S.

(e) Prove that if there is a resolution refutation p of {X1 V X2 V ... V Ak} U S, then
either (i) there is a resolution refutation of {01 V ;A2 V ... V Ak V 4k+1} U S or
(ii) there is a resolution derivation of Xk+1 from X1 V X2 V ... V Ak V Ak+l U S.

(Hint: Prove this by induction on the length p. You will have to add Ak+l as a
disjunct to some of the clauses in p. It is not true in general that if S • A, then
there is a resolution derivation of A` from S.)

(f) Prove that resolution refutation is complete.

rnPredicates and Quantification

In propositional logic, our basic "objects" were entire statements, represented by proposi-
tion letters. In discussing mathematical structures, however, we want to be able go one step
"lower" to assert statements, such as x = 3 or x > y, where the meanings of x and y are

Predicates and Quantification 135

not fixed for all time. We want to allow variables (or variable symbols), such as p and q,
which represent elements of some nonempty universal set. These variables are not propo-
sition letters, because they do not evaluate to T or F. Rather, after an assignment of values
to the variables, such as 2 to x and 5 to y, the predicates, such as x = 3 or x > y, become
2 = 3 and 2 > 5, both of which are F. We can think of similar instances in natural language
when we assert "He is tall and she is of average height." The pronouns he and she can be
thought of as placeholders or variables representing a range of particular men or women.

2.7.1 Predicates

A property or relationship between objects is called a predicate. A description of a predi-
cate in logic is called a formula.

A formula such as x < 3 is an atomic formula, built with the predicate <. An atomic
formula is a formula for which the terms do not involve any of the logical operations (and,
or, implication, biconditional, negation), only proposition letters and constants from the
universal set. The predicate < is binary or (2-ary); it represents a relationship between
two objects. The first object is a variable x; the second is a constant 3. If a specific value
x0 is substituted into the predicate for x, it becomes x0 < 3. Now, if x0 = -37, then x0 < 3
evaluates to T. If x0 = 6, then x0 < 3 evaluates to F. When a predicate involves n argu-
ments, it is said to be n-ary; we write an n-ary formula P(xl, x2, ... Xn).

Example 1. The following are predicates:

(a) Let P(x, y, z) denote "x + y = z."
(b) Let Q(x1 , X2) denote "xl - x2 > 0."
(c) Let M(x, y) denote "x is married to y."
(d) Let E(x, y) denote "x = y."

Once we are given a group of predicates, we may refer to them in formulas. So,
P(x, y, z), Q(x1 , x2), M(x, y), and E(x, y) are all atomic formulas. The variable names
are not important, so P(xI, z, x2) and Q(y, y) are also atomic formulas. Just as in usual
notation, Q(y, y) denotes "y - y > 0."

In normal uses of logic, the universal set U and the meanings of all predicates, such
as < or a variable P, are specified. We limit ourselves to this understanding.

2.7.2 Quantification

If we have a predicate, such as <, that is defined on two objects, then logic gives us two
ways to specify what objects we mean. One way is to specify values from the universal
set, such as 3 < 6. Another way is called quantification. It comes in two forms: universal
quantification, denoted by the symbol V; and existential quantification, denoted by the
symbol 3.

The first form is universal quantification for the predicate P, such as.

Vx (P(x)) read "For all x, P(x)"

is defined to mean "For all values x in the universal set U, the assertion P(x) is true."

136 CHAPTER 2 Formal Logic

The second kind of quantification is existential quantification for the predicate P, such
as

3x (P(x)) read "For some x, P(x)" or "There exists an x such that P(x)"

is defined to mean "For some value of x in the universal set U, the predicate P(x) is true."
Following the Vx or Ix, there is a formula in parentheses, such as (P (x)), although we

occasionally omit the parentheses. That formula, plus the Vx or the 3x itself, is called the
scope of the quantifier. Informally, we may leave out the parentheses, writing, for example,
just Vx P(x), but that is informal. The definition of scope is defined as if we had not left the
parentheses out. A similar idea of scope occurs in most computer programming languages.

In Section 2.7, we simply want to introduce predicates, formulas, and the use of quan-
tifiers. First Order Logic deals with predicates and quantification in much the same way as
propositional logic deals with propositions. We will focus on how universal and existential
quantifiers interact with each other and how they interact with negation. The study of in-
ferences in First Order Logic and other topics that we dealt with in propositional logic will
not be covered.

Example 2. For the universal set N and the usual meanings of the symbols - and =,

determine whether
3x(x - 3 = 1)

is true.

Solution. We must find some x E N such that x - 3 = 1 is true. Choosing x = 4 is such
a value. 0

Clearly, many values for x may make the predicate T in Example 2. The quantifier
3x just says that we can definitely find one, if the predicate is T. The quantifier does not
exclude the possibility of finding more than one value for x that makes the predicate T.

2.7.3 Restricted Quantification

It is understood that the universe U contains every object of concern to the current discus-
sion. In many applications, we want to discuss something more limited. Suppose V C U:

Vx E V (P(x)) read "For all x in V, P(x)"

is defined to mean "For all values x in V, the assertion P (x) is true." Then,

3X E V(P(x))
read "For some x in V, P(x)" or "There exists an x in V such that P(x)"

is defined to mean "For some values of x in V, the assertion P(x) is true.'
Let i, j E N such that i < j. A set of j - i + 1 consecutive storage locations that can

contain the same type of values will be called an array, denoted as A[i .. j], where A
is any variable name. The contents of the individual storage locations will be denoted as
A[i], A[i + 11 ... I A[j]. For N E N, both A[0, .. N - 1] and A[l .. N] denote an array
with N elements.

Example 3. Let V = {1, 2,..., 301, and let A[1.. 30] be an array such that for each index
i between 1 and 30, A[i] = i • i - 1. For the elements A[l], A[2] A[301, write a
predicate that says:

(a) Every entry in the array is nonnegative.
(b) The value A[30] is the largest value.
(c) That every element of A is nonzero.

Predicates and Quantification 137

Solution.

(a) Vi E V (A[i] > 0)
(b) Vi e V (A[i] <A[30])
(c) Vi E V (A[i] 0) M

If V = 0, it is understood that Vx e V (S) is true and that Ix E V (S) is false, no matter
what S is.

2.7.4 Nested Quantifiers

The formula 3x(3y(P(x, y))) contains nested quantifiers, with one quantifier inside the
parentheses marking the scope of the other. The obvious parentheses are usually omitted,
writing "3x3yP(x, y)." Since the two quantifiers are both 3's, you may also see "3x, y,
P(x, y)."

It is important to pay attention to the order of the quantifiers. Suppose P(x, y) is "x
received a higher grade on the exam than y did," and suppose U is the set of all students in
a class. To show that 3x(3y(P(x, y))), we start with the quantifier on the outside: We first
look for a student, x0 E U, to be represented by x. Now, we have a formula 3y(P(xo, y)).
Next, look for an object Yo E U to be represented by y. To show that the formula is true,
first pick an x0 who got a higher score, and then pick a yo who got a lower score.

If we meant to choose y first, we would write 3y(3x(P(x, y))). In this case, it does
not matter in which order we make the choices. One can see that the formula is true if and
only if not all students got the same score. Just pick x0 to be some student who got a higher
score than the score achieved by y. Since not all the scores are the same, it will always be
possible to make such choices.

To show with nested universal quantification that

Vx (Vy (x and y drive stick-shift cars and collect baseball cards))

is true, you must show that for all choices of x, and then for all choices of y, both x and y
drive stick-shift cars and collect baseball cards. In this case, again, the order of quantifiers
does not matter: The above is true if and only if Vy (Vx (x and y drive stick-shift cars and
collect baseball cards)) is true.

When the quantifiers switch between V and 3, the order becomes critically important.
To show that 3x (Vy (P(x, y))), you first pick a value for x0 for x from the universal set.
Then, you must show that no matter what value yo is chosen for y, P(xo, Yo) is true.

Example 4. Let P (x, y) denote x + y = 17, and let U be the set of integers. Show that

(a) Vx (3y (P(x, y))) is true.
(b) 3y (Vx (P(x, y))) is false.

Solution.

(a) First, x is specified as any integer. Now, you have to pick y to make P (x, y) true. For
example, pick y = 17 - x.

(b) To show this, you would have to pick a single yo so that for all x E U, x + yo = 17.
Since this must be true for all possible values of x, it must be true in particular for
x = 0 and x = 1-that is, for 0 + Yo = 17 and 1 + yo = 17. Those two cannot both
be true. 0

138 CHAPTER 2 Formal Logic

Generally, if 3x (Vy (P(x, y))) is true, so is Vy (3x (P(x, y))): If the first is true, then
one can pick x0 where Vy (P(xo, y)). In that case, for each individual y, one can pick that
same value x0 to make P(xo, y) true, so Vy (3x (P(x, y))) is true. The converse, however,
is false, as Example 4 in Section 2.7.4 shows.

2.7.5 Negation and Quantification

One has to be careful about how negation interacts with quantification-partly because in
ordinary human conversation, people are not always very precise.

The formula -'(3x (P(x)) says that there does not exist even one x in the universal set
that makes P (x) true. This is the same as asserting that every x in the universal set makes
P false. Thus,

--(3x (P(x))) is logically equivalent to Vx (-'P(x))

Analogously, -- (Vx (P(x))) says that P(x) is not true for all x in the universal set.
That is, there is at least one x for which P(x) is false. Thus,

--(Vx (P (x))) is logically equivalent to 3x (--P (x))

One important result of these rules is that we can always "push negation inward" to be
an operator on a predicate rather than on a quantified formula. Often, it becomes easier to
understand a formula after the negations are "pushed inward." As an illustration, consider
the formulas

- (Vx (3y (P(x, y)))) is logically equivalent to 3x (-' (3y ((P(x, y)))))

which is logically equivalent to 3x (Vy (- P(x, y)))

-'(3x (Vy (P(x, y)))) is logically equivalent to Vx (- (Vy (P(x, y))))

which is logically equivalent to Vx (3y (- P (x, y)))

The resulting formulas with -- applied only to atomic formulas and using only the connec-
tives -, v, and A is said to be in negation normal form.

Example 5. Find formulas in negation normal form equivalent to each of the following
formulas. (In cases (c) and (d), the intended universal set is the set of all real numbers, but
that does not affect the answers.)

(a) --Vx E N (x is prime - 2 + I is even)
(b) -3x E Q (x > 0 A x3 2)
(c) -3x (Vy (xy = y))
(d) -Vx (Vy (x < y -). (3z (x < z A Z < y))))

Solution. We use 4:' to mean "is logically equivalent to."

(a) -(Vx E N (x is prime -+ x2 + 1 is even))
3.x E N-N- (x is prime --* x2 + I is even)

S3x e N - (x is not a prime V (x2 + 1 is even))
3X E N (x is prime A -(x 2 + I is even))

Predicates and Quantification 139

If we go beyond pure logic and use English synonyms, we can further simplify that
last expression to 3x E N (x is prime A (x2 + 1 is odd)).

(b) (ýx E•Q (x> 0 A x3 = 2))
<*, Vx E Q (--(X > 0A X3 = 2))

€,Vx E Q (-• (x > O) v -• (xI = 2))

:VX EQ(X <OVX3 #2)

(c) -'3x(Vy(xy = y))
V 'lx (-3y (xy = y))

SVx(3y(--(xy = y))
€•Vx(3x(xy A y))

(d) -(Vx (Vy (x < y - (3z (x < z) A (Z < y))))))
.' 3xx(-,(Vyy(x < y -+ (3x((x < Z) A (x < y))))))
.4* 3x3y--(x < y --* (3z((x < Z) A (z < y))))

3• qx3y(--(-'(x < y) V (3Z((x < Z) A (Z < y)))))
.: 3x3y((x < y) A -- (3z((x < Z) A (Z < y))))
,3 2x3y((x < y) A (Vz-((x < z) A (z < y))))

3 2x3y((x < y) A (VZ((X > Z) V (Z > y))))

The last step used DeMorgan's Law.

Again, we note that putting formulas into negation normal form often-although not
always-makes them more comprehensible.

2.7.6 Quantification with Conjunction and Disjunction

Predicates can be joined by the usual logical operations. Note the English translations of
the following formulas:

Formula English Translation

3x (P(x) A Q(x)) "For some particular choice of x,
both P(x)
and Q(x) are true."

Vx (P(x) A Q(x)) "For every choice of x,
both P(x)
and Q(x) are true."

3x (P (x) v Q (x)) "For some particular choice of x,
P(x) or Q(x)
(or both) is true."

Vx (P(x) V Q(x)) "For every choice of x,
P(x) or Q(x) (or both) is true."

Example 6. For the universal set N, is 3x ((x + 3 = 2) A (x - 2 = 1)) true?

Solution. For any x, if x + 3 = 2, then x must be - 1. If x - 2 = 1, then x = 3. So, no
choice of x makes both true. U

140 CHAPTER 2 Formal Logic

Example 7. For the universal set N, is 3x ((x - 3 = 1) A (x > 3)) true?

Solution. Since the quantifier is 3x, there need be only one such x for the formula to be

true; 4 is such an x. U

Example 8. For the universal set N, which of the following formulas are true?

(a) 3x((x+3=2) V(x-2= 1))
(b) 3x ((x . x - 3 =) v (x > 3))

Solution.

(a) True; choose x = -1. Because -1 + 3 = 2 is true, (-1 + 3 = 2) v (-1 -2 = 1) is
also true.

(b) Also true; choose x = 4. Then, 4 > 3 is true, so the disjunction is also true. How about
x =2,2.2-3=1. U

Example 9. In universe N, which of the following formulas are true?

(a) Vx ((x 2 - 2x + 1 = 0) V (x > x))
(b) Vx ((x < 3) v (x > 3))

Solution. This solution is left as an exercise for the reader. U

In Table 2.10 we summarize the relationship between quantification and A and v.
Since all the logical operators can be expressed in terms of - and A or -- and v (see
Exercise 1 in Section 2.9.4), this table should provide a guide to answering questions about

the relationships between other logical operators and quantification. Below, 4) =• * stands
for "40 logically implies 4'," and 4) .ý *' stands for "o) is logically equivalent to 4'."

Table 2.10 Logical Relations for Quantified Formulas
in One Variable

3x (P(x) A Q(x)) =: (3x P(x)) A (=x Q(x))

3x (P(x) v Q(x)) (3x P(x)) v (3x Q(x))
Vx (P(x) A Q(x)) € (Vx P(x)) A (Vx Q(x))
(Vx P(x)) V (Vx Q(x)) W= Vx (P(x) V Q(x))

The formulas 3x P(x) A 3y P(y) and 3x 3y (P(x) A P(y)), at first sight, both seem
to say that there are (at least) two objects satisfying predicate P. This, however, is not true.
There is nothing in the formula saying that x : y-that is, that x and y refer to different
objects. So, both formulas say there is (at least) one object satisfying P. To say there are
two different objects satisfying P, one would have to say they're different-for example,

3x 3y (P(x) A P(y) A x 0 y)

Example 10. For an array of 20 entries with integer entries, write a predicate that says
all the elements are distinct.
Solution. Let V = { 1, 2. 201 represent the indexes for the entries into an array

A[1.. 20]. Now,

Vm E V (Vn E V ((m :A n) -* (A[m] A A[n]))

says that all the elements are distinct. In this case, another predicate is Vm E V (Vn E
V ((m < n) -- (A[mi] : A[n]))). We leave it for the reader to explain why. 0

Predicates and Quantification 141

Note that in two of the lines in Table 2.10 we said "." and that in two we said just
"=." We leave it for the reader to find examples of the following:

(3x P(x)) A (3x Q(x)) A --3x (P(x) A Q(x))

and Vx (P(x) V Q(x)) A --(Vx P(x)) V (Vx Q(x))

2.7.7 Application: Loop Invariant Assertions

One of the most difficult aspects of computer programming is establishing whether pro-
grams produce the correct output. In principle, there is no way to establish the correctness
of all correct programs. (This was proved by Alan Turing.) Tools for establishing correct-
ness, however, do exist for many programs.

The simplest method for checking a program is to test it: Run it on some sample
values, and check whether it produces the correct answers. Testing is often an effective
method for showing that a program is incorrect, but unfortunately, one cannot normally
check all possible inputs-nor even a significant fraction of the possible inputs. Therefore,
one cannot check that a program is correct.

Another method that is often useful is to write a mathematical proof of program cor-
rectness. One of the difficulties in this case is finding tools for proving that any loops
accomplish what they are supposed to.

A somewhat similar problem is encountered in making it obvious to someone else
who is reading the program that the program works correctly. Many algorithms use tricks
that vary from not quite obvious to totally obscure. What is an easy read and short way to
present the trick and explain why the algorithm works? For example, how can one explain
what a loop is accomplishing?

One method that is often useful employs loop invariant assertions. We will explain
these in terms of a familiar algorithm, (one version of the) BubbleSort. We choose Bubble-
Sort not because it is a good sorting algorithm-for most purposes, it definitely is not-but
because it is short and easy to understand.

INPUT: An array A [0. . N - 1I] of N integers
OUTPUT: The same array, with its elements sorted into nondecreasing order

for limit = N - 2 down to 0
for position = 0 up to limit

if (A [position] > A [position + 1 1)
then swap the values of A [position] and A [position + 1]

A reason this algorithm works is that after k passes through the outer loop, the largest
k elements have reached the last k positions in the array-and in the correct order as well.

142 CHAPTER 2 Formal Logic

A formula that states this property is intuitively easy to understand, but it is not so easy

to state formally. Part of the formula is that after k passes through the outer loop, the last
k elements (in positions N - k, N - k + 1 ... , N - 1) are in increasing order and are
larger than or equal to all elements of the array that occur in positions 0, 1 k - 1. We
can state more, since the elements in positions k, k + 1 j - 1 also have values that

are less than the value of the element at position j. Thus, for any position j among the last
k positions, the value in each position i where 0 < i < j is less than or equal to the value
in position j.

Let Ind denote the set {0, 1 . N - 11 of legal indices for array A:

Vi E IndVj E Ind((O < i) A (i < j) A (j > (N - k)) -- (A[i] < A[j])

For k = 0, this says that

Vi E IndVj E Ind(i < j A j > N -* A[i] < A[j])

which is a true predicate, because j > N is false, making this an implication with hypothe-
sis FALSE. When k = N - 1, we are claiming that all the elements are in increasing order.
The predicate is

Vi E IndVj E Ind(i < j A j > 0 -+ A[i] < A[j])

The reader should verify that this does mean that the elements of the array are in increasing
order. This predicate can be put into the code as a comment called a loop invariant assertion,
as seen in the Outer Loop Invariant algorithm. (We now go back to informal usage and use
both the < and the < symbol in the formula.)

tINPUT: An array A [0. . N - 1] of N integers

OUTPUT: The same array, with its elements sorted into nondecreasing order

for limit = N - 2 down to 0
/* loop invariant for limit loop

Vi E IndVj e Ind((i < j A j > limit + 1) -) (A[i] < A[j]))
*/

for position = 0 up to limit
if (A[position] > A [position + 1]) then

swap the values

When limit = N - 2, j > N - 1 is false, because 0 < j < N - 1. Therefore, the im-
plication is TRUE. When limit = -1 and the loop terminates, the implication says that,

Exercises 143

for i < j and j > 0, A[i] < A[j]-that is, that the elements of A are in increasing or-
der. The loop invariant here is a formula that is supposed to be true at the beginning of
each pass through the loop as well as true after the last pass, when control returns-(here
with limit = -1) to test that the loop is finished. The accepted formal language for loop
invariant assertions uses quantified formulas.

W Exercises

Let U = {1, 2, 3, 4) be the universal set for Exercises 1 through 4.

1. Rewrite (Vx e U) P (x) as a conjunction that uses no quantifiers.
2. Rewrite (3x e U) P (x) as a disjunction that uses no quantifiers.
3. Rewrite -(Vx e U) P(x) as a conjunction that uses no quantifiers.
4. Rewrite --(3x) P (x) as a conjunction that uses no quantifiers.
5. For the following predicates with universal set IR, state the meaning of the predicate in

a sentence. If it is false, give an example to show why. (Example: Vx (ly (x < y)) says
"for every real number, there is a bigger number." This is true.)

(a) Vx(3y(x 0 0 -- xy = a))
(b) 3y(Vx(x # 0 -- xy = 1))
(c) 3x(Vy(y < x))

(d) Vx(3y(x + y = x))
(e) 3y(Vx(x + y = x))
(f) Vx(Vy(3z(x < Z A Z < y)))
(g) Vx(Vy(x 0 y -* 3z((x <Z AZ <y) V (x > Z A Z>y))))
(h) Vx(Vy(Vz((x > y A y > Z) -) x > Z)))

6. For each of the following formulas write a formula 0 (using quantifiers) expressing
the formula, find a formula in negation normal form equivalent to -'4, and express the
meaning of the negation in words.

(a) For every x and for every y, x + y = y + x.
(b) Every number x has a square root. (Do not use the square root symbol; use only

multiplication.)
(c) For some y, 2x 2 + 1 is always greater than x 2y. (Hint: In this example, "always"

suggests a universal quantifier.)
(d) For some x and y, x < y, and x3 - x > y 3 _ y.
(e) For every x and y, there is a z where 2z = x + y.
(f) For every x and y, if x3 + x - 2 = y3 + y - 2, then x = y.

7. For each quantified formula that follows: find a universe U and predicates A and B in
which the formula is true and U, A and B in which it is false.

(a) Vx(((A(x) V B(x)) A --(A(x) A B(x)))
(b) VxVy(P(x, y) - P(y, x))
(c) Vx(P(x) - 3yQ(x, y))

(d) 3x(A(x) A VyB(x, y))
(e) VxA(x) -- (VxB(x) -+ (Vx(A(x) -+ B(x))))

144 CHAPTER 2 Formal Logic

8. For the following formulas, let the universe be R. Translate each of the following
sentences into a formula (using quantifiers):

(a) There is a smallest number.
(b) Every positive number has a square root. (Do not use the square root symbol; use

only multiplication.)
(c) Every positive number has a positive square root. (Again, do not use the square

root symbol; use only multiplication.)

9. For the following formulas, let the universe be R. Translate each of the following
sentences into a formula (using quantifiers):

(a) There is no largest number.
(b) There is no smallest positive number.
(c) Between any two distinct numbers, there is a third number not equal to either of

them.

10. Let U be the set of all problems on a comprehensive list of problems in science. Define
four predicates over U by:
P (x): x is a mathematics problem
Q(x): x is difficult (according to some well-defined criterion: it does not matter for us

what the criterion is)
R(x): x is easy (according to some well-defined criterion)
S(x): x is unsolvable (if you do not know what "unsolvable" means, do not worry

about it here)

Translate into English sentences each of the following formulas:

(a) VxP(x)
(b) 3xQ(x)
(c) Vx(Q(x) v R(x))
(d) Vx(S(x) --* P(x))
(e) 3x(S(x) A -'P(x))
(f) -'(Vx(-'R(x) V S(x)))
(g) Vx(P(x) -- (Q(x) *" -R(x)))
(h) Vx-S(x)
(i) Vx(P(x) -- -S(x))
(j) Vx(P(x) -+ (R(x) V S(x)))
(k) 3x(-Q(x) A -R(x))
(1) 3x(R(x) A S(x))

(m) Vx(Q(x) -+ -R(x))

11. Let the universe U be the set of all human beings living in the year 2001, and translate
the following English sentences into quantified formulas. Let P(x) stand for "x is
young," Q(x) for "x is female," and R(x) for "x is an athlete."

(a) "All athletes are young."
(b) "Not all young people are athletes."
(c) "All young people are not athletes." (Warning: In informal English, this sentence

has two quite different meanings. One is "more grammatically correct" than the
other, however, and that is the one we're asking for.)

(d) "Some young people are not athletes."

Exercises 145

(e) "Some athletes are young females."
(f) "All athletes are young males."
(g) "Some athletes are female and are not young."
(h) "Some young females are not athletes."
(i) "All young females are athletes."
(j) "Some athletes are not young."
(k) "No young people are athletes."
(1) "All athletes are either female or are young."
(m) "If all athletes are female, then all athletes are young; otherwise, no athletes are

young.'

12. Give an example of a universal set U and predicates P and Q such that (VxP(x))
(VxQ(x)) is true but Vx(P(x) --* Q(x)) is false.

13. Translate each of the following quantified formulas into an English sentence where the
universal set is R. Label each as true or false.

(a) Vx(3y(xy = x))
(b) Vy(3x(xy = x))
(c) Vx(3y(xy = 1))
(d) 3y(Vx A O(xy = 1))
(e) 3x(Vy(xy = x))
(f) (Vx(x A 0-- 3y(xy = 1))

14. Write a formula "saying" that at least four distinct objects satisfy predicate P.
15. For any two integers m and n, we say m divides n if there is an integer k such that n =

ink. (Many programming languages give easy ways to say that, such as n % m == 0
or n div m = 0.) Define Div(m, n) to be m divides n. Translate each of the following
propositions and quantified formulas into a clear English sentence. Label each as being
true or false, with the universe as the set Z.

(a) Div(5, 7)
(b) Div(4, 16)
(c) Div(16, 4)
(d) Div(-8, O)
(e) Vm(Vn(Div(m, n)))
(f) Vn(Div(1, n))
(g) Vm(Div(m, 0))
(h) Vm(Vn(Div(m, n) -- Div(n, m)))
(i) Vm(Vn(Vp((Div(m, n)ADiv(n, p)) -- Div(m, p))))
(j) Vm(Vn((Div(m, n)A Div(n, m)) -)i m = n))

16. Find a formula in negation normal form equivalent to the negation of

3xVyVz(P(x, y, z)).

17. Find formulas in negation normal form equivalent to the negations of each of the fol-
lowing:

(a) Vx(P(x) v Q(x))
(b) vx(Vy(P(x, y) - Q(x, y)))
(c) Vx((3yP(x, y)) - Q(x, y))
(d) Vx(((3y(P(x, y)) -+ Q(x, y)) A 3zR(x, z)))

146 CHAPTER 2 Formal Logic

(e) 3x((P(x) v Q(x)) -+ R(x))
(f) 3x((P(x) -+ Q(x)) A R(x))

18. Find a formula in negation normal form equivalent to the negation of

Vx3y((P(x, y) A Q(x, y)) -* R(x, y))

19. Give a universal set U and interpretations to predicates A, B, P, and Q so that each of
the following quantified formulas is false:

(a) (3xA(x) A 3xB(x)) -+ (3x(A(x) A B(x)))
(b) (Vx3yP(x, y)) -- (3x(VyP(x, y)))

(c) (Vx(P(x) -- Q(x))) -- ((3xP(x)) -+ (Vx)Q(x))
(d) Vx (-,A (x)) *+-• -(VxA (x))

20. To negate an expression with a single quantifier, we can replace it with the other quanti-
fier and negate the formula inside. This generalizes to an arbitrary string of quantifiers.
For instance,

-,Vx3y3zVtP(x, y, z, t)

is logically equivalent to

3xVyVz3t(--P(x, y, z, t))

Prove this generalization by induction.
21. Given an array Values with n elements

Values[0], Values[l],.... Values[n - 1]

each containing a real number, the following algorithm finds the sum of all the positive
values in Values. Write an invariant for the loop.

rollingSum = 0
fori = 0, 2 ... , n-I

if Values[i] > 0
rollingSum = rollingSum + Values[i]

Output rollingSum

22. Challenge: A much more sophisticated sorting algorithm is the MergeSort algorithm.
It comes in various versions; we do one here. The algorithm involves copying the list
back and forth between two arrays, the input array A and an extra array B, so it takes
a lot of extra space.

Our version is not "optimized." We have attempted to keep it relatively simple to
make it as easily understood as possible. Moreover, to simplify things for this exercise,
we assume that the size of the input array is a power of 2; relatively easy adjustments
would make it work for arrays of arbitrary sizes.

Chapter Review 147

INPUT: An array A [0. . 2N - I] of 2N integers
OUTPUT: The same array, with its elements sorted into nondecreasing order

for t =- I to 2N- l

size = 2'
for position = 1 to 2 N - I

B[position] = A[position]
loi = 0
while lol < 2N

hil = lol + size - 1
102 = hi1 + 1
hi2 = 102 + size - 1
position, = lol
position2 = 102
position3 = lo1
while position 1 < hi1 and position2 < hi2)

if B[positionj] < B[position2]
then A [position3] = B positionn]

position, = position1 + 1
else A[position3] = B[position2]

position2 = position2 + 1
position3 = position3 + 1

while (position, < hi1)
A[position3] = B[position1]
position, = position1 + I

position3 = position3 + 1
while (position2 < hi2)

A[position3] = B[position2]
position2 = position2 + 1
position3 = position3 + 1

lol = lol + 2 • size

Determine what each part of the program does (first experiment with some sample test

lists), and write loop invariants for each loop that clarify why the algorithm works.

W Chapter Review

Propositions are the initial focus of the chapter. After defining propositions, we introduce
common operations to make formulas from propositions. The idea of a proposition being
true is introduced. We can verify whether a formula is true for a particular set of truth
values for its propositions using an expression tree. To find out if a formula is true for
all possible truth values, we use truth tables. The notions of tautologies, contradictions,

148 CHAPTER 2 Formal Logic

satisfiable propositions, and logically equivalent propositions give a fuller understanding of
the propositional logic. Both CNFs and DNFs give a method for representing any formula
using a standard format from which information is easier to determine. The last section
deals with predicates and quantification. We define predicates as natural generalizations of
propositions and formulas. The interaction of predicates and quantification is explored, as
is the interaction of quantification with the operations that are defined on propositions.

Throughout the chapter, but independent of the core material about propositional logic,
is an introduction to boolean or combinatorial circuits. First, the correspondence between
logical formulas and a boolean circuit composed of gates is introduced. After showing the
correlations between boolean algebras and combinatorial circuits, the results about boolean
algebras become a tool for simplifying circuits. Finally, CNFs and DNFs are used to find
standard representations of combinatorial circuits.

2.9.1 Terms and Theorems

2.1 Summary
TERMS

AND gate expression tree proposition letter
base cases Expression Tree for a propositional connective
biconditional Formula propositional constant
boolean circuit FALSE (F) (T, F)
boolean value formula propositional logic
closure rules gate semantics
combinatorial circuit hypothesis subformula
combinatorial network implication syntax
conclusion inductive definition TRUE (T)
conditional mean truth table
conjunct logical value well-formed formula
conjunction negation (wff)
disjunct NOT gate
disjunction OR gate
equivalence proposition

THEoREMs

Principle of Induction on Formulas

2.3 and 2.4 Summary
TERMS

alphabetic substitution interpretation semantics
alphabetic variant logically equivalent Sheffer stroke
complementation logically implies tautologically equivalent

contradiction logically valid tautologically implies
equivalent meaning tautology
exclusive or satisfiable true in
false in satisfies unsatisfiable

Chapter Review 149

THEOREMS

First Substitution Principle Second Substitution Principle

2.5 and 2.6 Summary

TERMS

2-CNF excess literals resolution refutation
3-CNF k-DNF resolution rule
3-satisfiability problem k-term resolvant
clause literal sound
complete negative literal term
conjunctive normal form A'NP-complete

(CNF) positive literal
disjunctive normal form resolution

(DNF) resolution derivation

THEOREMS

Every Formula Is Logically Equivalent to Every Formula Is Logically Equivalent to
a Formula in CNF a Formula in DNF

ALGORITHMS

BubbleSort
MergeSort
Outer Loop Variant

2.7 Summary

TERMS

array loop invariant quantification
atomic formula loop invariant assertion scope
binary n-ary universal quantification
constant negation normal form variable
existential quantification nested quantifiers variable symbols
formula predicate

2.9.2 Starting to Review

1. Which of the following are propositions?

i: "The moon is visible."
ii: "The property tax rate will increase next year."
iii: "No one under 18 may buy cigarettes."
iv: "Please help me with the assignment."

(a) i and iii
(b) i and ii
(c) ii and iii
(d) All of the above

150 CHAPTER 2 Formal Logic

2. Write in symbolic form the statement "Claudia will sail in the regatta if the crew is
ready and the weather is fair."

3. Write the converse, inverse, and contrapositive of the statement "If Sally finishes her

work, she will go to the basketball game."
4. What inference rule applies to the following?

Joe wrote a program in C, or George wrote a program in Java. If Joe wrote a program in
C, then the problem was solved. If George wrote a program in Java, then the problem
was solved.

(a) Contrapositive
(b) Proof by contradiction
(c) Proof by cases
(d) None of the above

5. What is the truth value that will be computed by the formula represented by the
expression tree shown if I (p) = T, I (q) = F, I (r) = T, and I (s) = F in an inter-
pretation I?

(-'(p A q) --ý r) <-* -4 (r-- s)

-(p A q)--- r (r- s)

-(r(pAq) r r- s

pAq r S

p q

6. What is the value of the formula represented by the expression tree in Exercise 5 given

the interpretation I(p) = T, I(q) = F, I(r) = T, and I(s) = T.
7. Write the following condition in an if... then with the negations incorporated into the

conditions themselves:

If NOT ((x < 3) OR (y > 2)), then

8. Construct a truth table for the proposition -- (p A q).
9. Using the conjunctive normal form, identify values for which the statement

-(-'(p V q) A (-p V q))

is true.
10. Find the DNF for the statement

((-'p A q) V r) A (-'q v -r)

2.9.3 Review Questions

1. Construct a truth table for the statement -'(p V q) V -(p A q).
2. Construct a truth table for the statement -- (p A q) A (p V -q).
3. For which truth values does the statement -'(p V --q) have a truth value TRUE?

Chapter Review 151

4. Form a truth table for the proposition p V -,(p A q).
5. Use the substitution rule with p --* q for p, and prove that the result is a tautology for

-q --* (q -- p)

6. Prove the following identities for a boolean algebra:

(a) (-'pVq)A(pV-q)=pAqV(-pA--q)
(b) -ppv(qAr) v(pVq)A(-'pVr)-=--pVr
(c) -(-(pvq)A--(qvr))V(qAr)=pvq

7. Draw combinatorial circuits that realize the following formulas:

(a) (pAq)V(qAr)V(pA-r)
(b) -((p A q) V p) V (p A q)

2.9.4 Using Discrete Mathematics in Computer Science

1. We built formulas with the logical operators A, V, -, -- , and * and the constants
T and F. In designing circuits, we described gates for only three connectives: A, V,
and -. Computer hardware designers might want to make as few kinds of gates as
possible. Do they really need a --- gate? (The answer turns out to be "no," but how
do you know that?) Could they get along with fewer than three types of gates? A set
of logical operators is called complete if every well-formed formula of propositional
logic is equivalent to a well-formed formula using connectives from the set.

(a) Find a formula equivalent to a -+ (b A C A d) using only the connectives - and
A (and not the constants T and F). Find the shortest such formula; does it have
more or fewer symbols than the formula a -+ (b A c A d)?

(b) Show that the set {-, A} of operators is complete.
(c) Find a formula equivalent to a --+ (b A c A d) using only the connectives - and

--* (and not the constants TRUE and FALSE). Find the shortest such formula;
does it have more or fewer symbols than the formula a -+ (b A C A d)?

(d) Show that the set {-, -+ } of operators is complete.
(e) Find a formula equivalent to a -+ (b A c A d) using only the connective --* and

the constant FALSE. Find the shortest such formula; does it have more or fewer
symbols than the formula a -- (b A C A d)?

(f) Show that the set (FALSE, --+I is complete.

2. See the definition of "complete set of operators" in Exercise 1. This problem shows
that the engineers need build only one type of gate.

(a) NAND has the truth table

p q NAND(p, q)

T T F
T F T
F T T
F F T

Show that the set {NAND} is a complete set of operators.

152 CHAPTER 2 Formal Logic

(b) Find a formula equivalent to a -* (b A C A d) using only the connectives NAND
(and not the constants TRUE and FALSE). Find the shortest such formula; does
it have more or fewer symbols than the formula a --+ (b A C A d)?

(c) NOR has the truth table

p q NOR(p, q)

T T F
T F F
F T F
F F T

Show that the set {NOR} of operators is complete.
(d) Find a formula equivalent to a -+ (b A C A d) using only the connectives NOR

(and not the constants TRUE and FALSE). Find the shortest such formula; does
it have more or fewer symbols than the formula a --+ (b A C A d)?

The NAND operator is often called the Sheffer stroke and is denoted as plq.
The NOR operator is often called the Pierce arrow and is denoted as p 4 q.

3. The connective if-then-else is defined by the following truth table:

p q r ifp thenq else r

T T T T
T T F T
T F T F
T F F F
F T T T
F T F F
F F T T
F F F F

This connective is key in binary decision diagrams (BDDs), which provide one stan-
dard way for manipulation of propositional formulas in computer programs. For ex-
ample, BDDs have been widely used by computer-chip designers in showing that the
circuits in the chips they design match the specifications for those chips. (In BDD
language, the connective is often called just ITE.)

(a) Find a formula equivalent to

if a
then

if b then c else d
else

if e then d else c

using only the connective A, v, and -.

Chapter Review 153

(b) Find a formula equivalent to

if a
then

if b then c else d

else

if e then d else c

in CNF.
(c) Find a formula equivalent to -'a using only the if-then-else connective and con-

stants T and F.

(d) Find a formula equivalent to (a V b V c) A (-a v -,b v d) A (-c V -d) using

only the if-then-else connective and constants T and F.

4. Find a DNF for the condition that there are an even number of l's in the three binary
strings p, q, and r. Draw a combinatorial network to represent the DNF. Can you

simplify the combinatorial circuit using the properties of a boolean algebra?
5. Find a DNF for the condition that there are an odd number of l's in the three binary

strings p, q, and r. Draw a combinatorial network to represent the disjunctive normal
form. Can you simplify the combinatorial circuit using the properties of a boolean
algebra?

6. An especially simple class of CNF formulas are those built from Horn clauses. A
Horn clause is a clause containing, at most, one positive literal. (A pure Horn clause
is a clause containing exactly one positive literal.) Horn clauses form the basis for the
computer language Prolog, which allows the programmer to input a set of requirements

(specified in formal logic) and to ask the computer to find how to satisfy them all (if
possible)-as opposed to the user's having to write out the case analysis.

(a) Using the atomic formulas

a = "Tweety is a penguin."
b = "Opus is a penguin."
c = "Phoenix is a penguin."

d = "Elvis lives!"

express "If Tweety is a penguin and Opus is a penguin, and Phoenix is a penguin,
then Elvis lives" as a Horn clause.

(b) Find a set of Horn clauses logically equivalent to (a A b A c -+ d v e) A (-a v
-e). Find the shortest such set of clauses.

(c) Find all satisfying truth assignments for the following set of Horn clauses:

{PI, -PI V P2, -Pi V -1'P2 V P3, -'P V -1P2 V P4, -P3 V -174 V P51

Now, show that the following set of Horn clauses is not satisfiable:

{Pl, -'p1 V P2, -'p1 V -P2 V P3, -P V -'p2 V P4, -P3 V -P4 V P5, -113 V -"p5}

(d) Find all satisfying truth assignments for the following set of Horn clauses:

{PI, - P1 V P2, -PI V -P2 V P3, -PI V -1P2 V P4, -P3 V -'P4 V P5,

- P6 V P7, -P1 V -PP7 V P6)

154 CHAPTER 2 Formal Logic

Next, for each satisfying truth assignment I, let T, be the set of truth variables
assigned the value TRUE by I. Compare the sets TI for the truth assignments
above by _.

Now, show that the following set of Horn clauses is satisfiable:

[P1, -' P1 V P2, P1 V -P2 V P3, -P1 V -1P2 V P4, -P3 V -1P4 V P5,

- P6 V P7, -PI V -'P7 V P6, -'P V -P6, -1P2 V -'P4 V -'P71

(e) Challenge: Prove that if 4' is a Horn clause and if I, and 12 are interpretations
satisfying 4', then the following interpretation IA also satisfies 4':

IA(X) = IT if Ii(x)= T and 12(x) = T
/Fotherwise

Using this, show that p V q is not logically equivalent to (the conjunction of) any
set of Horn clauses.

(f) Challenge: Write pseudocode for a relatively fast algorithm to determine whether
a set of Horn clauses is satisfiable. Include arguments to show that (i) your al-
gorithm returns the correct answer and (ii) your algorithm is reasonably fast (in
general, much faster than writing the truth table for the set of Horn clauses).

7. Determine if the CNF

(x V y V -z V w V u V -v) A (--x V -y V z V -w V u V v) A

(x v -y V -z V W V u V -v) A (X V -'y)

or the CNF

(p V r V v) A (-p V r V v) A (p V -'r V V) A (-p V -'r V -v) A
(p V -r V -v) A (-p V -r V -v) A (p V r V -V) A (-p V r V -v)

is satisfiable. This exercise shows that the satisfiability problem can be solved if the
satisfiability problem can be solved for a CNF. The CNF satisfiability problem was the
first NiP-complete problem.

8. Afirst-order Horn clause is a formula such as

Vx Vy (Loves(x, y) v -EatsGarlic(x) V - EatsGarlic(y))

Inside the parentheses is a disjunction of atomic formulas (Loves(x, y)) and negated
atomic formulas (- EatsGarlic(x)). All the variables are universally quantified outside
the parentheses.

Using the predicates

Trained (x, j): x is trained to do job j.
Experienced (x, j): x is experienced at job j.
Prefers (x, j1, j2): x prefers job j1 to job j2.
Hire (x, j): hire x to do job j.

State the following with sets of first-order Horn clauses:

(a) If Britney and Aaron are both trained and experienced in marketing and account-
ing, and if Britney prefers accounting to marketing and Aaron prefers marketing
to accounting, then hire Britney to do accounting.

Chapter Review 155

(b) If Harry, Hermione, and Frodo are all experienced in potions and each of them
prefers potions to at least one other job, then hire them all for potions.

9. Given an array Names with n elements,

Names[0], Names[l],.... Names[n - 1]

each containing a surname (family name), the following algorithm finds the largest
name (in alphabetical order). Write an invariant for the loop.

temp = Names[O]
fori=l,2,...,n-1

if Names[i] > temp

temp = Names[i]
Output temp

10. Challenge: Look up Hoare's quicksort algorithm. Write loop invariant assertions that
make the logic of quicksort easy to understand. You may also want preconditions
and postconditions. A precondition is a formula that the programmer assumes will
be true when an algorithm is invoked (called); the programmer announces that if the
precondition is not true, then the algorithm probably will not do what it is supposed
to do. A postcondition is a formula expressing something that is supposed to be true
after the algorithm finishes-assuming the preconditions are satisfied, of course.

CH H AH PI TH EI iRa 3 l I

Relations

Human language has many words and phrases to describe relationships between or among
objects. It may be that for two people, A and B, that A is a parent of B, that A is an
ancestor of B, that A is taller than B, or that A is in front of B. In algebra, it may be that
the value of variable x is less than the value of variable y. In geometry, it may be that one
point lies between two other points on a line. In set theory, it may be that a set X is a subset
of a set Y or that X is disjoint from Y. At a particular moment while a computer program
is running, it may be that the value of x is less than the value of y. All these notions are
special instances of a relation.

This chapter introduces the concept of a relation to formalize the familiar notion of a
relationship between or among objects. Relations provide a way of representing relation-
ships like the ones just described, so that they can be stored, studied, and reasoned about.
In this chapter, we first provide an introduction to relations, the important properties of
relations, and the fundamental operations on relations. We next deal with equivalence re-
lations, a generalization of the notion of equality, and then move on to ordering relations.
These relations generalize the ordering relations on R (<, >, <, >, =). Searching and sort-

ing operations are based on these relations. Finally, we show how the ideas in this chapter
are applied in a relational database.

rnBinary Relations

Most card games are played with a standard deck of 52 cards. The deck is divided
into four groups, or suits, called Clubs (4), Diamonds (*), Hearts (Q), and Spades (*).
Each suit has 13 cards, ordered in increasing order of value: 2, 3, 4, 5, 6, 7, 8, 9, 10,
Jack, Queen, King, and Ace. The 2 card has the lowest value, and the Ace card has the
highest value. In this ordering, we say that one card has a higher value than, or is higher
than, another card if, ignoring their suits, the value of the first card occurs after the value of
the second in this ordering. To focus on the ideas presented in this chapter while keeping
matters simple, many of the examples that follow will use a deck with only six cards. This
set of cards, called SpecialDeck, consists of the 10, Jack, and Queen of Hearts as well as
the 10, Jack, and King of Clubs. The values of these cards are ordered as described. The
SpecialDeck has its elements shown in Table 3.1.

157

158 CHAPTER 3 Relations

Table 3.1
SpecialDeck of
Cards

SpecialDeck

10 of Clubs
Jack of Clubs
King of Clubs
10 of Hearts
Jack of Hearts
Queen of Hearts

Much of the information about suits and card values is irrelevant to many card games.
Often, only two properties are important: whether two cards are in the same suit, and
whether one card is higher than another. Everything else, such as the names of the suits,
the names of the cards, and perhaps even the number of cards per suit, is unimportant. For
example, a person would immediately be able to translate the rules of many games to a
deck with five suits called red, yellow, blue, green, and black, with each suit consisting of
16 cards numbered 1, 2, 3,..., 16.

How can one abstract these important properties? Notice that both properties involve
a comparison between two objects. For example, given two cards a and b, does a have
a higher value than b? As a matter of convention, two elements that are related in some
special way are often represented by an ordered pair. If a is higher than b, then this could
be represented by the ordered pair (a, b). Formally, the relation HigherValue defined on
SpecialDeck is the set of ordered pairs (a, b) where the value of card a is higher than
the value of card b. This relation for SpecialDeck is shown in Table 3.2. Each ordered pair
(a, b) in the relation contributes one row to the table, with the higher-valued card appearing
first in the row and the lower-valued card second.

Table 3.2 HigherValue Relation

HigherValue

Jack of Hearts 10 of Hearts
Queen of Hearts 10 of Hearts
Jack of Clubs 10 of Hearts
King of Clubs 10 of Hearts
Queen of Hearts Jack of Hearts
King of Clubs Jack of Hearts
King of Clubs Queen of Hearts
Jack of Hearts 10 of Clubs
Queen of Hearts 10 of Clubs
Jack of Clubs 10 of Clubs
King of Clubs 10 of Clubs
Queen of Hearts Jack of Clubs
King of Clubs Jack of Clubs

Binary Relations 159

Definition 1. A binary relation is a set of ordered pairs. A binary relation on a set X is
a set of ordered pairs of elements of X.

Example 1. The relation HigherValue defined in Table 3.2 can be represented as the
following set of ordered pairs:

{(Jack of Hearts, 10 of Hearts), (Queen of Hearts, 10 of Hearts), (Jack of Clubs,
10 of Hearts), (King of Clubs, 10 of Hearts), (Queen of Hearts, Jack of Hearts),

(King of Clubs, Jack of Hearts), (King of Clubs, Queen of Hearts), (Jack of Hearts,
10 of Clubs), (Queen of Hearts, 10 of Clubs), (Jack of Clubs, 10 of Clubs),

(King of Clubs, 10 of Clubs), (Queen of Hearts, Jack of Clubs),
(King of Clubs, Jack of Clubs))

A second important binary relation on SpecialDeck is SameSuit, which is defined as
(a, b) e SameSuit if a and b are cards in SpecialDeck that belong to the same suit. For
example, both the ordered pair (10 of Hearts, Jack of Hearts) and the ordered pair (Jack of
Hearts, 10 of Hearts) are in SameSuit, but the ordered pair (10 of Hearts, Jack of Clubs) is
not. The pairs in the relation SameSuit for SpecialDeck are listed in Table 3.3.

Table 3.3 SameSuit Relation

SameSuit

10 of Hearts 10 of Hearts 10 of Clubs 10 of Clubs
10 of Hearts Jack of Hearts 10 of Clubs Jack of Clubs
10 of Hearts Queen of Hearts 10 of Clubs King of Clubs
Jack of Hearts 10 of Hearts Jack of Clubs 10 of Clubs
Jack of Hearts Jack of Hearts Jack of Clubs Jack of Clubs
Jack of Hearts Queen of Hearts Jack of Clubs King of Clubs
Queen of Hearts 10 of Hearts King of Clubs 10 of Clubs
Queen of Hearts Jack of Hearts King of Clubs Jack of Clubs
Queen of Hearts Queen of Hearts King of Clubs King of Clubs

A third relation defined on SpecialDeck is that of having a higher value and being
in the same suit. This relation is shown in Table 3.4. Here, an ordered pair (a, b) of cards
belongs to the relation HigherValueSameSuit if cards a and b in SpecialDeck have the same
suit and furthermore, card a has a higher value than card b.

Table 3.4 HigherValueSameSuit

Relation

HigherValueSameSuit

Jack of Hearts 10 of Hearts
Queen of Hearts 10 of Hearts
Queen of Hearts Jack of Hearts
Jack of Clubs 10 of Clubs
King of Clubs 10 of Clubs
King of Clubs Jack of Clubs

160 CHAPTER 3 Relations

Other familiar examples of relations arise when we consider family trees. Tradition-
ally, a special notation is used, which goes roughly as follows: Marriages are shown with
= signs. The first-generation couple sits at the top of the tree. Only their direct descendents

officially belong to the tree. Marriages of descendents are indicated by an = sign and the
name of the partner. With the exception of the top couple, the children of a person in the
tree are drawn off a horizontal line that is joined to that person by a short vertical segment.
(No horizontal line is needed for an "only" child). The horizontal line for the children of
the top couple is joined to the = sign at the top, since both parents belong to the tree.
The children of the first-generation couple form the second generation, the children of the
second-generation couples form the third generation, and so on.

In Figure 3. 1, George is the only child of Peter and Elaine. Peter is in the picture only
because of his marriage to Elaine. Elaine, not Peter, is a child of Mary and John. Elaine is
in the second generation, and George is in the third generation.

Mary = John

Peter = Elaine

George

Figure 3.1 Examples of family tree entries.

Although the marriage of a descendent is indicated by an = sign and the name of the
partner, no further information is given about these partners. For example, in the family tree
of Mary and John shown in Figure 3.2, even if Peter and Harold were brothers, this would
not be shown. A family tree is a rich source of information about a number of relations.
In Example 2 you will list the elements of three relations that can be formed from the
relationships shown in Figure 3.2.

Mary = John

Peter = Elaine Maude = Harold

George Elizabeth

Figure 3.2 Family tree.

Example 2. For the family tree shown in Figure 3.2, identify the elements of the relations
(a) IsMarriedTo, (b) IsParentOf and (c) IsSameGeneration.

Solution.

(a) IsMarriedTo = {(Mary, John), (John, Mary), (Peter, Elaine),
(Elaine, Peter), (Maude, Harold), (Harold, Maude)}

A representation for the specific relation IsMarriedTo is shown in Table 3.5.

Binary Relations 161

Table 3.5 IsMarriedTo
Relation

IsMarriedTo

John Mary
Mary John
Peter Elaine
Elaine Peter
Maude Harold
Harold Maude

(b) IsParentOf= {(Mary, Elaine), (John, Elaine), (Mary, Maude),
(John, Maude), (Peter, George), (Elaine, George),

(Maude, Elizabeth), (Harold, Elizabeth))

(c) Peter and Harold do not appear in the relation IsSameGeneration, because this relation
deals with direct descendants only. In this case, the family tree has more information
than is required to define this relation:

IsSameGeneration = {(Elaine, Maude), (Maude, Elaine),
(George, Elizabeth), (Elizabeth, George), (Mary, John),

(John, Mary), (John, John), (Mary, Mary), (Elaine, Elaine),
(Maude, Maude), (George, George), (Elizabeth, Elizabeth)})

A specific computer application of relations appears in Section 3.10, which introduces
the concept of relational databases. A relational database consists of a number of relations.
To answer questions concerning the information contained in the relations, the user poses
a question or a query that is processed by the database system. If, for example, a user
makes a query about who is married to whom, the database system would respond with
a table such as Table 3.5. In relational database systems, the answer to any query is a
relation.

For example, let X be any set, then

Idx = {(x,y) :x, yEX and x=yl

Since Idx is a set of ordered pairs of elements in X, it defines a relation on X. This re-
lation is called the identity relation, or the equality relation, and may be denoted as
=x. The trivial relation, or void relation, or empty relation, on any set consists of 0.
The universal relation on a set consists of all possible ordered pairs of elements of a
set.

For any set X C R, let

Ltx= {(x, y) : x, y e X and x <y}

Lex={(x,y):x, yEX and x < y}

GtX = {(x, y) : x, y E X and x > yj

Gex={(x,y):x,yEX and x>y

162 CHAPTER 3 Relations

Similar relations are defined on N and R. When the set X is clear from the context, the
subscript X will frequently be dropped. When it causes no confusion, it is convenient
to use mathematical symbols for these relations and drop the subscript. Hence, we will
sometimes refer to ld as =, to Le as <, to Lt as <, to Gt as >, and to Ge as >. Of course,
to say that (x, y) e Idx, it is customary to write x = y, and to say that (x, y) E LtN, it is
customary to write x < y. In a non-numeric setting, we can define a relation for any set X
of words in a dictionary by saying that word] < word2 means that word] precedes word2
in the dictionary.

Example 3. Table 3.6 shows two subsets of the relations =N and </q. Since both relations
are infinite, the entire relation obviously cannot be displayed.

Table 3.6 Two Relations on N

IdN LtN

0 0 0 1
1 1 0 2
2 2 1 2
3 3 0 3
4 4 1 3

If R is a binary relation on a set X, then (x, y) e R may also be written as x R y.

3.1.1 n-ary Relations
There is no reason to restrict attention to relations between pairs of objects. Those are
simply the most familiar examples.

Definition 2. Let X1, X2,.... X,, be sets for some n e N. An n-ary relation is a set of
n-tuples contained in X1 x X2 x ... Xn. If X1 = X2 . X, we say the n-ary rela-
tion is defined on X.

We have been careful to indicate how many sets are involved in a relation or how many
elements are related. Often the qualifier n-ary is left off and we see references to relations
for which the context makes clear how many sets are involved.

Example 4. Let the set X consist of the nine positions on a tic-tac-toe board, named pl,

P2 ... , p9, as shown:

P1 P2 P3

P4 P5 P6

P7 P8 P9

Operations on Binary Relations 163

For three distinct positions on the board, define the relation Between to consist of the or-
dered triples (pj, Pi, Pk) where pj is between pi and Pk in some row, column, or diag-
onal on the board. So, Between contains, for example, the ordered triples (P2, P3, P0),

(P5, P4, P6), (p5, pi, p9), and (Ps, P7, P3). Both (P5, P2, P8) and (Ps, P8, P2) are also
elements of the relation. E

Example 5. We define a ternary relation R on the set A = {1, 2, 3,4, 5, 6, 7} as follows:
such that for any nI, n2, n3 E A we have (nI, n2 , n3) E R if and only if n1 I n2 = n3.
Find all elements of R.

Solution. The triples in R are

((1, 1, 1), (1, 2, 2), (2, 1, 2), (1, 3, 3), (3, 1, 3), (1, 4, 4), (4, 1, 4), (2, 2, 4),

((1, 5, 5), (5, 1, 5), (1, 6, 6), (6, 1, 6), (2, 3, 6), (3, 2, 6), (1, 7, 7), (7, 1, 7)) U

A 1-ary relation is also called a unary relation (pronounced "u"-nary relation) or a
property. A unary relation on a set X is a set of 1-tuples of elements of X, but a 1-tuple of
X is just an element of X. Hence, a unary relation on a set X is a subset of X.

Example 6. Hearts names a unary relation on a deck of cards. This unary relation on the
standard 52-card deck is the set {2 of Hearts, 3 of Hearts ... , Ace of Hearts).

If R is an n-ary relation with n > 2, one can either write R(xl, x2. Xn) or
(Xl, X2, .. , Xn) E R.

Theorem 1 points out that an n-ary relation on a set X is the same thing as a unary
relation on the set Xn.

Theorem 1. A set R is an n-ary relation on a set X if and only if R C Xn.

rnOperations on Binary Relations

Since relations are sets, the set operations of union, intersection, and difference are well
defined for relations. If only binary relations on a set X are considered, then X2 can be
considered as the universal relation, and the complement X2 - R of a relation R can also
be formed. In this section, two other especially important operations on binary relations
are considered, namely forming the inverse and taking the composition of two relations.
The inverse operation is performed on a single binary relation; the composition operation
is performed on two binary relations.

3.2.1 Inverses

For the real numbers 3 and 5, we can write 3 < 5, but we can convey the same information
by writing 5 > 3. The two relations, < and >, are different. More generally, for any real
numbers x and y, we have x < y if and only if y > x. This is an example of two relations
being inverses of each other. In terms of the ordered pair notation,

164 CHAPTER 3 Relations

(x, y) E < if and only if (y, x) E >

The formalization of this property is stated next.

Definition 3. Let R be a binary relation. The inverse of R, denoted R-1, is

{(x, y) :(y,x) e R}

Producing the inverse R 1 of a relation R can be thought of as performing an operation
on R. This operation is known as taking the inverse of R, or as inverting R.

Example 7. Recall the relation IsParentOf in Example 2. Thus,

IsParentOf 1 = {(Elaine, Mary), (Elaine, John), (Maude, Mary),
(Maude, John), (George, Peter), (George, Elaine),

(Elizabeth, Maude), (Elizabeth, Harold))

The relation IsParentOf-1 expresses the fact that one person is the child of an-
other, so it is natural to denote this relation by a new name, such as IsChildOf. Hence,
using the new name for IsParentOf-1, (a, b) E IsParentOf if and only if (b, a) e
IsChildOf. E

Example 8.

GtN• = ((1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0) I

Gt 1 = {(0, 1), (0, 2), (1, 2), (0, 3), (1, 3), (2, 3), (0, 4) I

Clearly, Gt-1 is the relation Lt, since a > b if and only if b < a. U

Theorem 2. Let R and S be binary relations on a set X. Then,

(a) (R-l) -1- R.
(b) (RU S)- =R-1 U S-1.
(c) IfS C R, then S-1 c R- 1.

Proof. (a) For any x, y E X,

(X, y) E (R-l)-1 €•(y, x) E R-1

¢ (x, y) E R

Hence, (R- 1)- 1 = R
(b) For any x, y E X,

(x,y) E (RUSS)1 .•(y,x) E RUS

€•'(y,x)ER or (y,x)ES

i(x, y) E R- 1 or (x, y) U S-1
€•(X, y) E R-' U S-1

Operations on Binary Relations 165

Hence, (R U S)- 1
- R- 1 U S-1

(c) This proof is left as an exercise for the reader. 0

3.2.2 Composition

The composition of two relations produces a new relation. Some very familiar examples of
relations arise in just this way. For example, we shall soon see that the relation IsGrand-
parentOf is the composition of IsParentOf with itself.

Definition 4. Let R and S be binary relations on the set X. The composition of R and S,
denoted R o S, is defined as follows:

RoS = {(x,y) EX2 :forsome zEX,(x,z) E S and (z,y) E R}

The reader may consider the notation R o S to be backward and think that S o R would
be more natural. The motivation for writing R o S will become obvious in the next chapter,
however, when we discuss the composition of functions. Note that the composition of S and
R, denoted as S o R, generally creates a different set of ordered pairs than the composition
R o S of R and S.

Example 9. The family tree diagram shown in Figure 3.2 can be used to define Is-
ParentOf. Since (Mary, Elaine) E IsParentOf and (Elaine, George) E IsParentOf (Mary,
George) E IsParentOf o IsParentOf. Working out all the possibilities for this composition
gives

IsParentOf o IsParentOf = {(Mary, George), (John, George),
(Mary, Elizabeth), (John, Elizabeth)) U

Clearly, (a, b) E IsParentOf o IsParentOf means that a is the grandparent of b. As
another example of composition, convince yourself that

IsCousinOf = IsParentOf o IsSiblingOf o IsChildOf

You should be able to show that George and Elizabeth in Figure 3.2 are cousins.
The composition of a relation R on a set X with the equality relation on X should

always gives the relation R. We prove this in Theorem 3.

Theorem 3. Let X be any set and R be any binary relation on X. Then,

R = Idx o R = R o Idx

Proof. The proofs of these equalities are similar, so only the proof that R = IdX o R will
be given. To do this proof, we show that IdxoR C R and R C Idx o R. The proof follows
Template 1.5 (Set Equality).

First, suppose that (x, y) E Idx o R. Then, by the definition of composition, there is
a z E X with (x, z) E R and (z, y) E Idx. Since (z, y) E Idx, we have z = y. Therefore,
(x, z) = (x, y). Hence, (x, y) E R.

Second, suppose that (x, y) E R. Now, (y, y) E Idx, so (x, y) E Idx o R. U

166 CHAPTER 3 Relations

Exercises

1. For the people in the family tree (see Figure 3.2), build tables for the following rela-
tions:

(a) IsAncestorOf
(b) IsDescendentOf
(c) IsSiblingOf
(d) IsCousinOf

2. Let M = {1, 2 ... , 10}. Define a relation R on elements x, y E M such that (x, y) E
R if and only if there is a positive integer k such that x = ky. Find the elements of R.

3. Find the elements in each of the following relations defined on R:

(a) (x, y) E R if and only if x + 1 <y
(b) (x, y) E R if and only if y < 0 or 2x < 3
(c) (x, y, z) E R if and only ifx 2 + y = z

4. List the 16 elements of the relation Between as defined in Example 4.
5. The table below gives the names of airlines and several cities that each flies to from

Chicago. The table also gives the number of miles for each flight. List all the triples
(X, Y, Z) of the ternary relation defined by those triples for which airline X flies Y
miles to city Z.

TWA Pan Am Piedmont

Topeka 603 Bombay 7809 Peoria 170
Kansas City 510 Seattle 2052 Albany 816
Phoenix 1742 Anaheim 2025 Atlanta 717

6. Let U = (0, 11.

(a) Let SubsetOf = {(X, Y) : X, Y C U and X C Y}. List all ordered pairs in Sub-
setOf.

(b) Let StrictSubsetOf= {(X, Y) : X, Y C U and X C Y 1. List all its ordered pairs in
StrictSubsetOf.

(c) {(X, Y, Z) : X, Y, Z C U and X n Y = ZJ is a ternary relation. List all ordered
triples in this relation.

The relations SubsetOf and StrictSubsetOf can be defined on any set of sets. We will
use these relations for other universal sets later in the text.

7. Using the family tree shown in Figure 3.2, list the elements in each of the following
relations, and give these relations meaningful names.

(a) IsMarriedTo -1
(b) IsMarriedTo o IsMarriedTo
(c) IsParentOf o IsParentOf-1
(d) =Family where Family denotes the set of people appearing in the family tree

(e) IsMarriedTo n IsMarriedTo 1

(f) IsParentOf n IsParentOf-1

8. Describe the relations resulting from the inverse or composition operations. Describe
the resulting relations in words.

Special Types of Relations 167

(a) LeN o LeN
(b) Le.'
(c) LtDRo LtR
(d) Challenge: LtN o LtN
(e) Challenge: LtD o GtN
(f) Let NeN = {(x, y) : x, y e N and x y. What is Ne .1 ?

9. Prove Theorem 2(c).
10. (a) Prove for any set X that Idx = IdX1.

(b) Find two binary relations R and S on N where R IdMN and S / IdN such that
R - R- 1 and S = S-1.

(c) Suppose that R is a binary relation on a set X and, for every binary relation S on
X, R o S = S. Prove that R = Idx.

11. Let A = {1, 2, 3 ... , 10}. Let R = {(1, 2), (1, 4), (1, 6), (1, 8), (1, 10), (3, 5), (3, 7),
(4, 6), (6, 8), (7, 10)) be a relation on A. Let S = {(2, 4), (3, 6), (5, 7), (7, 9), (8, 10),

(8, 9), (8, 8), (9, 9), (3, 8), (4, 9)} be a second relation on A. Find:

(a) R o S
(b) S o R

12. Show that composition of relations is an associative operation. That is, show that if
R, S, and T are binary relations on a set X, then

R o (S o T) = (R o S) o T

13. Let R, S, and T be binary relations on a set X.

(a) Prove that R C S if and only if R-1 C S-1.
(b) Prove that ifR C S, thenRoT C SoTandToR C ToS.
(c) If R o T C S o T and T o R C T o S for some relation T, does it follow that

R C S?

14. Let X = {0, 1). Let B = 'P(X x X) be the set of all binary relations on X.

(a) List all the elements of B.
(b) Since elements of B are themselves relations, it makes sense to ask whether two

of those relations are inverses of each other. Let

IsInverseOf = {(R, S) : R e B and S r B and R = S-1}

List all elements of IsInverseOf
(c) Since IsInverseOf is a binary relation, it has an inverse. What is IslnverseOf-1 ?
(d) What is IsInverseOf o IsInverseOf?

rnSpecial Types of Relations

Some very common binary relations have important special properties. Three of these spe-
cial properties, the reflexive, symmetric, and transitive properties, occur in relations such
as Id, Lt, Le, and both the SubsetOf (C) and StrictSubsetOf (C) relations. Not all of these
relations have all three of these properties, however. The properties that identify and dif-
ferentiate these relations are introduced in this section.

168 CHAPTER 3 Relations

3.4.1 Reflexive and Irreflexive Relations

Clearly, 3 < 3 is true, but 3 < 3 is not true. This distinction between < and < is captured
in the next definition.

Definition 1. Let R be a binary relation on a set X. R is reflexive if (x, x) E R for each
x E X.

It is obvious from the definition of reflexive that IdM, the equality relation on the real
numbers R, and LeR, the less than or equal relation on R, are reflexive. It is also obvious
that LtR, the less than relation on R, is not reflexive since there is no element x E R for
which (x, x) E LtR. That is, x < x is never true since no number can be strictly less than
itself.

The relation IsSameGeneration defined in Section 3.1 is reflexive since each person
is in the same generation as themselves.

Theorem 1. A binary relation R on a set X is reflexive if and only if Idx C R.

A picture of IdR is shown in Figure 3.3. The points (x, y) of the plane that represent
elements of IdR are darkened. The picture is just the familiar graph of the line x = y.

y

(0,0)

Figure 3.3 Graph of IdR.

In general, for a binary relation R defined on the real numbers IR, one can draw a
picture of the relation by darkening the point (x, y) in the plane if the ordered pair of real
numbers (x, y) is in R. Such a picture is called the graph of the relation R. Sometimes,
relations have graphs that consist of a single line, but in general, graphs of relations consist
of entire regions of points.

The usual convention in graphing LeR is to draw the diagonal line x = y as a darker,
heavier line to show that the line is included in the graph. One can see that LeR is reflexive
from its graph since the graph of the line x = y is a subset of the graph of LeR (see
Figure 3.4). Of course, making deductions from a graph is risky for essentially the same
reason that making deductions from a Venn diagram is risky.

Y

Figure 3.4 Graph of LeR./(

°'

Special Types of Relations 169

The difference between < and < that we have discussed is formalized in Definition 2.

Definition 2. Let R be a binary relation on a set X. R is irreflexive if (x, x) 0 R for all

x e X.

Clearly, LtR is an irreflexive relation since x < x is never true for any x e R. Consid-
ering relations as sets, we can characterize irreflexive relations in terms of their intersection
with an identity relation.

Theorem 2. A binary relation R on a set X is irreflexive if and only R n Idx = 0.

Example 1. The usual convention in graphing LtR (see Figure 3.5) is to draw the diag-
onal line x = y dotted to show that it is not included in the graph. Since no point on this
line is in LtR, it can be concluded that LtR is irreflexive.

y

/

- ----- . x
, (0,0)

Figure 3.5 LtR.

The relation f{(1, 1), (1, 2)1 on X f {1, 21 is not reflexive, because (2, 2) 0 R and it is
not irreflexive because (1, 1) E R.

3.4.2 Symmetric and Antisymmetric Relations
A principal distinction between the equality relation = on the one hand and the relations
< and < on the other is captured by the notion of symmetry.

Definition 3. Let R be a binary relation on a set X. R is symmetric if (y, x) E R when-
ever (x, y) G R.

Clearly, the relation = is a symmetric relation. Neither < nor <, however, is symmet-
ric. For example, notice it is true that 3 < 5 but not that 5 < 3, and it is true that 3 < 5 but
not that 5 < 3. Therefore, neither < nor < is a symmetric relation.

Example 2. Refer to Section 3.1 for the definitions of the relations IsMarriedTo, IsPar-
entOf SameSuit, HigherValue, and IsSameGeneration.

(a) The relation IsMarriedTo is symmetric, and IsParentOf is not. (Mary, Elaine) E IsPar-
entOf whereas (Elaine, Mary) 0 IsParent~f.

(b) The relation SameSuit is symmetric, whereas HigherValue is not. (Jack of Hearts, 10
of Hearts) E HigherValue, whereas (10 of Hearts, Jack of Hearts) 0 HigherValue.

(c) IsSameGeneration is symmetric.

170 CHAPTER 3 Relations

One can see that a binary relation on R is symmetric if and only if its graph is sym-
metric about the diagonal line x = y. Figure 3.6 shows a symmetric relation on R.

y

Figure 3.6 Symmetric relation on R.

We really begin to understand the properties of relations when we understand how
different concepts express the same idea. Theorem 3 relates inverses of relations to the
property of a relation being symmetric.

Theorem 3. A relation R on a set X is symmetric if and only if R = R- 1 .

Proof. Let R be a symmetric relation. Then, (x, y) e R if and only if (y, x) e R, which
is the case if and only if (x, y) e R- 1. 0

The relation shown in Figure 3.7 is not symmetric: (0, -7) is an element of the rela-
tion, whereas (-7, 0) is not.

(-7, relation on R

/• •,-7)

Figure 3.7 Nonsymmetric relation on IR.

Special Types of Relations 171

Definition 4. Let R be a binary relation on a set X. R is antisymmetric if (y, x) 0 R

whenever (x, y) c R and x 0 y.

The relation defined on 1, 2, 31 as R = {(1, 2), (2, 1), (3, 2)} is neither symmetric,
because (3, 2) E R but (2, 3) 0 R, nor antisymmetric, because both (1, 2) and (2, 1) are
in R.

The relations =, <, and < are all antisymmetric. A logically equivalent statement of
the definition of antisymmetric is the following: If (x, y) and (y, x) are both in R, then

y = x. To see this in terms of the logical notation introduced in Chapter 2, let p1 be the
statement "(x, y) E R,"p 2 the statement "(y, x) E R," and P3 the statement "x = y." The
definition is of the form (pl A -P3) -+ -•P2, which is logically equivalent to the formula

(P1 A P2) -- P3.

Example 3. See Section 3.1 for the examples and the definitions of the relations IsPar-
entOf and HigherValue.

(a) In the family tree example, the relation IsParentOf is antisymmetric. For example,

(Mary, Elaine) E IsParentOf but (Elaine, Mary) 0 IsParentOf.
(b) In the card example, HigherValue is antisymmetric. We see this as (Jack of Hearts, 10

of Hearts) E HigherValue, but (10 of Hearts, Jack of Hearts) g HigherValue.

Suppose that a binary relation R is written as a table T, as in Table 3.7(a), which
repeats the information contained in Table 3.4. Now, suppose that a new table, T', is formed
by interchanging the two columns of T. The resulting Table 3.7(b) corresponds to the
relation R- 1. Theorem 3 says that R is symmetric if and only if T and T' have the same
rows. The order of the rows may be different, but exactly the same rows are present. Since
any n-ary relation is a set of ordered n-tuples for some n E N, the order in which the

n-tuples are written in the table does not matter.

Table 3.7 IsMarriedTo (a) and IsMarriedTo 1

(b) Relations

T T'

John Mary Mary John
Mary John John Mary
Peter Elaine Elaine Peter
Elaine Peter Peter Elaine
Maude Harold Harold Maude
Harold Maude Maude Harold

(a) (b)

An examination of the two tables shows that T = T'.

Example 4.

(a) For any set X, equality is a symmetric, antisymmetric, and reflexive relation
on X.

172 CHAPTER 3 Relations

(b) For any set X, the empty relation 0 is a symmetric, antisymmetric, and irreflexive
relation on X. If X :A 0, then the empty relation 0 is not reflexive on X. If X = 0, then
the empty relation 0 is (vacuously) reflexive on X.

(c) Let R = {(x, y) e R2 : x < y2). R is not reflexive, irreflexive, symmetric, or antisym-
metric. R is not reflexive since (1, 1) 0 R. R is not irreflexive since (2, 2) E R. R is
not symmetric since (1, 2) e R but (2, 1) V R. R is not antisymmetric since (2, 3) E R
and (3, 2) E R. 0

Example 5. Define the relation IsAncestorOf so that x IsAncestorOf y means that x is
a parent of y, or that x is the parent of a parent of y, or that x is the parent of a parent
of a parent of y, and so on. The relation IsAncestorOf is an antisymmetric and irreflexive
relation on the set of all people.

Example 6.

(a) The relations < and < are antisymmetric relations on JR. The relation < is reflexive.
The relation < is irreflexive.

(b) The relations C and C are binary relations on the subsets of a set U. Both C and C are
antisymmetric. The relation C is reflexive, and C is irreflexive.

Example 7. Let c = 0.0005, and let RE be the relation

{(x, y) E R'2 : Ix -yI < e}

RE could be interpreted as the relation approximately equal. Prove that RE is reflexive and
symmetric.

Solution. Reflexive: For all x e X, Ix - x = 0 < E. Symmetric: For all x, y E R,
Ix -Y y= I y-x 1. So, if Ix -yI < c, then I y-x - Ix -yI <E. c

3.4.3 Transitive Relations

To introduce the next property of relations, suppose that Sue is a parent of Joe and that Tom
is a parent of Sue. We can conclude that Tom is an ancestor of Joe, but we cannot conclude
that Tom is a parent of Joe. The next property, called transitivity, is a formal way of think-
ing about how the two relations, IsParentOf and IsAncestorOf are different. The relation
IsParentOf does not satisfy this next property whereas the relation IsAncestorOf does.

Definition 5. Let R be a binary relation on a set X. R is transitive if (x, z) e R whenever
(x, y) e R and (y, z) E R.

Example 8. Consider the relations in Examples 4 through 7.

(a) Equality is transitive.
(b) The relation 0 is (vacuously) transitive.
(c) Over the set R, the relations < and < are transitive.
(d) The relation IsAncestorOf is transitive.
(e) The relations C and C are transitive.
(f) R, is not transitive.
(g) {(x, y) E R2 : x < y2} is not transitive. To see this, just note that (9, 5) e R and

(5, 3) E R, but that (9, 3) 0 R. U

Special Types of Relations 173

Theorem 4. A binary relation R is transitive if and only if R o R C R.

Proof This just restates the definition. If there is a y such that (x, y) E R and (y, z) E R,
then (x, z) E R. U

In Table 3.8, we summarize the properties, their characterizations, and how we prove
a property holds for a relation R defined on a set X.

Table 3.8 Properties of Relations

Property Characterization Method of Proof

Reflexive Idx c R Let x E X. Prove (x, x) E R.
Antireflexive Idx n R = 0 Let x E X. Prove (x, x) 0 R.

Symmetric R = R-1 Let (x, y) E R. Prove (y, x) E R.
Antisymmetric R n R- 1 C Idx Suppose that (x, y) E R and (y, x) E R.

Prove x = y.
Transitive R o R C R Let (x, y), (y, z) e R. Prove (x, z) E R.

3.4.4 Reflexive, Symmetric, and Transitive Closures

A question that arises for relations that do not possess a particular property, such as being
reflexive, symmetric, or transitive, is whether more elements can be added to a relation
R to produce a relation R' that does have some desired property. One obvious way is to
take R' to be the universal relation (check this). What we really want to know is how to
find a smallest relation R' that contains R and has some desired property, such as trans-
itivity.

For example, how is the relation GeR (>) related to the relation Gt (>)? Clearly,
GeR = GtR U IdMR. The relation GeR turns out to be the smallest reflexive relation on R
containing GtR. GeR is called the reflexive closure of GtR. (The term reflexive closure
will be defined formally below.) More generally, GeX is the reflexive closure of Gtx over
any set X such that X C IR.

Suppose people are waiting in a ticket line. We say that person x is the person In-
FrontOf person y, expressed as x InFrontOf y, if x is the person standing immediately in
front of person y. How is the relation IsAdjacentTo related to the relation InFrontOf? A
person x is adjacent to a person y if x is the person in front of y or y is the person after x.
Said another way, x IsAdjacentTo y means that x is just in front of or just behind y. It can
be shown that IsAdjacentTo is the smallest symmetric relation containing InFrontOf. The
relation IsAdjacentTo is called the symmetric closure of InFrontOf

Finally, in the case of transitivity, we ask how the relation IsAncestorOf is related
to the relation IsParentOf. A person x is the ancestor of a person y if x is a parent of
y, or a parent of a parent of y, or a parent of a parent of a parent of y, and so on. The
relation IsAncestorOf is the smallest transitive relation containing IsParentOf. The relation
IsAncestorOf is called the transitive closure of IsParentOf

To characterize the reflexive, symmetric, and transitive closures of a relation, we first
define a new operation on relations.

174 CHAPTER 3 Relations

Definition 6. Let R be a binary relation on a set X. For n E N, the nth power of R,
denoted R', is defined as follows:

(a) R 0 ={(x,x):x eX}=Idx.

(b) Rn+1 = R o Rn.

Let R+ = U?0 Ri and R* U R'i=1 1 U=0t

Example 9. Let A = {a, b, c, d} and let R be the relation on A consisting of the pairs
(a, b), (b, a), (b, c), and (c, d). Find R+ and R*.

Solution. R0 = {(a, a), (b, b), (c, c), (d, d)}

R2 = {(a, a), (a, c), (b, b), (b, d)}
R3 = {(a, b), (b, a), (b, c), (a, d)}

R4 = {(a, a), (a, c), (b, b), (b, d)}

Observe that R 2 = R 4 and, consequently, R5 = R3 . In general, R2n+l = R 3 and R2n -

R 2 for n > 1. Therefore,

R + ((a, b), (b, a), (b, c), (c, d), (a, a), (a, c), (b, b), (b, d), (a, d)}I

R* = {(c, c), (d, d), (a, b), (b, a), (b, c), (c, d), (a, a), (a, c), (b, b), (b, d), (a, d)} I

Example 10. Let R be the relation IsChildOf.

(a) The expression xR 2 y means that x is a child of a child of y, so R 2 is the same as
IsGrandchildOf.

(b) The expression x R3y means that x is a child of a grandchild of y or, said another way,
that x is a great-grandchild of y. Hence, the relation R 3 could just as well be called
IsGreatGrandchildOf.

(c) R4 could just as well be called IsGreatGreatGrandchildOf.

(d) Relation R+ is the same as IsAncestorOf.

Example 11. Let S be the relation on Z that is defined by aSb if and only if b = a + 1.

(a) It is true that aSob if and only if b = a.
(b) aS2 b if and only if, for some integer c, it is true that c = a + 1 and b = c + 1--that

is, if and only if b = a + 2.

(c) aS 3b if and only ifb = a + 3.
(d) aSnb if and only if b = a ± n. (Formally, this is proved by induction on n.)
(e) aS+b if and only if a < b. For if aS+b, then aSnb for some positive integer n.
(f) aS*b if and only ifa < b.

Solution. (f) (=) By part (d), b = a + n, so a < b.
(==) Suppose, conversely, that a < b. Since a, b E Z, their difference b - a E Z. Since
a < b, it follows that b - a > 0. Let n = b - a. By part (d), aSnb, so aS+b. U

In Theorem 5 we give a characterization of the smallest reflexive, symmetric, and

transitive relations containing a given relation.

Special Types of Relations 175

Theorem 5. Let R be a binary relation on a set X. Then:

(a) R U Idx is the smallest reflexive relation containing R.
(b) R U R- 1 is the smallest symmetric relation containing R.
(c) R+ is the smallest transitive relation containing R.
(d) R* is the smallest reflexive and transitive relation containing R.

Proof. (a) By Theorem 1, a relation S on X is reflexive if and only if Idx C S. So, S is
reflexive and contains R if and only if R U Idx C S. The smallest such S is R U Idx itself.
(b) We must prove (i) that R U R- 1 is symmetric and (ii) that if S is a symmetric relation
on X and R C S, then R U R-1 C S.

(i) It is enough to show that (R U R- 1) -1- R U R- 1 since the result then follows
from Theorem 3 in Section 3.4.2.

(R U R-l)-1 = R-1 U (R-l)-1

=R-1 UR

= R UR-

(ii) Suppose S is a symmetric relation on X and R C S. We must show that R 1 C S.
By Theorem 2 (c) in Section 3.2.1, R- 1 C S-1, and by Theorem 3 in Section
3.4.2, S-1 = S. So, R- 1 C S.

(c) and (d) These proofs are left as Exercises for the reader. U

Definition 7. Let R be any binary relation on a set X. R U Idx is called the reflexive
closure of R. R U R- 1 is called the symmetric closure of R. R+ is called the transitive
closure of R. R* is called the reflexive and transitive closure of R.

Example 12. Let X = {a, b, c}. Define the relation R on X as {(a, b), (b, c)}. Find the
reflexive, symmetric, and transitive closure of R. Also, find the reflexive and transitive
closure of R.

Solution. We must first find the following relations:

(a) Idx = {(a, a), (b, b), (c, c)}
(b) R- - {(b, a), (c, b)}
(c) R= (a, a), (b, b), (c, c)}, R ={(a, b), (b, c)}, R2 ={(a, c), and R" =0 forn > 3.
(d) R+ [(a, b), (b, c), (a, c)} and R* = {(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)}

So, the reflexive closure of R is

R U IdX = {(a, b), (b, c), (a, a), (b, b), (c, c)}

The symmetric closure of R is

RUR 1 = {(a, b), (b, c), (b, a), (c, b)}

The transitive closure of R is

R+= {(a, b), (b, c), (a, c)}

Finally, the reflexive and transitive closure of R is

R* = {(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)} U

176 CHAPTER 3 Relations

Example 13. Consider the relation Supervises in some business. The relation is usually
irreflexive, that is, people do not supervise themselves. It is also antisymmetric. Finally, it is
generally not transitive. If x supervises y and y supervises z, normally x does not (directly)
supervise z. The reflexive closure of Supervises is SupervisesOrEquals. The symmetric
closure is SupervisesOrlsSupervisedBy, which is clearly an important relation in business.

Example 14. Let U be any nonempty set. Then, C is a relation on the subsets of U. The
relation C is transitive, but it is not reflexive and is not symmetric. The reflexive closure of
C is C. The symmetric closure S of this relation has no commonly used name, but for two
subsets A and B of U, (A, B) E S if and only if A C B or B C A.

As an example of the relation described in Example 14, let U = {0, 11. The reflexive
and symmetric closure of c on U consists of the 14 ordered pairs shown in Table 3.9.

Table 3.9 Reflexive and Symmetric Closure of c for U = {0, 1}

(0, {0, 1}) ({0, 1), 0) (0, 0)
(0, {o}) ({o}, 0) ({o}, {o})
(0, {1}) ({l}, 0) ({l}, {l})

({0}, {0, 11) ({0, 11, 10}) ({0, 11, o, 1))
({1}, {o, 1)) ({10,1, 1{1}) 11

3.4.5 Application: Transitive Closures in Medicine and Engineering

Transitive and reflexive closures are especially important in computer science. For exam-
ple, suppose computers are connected to each other in a network, with each computer
connected directly to a small number of other computers. Information can be passed di-
rectly from one computer to another over a connection between them. The transitive and
reflexive closure of IsConnectedTo is CanAccess. This relation gives the limit of how far
information from one machine may be passed along to others. The examples that follow
show how the transitive closure idea leads to better understanding in fields as diverse as
medicine and chip testing.

Artificial Intelligence
Many artificial intelligence applications can be phrased in terms of some (simulated) per-
son making inferences based on some initial data. One kind of application is the expert
system, in which designers try to encode the knowledge that an expert would use in ap-
proaching a problem. Suppose, for example, an expert system is used to suggest to a physi-
cian certain tests that should be run. The system might say, for example, that if the patient's
weight is more than 25 percent over the recommended level to check for high cholesterol.
(Drs. X, Y, and Z all told the designers of the expert system that is what they do, so it
must be a reasonable rule.) And if the patient eats a high-fat diet, there should be a check
for cholesterol. (Drs. X, W, and Q all said they do that.) And if there is a check of the
cholesterol level, there should also be a check for high triglycerides (suggested by several
other doctors.) If there is a test for triglycerides, there should also be a test for something
else, and so on. This series of "rules" is stored in the program called the expert system.
The doctor enters that the patient has a body weight 30 percent over his recommended
weight and this fact triggers a series of inferences: check cholesterol level; check triglyc-

Special Types of Relations 177

erides level, and so on. This is a transitive closure operation: including one test triggered

including another, which triggered including another, ... , until nothing else was triggered.
Often, the rules are rather more complicated, such as "if the patient's weight is 15

percent over the recommended weight and the patient is diabetic, then do a cholesterol
test." This is a more complicated sort of closure operation, but the idea is similar.

Testing Circuits
Here, we picture a combinational electric circuit:

Current flows from left to right, so there are six input lines, A through F, and four
output lines, W through Z. There are 20 gates, g through z. For convenience, we picture
them all as and-gates, but the intention is that they might implement some AND gates,
some OR gates, and some NOT gates. Define two relations between lines and gates, one
"saying" that a line is an input to a gate and the other that a line is an output of a gate.
The large dots indicate that a line is split, being an input for several gates, such as A is

Input Output
Ag gG
Ah hH

B g i I
B i J J
Ch kK
C i lIL
Dj mM
Dk nN

o 0

178 CHAPTER 3 Relations

input for both gates g and h. Otherwise, when two lines cross, such as the output line of

h and the output line of i, it just means that when the circuit is fabricated, these two lines
will follow this path but will not touch.

The circuit manufacturer would want to check that each gate is functioning correctly.
For example, if all the lines carry O's and l's (designers use 1 and 0 instead of TRUE and
FALSE), gate o might be "stuck at 0", that is, it might always output a 0, no matter what its
input is. The manufacturer would then like to have a "test vector" for that: a set of inputs

to distinguish whether gate o is stuck at 0. The first part of choosing such a test vector is

to determine which output lines could be affected if gate o is malfunctioning. In this case,
lines W, X, and Y could be affected. Line Z cannot be, however, since no output from gate

o flows, directly or indirectly, into gate z.
The relation of one line directly influencing another is Output o Input. The relation

of directly or indirectly influencing another line-through any number of intermediate
lines-is thus (Output o Input)*. The question above is to find all output lines where

(o, some output line) E (Output o Input)* o Output.
Of course, now that designers have narrowed down which lines might be affected by

a malfunction at gate o, they must go on to determine how to produce a single input that
will identify the stuck-at-0 fault. However, we cannot do that without knowing what the
individual gates are.

rn Exercises

1. Which of the following relations on the set of all people are reflexive? Symmetric?
Antisymmetric? Transitive? Prove your assertions.

(a) R(x, y) if y makes more money than x.
(b) R(x, y) if x and y are about the same height.
(c) R(x, y) if x and y have an ancestor in common.
(d) R(x, y) if x and y are the same sex.
(e) R(x, y) if x and y both collect stamps.
(f) R(x, y) if x and y like some of the same music.

2. For each of the relations defined in Exercise 1, write out the condition that defines the

inverse relation.
3. Which of the following relations on the set of all people are reflexive? Symmetric?

Antisymmetric? Transitive? Explain why your assertions are true.

(a) R(x, y) if x and y either both like German food or both dislike German food.
(b) R (x, y) if (i) x and y either both like Italian food or both dislike it, or (ii) x and y

either both like Chinese food or both dislike it.
(c) R(x, y) if y is at least two feet taller than x.

4. For each of the relations defined in Exercise 3, write out the condition that defines the
inverse relation.

5. Which of the following relations on the set of people indicated are reflexive? Irreflex-
ive? Symmetric? Antisymmetric? Transitive?

(a) IsSisterOf on the set of all females
(b) IsBrotherOfOrEquals on the set of all males
(c) IsSiblingOf on the set of all people

Exercises 179

(d) IsSiblingOfOrEquals on the set of all people
(e) IsCousinOfOrEquals on the set of all people

Prove your assertions.
6. Since relations are sets, it is possible to define union, intersection, relative complement,

and absolute complement on pairs of relations. A natural question is which properties
of the original relations still hold for the resulting new relation. Fill in the following
table with Y/N, representing YES and NO, respectively. If the entry is N, find an
example that shows the property is not preserved under the operation. For instance,
enter a Y in the first row, second column, if the intersection of two reflexive relations
is still reflexive; otherwise, enter an N.

Relative Absolute

Union Intersection Complement Complement

Reflexive

Irreflexive

Symmetric

Antisymmetric

Transitive

7. Let A = {a, b, c, d}. Define the relations R1 and R 2 on A as

R= {(a, a), (a, b), (b, d)}

and

R2 = {(a, d), (b, c), (b, d), (c, b)}

Find

(a) R1 o R2

(b) R2 o RI
(c) R2

(d) R2

8. Find a set A with n elements and a relation R on A such that R 1 , R2 . . R are all
distinct.

9. In the example involving the family tree (see Figure 3.2);

(a) What is the transitive and reflexive closure of IsParentOf?
(b) What is the transitive and reflexive closure of IsMarriedTo?

10. Let X = {a, b, c, d, e}. Let R, be the relation on X with elements {(a, b), (a, c), (d,
e)}. Let R 2 be the relation on X with elements {(a, b), (b, c), (c, d), (d, e), (e, a)}. For
each of these relations, find the following:

(a) The smallest relation on X that contains R and is reflexive
(b) The smallest relation on X that contains R and is symmetric
(c) The smallest relation on X that contains R and is transitive
(d) The smallest relation on X that contains R and is reflexive and transitive

11. Let X = {1, 2, 3, 4}, and define a relation R on X as

180 CHAPTER 3 Relations

R = {(1, 2), (2, 3), (3, 4)}

(a) Find the reflexive closure of R.
(b) Find the symmetric closure of R.
(c) Find the transitive closure of R.
(d) Find the reflexive and transitive closure of R.

12. Let X = {1, 2, 3, 4, 5, 6}, and define a relation R on X as

R = {(1, 2), (2, 1), (2, 3), (3, 4), (4, 5), (5, 6)}

(a) Find the reflexive closure of R.
(b) Find the symmetric closure of R.
(c) Find the transitive closure of R.
(d) Find the reflexive and transitive closure of R.

13. Let A = {1, 2, 3, 4). Find the transitive closure of the relation R defined on A as

R = {(1, 2), (2, 1), (2, 3), (3, 4))

14. Let R be the relation on (a, b, c, d, e, f g} defined as

R = {(a, b), (b, c), (c, a), (d, e), (e, f), (f, g))

Find the smallest integers m and n such that 0 < m < n and R' = Rn. Identify the
transitive closure of R as well as the transitive, reflexive, and symmetric closures of R.

15. Let X = (4, 5, 6, 7, 8), and define the relation R on X as {(4, 5), (5, 6), (6, 7), (7, 8),
(8, 4)). Find the smallest integers m and n such that R' = Rn, where 0 < m < n.

16. Find the reflexive, symmetric, and transitive closures of the following relations:

(a) = onN
(b) < onN•
(c) < onN
(d) R on N where R(x, y) if and only if y = x + 1
(e) R on R where R(x, y) if and only if y = x + 1
(f) R on R where R(x, y) if and only if Ix - y I < 0.0005

17. Show that the transitive closure of a relation R on a set X is the intersection of all
transitive binary relations R' on X where R C R'.

18. Is there a reasonable notion of antisymmetric closure? Why, or why not?
19. Prove Theorem 5(c) as follows:

(a) Prove by induction that if R is a binary relation on a set X, then R' o Rn = Rm+n

where m, n E N.
(b) Prove that R+ is transitive.
(c) Prove by induction that if R C S and S is a transitive binary relation, then Rn C S.

Conclude that R+ C S.
20. Prove Theorem 5(d).

Equivalence Relations 181

rnEquivalence Relations

Equivalence relations generalize the familiar relation of equality (=). More specifically,
equivalence relations identify elements that are the same in some respect. For instance,
university students are classified by major, with two students being "related" if they have
the same major. Two students are also "related" if they are in the same class, such as the
sophomore class.

Definition 1. Let R be a binary relation on a set X. R is an equivalence relation if R is

reflexive, symmetric, and transitive.

Example 1.

(a) For any set X, the equality relation (=) is an equivalence relation on X.
(b) The relation IsSameGeneration (see Section 3.1) as defined using Figure 3.2 is an

equivalence relation.

The IsSameGeneration relation as based on Figure 3.2 is not a particularly interest-
ing equivalence relation because there are so few elements. The reader is encouraged to
construct his or her own family tree for three or four generations and see how the relation
conveys information conveniently.

Example 2. The relation SameSuit (see Section 3.1) shown in Table 3.3 is an equivalence
relation.

Solution. It is obvious that SameSuit is reflexive and symmetric, but is SameSuit transi-
tive? Let cards x and y be in the same suit, and let cards y and z be in the same suit. Since
y is in the same suit as z and in the same suit as x, it follows that x and z are in the same
suit. Therefore, SameSuit is transitive. 0

Recall that when we divide a natural number n by a positive number p, we obtain an
integer quotient, which we will call q, and a remainder, which we will call r. That is, we
get an equation

n = pq + r

where q, r e N and 0 < r < p - 1. For example, 7 + 3 = 2.3 + 1, so the quotient is 2,
the remainder is 1, and 7 = 3 • 2 + 1.

If the remainder is zero, then n = p • q, and we say that n is divisible by p.

Definition 2. Let p be a positive integer, and let x, y e N. We say that x is congruent to
y modulo p, and write x =_ y (mod p), if (x - y) is divisible by p; that is, (x - y) = m • p
for some integer m.

With this terminology, we will prove that (mod p) is an equivalence relation for p > 1.

Example 3. Let p be any natural number greater than zero. Then, = (mod p) is an equiv-
alence relation on N.

Solution. Check that all the properties hold:

Reflexive: For any n e N, (n - n) = 0 = p • 0, so (n - n) is divisible by p. Therefore,
n =_ n(modp).

182 CHAPTER 3 Relations

Symmetric: If n =-m(mod p), then (n - m) = pk for some k e Z. So, (m - n)=
p(-k), giving m =- n(mod p).

Transitive: Suppose n = m(mod p) and m = k(mod p). Show that n =- k(mod p). The
hypothesis implies that (n - m) = ip and (m - k) = jp for some i, j e Z. Then, however,

(n - k) = (n - m) + (m - k) = ip +jp= (i + j)p

which gives n - k(mod p).
Since -- (mod p) is reflexive, symmetric, and transitive, it is an equivalence relation.

0

We will study this equivalence relation more carefully later. For now, the reader
might determine the elements of this relation when p = 8 and the universal set is
{0,1, 2,..., 24, 251.

Example4. Let Ubeanyset. ForX, Y CU, setX- YifXE)Y=(X-Y)U (Y-
X) is finite. Then, - is an equivalence relation on the subsets of U. The relation - is
uninteresting if U is finite.

Solution.

Reflexive: X E X = 0, which is finite, so X - X.

Symmetric: If X - Y, then X ED Y is finite. Recall that

X E Y = (X - Y) U (Y - X) = (Y - X) U (X - Y) = Y (X

so Y X.

Transitive: Suppose X - Y and Y - Z, and show X - Z. It is given that X E Y is finite
and that Y • Z is finite. What must be shown is that X @ Z is finite. Figure 3.8 shows how
(X D Y) - (Y E Z) and (Y e Z) - (X E Y) contribute to (X D Z).

(X E Y) G (Y E Z) = (X E (Y E Y)) Z (is associative)

= (XE 0) z
=Xe3Z

Figure 3.8 How X D Z is formed.

Therefore, X e Z is also finite, implying that X - Z. Since - is reflexive, transitive,
and symmetric, the relation -'• is an equivalence relation. U

Some relations on R that were defined earlier are not equivalence relations.

Equivalence Relations 183

Example 5.

(a) On R, define x - y if Ix - y I < 0.01. Then, -' is reflexive and symmetric, but it is
not transitive.

(b) On R, the relation GeR is reflexive and transitive, but it is not symmetric.

Solution.

(a) Let x = 0.0, y = 0.0075, and z = 0.015 Then, x - y, because

Ix - Yj = 0.0075 < 0.01

and y - z, because

lY - zj = 0.0075 < 0.01

However, x /- z, since

Ix - zI = 0.015 > 0.01

(b) It is clear that x > x for all x E R and that for all x, y, z E IR, if x > y and y > z,
then x > z, making the relation transitive. Since 5 > 3 but 3 ? 5, the relation is not
symmetric. Therefore, GeR is reflexive and transitive, but it is not symmetric. M

3.6.1 Partitions

The relation SameSuit (see Table 3.3) is an equivalence relation on the set

SpecialDeck = {10 of Hearts, Jack of Hearts, Queen of Hearts, 10 of Clubs
Jack of Clubs, King of Clubs)

Essentially the same information can be stored in the three sets:

Heart = {10 of Hearts, Jack of Hearts, Queen of Hearts)
Club = { 10 of Clubs, Jack of Clubs, King of Clubs)
Suits = {Heart, Club}

Suits consists of two sets. Each element of SpecialDeck is in exactly one of those sets. The
cards in the first set are exactly the cards in the same suit as the 10 of Hearts. The cards in
the second set are exactly the cards in the same suit as 10 of Clubs.

Definition 3. Let X be a nonempty set. A partition of X is a set Y of nonempty subsets
of X such that every element of X is in exactly one element in Y.

A partition of SpecialDeck is the set Suits. The nonempty sets in Suits are Heart and
Club. We can restate the definition as Theorem 1.

Theorem 1. Let X be a set, and let Y be a set of subsets of X. Then, Y is a partition of X
if and only if:

(a) Each element of Y is a nonempty subset of X,
(b) For any two sets u, v e Y, u n v = 0 unless u = v, and
(c) The union of all the sets in Y is X.

184 CHAPTER 3 Relations

Definition 4. Let - be an equivalence relation on a set X. For any x e X, let

[x] = {y •X :x -y}

[x] is called the equivalence class of x.

In the example with the set SpecialDeck and equivalence relation SameSuit, we have

Heart = [10 of Hearts] = [Jack of Hearts] = [Queen of Hearts]

and

Club = [10 of Clubs] = [Jack of Clubs] = [King of Clubs]

The set Suits stores essentially the same information as the relation SameSuit. The next

two theorems make this statement precise.

Theorem 2. Let -'- be an equivalence relation on a set X. Then:

(a) Foranyx E X,x E [x].
(b) For any x, y E X, either [x] = [y] or [x]and[y] are disjoint.
(c) {[x[:x E X} is a partition of X.
(d) Forx, y E X,x yifandonlyify E [x].

Proof. (a) Since - is reflexive, x - x, so x E [x].

(b) Suppose [x] and [y] are not disjoint, and prove [x [y] by showing that [x] _

[y] and [y] _ [x]. To prove that [x] _ [y], assume that r E [x], and show that

r E [y]-that is, that y - r.
Since [x]f[y] :0, thereis az E [x]n[y]. Thusx -z, andy -z. Since -- is

symmetric, z - x. By the transitivity of -- , since y - z and z - x, y - x. Now since
y '-' x and x - r, y - r. So, r E [y], as required. Therefore, [x] [y].

Analogously, [y] g [xl, so [y] = [x].

(c) It must be shown that {I x] : x E X} is a set of nonempty subsets of X such that each
y E X is in exactly one [x]. To check that the [x]'s are nonempty, observe that x E [x].
To check that each y E X is in at least one [x], observe that y c [y]. To check that
each y E X is in at most one [x], suppose y E [xl] and y E I[x2]. Then, by part (b)

[Xl] = [x2]. The classes are the same, so y is in only one equivalence class.

(d) This is immediate from the definition of equivalence classes. U

Theorem 2 says two things. First, given an equivalence relation on a set X, its set

of distinct equivalence classes form a partition of X. Second, the relation that defines two
elements to be related if they are in the same element of the partition is equal to the original

relation (part (d)).

Example 6. Let Deck = 110 of Hearts, King of Hearts, Queen of Clubs, Ace of Clubs}.
The relation SameSuit defined on Deck consists of the following ordered pairs:

(10 of Hearts, King of Hearts) (King of Hearts, 10 of Hearts)
(10 of Hearts, 10 of Hearts) (King of Hearts, King of Hearts)
(Queen of Clubs, Ace of Clubs) (Ace of Clubs, Queen of Clubs)

(Queen of Clubs, Queen of Clubs) (Ace of Clubs, Ace of Clubs)

Find the equivalence classes of this relation. Also, find the partition determined by this
equivalence relation.

Equivalence Relations 185

Solution. The equivalence classes are

[10 of Hearts] = {10 of Hearts, King of Hearts)
[King of Hearts] = {10 of Hearts, King of Hearts)
[Queen of Clubs] = {Queen of Clubs, Ace of Clubs)
[Ace of Clubs] = {Queen of Clubs, Ace of Clubs)

The distinct equivalence classes are the two sets

I 10 of Hearts, King of Hearts) {Queen of Clubs, Ace of Clubs)

which form a partition of Deck U

Example 7. Recall the equivalence relation = (mod p) of Example 3 in Section 3.6. The
following are the equivalence classes of = (mod 5):

[0] = {0, 5, 10, 15, 20, 25, 30 I

[1] = {1, 6, 11, 16, 21, 26, 31 ,

[2] = {2, 7, 12, 17, 22, 27, 32 I

[3] = {3, 8, 13, 18, 23, 28, 33,

[4] = {4, 9, 14, 19, 24, 29, 34 I

The reader should prove that these are the equivalence classes. U

In Example 8 we determine all the equivalence classes of - (mod p) for any positive
integer p.

Example 8. Let p be a positive integer. Determine the equivalence classes of = (mod p).

Solution. We know from Example 3 in Section 3.6 that every integer is congruent to its
remainder (mod p). Since the only possible remainders are 0, 1. p - 1, we have

N C [0] U [1] U... U [p- 1]

Thus, there are, at most, p equivalence classes-namely, [0], [1]. [p - 1]. We must
show that these equivalence classes are all different.

Let rl and r2 be two different remainders, such as 0 < rl < r2 _< p - 1. We must
show that [rl] # [r2]. Note that r2 - r, is a positive integer less that p so that r2 - rl
is not divisible by p. Then, rl # r2 (mod p), whence [rl] A [r2]. Therefore, the distinct
equivalence classes are [0], [1] [p - 1]. M

Theorem 2 says that one can go from an equivalence relation to a partition from, which
one may read off the equivalence relation. Theorem 3 says that one can go from a partition
to an equivalence relation, from which one may read off the partition.

Theorem 3. Let P be a partition of a set X. For x, y E X, define x - y to mean that x
and y are in the same element of the partition. Then:

(a) - is an equivalence relation.
(b) The equivalence classes of - are exactly the elements of P.

186 CHAPTER 3 Relations

Proof

(a) First, prove that - is an equivalence relation.

Reflexive: Let x c X, and show that x - x. Since P is a partition, x is in some set
Q E P. So, x and x are both in Q; therefore, x - x.

Symmetric: Let x, y E X, and assume that x - y. That means there is a set Q E P such
that x, y E Q. So, y and x are in Q. Therefore, y - x.

Transitive: Suppose x - y and y - z. Since x - y, there is a set Q E P such that x,y E
Q. Since y - z, z is in the same set in P as y, so z E Q. Therefore, x and z are both in Q,
giving x - z.
(b)

[x] = {y E X x yJ

= {x E X x, y are both in the same element of P}

= element of P to which x belongs 0

Example 9. Let Deck = { 10 of Hearts, King of Hearts, Queen of Clubs, Ace of Clubs).
The set

P = {{10 of Hearts, King of Hearts), {Queen of Clubs, Ace of Clubs))

is a partition of Deck. Define a relation '-- on Deck such that for x, y E Deck, x - y if and
only if x and y are in the same element of P. The elements of the relation are

(10 of Hearts, King of Hearts) (King of Hearts, 10 of Hearts)
(10 of Hearts, 10 of Hearts) (King of Hearts, King of Hearts)
(Queen of Clubs, Ace of Clubs) (Ace of Clubs, Queen of Clubs)
(Queen of Clubs, Queen of Clubs) (Ace of Clubs, Ace of Clubs)

By Theorem 3 in this section, this relation is an equivalence relation for which the distinct
equivalence classes are precisely the elements of P. U

3.6.2 Comparing Equivalence Relations

Consider a standard deck of 52 cards, called 52Cards. The suits are traditionally marked in
two colors: Clubs and Spades are black; Diamonds and Hearts are red. The relation Same-
Suit, consisting of all pairs of cards that are in the same suit, and the relation SameColor
consisting of all pairs of cards that are the same color, are both equivalence relations. The
equivalence class of the 2 of Diamonds in SameSuit is

[2 of Diamonds] = {2 of Diamonds, 3 of Diamonds Ace of DiamondsI

The equivalence class of the 2 of Diamonds in SameColor contains all the Diamonds and
all the Hearts. Figure 3.9, on page 187, is a Venn diagram showing the equivalence classes
of the two relations.

Each equivalence class of SameSuit is contained within a single equivalence class of
SameColor.

Definition 5. Let R1 and R2 be equivalence relations on a set X. R1 refines R2 if, for
each x e X, the equivalence class of x in R1 is a subset of the equivalence class of x in R2.

Equivalence Relations 187

D
C S i HP a II e

a I a
b d o ii r

e n t

s s d s
S

I I

Figure 3.9 Equivalence classes of SameSuit (dashed lines) and SameColor (solid lines).

In the previous example, SameSuit refines SameColor. Also, SameSuit refines Same-

Suit. Now, consider the relation SameValue, which is defined as consisting of all pairs of
cards with the same value. The equivalence class of the 2 of Diamonds is

12 of Diamonds, 2 of Clubs, 2 of Hearts, 2 of Spades)

This equivalence relation is shown in Figure 3.10 as a set of disjoint equivalence classes.

Clubs Diamonds Hearts Spades

I z I z•z I I .II I

2 2 i 2 i

I _ _ I--I I- I I I I

4 4 __ 4 t 4.

51 1 ~ 5 T 5

I __ I I_ I: I_ II I /

6 6 I 6 I 6 I 6

I K i • K [+1K i ir

[17 7 7 417

S S Sit SameValue
[t 9 ___ 9 i 9 1

FT 1u 10 1a 10 1uit 10 1
1±J iJ J A I J

it K K K K+_ - _ .t _ -I _

[1A jIA A A

SameSuit

Figure 3.10 Equivalence classes SameSuit (vertical) and Same Value (horizontal).

The equivalence relation of the 2 of Diamonds under SameValue is not a subset of the
equivalence class of the 2 of Diamonds under SameSuit. Hence, SameValue does not refine
SameSuit. Also, SameSuit does not refine SameValue.

Theorem 4. Let R, and R2 be equivalence relations on the same set X. R1 refines R 2 if

and only if each equivalence class of R2 is a union of equivalence classes of R 1.

Proof This proof is left as an exercise for the reader. U

188 CHAPTER 3 Relations

Application: UNION-FIND

The UNION-FIND algorithm has a set of elements X and a relation R defined on X as
its input. The UNION-FIND algorithm starts with a partition of X in which each element
is a set consisting of a single element of X. Each related pair of elements is processed as
follows: If a related pair of elements are in different elements of the partition, those two
sets of the partition are joined, forming a new partition of X with fewer elements. If the
two elements are already in the same element of the partition, nothing is done.

As an example of how the algorithm operates, Table 3.10 shows a set with six elements
that has a relation consisting of the pairs (0, 2), (1, 4), (2, 5), (3, 6), (0, 4), and (1, 2). The
final partition has two elements, {0, 1, 2, 4, 5} and 13, 61.

Table 3.10 UNION-FIND Algorithm

New Related Pair Current Partition Defined by the Equivalence Relation

0 101, {1}, {2}, 13], {4}, 151, {6}
Process 0 R 2 0 and 2 are in different elements of the partition

Form new partition {0, 2}, [1), 13), {4}, {5}, {6}
Process 1 R 4 1 and 4 are in different elements of the partition

Form new partition {0, 2}, {1, 4}, {3}, (51, (6)
Process 2 R 5 2 and 5 are in different elements of the partition

Form new partition {0, 2, 5}, [1, 4}, {3}, {6}
Process 3 R 6 3 and 6 are in different elements of the partition

Form new partition {0, 2, 5}, [1, 4), {3, 61
Process 0 R 4 0 and 4 are in different elements of the partition

Form new partition 10, 1, 2, 4, 51, {3, 61
Process 1 R 2 1 and 2 are in the same element of the partition

Leave partition as is {0, 1, 2, 4, 5], {3, 6}

In computer science, this problem is of great interest, because it is an integral pro-
cessing step in many algorithms. As an example, consider using this algorithm to find
associations among a set of authors for a personal collection of journal articles about a
single topic. The problem is to determine which of these authors have worked together.
By starting with each author in a set by himself or herself, the articles will tell how to
join pairs or sets of authors into bigger sets because they have worked together. The final
outcome would be a partition of the authors such that two authors are in the same element
of the partition if and only if they had worked together. The problem of determining an
effective data structure for managing the information being processed is a major topic in
data structures.

rnExercises
1. Identify the equivalence classes of M for the following relations:

(a) (mod 4)
(b) (mod 6)

Exercises 189

2. Determine which of the following five relations defined on Z are equivalence relations:

(a) {(a,b) E Z x Z: (a > 0andb >0) or(a <0andb <0)}
(b) {(a,b) E Z X Z : (a> 0andb > 0)or(a <0andb <0)}
(c) {(a,b) E Zx 2: Ia -bI < 101
(d) {(a,b) EZ x Z: (a < 0andb >0) or(a <0 andb <0))
(e) {(a,b) E Z x Z: (a> 0andb >0) or(a <0 andb <0)1

3. Find the elements in the relation "have the same remainder when divided by 8" if the
relation is defined on {1, 2, 3 24, 25}. Also, find the distinct equivalence classes
of this equivalence relation.

4. Let POPULATION be the set of all people. Let R be the binary relation on POPU-
LATION such that (x, y) E R if x is an older brother of y or x = y. Is R reflexive?
Symmetric? Antisymmetric? Transitive? An equivalence relation?

5. Define a binary relation R on IR as {(x, y) E IR x R : x and y are both positive, both
negative, or both 0}. Prove that R is an equivalence relation. What are its equivalence
classes?

6. Define a binary relation R on IR as {(x, y) E R x R : sin(x) = sin(y)}. Prove that R
is an equivalence relation. What are its equivalence classes?

7. Let A = {a, b, c, d}. For each of the following partitions of A, list all the pairs of
elements that form the corresponding equivalence relations:

(a) {{a, b, c}, {d}}
(b) {{a}, {b), {c}, {d}}
(c) (c) {{a, b, c, d}}

8. Let A = {a, b, c, d}. For each of the following partitions of A, determine the elements
of the corresponding equivalence relation:

(a) P1 = {{a, c}, {b, dJJ
(b) P2 = {{a}, {b, c}, {d}}
(c) P 3 = {{a, b}, {c, d)}
(d) P4 = {{a, b, c}, {d}}

Do any of these partitions refine any of the others?
9. Prove Theorem 1.

10. In the example 52Cards, find a simple description for each of the following:

(a) SameSuit n SameValue
(b) (SameSuit U SameValue)*

11. (a) Draw a Venn diagram showing the equivalence classes over N of =- (mod 5),
(mod 10), and =- (mod 15). Which of these equivalence relations refine another
one of these equivalence relations?

(b) Let k, m e N. We say k is a factor ofm ifm =j k for some j such that j E N
and 0 < j < m. What is the relationship between whether -(mod k) refines -
(mod m) and whether k is a factor of m or m is a factor of k? Prove your answer.

12. Let R and S be equivalence relations on a set X.

(a) Show that R n S is an equivalence relation.
(b) Show by example that R U S need not be an equivalence relation.
(c) Show that (R U S)*, the reflexive and transitive closure of R U S, is the smallest

equivalence relation containing both R and S.

190 CHAPTER 3 Relations

13. Prove Theorem 4.
14. There is an old, fallacious proof that if a relation is both symmetric and transitive, it is

reflexive. We give this "proof" below. What is the error?

Suppose R is a symmetric and transitive relation on a set X. Pick an x E X.
We need to show x R x. So, take any y where x R y. By symmetry, it follows
that y R x. By transitivity, it follows that x R x.

15. For a relation R on a set X, let R* denote the reflexive and transitive closure of R.

(a) For any relation R on a set X, define a relation -' on X as follows: x - y if and
only if x R* y and y R* x. Prove that - is an equivalence relation.

(b) Let xl - x2 and yj - Y2. Show that x1 R* yi if and only if x2 R* Y2.

16. (a) For k, n1, n2, ml, m2 E N, show that if

n- n 2 (modk)

and

ml m 2 (modk)

then

nt + ml n2 + m2 (modk)

and

nli ml -n2 • m2(mod k)

(b) Part (a) says that if we take two equivalence classes [m] and [n], then we can

unambiguously define [m] + [n] and [] [n]. Pick any mI I [m] and any
n I E [n], and define

[mi]+[n] = [ml +ni]

and

[m] • [n]--[ml - ni]

The definition is unambiguous since it doesn't matter which ml and nl we

pick. Find the addition and multiplication tables for the equivalence classes of
- (mod 4) and =- (mod 5). (Hint: For both =- (mod 4) and - (mod 5), your an-
swer should include

[0]+[0] -[0], [01+[1] -[1], [01 . [0]- [0]

and

but, for -- (mod 4),

whereas, that will be false for (mod 5).)

Ordering Relations 191

Ordering Relations

In this section, we discuss two very important classes of relations, the partial orderings and
the linear orderings. Partial orderings generalize the relation is a subset of (g), and linear
orderings generalize the relation less than (<).

3.8.1 Partial Orderings

A typical example of a partial order, other than IsASubsetOf is the relation IsADescen-
dantOf The fact that this latter relation is a partial order contributes to the difficulty in
completing a person's genealogy. One of the difficulties involved in tracing a genealogy is
that a line of descendants often dies out, and the search then has to find another branch of
the family. The end of a line of descendants will be special elements in a partial order.

Definition 1. Let R be a binary relation on a nonempty set X. R is a partial ordering if
R is a reflexive, transitive, antisymmetric relation.

The following are standard examples of partial orderings.

Example 1. If U is a set, then C is a partial ordering on the subsets of U. This was proved
in Example 6(b) in Section 3.4.2 and in Example 8(e) in Section 3.4.3.

Example 2. In Figure 3.11, there is a representation of the eight subsets of

U = {0, 1, 2}

Each subset is obviously a subset of itself, so the relation is reflexive. The lines going
upward indicate the rest of the subset relation. Since there is a line from (1} to (0, 1}, {1}
is shown to be a subset of (0, 11. Since there is a line from 0 to {1} and another from {1} to
(0, 11, 0 is shown to be a subset of {0, 1 }. (Thus, reflexivity, antisymmetry, and transitivity
are all assumed in the way the drawing is interpreted.)

10,1,21

10,11 10,21 11,21

Figure 3.11 Subsets of {0, 1, 2}.

Figure 3.12 pictures the eight subsets of (0, 1, 2, 31 having an odd number of elements.
These elements also form a partial order with respect to the relation _ . By the same
argument, D is also a partial ordering on any set of sets. You just need to turn the picture
upside down to reverse the direction-that is, {0, 1, 2) Q (01.

192 CHAPTER 3 Relations

{0,1,2} {0,1,31 10,2,31 {1,2,31

{0} {1} {2) (3)

Figure 3.12 Odd subsets of {0, 1, 2, 3}.

Example 3.

(a) The relation < is a partial ordering on N. This follows from Example 6(a) in Section
3.4.2 and Example 8(c) in Section 3.4.3. By the same argument, > is a partial ordering
on N.

(b) The relation < is not a partial ordering, since it is transitive and antisymmetric but is
not reflexive. In fact, it is irreflexive. Irreflexive relations whose reflexive closures are
partial orderings are called strict partial orderings. So, < is a strict partial ordering.

(c) On any set X, the relation = is a partial ordering. This result follows from Example
4(a) in section 3.4.2 and Example 8(a) in Section 3.4.3. U

Example 4. Figure 3.13 shows a subset of the family tree given in Figure 3.2.

Elaine Maude

George Elizabeth

Figure 3.13 Subset of family tree.

Let R be the reflexive closure of the relation "ancestor of" as defined by this subset of the
family tree. Then, R is a partial ordering. The elements of the partial order are

{(Elaine, George), (Maude, Elizabeth), (Elaine, Elaine), (George, George),
(Maude, Maude), (Elizabeth, Elizabeth)) U

Example 5.

(a) Let

R={(x,y) :x,yENand y >xandy-xiseven)

Then, R is a partial ordering on N. (See Exercise 5 in Section 3.9.)
(b) Let I denote the relation divides on N. That is, x I y if, for some z e N, y = x • z.

Then, the relation I is a partial ordering on N.

As another, less familiar example of a partial order, we use the relation divides on the
set

{0, 1, 2, 3 ... , 11, 12}

to define a partial order by the relation x I y if and only if y = k • x for some integer k.
Figure 3.14 shows how these elements are related by I.

Ordering Relations 193

8 12

4 6 \ 10

2 3' 5 7 11

Figure 3.14 Divides for {0, 1,2,..., 121.

Example 6. Let X be a collection of finite sets taken from some universal set U. Let

R = {(U, V) :U, V e X and I U I < V ii

Then, R is reflexive and transitive, but it is not antisymmetric.

Solution. Observe that if U = {0, 1, 21, then

1 (0, 1)}1 R 1(1, 2}1

and

1{1, 211 R 1{0, 1}1

but

{0, 1} # {1,21

Therefore, R need not be antisymmetric. U

Example 7. Let X be a collection of finite sets. Let

R = {(U, V) :U, V E X and (I U IV I or U = V)}

The relation R with X = P (Q0, 1, 2)) is shown in Figure 3.15. The lines between levels in
the figure represent the fact that the two sets are related. R is a partial ordering.

(0, 1,2)

(0, 1) 10, 2) f1, 21

101 (21

Figure 3.15 RonP({0, 1,21).

194 CHAPTER 3 Relations

Solution. We must show that R is reflexive, antisymmetric, and transitive.

Reflexive: Let U, V C X. If U = V, then (U, V) e R by definition of R.

Antisymmetric: Let (U, V) E R, and suppose U # V. Then, I U I < I V 1, so I V I 7I U I.
Thus, (V, U) € R.

Transitive: Let U, V, W C X. Let (U, V) E R and (V, W) E R. Show that (U, W) e R.

There are four cases, depending on why (U, V) e R and why (V, W) e R.

Case: U = V, andV= W. Then, U = W, soURW.

Case 2: U = V, and I V I < IW .Then, I U I = I V I < I W I, so (U, W) E R.

Case 3: 1 U < I V [, and V = W. This proof is analogous to the proof for Case 2.

Case 4: 1 U I < V I, and I V< I W I. Since < is a transitive relation on N, I U I < [W I.
Hence, (U, W) e R.

Since R is reflexive, antisymmetric, and transitive, R is a partial order. U

3.8.2 Linear Orderings

The relation less than (<) on the integers has the property that for any n and m with m A n,
either n < m or m < n. This property is not true for the relation of set inclusion (S). The
set X = {0, 1,2, 3} has subsets x = {0, 2) and y = {0, 1, 3) for which neither is a subset
of the other. Relations other than ones defined on a number system sometimes, however,
satisfy this property, which makes it an important property of ordering relations.

Definition 2. Let R be a binary relation on a set X. R is a linear ordering, or total
ordering, on X if R is a transitive relation that satisfies the law of trichotomy: For every
x, y E X, exactly one of the following conditions holds: (i) x R y, (ii) x = y, or (iii) y R x.

Example 8. The following are linear orderings:

(a) < is a linear ordering on R. The name linear ordering suggests points on a line, and
R is the standard mathematical model of a line. Condition (ii) is never true for this
relation!

(b) < is a linear ordering on N.
(c) Let M be the set of kings and queens of England since 1850. For X, Y E M, set X R Y

if X ruled before Y. Then, R is a linear ordering on M.

The relation < on IR is not a linear ordering, because for any x E IR, both x = x and
x < x hold. The law of trichotomy requires that exactly one of the three properties hold.

Example 9. (Lexicographical or Dictionary Ordering) The alphabetical (dictionary)
ordering of words is the basis for being able to sort sets of words in increasing or decreasing
order. For example, let English be the set of words in the latest edition of the Oxford English
Dictionary, and let < be their alphabetical ordering, in which the letters of the alphabet are
ordered from a to z, with blank being less than a. For this example, we will assume that
all words in the dictionary begin with lowercase letters. (With computers, lowercase and
uppercase letters have different representations.) Describe how two words are compared
using this ordering.

Ordering Relations 195

Solution. Given two words, we will say that the one occurring first in the dictionary is
less than (<) the other. For example,

elephant < tiger
aardvark < ant

and

oz < ozymandias

The first letters of elephant and tiger determine that elephant is less than tiger. In the
second pair of words, the first two letters in the same position that are different are a and n,
which occur in the second letter position. In the third pair of words, the first two letters that
are different in the same position are y and blank. The rule can be thought of most easily
as follows: Think of a word as an infinite string of symbols where all but the first finitely
many are blank. Now, to compare two words, look for the leftmost position at which the
two words contain different letters. For example,

aardvark oz

a n t o z y m a n d i a s

The smaller word of the pair is defined to be the one with the "smaller" symbol in the
position where the two words first differ. What the rule says is that you should look up
both words in a "dictionary" and then designate the first of the two words you come to,
starting from the front of the dictionary, as the smaller word. The described ordering gives
a linear ordering of all the words of a dictionary. 0

Extended ASCII Code

The storage of uppercase and lowercase letters of the alphabet in a computer often is done
by assigning an 8-bit binary code to each. A common computer code is the extended ASCII
code. Special characters and numerals as well as control codes are also assigned codes, but
the focus here is on the idea of what is happening. To be able to sort words, the code for "A'
must be easily recognized as smaller than the code for "B," "C," and so on. The extended
ASCII code for "A" is 01000001; the code for "B" is 01000010. Using the lexicographical
ordering on the bit positions starting at the left, the code for "A' is clearly smaller than the
code for "B":

01000001< 01000010"A"' < "B"

The complete extended ASCII code assigns 8-bit binary strings to each letter of the alpha-
bet so that

"A" < '"B" < "C", < ... < "1X" < "Y" < "Z"1

196 CHAPTER 3 Relations

3.8.3 Comparable Elements
Definition 3. Let R be a partial or linear ordering on a set X. Elements x, y E X are said
to be comparable under R if x R y or y R x (or both) holds.

Example 10. For X = {0, 1, 2, 31 partially ordered by the relation set inclusion P(X),
then, {0, 1) and {0, 1, 21 are comparable, but 10, 2, 31 and {0, 1) are not.

Observe that if R is a linear ordering on a set X with x, y e X and x A y, then x and
y are comparable by the law of trichotomy. Observe also that if R and S are linear or partial
orders such that R C S, then if x and y are comparable in R, they are also comparable in S.

Theorem 1.

(a) If R is a linear ordering of a set X, then R U ldx is a partial ordering of X.
(b) If R is a partial ordering of X, then R - IdX is a linear ordering of X if and only if,

for any x, y E X, the elements x and y are comparable under R.

Proof. (a) This proof is left as an exercise for the reader.
(b) (=•) First, suppose R - Idx is a linear ordering. Let x, y • X. It is necessary to show
that x and y are comparable under R. If x 0 y, then x and y are comparable in R - Idx
and, hence, in R by the observation before the theorem. If x = y, then (x, y) = (x, x) E R,
because Idx C R.
(.=) Let x, y E X. Note that since R is antisymmetric,

(x, y) E R - Idx =_ (y, x) 0 R

Transitive: Let (x, y), (y, z) E R - IdX. Then, (x, z) E R, because R is transitive. Fur-
thermore, x : z since (y, z) E R, whereas since R is antisymmetric, (y, x) 0 R. There-
fore, (x, z) E R - Idx.

Trichotomy: We must show exactly one of (i) (x, y) E R - Idx, (ii) x = y, or (iii)
(y, x) E R - Idx holds. We see that at most one of these can hold from the antisymmetric
property of R and the obvious fact that

(R - Idx) n ldx = 0

To see that at least one of these holds, let x, y E X with x : y. Since x and y are compa-
rable under R, we have (x, y) e R or (y, x) E R. Since x - y, either (x, y) E R - Idx or
(y, x) E R- Idx.

Theorem I shows that there are two differences between partial and linear orderings:

1. Partial orderings are reflexive, whereas linear orderings are irreflexive.
2. Any two unequal elements of a linearly ordered set are comparable. This need not be

true with partial orderings.

3.8.4 Optimal Elements in Orderings
The next property to investigate in an ordering relation is whether an ordering contains an
element that is optimal in the sense that it is "larger" or "smaller" than any element to
which it is comparable. This element may not be unique; for example, {{1}, (1, 3}, 1211
under the relation C has both 11, 31 and {2) as "larger" than any element(s) to which they
are comparable. The properties of interest are more formally defined here.

Ordering Relations 197

Definition 4. Let R be a partial ordering or a linear ordering on a set X. For x, y e X, if

x R y and x 0 y, then x is below y. We say x is above y if y is below x.

Example 11. Let X = {1, 2, 3, 41 be a set. P(X) together with C is a partial order. {I}
is below {1, 2}. {1, 21 is below {1, 2, 3, 41. {2, 31 is above both {2} and {3}. {1, 2, 3, 41 is
above each element of P(X) distinct from itself.

Observe that the relations "above" and "below" are transitive.

Definition 5. Let R be a partial or a linear ordering on a set X. Let x e X.

(a) x is a minimal element of X if there is no y E X such that y is below x.
(b) x is the minimum element of X if x is below every other element of X.
(c) x is a maximal element of X if there is no y e X such that y is above x.

(d) x is the maximum element of X if x is above every other element of X.

In contexts where it is not clear what ordering is being discussed, write R-minimal,
R-minimum, R-maximal, and R-maximum to clarify that the ordering relation is R.

Consider the ordering shown in Figure 3.16. In this ordering, A is the maximum ele-
ment and the only maximal element. D, E, and F are all minimal elements. There is no
minimum element.

A

B C

D E \F

Figure 3.16 A partial ordering P.

Turning the order in Figure 3.16 upside down produces the order shown in Figure
3.17. In this ordering, A is the minimum element, and D, E, and F are maximal elements.
There is no maximum element.

D E F

B \ C

A

Figure 3.17 Partial ordering P upside down.

Theorem 2. Let R be a partial ordering on X, and let x, y e X.

(a) If both x and y are minimum elements, then x = y. This justifies speaking of the

minimum element.
(b) If x is the minimum element of X, then x is the unique minimum element of X.
(c) If R is a linear ordering on X, then x is minimal if and only if x is the minimum

element.
(d) An element x E X is R-minimal if and only if x is R- 1 -maximal, and x is the

R-minimum element if and only if x is the R-'-maximum element.
(e) The analogous results to parts (a) through (d) are true, with minimum replaced with

maximum and minimal with maximal.

198 CHAPTER 3 Relations

Proof. Proofs of (a) through (e) are left as exercises for the reader. U

For infinite sets like Z, there is no minimum, maximum, minimal, or maximal element.
Every finite partially ordered set has at least one minimal element and at least one maximal
element. Every finite linearly ordered set has exactly one minimum element and exactly
one maximum element. This result (for minimal elements and minimums) is proved in
Theorem 3.

Theorem 3. Let R be a partial ordering on afinite set X, and let x E X.

(a) Either x is minimal or there is a minimal element y E X below x.
(b) If x is the only minimal element of X, then x is the minimum element.
(c) If R is a linear ordering, then there is a minimum element in X.

Proof (a) Let z 1 E X. If z 1 is not minimal, there is some Z2 E X that is below z 1. If Z2 is
not minimal, we can find a Z3 below Z2. Continue in this fashion. (See Figure 3.18.) Since
X has only finitely many elements, the process must terminate after, at most, JXJ steps,
finding an element Zk for which k < I X I and for which there is no element of X below Zk.
Then, zk is a minimal element below Zl.

Zl

Figure 3.18 Elements below x and z.

(b) Let z0 e X be the only minimal element, and let z e X. By part (a), there is someminimal element below z. That minimal element must be z0 itself, because zo is the
only minimal element. So, zo is the minimum element.

(c) By part (a), there is a minimal element of X. By Theorem 2(c), that element is theminimum element. e

Of course, exactly analogous results hold for maximal and maximum elements in finitesets. The reader should construct examples to show that these results do not necessarily
hold if the set is infinite.

3.8.5 Application: Finding a Minimal Element
The proof of Theorem 3(a) suggests an algorithm that can be used for finding a minimal

element of a finite set where R is a partial or linear ordering.

Ordering Relations 199

INPUT: A finite set X = (X 1, X2 Xn}I with an ordering relation R on X
OUTPUT:" An R-minimal element of X

for i = 2 to n do
if (xi R y holds) then

y =xi

print y

Example 12. Find a minimal element in the partial order shown:

3

5
1 2

4

Solution.
Data Values

x1 = 5
X2 = 3
X3 = 4
X4 = 1
x5 =-2

Tracing the Execution

y=X1 y= 5

for/ = 2
if x 2 R y means if 3 R 5

R does not hold for 3 and 5

for/ = 3
if x 3 R y means if 4 R 5

y= 4

for i = 4
if x4 R y means if I R 4

R does not hold for 1 and 4

for i = 5
if x 5 R y means if 2 R 5

R does not hold for 2 and 5

Print final value: y = 4 I

200 CHAPTER 3 Relations

3.8.6 Application: Embedding a Partial Order

One fairly typical application of partial orderings is to schedule a set T of tasks. Usually, a
set of tasks includes requirements that certain tasks be completed before others begin. If it
is possible to do the tasks so that all the constraints are satisfied, these requirements may be
treated as a partial ordering R on the set of tasks where, for x, y E T, we have (x, y) E R

if and only if x must be completed before y may be begun.
Schedules to do these tasks, on the other hand, are often linear orders, since normally,

only one task can be done at a time. Hence, there is a problem of finding a linear ordering
S of T so that, if x R y and x A y, then x S y. This clearly amounts to finding a linear
ordering S so that R - IdT g S. For the partial ordering shown in Figure 3.17, the linear
ordering S could consist of the pairs {(A, B), (B, D), (D, C), (C, E), (E, F)} together
with the pairs needed to make the relation transitive. Another linear order that would satisfy
the condition consists of the pairs {(A, C), (C, B), (B, F), (F, E), (E, D)} together with
the other pairs needed to make the relation transitive. The process of finding a linear order
associated with a partial order is called embedding a partial order in a linear order.

Example 13. Construct a schedule for logging on to a computer and both checking email
and modifying a text file. Checking email includes opening the mailer and both replying
to a new message and creating a new message to another person. Modifying the text file
involves opening a text editor, loading a file, editing the first paragraph of the file, inserting
a separate file at the end of the file, and saving the modified file. The user is allowed to
move back and forth between the mailer and the text editor for separate tasks.

Solution. First, draw a diagram representing the dependency among various activities:

a Logon

Open Open Text
Mailer b e Editor

c 'd f Open File
Reply Send New

Msg. Insert
Modify 'h Ext. File
File

Save
Modified
File

Partial order

Next, find a linear order that embeds this partial order. One result is shown here:

Exercises 201

a a Logon

e e Load Text Editor

f f Open File

Dh P h Insert Ext. File

b b b Open Mailer

4P c Reply

g P g Modify File

d P, d Send New Msg.

0 i Save Modified File

Linear order U

In Chapter 6, we will examine and analyze an algorithm called Topological Sort that
carries out the embedding of a partial order in a linear order.

rnExercises
1. (a) Draw the diagram to represent the I (divides) partial order on {1, 2, 3, 4, 5, 6}.

(b) List all the maximal, maximum, minimal, and minimum elements.
2. (a) Draw a diagram to represent the I (divides) partial order on 10, 1, 2, 3, 4, 5, 6, 7,

8,9, 10, 111.
(b) Identify all minimal, minimum, maximal, and maximum elements in the diagram.

3. (a) Draw a diagram to represent the I (divides) partial order on the set {1, 2, 3, 4, 5, 6,
7,8,9,10,11).

(b) Identify all minimal, minimum, maximal, and maximum elements in the diagram.
4. Draw a diagram to represent the I (divides) partial order on the following:

(a) {1, 111
(b) 11, 3, 7, 211
(c) {1, 2, 3, 4, 6, 9, 12, 18, 36)
(d) {1, 2, 4, 8, 16, 32, 64)

5. Prove that Examples 5(a) and (b) are partial orderings.
6. Let

X = 1-5, -4, -3, -2, -1,0, 1, 2, 3,4, 51

For x, y E X, set x R y if x2 < y 2 or x = y. Show that R is a partial ordering on X.
Draw a diagram of R.

7. (a) Explain why the relation "is older than or the same age" is a partial order.
(b) Explain why the relation "is older than" is not a linear order.

202 CHAPTER 3 Relations

8. Construct the partial order represented by the family tree shown here. The relation is
"is a descendant of."

Mary = John

Peter = Elaine Maude = Harold

George Elizabeth

9. For the set of all people, prove that the relation "weighs no more than" is not a partial
order.

10. For the set of all people, prove that the relation "weighs less than" is not a linear order.
11. (a) Fordx,r y E definexIprNyif,forsomeZ E N,z :0,z 0 1,z x =y.Wesay

x is a proper divisor of y. Is IpreN a linear ordering on N?
(b) In the real numbers, define x I pR Y if, for some z E R, z #: , z • #1, z y x

Y. Is I prR a linear ordering on ?R?
12. Prove Theorem 1 (a).
13. For the partial orders shown in Figures 3.11, 3.12, 3.14, and 3.15, identify all minimal,

minimum, maximum, and maximal elements.
14. Suppose A, B, C, D, E, and F are tasks that must be performed with the precedence

shown:

A

B /\C

D / E / F

For example, E must be completed before either B or C can be performed, but
D, E, and F can be completed in any order relative to one another. Let T =
{A, B, C, D, E, Fl, and define the partial order R on T as represented by the dia-
gram. Find a linear order S on T where R - IdT C S.

15. Challenge: Find a partial ordering with exactly one minimal element but where that
element is not a minimum element.

16. Prove Theorem 2. (Hint: The proof of part (e) should be quite short.)

rnRelational Databases: An Introduction

A database is a shared collection of interrelated data designed to meet the varied infor-
mation needs of an organization. To describe many interrelationships among many types
of objects, there needs to be a good way to represent these interrelationships. The diagram
of Figure 3.2 is a clear illustration of a family tree, but it uses certain specific facts about
family relationships-for example, that each person has exactly two parents. It would be
much harder to represent more complicated relationships using the same type of diagram.

Relational Databases: An Introduction 203

A database system provides a framework for representing complex relationships. In
this section, we will discuss one model for a database system called a relational database
system. The reason we call this model a relational database system will become clear as we
work through an example. To simplify the discussion, we will present simplified versions
of the database operations.

3.10.1 Storing Information in Relations

To introduce some of the features of a relational database system, we consider the rela-
tional representation of a familiar problem: How can we keep track of student registrations
in classes and teaching assignments of instructors. This section shows how a relational
database system could be used.

The first requirement is to store the information about which students have registered
for which classes at a university. In this example, John von Neumann, Emmy Noether, and
Herman Hollerith are all taking English 101, section 3. George Boole, Rend Descartes,
and Winston Churchill are taking English 101, section 4. John von Neumann and Emmy
Noether are also taking English 103, section 1. George Boole and Winston Churchill are
also taking Mathematics 101, section 1. Finally, Ren6 Descartes and Herman Hollerith are
also taking Computer Science 103, section 3. This information is collected in Table 3.11.

Table 3.11 Registration Relation

Registration

Student Department Course Section

John von Neumann English 101 3
Emmy Noether English 101 3
Herman Hollerith English 101 3
George Boole English 101 4
Ren6 Descartes English 101 4
Winston Churchill English 101 4
John von Neumann English 103 1
Emmy Noether English 103 1
George Boole Mathematics 101 1
Winston Churchill Mathematics 101 1
Rene Descartes Computer Science 103 3
Herman Hollerith Computer Science 103 3

In a relational database, the n-tuples in an n-ary relation are simply called tuples.
The relations themselves are called tables. Each column in a table is an attribute, and the
values that appear in that column are referred to as values of that attribute.

In this example, many other 4-tuples (or quadruples) could be in the Registration
relation, such as (George Boole, English 103, 4) or (Herman Hollerith, Mathematics, 103,
3). A 4-tuple is in the relation only if the student is registered for that section of that course.

Now, suppose a second relation is defined that records the professors for the various
courses. It is possible to make a 5-ary relation that stores all the information in Registra-
tion plus the name of the professor for each course. However, the information about who

204 CHAPTER 3 Relations

is teaching a course is often used for purposes independent of determining who is regis-
tered for the course. It therefore is better to store the new information in a separate table.
The information about the professors is contained in the relation TeachingAssignments,
which is shown in Table 3.12. The value of the relational database will be seen when we
explain how information from various tables can be combined to answer questions. In this
case, we might want to use the two tables Registration and TeachingAssignments to list the
professors of a particular student.

Table 3.12 TeachingAssignments Relation

TeachingAssignments

Department Course Section Professor

English 101 3 Geoffrey Chaucer
English 101 4 William Morris
English 103 1 Thomas Jefferson
Mathematics 101 1 David Hilbert
Mathematics 101 1 Leonardo of Pisa
Computer Science 103 3 Alan Turing

Some information from Registration is repeated in TeachingAssignments. One prob-
lem in designing the relations in a relational database systems is to manage the needed
redundancy in a set of tables.

Each row in the table TeachingAssignments is a 4-tuple, and the relation is the set of
4-tuples that record the teaching assignments for each course. Note that David Hilbert and
Leonardo of Pisa are probably team-teaching Mathematics 101, section 1.

Finally, because the total teaching program in each department is the responsibility of
a department chair, a relation that gives this information is needed. This relation consists
of a set of tuples of length two, or ordered pairs, as seen in Table 3.13.

Table3.13 DepartmentChair Relation

DepartmentChair
Department Chair

English Francis Bacon
Mathematics Carl Gauss
Computer Science Alan Turing

A set of relations, such as the three shown in this example, are the data used by a
relational database system.

3.10.2 Relational Algebra

In designing the data for a database system, three things are important. First, how are the
data and relationships stored? Second, how can the data be modified? Third, can informa-
tion be extracted? As already noted, the data and relationships are stored in tables. Methods
to modify the data will not be discussed here; a course devoted to file processing will spend
much time dealing with just the problems you face in implementing a database system.

Relational Databases: An Introduction 205

Relational databases have standard operations that act on relations. A request to extract
data from the database is called a query. Queries use standard operations to create their
output. The standard set of operations used is called the relational algebra. Three of the
operations of the relational algebra are described in the examples that follow.

First Operation: Selection

Given a relation such as Registration, some users may be interested in only some of the
values of an attribute. As an example, for an attribute such as Department, and a set of
possible values for that attribute, such as {Mathematics, Computer Science}, form a new
relation by selecting only the tuples with a value of Department that is in {Mathematics,
Computer Science).

Table 3.14 repeats the relation Registration so that you can easily compare this relation
to the one that will be generated by this operation.

Table 3.14 Registration Relation

Registration

Student Department Course Section

John von Neumann English 101 3
Emmy Noether English 101 3
Herman Hollerith English 101 3
George Boole English 101 4
Ren6 Descartes English 101 4
Winston Churchill English 101 4
John von Neumann English 103 1
Emmy Noether English 103 1
George Boole Mathematics 101 1
Winston Churchill Mathematics 101 1
Ren6 Descartes Computer Science 103 3
Herman Hollerith Computer Science 103 3

The result of this selection operation is the relation R', which is shown in Table 3.15.

Table 3.15 R' Relation

Student Department Course Section

George Boole Mathematics 101 1
Winston Churchill Mathematics 101 1
Rend Descartes Computer Science 103 3
Herman Hollerith Computer Science 103 3

Suppose a user wants to make a selection query of a database. A selection query returns
a table with just the tuples that satisfy some condition, like students taking mathematics
courses. The database contains relations R1, R2 R, To specify a selection query, the
user inputs three things: the name of the relation from which the selection is to be made

206 CHAPTER 3 Relations

(that is, some Ri), the (name of the) attribute on which the selection is to be made, and a
finite set of possible values for that attribute. Then, the database system outputs all tuples

in that relation with a value for the attribute that is in that finite set.
There is also a second form that we shall use in the exercises: The user may input the

name of the relation, the names of two attributes, and = or <. If the user inputs Teaching-
Assignments, Section, Course, and <, then the user is asking for all scheduled courses
(for which teachers have been assigned) where the section number is less than the course
number.

What we have given here is a much more limited than the standard database definition

of selection. We have adopted this definition to keep the exposition simple.

Second Operation: Projection

For any table in a relational database, it often happens that a query is only interested in one
attribute. For example, in the relation R' in Table 3.14, suppose that you want to know the
names of the students. The only attribute of interest is Student. The attributes Department,

Course, and Section all may be important in other contexts, but for now, only the Student
entries are needed. The operation that reduces a relation to a new relation consisting of
some of the attributes and the entries for those attributes is called projection.

The second operation, or projection, is now used to find a relation that consists of
some of the attributes of an existing relation. A relation, such as Registration, and a subset

of its attributes, such as {Student, Department, I form the projection Rt of the relation onto
those attributes as follows: First, delete the attributes not in {Student, Department} from
each tuple of the relation Registration. The resulting relation Rt is shown in Table 3.16.

Table 3.16 Rt Relation with Duplicates
Rt

Student Department

John von Neumann English ÷-

Emmy Noether English

Herman Hollerith English
George Boole English
Ren6 Descartes English
Winston Churchill English

John von Neumann English +-
Emmy Noether English
George Boole Mathematics
Winston Churchill Mathematics
Ren6 Descartes Computer Science
Herman Hollerith Computer Science

In Table 3.16, you see that the tuples (John von Neumann, English) and (Emmy
Noether, English) occur twice. Since a relation is a set, it makes no sense to say twice
that a tuple is an element of a set. So, the final step in forming a projection is to eliminate
duplicate entries from the table Rt to form the relation Registration' shown in Table 3.17.

The projection of Registration tells which students are taking classes in which depart-
ments.

Relational Databases: An Introduction 201

Table 3.17 Registration' Relation

Registration'

Student Department

John von Neumann English
Emmy Noether English
Herman Hollerith English
George Boole English
Ren6 Descartes English
Winston Churchill English
George Boole Mathematics
Winston Churchill Mathematics
Ren6 Descartes Computer Science
Herman Hollerith Computer Science

Example 1. Projection is actually a common operation in areas other than databases.
Look at graphing relations on R2 , and consider the relation

C = {(x, y) E R2 : (x - 2)2 + (y - 2)2 = 1}

The graph of C is a circle in the plane with center (2, 2) and radius 1. Figure 3.19 shows
the graph of C and its projection onto the x-axis.

(2, 3)
3

2 (1,2) 9(2,2) (3,2)

(2, 1)

1
3

Figure 3.19 The projection of the circle (x - 2)2 + (y - 2)2 = 1 onto the x-axis.

Two values or points on the circle are projected onto each element in the open interval
(1,3).

Third Operation: Join
Consider two relations, such as Registration and TeachingAssignments. Recall it was ar-
gued that since they really store different information, they need to be two separate tables.
Nevertheless, some people using the system will want to know the combined information-
that is, which students are taking which classes (departments, course numbers, and section
numbers) taught by which professors. The join of the two relations puts all the information
together. The relation that is needed, called JoinedRelation, is shown in Table 3.18. The

208 CHAPTER 3 Relations

question is how to arrive at this table starting with the tables Registration and TeachingAs-
signments.

Table 3.18 JoinedRelation

JoinedRelation

Student Department Course Section Professor

John von Neumann English 101 3 Geoffrey Chaucer
Emmy Noether English 101 3 Geoffrey Chaucer
Herman Hollerith English 101 3 Geoffrey Chaucer
George Boole English 101 4 William Morris
Ren6 Descartes English 101 4 William Morris
Winston Churchill English 101 4 William Morris
John von Neumann English 103 1 Thomas Jefferson
Emmy Noether English 103 1 Thomas Jefferson
George Boole Mathematics 101 1 David Hilbert
Winston Churchill Mathematics 101 1 David Hilbert
George Boole Mathematics 101 1 Leonardo of Pisa
Winston Churchill Mathematics 101 1 Leonardo of Pisa
Ren6 Descartes Computer Science 103 3 Alan Turing
Herman Hollerith Computer Science 103 3 Alan Turing

After defining the join of two relations and giving a small example, we will present an
algorithm that could be used to actually find the join of two relations.

The formation of the join of two relations is a three-step process. In the first
step, we take two relations, R with attributes AI, A2 , A3 ,..., Am and S with attributes
B 1, B2 , B3 ... , B, and form the database Cartesian product. The database Cartesian

product R x S is a relation with attributes A 1, A2, Am, B 1, B 2, ... , Bn, and its tuples
are

{(al, a2 ... , am, bl, b2,..., bn) : (a,_. , am) e R and (bl, b2 ,..., b,) E S}

Note that the database definition of the term Cartesian product differs slightly from the
set theoretic notion. The set theory definition results in 2-tuples, whereas here, all the
coordinates are kept without extra parentheses.

The second step of the process involves forming the equijoin of R and S on attributes
Ai and Bj by selecting all tuples from R x S where the values of attributes Ai and Bj are
the same. To form the equijoin on several pairs of attributes, Ai, Bjl, Ai 2, Bj2,..., Aik, Bik,

perform k selections; that is, select tuples whose values on Ai, and Bj, are the same, whose
values on Ai2 and Bj2 are the same, and so on. Often, the names of attributes Ai and Bj will
in practice be the same. In that case, we may say we are taking the join on attribute Ai.

Note that in the equijoin, the attributes Ai and Bj contain the same informa-
tion. The third step of the join eliminates the second of the duplicated columns: The
join of R and S on attributes Ai and Bj is the projection of the equijoin on at-
tributes A 1 ... , Am, B 1 ... , Bj-1 , Bj+I ... , B, The join on several attribute pairs omits
("projects out") the second attribute from each pair.

The natural join of relations R and S, written R >.i S, is the join of R and S on all
attribute pairs with the same name.

Relational Databases: An Introduction 209

Example 2. Define the relations R and S as shown:

R S

Name Class Average Name Major

Joe 2004 3.14 Joe Mathematics
Sue 2004 2.97 Sue Computer Science

Mary 2005 3.76 Mary Sociology

Form the join of R and S on Name.

Solution. First, form the database Cartesian product R x S.

Database Cartesian Product of R x S

Name Class Average Name Major

Joe 2004 3.14 Joe Mathematics
Joe 2004 3.14 Sue Computer Science

Joe 2004 3.14 Mary Sociology
Sue 2004 2.97 Joe Mathematics
Sue 2004 2.97 Sue Computer Science

Sue 2004 2.97 Mary Sociology
Mary 2005 3.76 Joe Mathematics
Mary 2005 3.76 Sue Computer Science
Mary 2005 3.76 Mary Sociology

Now, form the equijoin: Extract the subset of R x S for which the entries for Name are
equal, giving R'.

RxS

Name Class Average Name Major

Joe 2004 3.14 Joe Mathematics
Sue 2004 2.97 Sue Computer Science
Mary 2005 3.76 Mary Sociology

Finally, project R x S on {Name, Class, Average, Name, Major} - {Name} to form the
join of R and S on Name.

RxS

Name Class Average Major

Joe 2004 3.14 Mathematics
Sue 2004 2.97 Computer Science
Mary 2005 3.76 Sociology U

One of the problems with database queries involves the complexity of finding the join
of two relations. A join on more than a single attribute can be defined. The first example
had three common attributes. The algorithm for finding the join makes the complexity of
this operation clearer.

210 CHAPTER 3 Relations

INPUT: Relations R and S with common attributes B1, B2. Bj

OUTPUT: Relation J that is the join of R and S on B1, B2. Bj

J=0

for each tuple x E R do
Select all tuples y c S whose values on B 1. Bj

are all the same as x's

for each such tuple y do
Form a tuple z by concatenating x with y
Eliminate the duplicate entries for attributes

B1, B2. Bj, creating a tuple z'
J = J U {Z')

Example 3. Use relational algebra, applied to the relations Registration and Teaching-
Assignments, to find a list of all professors who have either Ren6 Descartes or Winston
Churchill as students.

Solution. First, form the natural join of Registration and TeachingAssignments. Then,
select all tuples in the joined relation with student Ren6 Descartes or Winston Churchill.
The result is shown in Table 3.19.

Table 3.19 Step lJoin

Step l Join

Student Department Course Section Professor

Ren6 Descartes English 101 4 William Morris
Winston Churchill English 101 4 William Morris
Winston Churchill Mathematics 101 1 David Hilbert
Winston Churchill Mathematics 101 1 Leonardo of Pisa
Ren6 Descartes Computer Science 103 3 Alan Turing

Finally, project the SteplJoin relation onto the attribute set {Professorl, and remove
any duplicate entries. The resulting relation is shown in Table 3.20.

The relation Professor answers the question of which professors have either Winston
Churchill or Ren6 Descartes as a student. 0

Exercises 211

Table 3.20
Projection

Professor

William Morris
David Hilbert
Leonardo of Pisa
Alan Turing

Exercises

1. What operations can you apply to the sample relations in Section 3.10.1 to get the
following relations?

(a) Professors and the departments in which they teach courses.
(b) Students and professors from whom they take courses.
(c) Professors and the chairs of the departments in which they teach courses.
(d) Pairs of departments that currently provide courses with the same number. So,

having {English, Mathematics) in the relation would assert that both departments
have courses with a number such as 101.

2. Use the operations of relational algebra and the sample relations in Section 3.10 to
extract the following information:

(a) The students taking English courses.
(b) The students taking classes from Geoffrey Chaucer or Thomas Jefferson.
(c) The professors teaching courses in departments chaired by Carl Gauss or Alan

Turing.
(d) The students taking classes from professors who teach some class in a department

chaired by Carl Gauss or Alan Turing.

3. Add to the course scheduling database a relation showing which courses are prerequi-
sites for which other courses. Create some sample entries to illustrate the relations.

4. (a) Rewrite the two relations Registration and TeachingAssignments as binary relations
between people on the one hand and triples (Department, Course Number, Section
Number) on the other. Does this relation make more sense?
(b) Using this approach, why could you not do Exercise 1(d)? Suggest a meaningful
extra relation that would allow you to do Exercise 1 (d).

5. What simple operation on relations could you add to make it easy to list the number
of students in classes taught by Alan Turing? (Note: This problem asks you to design
a new type of query. Accordingly, it has no right or wrong answers, but some answers
will be simpler than others.)

Exercises 6 through 12 ask questions about the database shown in the three relations
Students, Grades, and Catalog:

212 CHAPTER 3 Relations

Students

SocSecNo Name Major Class Year

247617832 Smith, John Mathematics 2005

477677251 Brown, Mae English 2006
149867253 Cyr, Pete Mathematics 2005
316719842 Williams, Sue English 2004

Grades

SocSecNo CourseCode Grade

316719842 Math2l1 A
247617832 Engll03 B
149867253 Math214 A
149867253 Engll03 A
316719842 Math3l8 B
316719842 Eng1224 A

Catalog

CourseCode Department Credits

Math2l1 Mathematics 4

Engl 103 English 3
Math214 Mathematics 3
Math318 Mathematics 4
Eng1224 English 3

6. Find the join of Grades and Catalog.
7. Find the join of Students and Grades.
8. Find the join of Students, Grades, and Catalog.
9. Find all students who received an A in a course.

10. Find the department and number of credits for any course in which a student received
an A.

11. Find all second-year students who received an A.

12. Find the departments in which a student received an A in one of that department's

courses.

U Chapter Review

The idea of a relation gives a format for studying mathematical and nonmathematical re-
lationships. Forming the composition of relations and defining the inverse of a relation

are fundamental operations on relations. The common properties of relations such as =,

<, and C are abstracted to define what it means for a relation to be reflexive, irreflexive,
symmetric, antisymmetric, and transitive. Finding the reflexive, symmetric, or transitive

closure of a relation identifies the smallest relation containing a given relation with a given

Chapter Review 213

property. Focusing on reflexive, symmetric, and transitive relations leads to equivalence
relations and partitions. Focusing on antisymmetric and transitive relations leads to par-
tial and total orders. When discussing ordering relations, it is important to understand the
notion of comparable elements. Special comparable elements include minimal, minimum,
maximal, and maximum elements. Finally, the chapter deals with relations in the context
of the operations that are used by a relational database.

Applications in this chapter include lexicographical or dictionary ordering, finding a
minimal element, and embedding a partial order in a total order. The examples dealing with
relational databases point out the operations that are used for processing queries in such a
database.

3.12.1 Summary

3.1 and 3.2 Summary

TERMS

binary relation n-tuples
composition property
deck of 52 cards query
empty relation relations
equality relation ternary relation
family tree trivial relation
identity relation unary relation
inverse universal relation
irreflexiv void relation
n-ary relation

3.4 Summary

TERMS

antisymmetric reflexive closure
graph reflexive and transitive closure
irreflexive symmetric
nth power of R symmetric closure
R + transitive
R* transitive closure
reflexive

THEOREMS

"A relation R on a set X is reflexive if and The reflexive closure of a relation R on a
only if IDx C R. set X is R U IDx.

"A relation R on a set X is irreflexive if and The symmetric closure of a relation R on a
only if R n Idx = 0. set X is R U R- 1.

"A relation R on a set X is symmetric if and The transitive closure of a relation R on a
only if R = R-1. set X is R+.

"A relation R on a set X is transitive if and The reflexive and transitive closure of a
only if R o R C R. relation R on a set X is R*.

214 CHAPTER 3 Relations

3.6 Summary

TERMS

congruent quotient
divisible by refines
equivalence class remainder
equivalence relation x =- y (mod p)
partition

THEOREMS

Let P be a partition of a set X. For x • y E X, define x - y to mean that x and y are in the
same element of the partition. Then, - is an equivalence relation. The equivalence classes
of - are exactly the elements of P.

3.8 Summary

TERMS

above maximal
ASCII code maximum
below minimal
comparable minimum
dictionary ordering optimal
divides partial ordering
embedding strict partial ordering
law of trichotomy total ordering
lexicographical ordering
linear ordering

ALGORITHMS

Finding a Minimal Element

3.10 Summary

TERMS

attribute query
cartesian product relational algebra
database relational database
equijoin selection
join table
natural join tuples
projection value
quadruples

ALGORITHM

Join Two Relations

Chapter Review 215

3.12.2 Starting to Review

1. Let A = {1, 2, 3, 41. Define a relation R of A as R = {(1, 3), (4, 2), (2, 4), (2, 3),
(3, 1)}. Which of the following properties does this relation not possess?

(a) Reflexive
(b) Symmetric
(c) Transitive
(d) All of the above

2. Which of the following relations defined on X = { 1, 2, 31 is an equivalence relation?

(a) {(1, 2), (2, 2), (3, 3)}
(b) [(1, 1), (2, 2), (2, 2), (2, 1), (3, 3), (1, 1)}
(c) {(1, 1), (1, 2), (1, 3), (2, 2), (2, 1), (3, 3), (3, 1)}

(d) All of the above

3. Let R be a relation on a set S. R is circular if, for x, y, z e S, whenever x R y and
y R z, it follows that z R x. Which of the properties do a reflexive and circular relation
possess?

(a) Irreflexive
(b) Transitive
(c) Antisymmetric
(d) None of the above

4. Which of the following relations defined on X = {1, 2, 3} is a partial order?

(a) {(1, 1), (2, 2), (3, 3))
(b) {(1, 2), (1, 2), (2, 2), (3, 3)}
(c) {(1, 1), (2, 1), (2, 2), (1, 3), (3, 3)1
(d) All of the above

5. Given the following graph of a partial order R on X = 11, 2, 3, 4, 51, list all the ordered
pairs (x, y) such that x R y.

4

3 5

2

6. Let R be a partial order on a set X, and let x E X. The element x is a minimal element
in R if:

(a) x <yforallyrX.
(b) x < y for all y E X such that y 0 x and y is comparable to x.
(c) x < y for all y such that y E X and y is comparable to x.
(d) None of the above.

216 CHAPTER 3 Relations

7. Prove that {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 5), (2, 4), (2, 6), (4, 6), (6, 4),
(6, 2), (4, 2), (5, 1)} is an equivalence relation. Find the distinct equivalence classes
for this equivalence relation.

8. If A = {1, 2, 3, 4, 5} and R is the equivalence relation on A that induces the partition

A = {1,2} U {3,4} U {5}

what is R?
9. What are the minimal and maximal elements in the following diagram of a partial

order?

a b

<

Of

d e

10. What is the difference between a maximal element and a maximum element in a partial
order on a set X?

3.12.3 Review Questions

1. Prove or find a counterexample to the following conjectures about relations R1 and R2 .

(a) If R, and R2 are reflexive, then R1 o R2 is reflexive.
(b) If R1 and R2 are irreflexive, then R 1 o R2 is irreflexive.
(c) If RI and R 2 are symmetric, then RI o R2 is symmetric.

(d) If R1 and R 2 are antisymmetric, then RI o R2 is antisymmetric.
(e) If R, and R 2 are transitive, then RI o R2 is transitive.

2. For x, y E Z, define the relation R as x R y if and only if x • y is odd. Is R Reflexive?
Symmetric? Transitive? Prove, or give a counterexample.

3. Let R be a relation defined on (a, b, c, d} such that

R = {(a, a), (b, b), (c, a), (d, d), (a, b), (b, d), (a, d)}

Find the symmetric closure of R.
4. Find the transitive closure of the relation R = {(1, 2), (2, 3), (3, 4), (4, 1)}. Show R'

for all values of i that give new elements of the transitive closure.
5. Define the relation R on R x IR such that for any (x, y), (u, v) E 1R x 1R, we have

(x, y) R (u, v) if and only if y = v. Prove that R is an equivalence relation.
6. Let R be a binary relation on the set of all strings of O's and l's such that R = { (x, y)

strings x and y contain the same number of O's}. Is R Reflexive? Symmetric? Anti-

symmetric? Transitive? An equivalence relation?
7. The oddness or evenness of an integer is called its parity. Prove that the relation "have

the same parity" is an equivalence relation. Find the distinct equivalence classes of this
equivalence relation.

8. Four friends-Bill, Chuck, Maria, and Susie-are seated around a table. Define a re-
lation ARRANGE to contain a pair (Arrl, Arr2) of seating arrangements for these four
people around a round table ifArrl can be obtained from Arr2 by shifting each person

Chapter Review 217

the same number of places to the right or to the left. Prove that this relation is an equiv-
alence relation. How many equivalence classes are there, and what are the members
of each equivalence class? Can you conjecture how many equivalence classes there
would be if there were n friends?

9. Let R be a reflexive relation on a set A. R is an equivalence relation if and only if
(a, b), (a, c) E R implies that (b, c) e R.

10. Let T be a relation on A, and let R be a reflexive and transitive relation on A. Prove that
T is an equivalence relation on A provided (a, b) e T if and only if (a, b), (b, a) E R.

11. Let R1 be a partial order on S and R2 a partial order on T. For (si, tI), (s2, t 2) E S x T,
define (sl, t1) R3 (s2, t 2) if and only if sl R1 s2 andt1 R2 t 2 . Prove that R 3 is a partial
order.

12. Let X = { 1, 2, 3, 41, and let P (X) be the power set of X. Let P (X) be partially ordered
by set inclusion. Find an embedding of this partial ordering into a total ordering.

3.12.4 Using Discrete Mathematics in Computer Science

Definition. An upper bound of two elements in a partial order is an element that is
greater than both of the elements. A least upper bound is an upper bound that is smaller
than any other upper bound. A lower bound of two elements in a partial order is an element
that is less than both of the elements. A greatest lower bound is a lower bound that is
larger than any other lower bound.

1. Find the least upper bound and the greatest lower bound of each pair of elements in the
partial order represented by the following diagram:

h

f g

e

d

bc

a

2. Find the least upper bound and the greatest lower bound of each pair of elements in the
partial order represented by the following diagram:

f g

e

d

bc

a

218 CHAPTER 3 Relations

3. Define the relation D on N so that n D m if and only if n I m. An upper bound of two
natural numbers in D is a natural number that both divide. The smallest such natural
number is called the least upper bound and is denoted as lub(,). For example, 6 is the
least upper bound of 2 and 3. A lower bound of two natural numbers in D is a natural
number that divides both numbers. The largest such natural number is called the greatest
lower bound and is denoted as glb(,). For example, the greatest lower bound of 4 and
6 is 2. Find:

(a) lub(13, 29)
(b) lub(12, 60)
(c) glb(37, 12)
(d) glb(48, 60)

4. In drawing computer images of scenes, one must be able to tell which objects hide or
partially hide, other objects from view. Imagine a scene in two dimensions consisting
of a set L of line segments of various lengths drawn parallel to the x-axis. The line seg-
ments may intersect. For each of the following relations R on set L, is R antisymmetric?
Transitive?

(a) R(f, m) if there is at least one point on segment f that can look parallel to the y-axis
and see a point on m (a line of sight may have zero length).

(b) R(f, m) if no point of f can look parallel to the y-axis and see any point of m.

5. Carry out a selection sort (defined in Section 1.7.1) on the words able, cane, bell, after,
stick, and belt. Explain how lexicographical ordering is used for each comparison.

6. Let T = {A, B, C, D, E, F), and define the partial order R on T as represented by the
following diagram:

A

B / C

D / E / F

(a) Identify all maximal, maximum, minimal, and minimum elements of the partial
order represented by the diagram.

(b) Find a linear order on T where R - IdT C S.

7. (a) Prove that logical equivalence is an equivalence relation on the set of all formulas
of propositional logic.

(b) Show that as long as we have infinitely many proposition letters, there are infinitely
many equivalence classes. (Hint: Once you see the idea, this is pretty trivial.)

(c) Show that for logical equivalence on the set of all formulas in which the only propo-
sition letters are P1, P2 .. p., p, there are 22' equivalence classes.

Functions

In the study of mathematics, functions provide an important unifying concept. Functions
are also familiar in computer science as components of programs that formalize the rela-
tionship between the input and the output for a computation. The problem of designing a
combinatorial circuit often starts by defining a function that describes the behavior of the
circuit for each possible input. Using functions to describe the behavior of a circuit, we
can use techniques of Sections 2.5.2 and 2.5.4 to draw the combinatorial circuit with the
same behavior. Since functions are special kinds of sets or relations, we will study them
here using the ideas introduced in Chapters 1 and 3.

First, we define both functions and several fundamental properties of functions. Next,
we deal with operations on functions, and basic properties of functions resulting from the
operations introduced are explored. We explain special properties of functions, such as how
many objects are related to a single object by a given function. Examples of functions with
each property are given to help understand and differentiate among the properties that func-
tions may possess. We discuss the Pigeon-Hole Principle and the Generalized Pigeon-Hole
Principle, the applications of which include such different ideas as proving that rational
numbers have a repeating decimal expansion and that two students in a small class will
have a birthday on the same day of the week. Finally, we show how functions provide a
way to formalize the notion of counting, and we see how to count the number of elements
in both finite and infinite sets. In the context of counting rational and real numbers, Can-
tor's first and second diagonal arguments are introduced. These diagonal arguments come
up in many computer science contexts, especially in the theory of computation and the
analysis of algorithm complexity.

rn Basic Definitions

Intuitively, a function is a black box into which we put objects and out of which come
other objects. A function must satisfy two rules. First, if an object is put in, then something
must come out. Second, for each object input, there is only one possible output. If the same
object is put in several times, then the same output must come out each time. No matter
how many times one asks on what day Julius Caesar was born, the answer is always the
same.

219

220 CHAPTER 4 Functions

Figure 4.1 shows a picture to keep in mind when thinking about functions.

x

F

I
F(x)

Figure 4.1 Function.

Example 1.

(a) Visualize a classroom in which every student is seated at a chair. A function called
SeatOf, outputs the chair at which a student is sitting for each student in the class.

(b) One may specify a function even though one does not have enough information
whether in some or in all cases, to calculate its values. Let BirthDate be the func-
tion that accepts as input any person whose name appears in the current edition of the
Encyclopedia Britannica and that outputs that person's birth date. No one knows the
true birth date of Euclid, but Euclid, like every other person, did have a birth date. So,
the function BirthDate still makes perfectly good sense. 0

Example 2.

(a) Let Zero R be the function that accepts as input any real number r and that always
outputs 0. A function may be quite simple!

(b) Let X be any set. Let Idx be the function that accepts as input any x in X and that
outputs the same x. Idx is called the identity function on X.

(c) The function Floor accepts any real number as input and outputs the integer formed
by truncating the fractional part of the number input. For example, Floor(3.14159) =

L3.14159] = 3.
(d) The function Ceiling accepts any real number as input and outputs the smallest in-

teger greater than or equal to the number input. For example, Ceiling(3.14159) =
[3.141591 = 4. This function is also referred to as the greatest integer function. U

The output of a function may be more complex to determine.

Example 3. Let the function ParentsOf accept a person as input and output the ordered
pair

(person's mother, person's father)

Example 4.

(a) By contrast with Example 3, there is no function ParentOf that picks out a person's
parent. Such a rule is not a function, since there are two parents, from which one must
be chosen as output.

(b) There is no function ChildOf that picks out a person's child. One reason this may not
be a function is that some people have no children and, consequently, no object can be

Basic Definitions 221

output. Some people also have more than one child from which to choose, and in this
case, the function would not know which child to output. However, there is a function
ChildrenOf that assigns to each person the set of that person's children. If a person has
no children, the output of ChildrenOf is the empty set (0).

We now define informally some basic vocabulary that will be more carefully defined
later. We will illustrate these terms with the function SeatOf from Example 1.

The domain of a function is the set of all things that may be input to produce some
output. The domain is usually apparent from the definition of the function. For example,
the domain of SeatOf is the set of all students in the classroom.

The range of a function is the set of all things that are output. The range of SeatOf is
the set of all occupied chairs in the classroom. Once one knows the domain of a function,
one can determine the range by applying the function to each element of the domain.

The codomain of a function is the set of all values that are potential outputs. In in-
formal descriptions, codomains are often not specified. For example, it is perhaps most
reasonable to infer that the codomain of the function SeatOf is the set of all chairs in the
classroom, but it is also plausible to infer that the codomain is the set of all occupied chairs.
The codomain often cannot be determined from the description of the function alone; it
must be inferred from the rest of the discussion. In less formal treatments, the codomain
will often be implicitly defined. For example, in many mathematics courses, the codomain
of most functions is implicitly R. In other cases, as a convenience, the codomain is simply
assumed to be equal to the range.

Everything so far has been intuitively expressed in terms of a black box. A formal
definition of the term function is needed. Traditionally, there have been two ways to define
this term. The first is to consider a function to be a rule. The second is to consider a function
to be a specific kind of set. We will discuss the idea of a function as a rule first, since it is
familiar from both computer programming and mathematics courses. After dealing with a
function as a rule, we will discuss the idea of a function as a set. (We will give our formal
definition in terms of sets.)

4.1.1 Functions as Rules

The notion of a function as a rule is familiar to anyone involved in computer programming.
A function subprogram can be viewed as a series of instructions that tell how to calculate
an output from some input.

Example 5. The following rules define functions:

(a) Let H be the function with domain and codomain equal to N that outputs n/2 for even
inputs and 3n + 1 for odd inputs.

(b) For n e N, compute Fact(n) = n! as follows:

input N
Fact = 1
while N > 0

Fact = Fact. N
N=N-l

print Fact

222 CHAPTER 4 Functions

It is important to realize that the code itself is not the function. Rather, the code is just
one way to implement the rule that defines the function. The function is just the relationship
between input and output. Consequently, many different rules may give rise to the same
function.

Example 6. The following two algorithms compute the same function:

(a) For any n e N, output cos(n • 7r).

(b) For any n e N, output (-1)n.

The formal definition of equality of functions is given in Section 4.1.5. We will leave it to
the reader to verify that rules (a) and (b) define the same function.

Example 7. Show that the following rule does not define a function: Let F be the rule
with domain and codomain equal to N that outputs n4 - 3n for each n input.

Solution. F(1) is not defined (since -2 is not in the codomain), so F is not a
function. U

4.1.2 Functions as Sets
We can use the notion of a relation to define a function by allowing the elements that are
related to belong to different sets. With this notion of a relation, a function is a special kind
of binary relation. For sets X and Y, any subset of X x Y that "obeys" the following two

rules is a function:

1. Each input corresponds to some output.
2. Each input corresponds to only one output.

The set X is the domain of the function. The set Y is the codomain of the function. The
idea is that a relation consists of the set of ordered pairs for which every element of X is
the first element of exactly one pair.

Definition 1. Let X and Y be sets. A function F with domain X and codomain Y is
a subset of X x Y such that, for each x E X, there is exactly one y E Y with (x, y) E F.
F is also called a function from X to Y. A function F from X to Y is often denoted by

F : X -- Y.

From this point on, rather than identifying the domain and the codomain of a function
as sets, we will assume that the notation F : X --. Y implies this.

Example 8.

(a) Suppose a class consists of three students. Jean sits at the second chair in the first row,
Michele sits at the sixth chair in the fourth row, and Paul sits at the 37th chair in the
53rd row. For this class, the function SeatOf is the set

{(Jean, RowlSeat2), (Michele, Row4Seat6), (Paul, Row53Seat37)}

(b) Let

DayOfWeek = {Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday)

Basic Definitions 223

There is an obvious function:

NextDay: DayOfWeek -> DayOfWeek

Monday Tuesday
Tuesday Wednesday
Wednesday Thursday
Thursday Friday
Friday Saturday
Saturday Sunday
Sunday Monday

The binary relation defined by this function consists of the following ordered pairs:

{(Monday, Tuesday), (Tuesday, Wednesday), (Wednesday, Thursday),
(Thursday, Friday), (Friday, Saturday), (Saturday, Sunday),

(Sunday, Monday))

Example 9. The factorial function Fact from Example 5(b) is the set

{(0, 1), (1, 1), (2, 2), (3, 6), (4, 24), (5, 120). (n, n!)....

We now introduce a common vocabulary for functions.

Definition 2. Let F : X --* Y be a function, and let (x, y) E F. Then, y is the image of
x under F, denoted by y = F(x). We also say that x is mapped to y by F. The range of
F is the set

range(F) = {F(x) : x E X}

For y E Y, the preimage of y under F, denoted as F- 1 (y), is the set

F-l(y) = {x E X : F(x) = y}

For Y' C Y, the preimage of Y' under F, denoted as F 1 (Y'), is the set

F-'(Y') = {x e X : F(x) E Y'}

We refer to X as domain(F) and Y as codomain(F).

Example 10. For the function F : {1, 2, 3, 4, 5} --* {a, b, c, d, e} defined as F(l) =

a, F(2) = b, F(3) = b, F(4) = d, and F(5) = c, identify domain(F), codomain(F),
range(F), F-1(a), F-1 ({a, b, c}), and F-1 (e).

Solution. domain(F) = {1, 2, 3,4, 5}; codomain(F) = (a, b, c, d, ej; range(F) =
{a, b, c, dj; F-1(a) =- {1}; F- 1 ({a, b, c)) = {1, 2, 3, 5}; F-1(e) = 0. U

You may find the range of a function referred to as the image of the function. In
Example 4.1 a, the range of function SeatOf is the set of all chairs in the room that have
someone sitting on them. For another example, the addition function + on Z maps the
ordered pair (3, 5) to 8. The domain of + is Z x Z, and the codomain is Z. If F : X2 --* y;
then F is called a binary function from X2 to Y. Addition as well as the other familiar
arithmetic operations defined on the integers are binary functions from Z2 to Z.

224 CHAPTER 4 Functions

4.1.3 Recursively Defined Functions

When a function F is defined by a formula, we can find the value of F at any element
of its domain without knowing its value at any other element of its domain. For example,
consider the function F : N -* N defined by the rule F(n) = 3n + 2. We can compute
directly that F(100) = 3. 100 + 2 = 302 or that F(3112) = 3.3112 + 2 = 9338.

Functions, however, are not necessarily defined in such a straightforward manner. Con-
sider the function G : N -- N defined as G(0) = 2 and, for n > 0, G(n) = G(n - 1) + 3.
Then, G(1) = G(0) + 3 = 2 + 3 = 5. The following computation shows how G(5) would
be determined:

G(5) = G(4) + 3

= G(3) +3+3

= G(2)+3+3+3

= G(1)+3+3+3+3

= G(0)+3+3+3+3+3

= 2+3.5

17

If we now wanted G(3112), we would first need to compute G(1), G(2),..., G(3111). In
this situation, we say that G is defined recursively or is given by a recursive definition.

As you might suspect from the computation of G(5), the two functions F and G are
actually the same; that is, F(n) = G(n) for every n E N. In Section 1.10.1, F was described
as a closed form for G.

Example 11.

(a) The function F : N - N defined as F(n) = 3f can be defined recursively as F(0) = 1
and F(n) = 3. F(n - 1) for n > 1.

(b) The sum of the first k of n elements al, a2. an can be defined directly as SUM(k) =

al + a2 + ± • • + ak where 1 < k < n. Recursively, the same function can be defined as
S(1) = al and S(k) = S(k- 1)+ak fork > 1.

(c) The sum of the first n terms of a geometric series a + ac + ac2 + ac3 + • . + acn-I

can be defined as gs(0) = a and gs(k) = gs(k - 1) + ack for k > 1.
(d) The harmonic sequence that consists of the terms 1, 1/2, 1/3 1/n, ... can have

the sum of its first k terms defined as the function H(1) = 1 and H(k) = H(k - 1) +
l/kfork > 1.

We introduced the Fibonacci sequence in Section 1.7.3. This sequence of values
(1, 1, 2, 3, 5, 8, 13) was defined recursively; that is, no direct formula was given for
finding the nth element of the Fibonacci sequence. Unlike the functions in Example 8, two
terms are given as initial conditions for termination conditions in defining the nth element
of the Fibonacci sequence successively in terms of smaller Fibonacci numbers. The defini-
tion of the Fibonacci sequence is F(0) = 1, F(1) = 1, and F(n) = F(n - 1) + F(n - 2)
for n > 2. The first five terms of the Fibonacci sequence are found as follows:

Basic Definitions 225

F(O) = 1

F(1) I 1

F(2) = F(1) + F(O) = 1 + 1 = 2

F(3) =F(2)+F(1)=2+ I=3

F(4) = F(3) + F(2) = 3 +2 = 5

A recursively defined function may involve any number of initial values in determining

a next value.

Example 12. Find the first six values of the function defined on N given by F(O) = 2,
F(1) = 3, F(2) = 5, and F(n) = 2F(n - 1) + 3F(n - 2) + F(n - 3) for n > 3.

Solution.

F(3) = 2F(2) + 3F(l) ± F(O) = 10 + 9 ± 2 = 21

F(4) = 2F(3) + 3F(2) + F(l) = 42 + 15 + 3 = 60

F(5) = 2F(4) + 3F(3) + F(2) = 120+ 63 + 5 = 188 0

4.1.4 Graphs of Functions

Since functions are relations, they have graphs. Figure 4.2 shows part of the graph of the
function Floor

y
o points not included

-2 0-- in the line

1 0-

II I I x
-3 -2 -1 1 2 3

0----1

0- -2

0- -3

Figure 4.2 Graph of Floor

Let G be the graph of a function with domain X C R x R. G is the graph of a function

if whenever x0 E X, the vertical line x = x0 intersects G in exactly one point. We call this
test the vertical line test for a function. Figure 4.3, on page 226, shows a subset of IR x RI
that is not a function, since the vertical line x = 1 cuts the graph in two places.

When a function has a "small" set as its domain and a "small" set as its codomain,
such as the function F : 10, 1, 2) - {3, 5, 7) defined as F(0) = F(1) = 5 and F(2) = 7,

226 CHAPTER 4 Functions

y

(-3, 0) 1 3, 0)

(0,-3) (-•'1)

Figure 4.3 Graph of a relation that is not a function.

we often represent such functions by a diagram such as that shown on Figure 4.4. The
lines joining an element on the left in Figure 4.4 with an element on the right represent
the association between elements of the domain and elements of the codomain that we
interpret as the rule for F. For example, we interpret the line between 0 and 5 as meaning
F(0) = 5.

F: {0, 1,2) {3, 5, 7}

1 15

2 -7

Figure 4.4 Representation of a function.

The elements of the domain and of the codomain can be listed in any order. Sometimes,
a picture of this sort makes functions defined on N easier to understand. This representation
can also be used for some "large" sets.

4.1.5 Equality of Functions

Since functions are defined as subsets of a product of two sets-that is, as sets of ordered
pairs-two functions are equal when they are equal as sets.

Definition 3. Let F, G : X -+ Y be two functions. The functions F and G are equal if
and only if they contain the same ordered pairs.

Example 13. Let SqrN be the function from N to N defined by the rule SqrN(n) = n2.
Let SqrR be the function from R to R defined by the rule SqrR(r) = r 2 . Then, SqrNq and
SqrR are not the same function, since (1.1, 1.21) r SqrR but (1.1, 1.21) 0 Sqri.

Basic Definitions 227

Theorem 1. Let F and G be functions such that F = G. Then,

domain(F) = domain(G)

range(F) = range(G)

and, for each x E domain(F), F(x) = G(x).

Some authors would insist that for two functions to be equal, their codomains must
also be the same. We do not insist on that condition for the equality of two functions.

Boolean Functions and Combinatorial Networks
A boolean function of n boolean variables is a function of the form

B :{0, 1} x {0, 1} x ... x {0, 1) --* {0, 11

The domain of B contains 2n elements. A value of either 0 or 1 is assigned to each entry
of the 2' ordered n-tuples. An example of a boolean function on three boolean variables is
shown in Table 4.1.

Table 4.1 Boolean
Function of Three
Variables

p q r F(p, q, r)

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 1

0 1 0 1

0 0 1 0

0r0 0 1

This function might represent a set of switches that react in an appropriate way or a
set of conditions that must be satisfied so that some action can be taken. It is useful to
be able to represent functions as in Table 4.1, but the real problem is often to embed this
function in a combinatorial network. We saw in Chapter 2, while discussing disjunctive
normal forms and conjunctive normal forms, how we can draw the combinatorial circuit
given one of these normal forms. In this case, we need to see how to represent a function
in terms of one of these normal forms.

For the function in Table 4.1, a disjunctive normal form is

F(p, q, r) = (p A q A r) V (p A -q A r) V (p A -q A -r)

V (-p A q A r) V (-p A q A -'r) V (-p A -q A -'r)

Consequently, the combinatorial circuit is the circuit shown in Figure 4.5.

228 CHAPTER 4 Functions

Pqp(qr
r -

p - -qAr (p A qA r)

r L~g• v(pA-.qA r)

------ pAqA- r V(pA-qA-r)

r - .(P- -P __)
P Vp ~ v(-~p AqA-)
q - r ~V (-.p AqAr)

-p

q ",E-pAqA r
q -.

Figure 4.5 Combinatorial circuit for F(p, q, r).

Notice in Figure 4.5 that there are several inputs for a gate. This is as much for conve-
nience as for anything else, since we can obviously write a gate with three inputs as a set
of gates with two inputs each, as shown in Figure 4.6.

p - -- O - ýrpAqAr

r -*

q ----------

q

:(p Aq) Ar~pA qAr

r

Figure 4.6 Combinatorial circuit for multiple inputs.

4.1.6 Restrictions of Functions

It is easy to write an algorithm to compute SqrR(x) = x 2 for x E R. By merely asserting
that only natural numbers should be used as input, one can make the same algorithm specify

Sqri, a function from N to N. This is an example of restricting a function to a smaller
domain. As usual, the formal definition is set theoretic.

Definition 4. Let A, B, and C be sets such that B C A. Let F : A -+ C be a function.

The restriction of F to B, denoted F I B, is a function from B to C defined as the set

F I B = {(x, y) E F :x B}

Figure 4.7 shows two examples of restrictions of the function Sqri.

Basic Definitions 229

15-- 4-- 4--

12.5--
10- 3-- 3-

7.5- 2- 2-

2.5
I --

-4 -2 2 4 -2 -1 1 2 -2 -1 1 2

Sqr, Sqr~lRT- 2,2U Sqrl {-2, -1, 0, 1, 2)

Figure 4.7 Restrictions of SqrR. A. SqrR B. SqrR 1[-2,21 C. SqrR 11-2,-1,0,1,21.

4.1.7 Partial Functions

Think of a computer program as computing or specifying a function from the input of the
program to its output. The input to the function is whatever string of characters is input to
the program. The output is whatever string of characters has been output by the program
after it has finished execution. Anyone who has programmed a computer realizes that many
programs, on some input data, go into infinite loops and, by the definition above, would
produce no output at all. In that case, the program is not computing a function of the input,
since the definition of a function requires that there be one output for every one input. What
a program computes is really what is called a partial function of its input. On each input,
the program, if it produces any output at all, produces only one possible output. Thus, a
partial function can be thought of as a black box into which for each input there is at most
one possible output.

Another sort of partial function is the following: Suppose the amount of postage to
be paid is specified in Table 4.2 (where the range (3-4] kg is understood to mean that the
parcel weighs more than 3 kg but less than or equal to 4 kg). This table gives postage costs
only as a partial function of the weight of the package, since the postage amount is not
specified for anything weighing more than 16 kg.

Table 4.2 Postage Costs

Weight Postage

(0-1] kg $1.00

(1-2] kg $1.98

(2-3] kg $2.56

(3-41 kg $3.11

(4-51 kg $3.99

(5-81 kg $5.00

(8-12] kg $7.00

(12-161 kg $9.00

230 CHAPTER 4 Functions

The two examples we have given of partial functions actually reflect rather different
ways in which partial functions arise. In the postage example, the function was partial
because no rule was given for calculating the postage for items weighing more than 16 kg.
At some later time, someone may come back and extend the rule, perhaps by specifying
that items weighing (16-20] kg cost $10.89. In the computer program example, however, a
rule was given for all possible input data, but that rule failed to output anything for certain
values. The notion of a partial function gives a formal way to consider all programs-
even ones that crash or go into infinite loops. Partial functions are particularly important in
the theoretical study of computability-that is, in the study of which functions and partial
functions are computable by programs, where there is assumed to be no restriction on
computer memory or on computation time. There is no satisfactory way in this subject to
restrict attention only to functions.

Definition 5. A partial function F with domain of definition X and codomain Y is a
subset of X x Y such that for each x E X, there is, at most, one y with (x, y) E F. Such
an F is also called a partial function F from X to Y. When it is understood that F is partial,
the notation F : X --* Y is also used (but when the notation F : X -> Y is used without
any other comment, F is a function). The domain of a partial function F : X -> Y is the set

{x E X: for some y E Y, (x, y) E F}

If x E X is not in the domain of definition for F, then F(x) is undefined. Other terms,
such as range and preimage, are defined exactly as for functions.

When F is a partial function, the implication is not that there is necessarily any x in
its domain of definition where F(x) is undefined, only that there might be. Hence, every
function is a partial function. When discussing both functions and partial functions that are
not functions, functions are often referred to as total functions to emphasize the difference.

Example 14. In Example 1(a) SeatOf was presented as a (total) function. It might be
slightly more realistic to present it as a partial function, however, since some people in the
room might not be sitting in seats. For example, they might be standing or sitting on the
floor. Asking what is the seat of a standing person should get no answer.

Example 15. The following are examples of partial functions:

(a) Subtraction (-) on N is a partial function. Its domain of definition is N 2, and its
codomain is N. For i < j, i - j is not defined on N, so the domain of subtrac-
tion is

{(i, j) E N2 : i > j}

The range of (-) is N. To show that an arbitrary n E N is in range(-), note that
n = n -0.

(b) Division on JR is a partial function. Its domain of definition is R2, its codomain is IR,
but its domain is

{(x, y) E JR2 : y A 0}

Its range is JR. Why?

Basic Definitions 231

(c) For x E IR, let Sqrt(x) be the non-negative square root of x. Then, Sqrt is a partial
function, since Sqrt(x) is undefined for x < 0. The domain of definition of Sqrt is iR,
and its codomain is R. The range of Sqrt is [0, oo).

Let G be a subset of R. G is the graph of a partial function if, whenever x0 E X,
the vertical line x = xo intersects G in at most one point. We call this the vertical line
test for a partial function. Figure 4.8 shows a subset of R x R that is not a function,
because the vertical line x = -1 does not cross the graph. Sqrt is a partial function,
since no vertical line defined by an element of its domain crosses the graph more than
once.

y

2.5

2

1.5

0.5

-2 2 4 6! 8

Figure 4.8 Graph of partial function Sqrt.

Whether a partial function is a total function depends on what the domain of definition
is defined to be. For example, it was noted that Sqrt is a partial function from JR to IR. If we
declare the domain of definition to be just the set [0, co), then Sqrt is a total function.

4.1.8 1-1 and Onto Functions

Several special types of functions have turned out to be especially important. For exam-
ple, the intuitive notion of counting will be formalized using the properties of functions
introduced in this section.

Definition 6. Let F : X -- Y be a function. F is 1-1 if, for each y E Y, there is, at most,
one x E X such that F(x) = y.

Example 16.

(a) Let F :R -- R be a function defined as F(x) = 2x. F is 1-1.
(b) Let G N -- N be a function defined as G(n) = 2n 2 + 1. G is not 1-1.

Solution.

(a) Since F(xl) = F(x2) means 2xl = 2x2, it follows that xl = X2 and F is 1-1.
(b) Since G(2) = G(-2), the function G is not 1-1. U

232 CHAPTER 4 Functions

The function SeatOf (from Example 1(a) in Section 4.1) is 1-1 if and only if exactly
zero or one person is sitting at each chair (and every student is seated at exactly one chair).

Figure 4.9 1-1 Function SeatOf.

Figure 4.9 shows a 1-1 SeatOf function, and Figure 4.10 shows a similar function,
SeatOf 1, that is not 1-1.

Figure 4.10 Function SeatOfl.

The function H(x) = x2 is not 1-1. This is shown in Figure 4.11. Let G be the graph of
a function with codomain Y C IR. G is the graph of a 1-1 function if, whenever yo e Y,
the line y = yo intersects G in, at most, one point. We call this the horizontal line test for
1-1 functions.

y

(-2, 4), (,4 X

-2 2

Figure 4.11 H(x) = x2 .

The horizontal line y = 4 crosses the graph in Figure 4.11 at more than one point.
Therefore, G is not 1-1. On the other hand, the function F(x) = x3, as shown in Figure
4.12, on next page, is 1-1, since each horizontal line crosses the graph in at most one point.

Definition 7. Let F : X - Y be a function. F is onto if, for each y E Y, there is at least
one x E X such that F(x) = y.

Another way to think of the definition of onto is that a function F : X --* Y is onto if
and only if range(F) = codomain(F). Whether a function is onto or not depends on what
the codomain is defined to be. For example, the function Sqrt : [0, oo) -+ R is not onto.
However, if Sqrt is defined to be Sqrt : [0, oo) -+ [0, cc), then Sqrt is onto.

Basic Definitions 233Io
10-

7.5

5

2.5

-3 -2 1 2 3

-5

Figure 4.12 F(x) = x3 .

The function SeatOf2, as shown in Figure 4.13, maps the set of students in the class-
room onto the set of chairs in the classroom if every chair is occupied.

Figure 4.13 SeatOf2 .

The function SeatOf3, as shown in Figure 4.14, is not, onto since one or more chairs
remain unoccupied. In this case, two chairs are unoccupied.

Figure 4.14 SeatOf3 .

The function G(x) = x 2, as shown in Figure 4.15, is not onto.

y

25-

20-

15

10

5-

0x
-4 -2 2 4

--5

Figure 4.15 G(x) = x2 .

234 CHAPTER 4 Functions

The horizontal line test for 1-1 functions can be easily modified to check whether a func-
tion is onto by simply requiring that each horizontal line defined by a member of the
codomain meet the graph of the function at least once. In Figure 4.15, the horizontal line
y = -6 does not intersect the graph of G at any point. This property of the graph of the
function corresponds to the fact that there is no number x such that G (x) = -6. Therefore,
G is not onto. On the other hand, the function F(x) = x3, as shown in Figure 4.16, is onto,

since each horizontal line crosses the graph in at least one point.

y

10 __

7.5-

5-

2.5

-3 1 2 3

Figure 4.16 F(x) x3 .

Functions that are both 1-1 and onto play a special role in counting the elements of
a set. Because functions of this class have so many applications, they have been given a
special name.

Definition 8. Let F : X --* Y be a function. F is a 1-1 correspondence if F is both 1-1
and onto.

For example, the function SeatOf is a 1-1 correspondence if and only if each chair has
exactly one student sitting at it. The function F : R --* R defined by F(x) = x 3 , as shown
in Figure 4.16, is also a 1-1 correspondence. The function G(x) = x2 , as shown in Figure
4.15, is neither 1-1 nor onto.

The function shown in Figure 4.17 is onto but not 1-1.

Y

10- .

7.5-

5-

2.5

-4--- X
-2 2 4 6 8 10

-2.5-

-5-
Figure 4.17 A function that is onto
but not 1-1.

Basic Definitions 235

The function exp : R -R IR defined as exp(x) = ex and shown in Figure 4.18 is 1-1
but not onto.

y

70-

60"

50

40"

30-

20-

10

-4 -2 2 4

Figure 4.18 exp(x).

The functions defined here have been constructed to show that the two properties 1-1
and onto are independent of each other. Two properties of a mathematical object are inde-
pendent if objects exist that can have exactly one of the properties, both of the properties,
or neither of the properties. For 1-1 and onto functions, the four functions shown in Figures
4.15 through 4.18 demonstrate that the properties 1-1 and onto are independent.

Commonly used synonyms exist for the properties of functions defined in Definitions
6, 7, and 8. A 1-1 function is also called an injective function, or an injection. An onto
function is called a surjective function, or a surjection. A 1-1 correspondence is called a
bijective function, or a bijection. Also, a 1-1 correspondence is often referred to simply
as a 1-1 and onto function.

Application: Hashing Functions

When you put a bank card into an ATM and enter your pin number, your bank account
records must be found so that your transaction can be authorized. This is an example of in-
formation in symbolic or numeric form (the information on the magnetic stripe on the ATM
card) being used to determine a location on some storage device (the physical location of
your records). A function that can take information as input and find a storage address as
an output is called a hashing function. For simplicity, at this point we will assume that a
hashing function is 1-1.

Example 17. Define a hashing function that uses 63 storage locations as a four-stage
process with surnames as input. The first step is to replace the letters of the surname with
integers according to the following rule: A -- 1, B -+ 2, C -+ 3 ... , Y -> 25, Z --> 26.
The second step is to multiply the letter value by 2i where i is the letter's position in the
word, with the leftmost character being in position 1. The third step is to add the values
that represent the letters of the surname. The final step is to divide this sum by 63. The
hashing value is the remainder of this division. For example, Robb has a value of 144
and a hashing value of 18. You should imagine that the information needed for Robb is in

236 CHAPTER 4 Functions

storage location 18. Carry out this hashing procedure for Smith, Jones, Brown, Zento, and
Ruster.

Solution.

Steps 1 through 3 Step 4 Hash Value

Smith -- 19.2+ 13.22+9.23+20.24+8.25=738 =11.63+45-- 45
Jones • 10.2+15.22+14.23+5.24+19.25=880 =13.63+61-- 61
Brown-2- 22 + 18.2 2 + 15.2 3 + 23.2 4 + 14.2 5 = 1012 =16.63+4 --+ 4

Zento --+26.2+5-22+14-23+20-24+15.25 =984 =15.63+39-* 39
Ruster- 18.2+21.22+ 19.23+20.24+5.25 + 18.26 = 1904=30.63+ 14-- 14

Each of these names can be located among a set of 63 storage locations, numbered 0, 1,
2 ... , 62, by using their hash value as the location to access. 0

If any two names give rise to the same hash value, then an auxiliary rule, called a
collision resolution strategy, is used to make sure that each piece of information has its
own storage location that can be determined from the information alone and the given
collision resolution strategy.

How many students in your class can have their names hashed this way without gen-
erating a collision? (If your class has more than 63 students, simply change the function to
find the remainder when you divide by some number at least as large as the size of your
class.)

Application: Encryption and Decryption

In this age of electronic messaging, it is often important that only the intended receiver
of an electronic message can read it. If the security of a transmission is a problem, the
message can still be made secure if the original message has been encoded or encrypted
so that the symbols seen make no sense unless you know how to decrypt the message, that
is, return the encrypted message back to its original form. Here, we present an example of
the process of encoding and decoding a message. The method used is very simple and not
as powerful or secure as modern methods, but the example points out how an encryption
scheme interacts with a message, a user, and a receiver. The difficult problem today is
to find an encoding scheme that cannot be compromised through a brute force search by
a computer. More complex ideas from number theory lie at the heart of the best current
encryption methods. The encoding scheme presented uses a bijection from the symbol set
used in writing the message to the same symbol set. The sender of the message must use
the bijection to transform the message into a form that is not recognizable, and the receiver
must use the inverse of the coding function to decrypt the message received to return it into
plain text.

A very simple encoding scheme is to associate each letter of the alphabet (we
will only deal with uppercase letters) with two digits as follows: A -- 00, B
01, C ->. 02 ... ,X --+ 23, Y -+ 24, and Z --* 25. Define a function F(lettervalue) -
a(lettervalue) + b (mod 26), where a and b are integers and a has no factor in common
with 26 and the sum is reduced modulo 26. For example, if a = 3 and b = 5, then

F(X) m 3(23) + 5 (mod 26) = 74 (mod 26) =- 22 (mod 26)

Basic Definitions 237

A message such as

LEAVINGTODAY = 1104 00 2108 13 06 19 14 0300 24

is transmitted as

F(ll) F(4) F(0) F(21) F(8) F(13) F(6) F(19) F(14) F(3) F(0) F(24)

The computation is shown in Table 4.3.

Table4.3 Encryption Computation

F(0) = 3(0) + 5 (mod 26) = 5 F(3) = 3(3) + 5 (mod 26) = 14
F(4) = 3(4) + 5 (mod 26) = 17 F(6) = 3(6) + 5 (mod 26) = 23
F(8) = 3(8) + 5 (mod 26) = 3 F(11) = 3(11) + 5 (mod 26) = 12
F(13) = 3(13) + 5 (mod 26) = 18 F(14) = 3(14) + 5 (mod 26) = 21
F(19) = 3(19) + 5 (mod 26) = 10 F(21) = 3(21) + 5 (mod 26) = 16
F(24) = 3(24) + 5 (mod 26) = 25

The message that is sent is

12 1705 1603 1823 1021140525

The message is transformed into the following string of symbols:

MRFQDSXKVOFZ

The problem for the receiver is to know the inverse function and then apply it to
each of these two digit pairs to see the original message. The inverse for F(letter)
3(lettervalue) + 5 (mod 26) is a function of the same form-that is, G(lettervalue)
a (lettervalue) + b (mod 26) where a and b are determined as follows:

G o F (lettervalue) = a (3 . lettervalue + 5) + b = lettervalue(mod 26)

We solve

3a =-l (mod 26) and 5a + b =- O(mod 26)

to get a = 9 and b = 7. The inverse is G(lettervalue) - 9(lettervalue) + 7 (mod 26). We
now compose these two functions to decrypt the message as shown:

G o F(L) G o F(E) G o F(A) G o F(V) G o F(I) G o F(N)G o F(G) G o
F(T) G o F(O) G o F(D) G o F(A) G o F(Y)

= G(12) G(17) G(05) G(16) G(03) G(18) G(23) G(10) G(21) G(14)G(05) G(25)
= 1104002108 1306 19 14030024
=LEAVINGTODAY

4.1.9 Increasing and Decreasing Functions

The reader has probably already encountered increasing and decreasing functions in a
mathematics course. It is common to speak of a function as being increasing or decreasing
on an interval. The function defined on IR,

F(x)=x2- 6x+12

238 CHAPTER 4 Functions

is decreasing on (-oo, 3] and increasing on [3, 00). (You can see this from the graph of the
function.) The definition of the terms increasing and decreasing uses the familiar orderings
less than and less than or equal on R.

Definition 9. Let X, Y C R, and let F : X --> Y be a function.

(a) F is increasing if for, all x1, x2 E X, Xl < X2 implies F(x1) < F(x2).
(b) F is strictly increasing if, for all x1, X2 E X, xl < x2 implies F(x1) < F(x2).
(c) F is decreasing if, for all Xl, x2 E X, x1 < x2 implies F(x1) > F(x2).
(d) F is strictly decreasing if, for all xl, X2 E X, x1 < X2 implies F(x 1) > F(x 2).

Example 18. The following functions are increasing:

(a) The function F : R --* R where F(x) = x3 is strictly increasing (see Figure 4.19).

y

0.6--

0.4

0.2

-3 -2 -1 1 2 3

.2-

(-0.4

_-0.6

Figure 4.19 F(x) x3 .

(b) The function Floor :R -N N is increasing but not strictly increasing (see Figure 4.20).

y
o points not included

2 - in the line

0o-

I I I x

-3 -2 -1 1 2 3
-- --- 1

o -- 2

0- -3

Figure 4.20 Floor

Theorem 2. Suppose X C R and F : X -- JR is a strictly increasing function. Then,
F is 1-1.

Exercises 239

Proof. This proof is left as an exercise for the reader. U

Of course, the definitions of the terms strictly increasing and strictly decreasing do
not involve anything special about R, just that it has the relations < and <. Consequently,
a similar definition could be made for any linearly ordered, or even any partially ordered,
domain and codomain.

Exercises

1. Which of the following are functions? If not, why not?

(a) X is the set of students in the discrete mathematics class. For x E X, define g(x)
to be the youngest cousin of x.

(b) X is the set of senators serving in 1998. For x E X, define g(x) to be the number
of terms a senator has held.

(c) Forx E R, define g(x) = Ix/lxl1.
2. Let X={0,1 ... 6, 7} and Y ={8,10,12,..., 20, 22). Define F:X -*Y as

F(x) = 2x + 8. List the ordered pairs of the relation that define this function.
3. What are the domain and range of the addition function on the real numbers? On

Multiplication? Subtraction? Division?
4. Find the first six terms of the sequence with the elements defined as F(O) = 5, F(1) =

10, and F(n) = F(n - 1) - 2F(n - 2) for n > 2.
5. Find the first six terms of the sequence with the elements defined as F (0) = 1, F (1) =

3, F(2) = 5, and F(n) = 3F(n - 1) + 2F(n - 2) - 3F(n - 3) for n > 3.
6. Find both a function defined by a formula and a recursively defined function for the

following sequences:

(a) 1, 3,5, 7,9, 11, 13, .
(b) 1, 1, 3, 3, 5,5, 7, 7,...
(c) 0, 2, 4, 6,8 .8
(d) 1, 2,4, 8, 16,...

7. Which of the following represent a partial function? A (total) function?

1 a I ? aea 1 7 a
2 b 2 b 2 b 2 .ob

3 3 3 9c 3 -oc

4* od 4 *--- d 4 d 4 9---- d

8. Let X = {a, b}.

(a) There are nine partial functions F : X -* X. List them.
(b) There are four functions F : X - X. List them.
(c) List all 1-1 functions F : X - X.
(d) List all onto functions F : X - X.

9. Let X = {-1, 0, 1, 21 and Y = {-4, -2, 0, 2}. Define the function F: X - Y as
F(x) = x2 - x. Prove that F is neither 1-1 nor onto.

240 CHAPTER 4 Functions

10. List all 1-1 and onto functions from {1, 2, 31 to itself.
11. Let A be a set with three elements and B be a set with two elements.

(a) How many different functions are there with domain A and codomain B?
(b) How many different functions are there with domain B and codomain A?
(c) How many different 1-1 functions are there with domain A and codomain B?
(d) How many different 1-1 functions are there with domain B and codomain A?

12. Determine which of the following functions are onto:

(a) F1 :]R -> R where F, (x) = x 2 - 1.
(b) F 2 : Z --+ 2 where F2 (x) = [x] ([xl is the "ceiling" of x).
(c) F3 : Z - 2 where F3 (x) = x3.
(d) F4 : R -- IR where F4 (x) = x3.
(e) For the linear ordering < on R, list all the increasing functions among parts (a)

through (d).
(f) For the ordering < on IR, list all the strictly increasing functions among parts (a)

through (d).

13. Which of the functions in Exercise 12 are 1-1? Prove each of your answers.
14. Two months are equivalent if their 13th day must fall on the same day of the week in

every (nonleap) year.

(a) Show that the 13th day of the 12 months occur on seven different days of the week.
(b) Conclude that there must be at least one Friday the 13th in each year.
(c) Show that there are at most three Friday the 13th's in any year.
(d) Show that the result is also true for leap years.

(Hint: Number the days of the year from 1 (January 1) to 365 (December 31), and then
show that the days representing the 13th days of these months occur on seven different
days of the week.)

15. Let A = {1, 2, 3, 41 and B = {a, b, c}. Define a function F : A -* B as F(1) = a,
F(2) = b, F(3) = c, and F(4) = c. List the ordered pairs of the equivalence relation
R defined on A as x R y if and only if F(x) = F(y). List the elements of the partition
of A determined by this equivalence relation.

16. Let FTo, 1,2) be the set of all functions with domain and codomain equal to {0, 1, 21. For

each of the following relations, prove that the relation is an equivalence relation. Also,
find the distinct equivalence classes of each equivalence relation. Let F, G E 51 0 , 1,21.

(a) F R G if and only if range(F) = range(G).
(b) F R G if and only if max(F) = max(G).
(c) F R G if and only if F(0) + F(1) + F(2) = G(0) + G(1) + G(2). For this prob-

lem, two functions are related if the sum of their images, seen as an operation in
the natural numbers and not in the function space, are equal.

17. Find two functions F, G : R --* R where F 0 G but F 1[0,1) = G I [0,1).

18. Let F : R --- JR with F(x) = x2 . The following is a function from R to RR:

IdR 1[2,.) U Zero 1[0,2) U F I(, 0)

Write an algorithm to compute this function.
19. Let A, B, and C be sets, and let F : A --* C be a function. If B C A, prove that

FIB = Ffn(B x C).

Exercises 241

20. Prove that the function F : Z -* Z defined as F(n) = n + 6 is a bijection.
21. For each of the following functions, prove that the function is 1-1 or find an appropri-

ate pair of points to show that the function is not 1-1:

(a) F 2 Z- Z

F) n 2 for n > 0F I)=-n2 for n < 0

(b) F :R R- JR

F(x)= x +l forxEQ

12x for xQ

(c) F :R -R J

\ +3x+2 forxEQ

F(x)= x3 forxgQ

(d) F Z -Z 2

n +1 fornodd
Fln I n3 for n even

22. (a) Find functions from R to R that are:
i. strictly decreasing
ii. decreasing but not strictly decreasing
iii. neither increasing nor decreasing
iv. both increasing and decreasing

(b) Show that no F : -+ R is both increasing and strictly decreasing.
(c) Find a subset X C JR and a function F : X -+ X where F is both strictly increas-

ing and strictly decreasing.

23. Construct functions with the following properties:

(a) F : N -+ N such that range(F) = N and, for each n E N, there exist exactly two
solutions for the equation F(x) = n.

(b) F : N -> N such that, for each n E N, there are exactly n solutions for the equation
F(x) = n.

242 CHAPTER 4 Functions

24. Prove Theorem 3.

25. Using the numbering scheme for the letters of the alphabet as given in Section 4.1.8,
encrypt the message DISCRETE MATH IS GREAT using the function F(letter) =
17(lettervalue) + 9(mod26). List the letters of the encrypted message. Find the in-
verse function, and decrypt the message. (Hint: 23. 17 = 1 (mod 26).)

26. Using the numbering scheme for the letters of the alphabet given in Section 4.1.8,
encrypt the message DISCRETE MATH IS GREAT using the function F(letter) =
(11 (letter value) + 13) mod 26. List the letters of the encrypted message. Find the in-
verse function, and decrypt the message. (Hint: 19. 11 = 1 (mod 26).)

27. For the American history fan: Consider the list of U.S. presidents up through Harry
Truman. Define the following "function" on all presidents before Harry Truman: The
successor of X is the person who followed X as president. Why is successor not a
function?

28. Define a function F : N --+ N such that F(n) = n - 10 if n > 100 and F(n) =
F(F(n + 11)) ifn < 100.

(a) Show that F(99) = 91.
(b) Prove that F(n) = 91 for all n such that 0 < n < 100.

29. Let A, B, and C be sets, and let F : A -- C and G : B -- C be functions.

(a) What condition must F and G satisfy for F U G to be a function from A U B
to C?

(b) Give conditions on A and B such that F U G is a function for every F : A --+ C
and G: B --+ C.

30. Let F be a function, and let C, D C domain(F).

(a) Prove that range(F IcnD) S; range(F 1c) n range(F ID).
(b) Show by example that equality need not hold in part (a).

31. If looked at appropriately, the definition of a function as a set of ordered pairs and the
intuitive notion that a function is something given by a rule are equivalent. Develop
that equivalence here. Assume that F has a finite domain {0, 1, 2. n - 11 and a
finite codomain t0, 1, 2 ... , m - 1}.

(a) Suppose F is a function given as a set of ordered pairs. For an input xl, give a rule
for calculating F(xl). Use F (or its graph) in your rule.

(b) Suppose the function F is given by a rule. Express F as a set of ordered pairs.

32. Find a combinatorial circuit for each of the following boolean functions:

(a)

p Iq F(p, q)

I I I

1 0 1

0 1 0

0 0 0

Operations on Functions 243

(b)

p Iq r Fpqr

I 1 1 1

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 0

0 1 0 1

0 0 1 0

0[0 0 1

(c)

pV qY r F(p,q,r)

1 1 1 0

1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 0

rnOperations on Functions

Since functions and partial functions are special types of binary relations, all operations
defined on binary relations can be applied to functions. The most interesting operations,
however, are composition and inversion.

4.3.1 Composition of Functions

The definition of the composition of functions is exactly the same as that of the composition
of relations. We merely restate it here using the vocabulary of functions.

244 CHAPTER 4 Functions

Definition 1. Let both F : X --* Y and G : Y --> Z be partial functions. The composi-
tion of G and F is

GoF={(x,z) eXxZ: forsomeyEY, y=F(x)andz=G(y)}

Thus, (G o F)(x) = G(F(x)).

It turns out that the composition of two functions is always a function.

Example 1. Start with the SeatOf function for a class:

SeatOf = {(Jean, Seat2), (Michele, Seat5), (Paul, Seat3)}

Assume that just before the class started, workers finished repainting the desks in the fol-
lowing colors:

ColorOjSeat = {(Seatl, red), (Seat2, red), (Seat3, green), (Seat4, green), (Seat5, red)}

The definition of ColorOJSeat o SeatOf is

{(x, z) : for some y, y = SeatOf(x) and z = ColorOfSeat(y)}

Now, unravel that definition. Start with x = Jean. Since SeatOf is a function, there is ex-
actly one object y = SeatOf (Jean), which is Seat2. Figure 4.21 shows this procedure.

Jean SeatOf (Jean) = Seat 2

Figure 4.21 Jean and SeatOf(Jean).

Since ColorOfSeat is a function, there is exactly one object z = ColorOJSeat(Seat2), which
is red. This object can also be referred to as ColorOfSeat(SeatOf(Jean)). Figure 4.22 shows
this procedure.

Jean SeatOf(Jean) = Seat 2 ColorOjSeatOf(Jean) = Red

Figure 4.22 Jean, SeatOf(Jean) and ColorOfSeat(SeatOf(Jean)).

The same sort of analysis holds also for ColorOfSeat (SeatOf(Michele)) and ColorOf-
Seat(SeatOflPaul)). The function is given as

ColorOf o SeatOf = [(Jean, red), (Michele, red), (Paul, green)}

In general, composition of functions is a function. The operation can even be stated
for partial functions.

Operations on Functions 245

Theorem 1. Let X, Y, and Z be sets. Let both F : X - Y and G : Y --- Z be partial
functions. Then, G o F is a partial function from X to Z. Moreover, for every x E X, the
following hold:

(a) If F(x) is undefined, then (G o F)(x) is undefined.
(b) If F(x) is defined but G(F(x)) is undefined, then (G o F)(x) is undefined.
(c) If F(x) and G(F(x)) are defined, then (G o F)(x) is also defined, and (G o F)(x) =

G(F(x)).

The proof of Theorem 1 is omitted, since it is just a formalization of the discussion in

the example above. One important corollary to Theorem 1 is used all the time. This corol-
lary says that the composition of functions is an associative operation, just like addition
and multiplication with real numbers as well as union and intersection of sets.

Corollary 1: Let F:X--> Y,G:Y-- Z, andH:Z--* W be functions. Then, Fo
(G o H) = (F o G) o H.

Corollary 4.1 follows from Theorem 3 by reducing both F o (G o H)(x) and (F o
G) o H(x) to F(G(H(x)).

For functions F and G, one often defines G o F(x) to be G(F(x)). Since we have
already defined the operation o on relations in Section 3.2.2, we only had to show that
(G o F)(x) is the same as G(F(x)).

Example 2 shows that the composition of functions is not a commutative operation.

Example 2. Let G : N -* N and H : N --* N be given by the rules G(n) = n2 + I and

H(n) = 2n. Then, (H o G) : N -- N, and for all n E N, we have (H o G)(n) = 2n2+1. By
contrast, (G o H)(n) = 22n + 1.

Earlier, we studied 1-1 and onto functions. It is now natural to ask whether the com-
position of 1-1 functions is 1-1 or whether the composition of onto functions is onto. We
answer these questions in Theorem 2.

Theorem 2. Let F : X -- Y and G : Y -- Z be functions.

(a) If F and G are both 1-1, then G o F is 1-1.
(b) If F and G are both onto, then G o F is onto.
(c) If F and G are 1-1 correspondences, then G o F is a 1-1 correspondence.
(d) If G o F is 1-1, then F is 1-1.
(e) If G o F is onto, G is onto.

Proof. These proofs are left as exercises for the reader. 0

4.3.2 Inverses of Functions

Recall the definition of the inverse of a relation given in Section 3.2.1. For any relation R
defined on a set X,

R- = {(y, X) E X x X: (x, y) E R)

Since functions are relations, they also have inverses.

246 CHAPTER 4 Functions

Definition 2. Let F = {(x, y) E X x Y : F(x) = y} be a function. The inverse of F,
denoted by F , is the relation

F-1 = {(y,x) E Y x X: F(x) =y}

Example 3. Consider a business where each employee has an employee number and no
two employees have the same number. The function

EmplNoOf : Employees --* EmplNos

and its inverse, EmplNoOf-1, are pictured below in Figure 4.23.

Employees Employee

Records
• 31,852I Er~tpI With

EmplAkO• f 43,765

EmplMoOf 37,895

S EmttplMoOf 45,722

Ettpi Wth

EmplMof 15,242

EmpiWith

Figure 4.23 Employee functions.

The function EmplWith, as shown in Figure 4.23, would normally be a partial function
since employee numbers are very rarely a set of consecutive integers. The gaps between
employee numbers would represent values for which the function is not defined.

Example 4. Define two functions, Succ and Pred, from Z to Z. Let Succ(z) = z + 1 and
Pred(z) = z - 1. We can show that Pred- 1 = Succ.

Solution.

Pred = {(z, z - 1) : z c Z}

And

Succ = {(z, z + 1)': z G Z
= {(zI - 1, zl) :z Z } 2 (substitute z= z +l)
= {(z - 1, z) : z E Z) (substitute z for zI--since z is no longer in use,

it can be reused)
= Pred-1 I

Operations on Functions 247

The inverse of a function F is not always a function or a partial function. If, however,
F is 1-1 or a 1-1 correspondence, then we have Theorem 3.

Theorem 3. Let F : X -- Y be a function.

(a) F-1 is a function from Y to X if and only if F is a 1-1 correspondence.
(b) F- 1 is a partial function from Y to X if and only if F is 1-1.
(c) If F is a 1-1 correspondence, then F-1 : Y -- X is a 1-1 correspondence.

Proof.

(a) This proof is left as an exercise for the reader.
(b) F- is a partial function

.• for each y c Y, there is at most one x E X with (y, x) E F- 1

.:• for each y E Y there is at most one x E X with (x, y) E F
4•. F is 1-1.

(c) This proof is left as an exercise for the reader. 0

A function whose inverse is a function is also referred to as being invertible.

Theorem 4. Let X be a set, and let F : X -+ Y be a 1-1 and onto function.

(a) F-1 oF=Idx
(b) F o F- 1 = Idy

Proof.

(a) First, observe that F- 1 o F is a 1-1 correspondence. This follows from three facts:
(i) F is given as a 1-1 correspondence; (ii) by Theorem 3(c) we have F-1 is a 1-1 corre-
spondence; and (iii) by Theorem 2(c) F- 1 o F is a 1-1 correspondence.

Now, let x E X. Since F is a total function, there is a y E Y such that (x, y) E F. By
the definition of an inverse, we have (y, x) E F- 1. By the definition of composition of
functions (see Section 4.3.1), it follows that (x, x) E F- 1 o F. That is, Idx g F-1 o F.

To show that F- 1 o F C Idx, let (x, x') E F- 1 o F. Since we have just seen that
(x, x) E F-1 o F and we observed that F-1 o F is 1-1, we must have x' = x; that is,
(x, x') E Idx. Therefore, F-1 o F C Idx.
(b) By Theorem 3, F-1 is 1-1 and onto. It follows from part (a) that (F-l)-1 o (F-1) -

Idy. By Theorem 2 in Section 3.2.1 it follows that F o F-1 = (F-l)-1 o F. Now, by part
(a), (F-l)-1 o F = Idy. M

Very infonnally, Theorem 4 can be summarized as saying that if F-1 is a function at
all, then F-1 "undoes" what F "does."

Example 5. The function exp(x) = ex where e, the real number 2.718281828459
is called the exponential function base e, which is also called exp. The function exp :
IR -+ (0, oo) is strictly increasing, 1-1, and onto. Its inverse is called the natural logarithm
function, designated In. Hence, y = In(x) is true if and only if x = exp(y) is true. It is also
easy to show that In is strictly increasing.

248 CHAPTER 4 Functions

4.3.3 Other Operations on Functions

The reader is familiar with operations on polynomial functions. Consider polynomial
functions F, G : R --> R where F(x) = x2 and G(x) = 2x + 1. Then, (F + G)(x) is de-
fined as

(F + G)(x) = F(x) + G(x) = x2 + 2x + 1

This is a very different sort of operation on functions in that it uses the operation + on
1R, whereas composition and inversion operations make no reference to operations on the
codomain of the function.

Definition 3. Let F, G : X -R 1 be functions. The following are functions:

(F+G) : X--1R
x - F(x) + G(x)

(F - G): X R
x - F(x) • G(x)

IFl: X-R
x-÷ I F(x)l

Define the following partial function:

(F/G) : X --> R by the rule (F/G)(x) = F(x)/G(x)

The function F/G is total if and only if G(x) A 0 for all x E X.

Of course, the same definitions make sense if the codomain is Q, Z, or N. In general,
any operation on the codomain may be used to define an operation on functions.

Definitions such as Definition 3 create some very ambiguous notation. For x, a real
number, x- 1 denotes 1/x. So, F-l(x) should denote 1/F(x). The symbol F- 1, how-
ever, also means the inverse function, which is not at all the same thing. The symbol F-1
usually-but not always-denotes the inverse function. In this book, we shall use F-1 only
to denote the inverse function.

Sequences and Subsequences

This section introduces functions defined on N and its subsets that we commonly refer to
as sequences. Subsequences are formed by using the operation of composition of functions
on subsets of N.

Intuitively, a sequence is a list of objects in order, such as

red, orange, yellow, green, blue, indigo, violet

where red is first, followed by orange ... followed by violet. Other sequences are the
prime numbers listed in increasing order:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,....

or the natural numbers in increasing order:

0, 1,2,3,4,5,6,7, 8,9, 10, 11, 12 .

Sequences and Subsequences 249

Definition 3. An infinite sequence of elements of a set X is a function F : N --+ X.
A function F : {0, 1, 2,, n - 11 -+ X for some n E N is a finite sequence of elements
of X of length n. The expression sequence of elements of X means a finite sequence of
elements of X or an infinite sequence of elements of X.

In computer programming, finite sequences are often called lists. Infinite sequences
are often called streams and sometimes also lists. Often, if F is a finite sequence of ele-
ments, then its elements are denoted not as

F(0), F(1),..., F(n - 1)

but, rather, as X X -.

Similarly, an infinite sequence is usually written as

Xo, X1, • - Xn,.

An infinite sequence of real numbers is a function from N to R. For example,

0 1 2 n
Xo -, X1 -, X2=- xn- .

is an infinite sequence of real numbers.
For any X C R•, a sequence F of elements of X is increasing if, thought of as a

function from N to X, F is increasing. Thus, the sequence

0 1 2 n
XO 1, Xl-, X2 = Xn-

is increasing. The terms increasing, decreasing, strictly increasing, and strictly decreas-
ing apply to sequences in the same way.

Example 6.

(a) The elements of a sequence need not be different. For example, 0, 0, 0, 0 is a se-
quence. Formally, this sequence is given by the function Zero : N -- N defined by the
rule Zero(n) = 0.

(b) Let F : N --+ Z be defined by the rule F(n) = (-1)n. Then, F is the sequence
1, -1, 1, -1, 1, -1

(c) Let Fact(n) = n!. Then, Fact defines the sequence

1,1,2,6,24, 120, 720....

An important notion associated with sequences is the notion of a subsequence. Intu-
itively, a subsequence is just a subset of a sequence, with the elements of the subsequence
occurring in the same order as they do in the sequence.

Example 7. For the sequence of factorials

1, 1, 2, 6, 24, 120, 720, 5040, 40,320, ...

the following are subsequences:

(a) 0; the subsequence of length 0
(b) 1, 6, 120, 5040, ... ; every other factorial, starting with the second one
(c) 1, 1, 2, 6, 24, 120, 720, 5040, 40,320 ; the entire sequence

(d) I the first element alone
(e) 2, 6, 40,320; another finite subsequence

250 CHAPTER 4 Functions

What, more precisely, is a subsequence? Think of an infinite sequence:

XO, XI, X2, X3, X4, X5, X6

Pick out a subset of the subscripts, such as subscripts

1,2,4,8, 16,32....

and then list the corresponding elements of the sequence in the same order as used in the
original sequence:

X1, X2, X4, X8, X16, X32,...

The chosen subscripts themselves form a sequence:

i0 = 1, il = 2, i2 = 4, i3 = 8, i4 = 16, i5 = 32....

So, the subsequence is

XiO, xiI , xi 2 , xi 3 , xi 4 , xi5 ,

(See Exercise 13 in Section 4.5 for missing details.) The important point is that the elements

are listed in the same order as in the original sequence; that is,

i0 < il < i2 < i3 <i4 < i5 < ...

is itself a strictly increasing sequence.

Definition 9. Let F be a sequence, and let S be a strictly increasing sequence of elements
of the domain of F. Then, F o S is a subsequence of F.

The proof that Definition 8 formalizes the previous discussion is left as an exercise.

Example 8. In the definition of a subsequence, the sequence S was required to be strictly
increasing. The sequence of elements in a sequence F are not required to be increasing; as
a result, the subsequence of elements determined by F o S need not be strictly increasing.
For example, let F : N -* IR where F(n) = (-1)n/(n + 1). So, F is the sequence

11 1
1, - -.-1, 2 3' 4

(a) If S is the sequence 0, 2, 4 of even natural numbers, then F o S is the subsequence
consisting of every other element of the sequence F, starting with the first element:

1 11, - -

3' 5'. .

which is decreasing.
(b) If S is the sequence 1, 3, 5, ... of odd natural numbers, then F o S is the sequence

consisting of every other element of the sequence F, starting with the second element:

111

2' 4' 6''. .

which is increasing.

Exercises 251

W Exercises

1. Let X = {1,2, 3, 4} and Y = {5, 6, 7, 8,9}. Let F = {(1, 5), (2,7), (4,9), (3, 8)}.
Show that F is a function from X to Y. Find F- 1, and list its elements. Is F- 1 a
function? Why, or why not?

2. Let S = {(0, 8), (1, 10), (2, 12), (3, 14), (4, 16), (5, 18), (6, 20), (7, 22)). Is S a function?
Why, or why not? Find S-1, and list its elements. Is S-1 a function? Why, or why not?
Identify the domain of S-1.

3. Let X = {1, 2, 3, 41. Let F : X -* IR be a function defined as the set of ordered pairs
{(1, 2), (2, 3), (3, 4), (4, 5)}. Let G : R -* IR be the function defined as G(x) = x2 .
What is G o F?

4. Let F : R --* R be defined as F(x) = 2x + 8. Let G : R --* R be defined as G(y) =

(y - 8)/2. Prove that F o G = IdR and G o F = IdR.
5. Define the functions F, G, and H as indicated in the following diagrams:

1 --- a a -- ee e *--- r

2~ .b b *1ý f fe- es

3 c C - eg g e- t

4 e d d ./ed h

F G H

Find the following:

(a) G o F
(b) H o (G o F)
(c) (H o G) o F

6. Let X = {0, I, 21 _ IR. List all eight strictly increasing sequences of elements of X.
The ordering is < on IR. List all subsequences of the sequence x, y, z.

7. Let A = {1, 2, 3, 4}. Let the functions F, G, and H be given with domain and
codomain A defined as

F(1) = 3, F(2) = 2, F(3) = 2, and F(4) = 4
G(1) = 1, G(2) = 3, G(3) = 4, and G(4) = 2
H(1) = 2, H(2) = 4, H(3) = 1, and H(4) = 3

Find the following:

(a) F o G
(b) H o F
(c) Go H
(d) FoGoH

8. Let A be a rule for defining a function F : N --* N such that F is 1-1 and onto. Show
how to construct a rule for defining F- 1.

9. For sets X, Y, and Z, let F : X ->. Y and G : Y -* Z be 1-1 correspondences. Prove
that (G o F)- 1 = F- 1 o G- 1 .

252 CHAPTER 4 Functions

10. Find the first six terms of the sequences defined for n > 0 as:

(a) H(n) = n2 (n + 1)2/4

(b) G(n) = n - 1

(c) F(n) = (-1)n2n - 3fn

11. Find the first six terms of the sequences defined as:

(a) H(O) = 0 and H(n) =H(n - 1) + n3 for n > 1
(b) G(O) = 0 and G(n) =2G(n - 1) + I forn > 1
(c) F(0)=2andF(n)=3F(n-1)-n+3forn> 1

12. Find a recursively defined function that gives the terms of the following sequences:

(a) 2, 5, 8, 11, 14, ...
(b) 3, 6, 12, 24, 48, ...

13. The formal definition of a sequence was in terms of a function F, with domain either
N or {0, 1 n - 1}. (Ifn = 0, then {0, 1 n - 1} = 0.) The formal definition of
a subsequence involves a sequence F and a strictly increasing sequence S of elements
of the domain of F. Since S is a sequence, S is, formally, another function as above.
In parts (a) through (e) of Example 7, identify the functions S and F o S as sets of
ordered pairs.

14. Prove the following:

(a) Theorem 2(a)
(b) Theorem 2(b)
(c) Theorem 2(d)
(d) Theorem 2(e)

15. Prove the following:

(a) Theorem 3(a)
(b) Theorem 3(c)

16. Let A and B be nonempty sets, and let F : A - B be a function. Prove that the fol-
lowing are equivalent:

(a) F is onto.
(b) There is a function G : B --* A such that F o G = ldB.
(c) For any set C and for functions H 1 : B -+ C and H2 : B --- C, if H1 o F = H 2 o

F, then H1 = H2 .

17. Let A and B be nonempty sets, and let F : A -+ B be a function. Prove that the fol-
lowing are equivalent:

(a) F is1-1.
(b) There is a function G : B --* A such that G o F = IdA.

(c) For any set C and for functions H1 : C -- , A and H2 : C -+ A, if F o H1 = F o
1H2, then HI = H2.

18. Let A and B be sets with A1, A2 c A, and let F : A --+ B. Let F(A1) denote {F(x):
x e Ai } for i = 1, 2. Show that:

(a) If A1 _C A2 , then F(A1) C F(A2).
(b) F(A1 U A 2) = F(A 1) U F(A 2).
(c) F(Ai n A2) C F(A1) n F(A2).

The Pigeon-Hole Principle 253

(d) F(A 1) - F(A 2) _ F(Ai - A2).
(e) A, c F-I(F(A1)).
(f) Find an example in which A 1 C A2 but F(A 1) = F(A 2).
(g) Find an example in which A 1 36 F- 1 (F(A 1)).

19. Let A be any nonempty set, and let .FA be the set of all functions from A to R.

(a) Why is F + G E YA for all F, G e .A.
(b) Prove (F+G) +H = F+(G+H) for all F,G,H E•YA.
(c) Let Zero E .FA be defined by Zero(a) = 0 for all a E A. Prove that Zero + F = F

for all F E `A.
(d) For F E .- A, define P by F(a) = -F(a) for each a E A. Prove that F + F =

Zero = F + F for all F E YA.

20. Let .A be defined as in Exercise 19. For each F, G E .FA, define F . G(a)=
F(a) . G(a).

(a) Why is F. G eFA for all F, G e•YA?
(b) Prove that F. G = G. F for all F, G E YA.
(c) Prove that (F. G). H = F. (G. H) for all F, G, H E .A.
(d) Prove that the function U : A --> R defined by U(a) = 1 for all a E A satisfies

U.F = F = F. U for all F E YA.
(e) Prove that (F+G)•H = F.H+G.H for all F,G, H E.-A with F+G de-

fined as in Exercise 19.
(f) Prove there are F, G Ef7A such that F 0 Zero and G # Zero but F. G = Zero.

21. (a) Let F : A -- B be a function. Prove that F is onto if and only if F- 1 (Bi) A 0 for
each nonempty subset B 1 of B.

(b) Let F : A -> B be a function. Prove that F is onto if and only if F(F-I (B 1)) -

BI for all B 1 C B.

22. Let X be a set, and let .Fx be the set of all 1-1 functions from X onto X. We have two
operations on functions in Fx : o and -1. Prove the following statements called group
axioms. (If the results are already proved in the book, note where to find the proofs.)

(a) For all F, G E Yx, F o G E Y.
(b) For all E, G, H c .x, (F o G) o H = F o (G o H) (Associative Law).
(c) For all F E Fx , F o Idx = Idx o F = F. (Identity Axiom).
(d) For all F E Yx, there exists an F- 1 such that F o F-1 = F- 1 o F = Idx (In-

verse Axiom).

23. An operation ® on a set Y is commutative if for all y, z E Y, y ® z = z ® y. For X
and .x as defined in Exercise 22, prove that o need not be commutative on .x.

24. Let F: A --+ B be a function. Define G : P(3) -> P'(A) by G(B 1) = F-I(B1).
Prove that G is 1-1 if and only if F is onto.

U The Pigeon-Hole Principle

After a February town meeting in rural New England, the 200 people attending entered the
parking garage to get their cars and drive home. (Assume that no one was walking home
in the typical winter weather.) An observer counted 65 cars exiting the parking garage.

254 CHAPTER 4 Functions

What can we conclude about the function that maps people to the cars in which they are
riding? Is it 1-1? Is it onto? How far is it from being 1-1? From being onto? A similar
question could be how many of the students in your class have a birthday on the same day

of the week this year. The results of this section will help you answer these and similar
questions as well as see applications of the results presented in other contexts.

For the remainder of this chapter, we will discuss only total functions.

4.6.1 kto 1 Functions

The first step in answering the questions posed at the beginning of this section is to deter-
mine if more than one element in a function's domain must be mapped to a single element
in the function's range.

Definition 1. Let F : X -+ Y be a function. Let k E N. F is k to 1 if, for each y E Y,
there are at most k different x's in X with F(x) = y. Alternatively, for each y E Y,

I {x e X : F(x)= y I <_k

Example 1.

(a) Let F : {0, 1, 2, 31 --* {a, b, c, d} be a function defined as

o

2

3 d
F

F is 2-1.

(b) Let F : (0, 1, 2, 3} -[{a, b, c} be a function defined as

o

2 .

3 d
F

F is 3-1. F is neither 2-1 nor 1-1.

It may seem strange that a 1-1 function is 58 to 1, but it certainly is by the definition.
If k elements are mapped to a given element, the function is not m to 1 for any m < k but,
rather, is m to 1 for any m > k. Definition 1 gives a way to talk about the more important

fact that is the smallest integer for which some element in the codomain has k preimages.

Theorem 1. Let F : X -+ Y is k to 1, and let I Y I be finite, with IYl = n. Then, X is

finite, and I X I < k n.

Proof For each of the n elements of Y, there are at most k elements of X mapped to each
element of Y. So, only k • n elements can be mapped to all the elements of Y. However,

The Pigeon-Hole Principle 255

every element of X is mapped to some element of Y, so there are at most k . n elements
in X. M

4.6.2 Proofs of the Pigeon-Hole Principle

Consider again the New England town meeting example. If at most one person left in each
car, then at most 65 people left the garage. This notion is formalized in the contrapositive
to Theorem 1, which is used more often than the theorem itself. The contrapositive is so
important that we state it separately, in two variants. The contrapositive has two names: the
Pigeon-Hole Principle and the Dirichlet Drawer Principle. A more colorful description
of this principle is often given in terms of pigeons and nesting holes. Suppose m pigeons
are placed into n nesting holes where m > n. Then, (at least) one nesting hole contains (at
least) two pigeons.

Theorem 2. (Generalized Pigeon-Hole Principle) Let F : X --* Y be onto where
I X I = m and I Y I = n. Then, there is a y E Y that is the image of at least

elements of X.

Proof. Suppose no y is the image of more than [] - 1 elements of X. Then, the total
number of elements in X is at most

m (F -1 <n ()+ m-1)=

This contradiction proves the result. U

The formulation of the Generalized Pigeon-Hole Principle involved the ceiling func-
tion. It can also be stated using the floor function since for m > n > 0, we have

Example 2. Suppose a class has 89 students. How many students (at least) must have a
birthday in the same month.

Solution. Use the Generalized Pigeon-Hole Principle, and calculate

F12811-91_-
The same answer can be found by computing

89- 1 81 2 +1=8M

Theorem 3. (Pigeon-Hole Principle) Let X and Y be sets, and let F : X -+ Y where
X and Y are finite and I X I > I Y I. There is a y E Y that is the image of at least two
elements of X.

256 CHAPTER 4 Functions

Proof By Theorem 2, ifm= lXI andn= YI within >n, then >_n+1, which
implies

[m] [n + >l
n -- n - M

Theorem 3 gives a condition that ensures a function is not 1-1 when X and Y are finite
sets.

Example 3. The setting for this example is a room containing 367 people.

(a) At least two of these people have the same birthday.
(b) At least 31 of these people were born in the same month (though possibly in different

years).
(c) Provided no one is more then 121 years old, at least four of these people are the same

age (number of years).

Proof

(a) Let X be the set of people. Let Y be the set of the 366 possible birthdays. Let
BirthDay : X -* Y map each person to his or her birthday. Then, by the Pigeon-Hole Prin-
ciple (Theorem 3), BirthDay is not 1-1.
(b) Let X be the set of people, and let Y be the set of the 12 months. Let

BirthMonth : X -) Y

be the mapping that takes a person as input and gives the month containing that per-
son's birthday as output. By the Generalized Pigeon-Hole Principle (Theorem 4.2), at least
L (367 - 1)/12j + 1 = 30 + 1 people will have the same birth month.
(c) This proof is left as an exercise for the reader. U

Theorem 4 deals with the question of how far a function is from having a single image
for each element of the domain by guaranteeing that some element will have many images.
Theorem 5 is related to the idea that a function is 1-1.

Theorem 4. Let F:X- YwhereXandY are finite. LetkENandIX >k'IYI.
Then, F is not k to 1.

Theorem 5. Let F : X - Y where X and Y are finite with IXi = Y I. Then, F is 1-1
if and only if F is onto.

Proof

(::) Prove the contrapositive: If F is not onto, then F is not 1-1. If F is not onto, then
there is a y E Y that is not in the range of F. So, F is also a function from X to Y - {y}.
I Y - {Y} I < I Y I = I X 1, so by the Pigeon-Hole Principle, F is not 1-1.

(.:::) Prove the contrapositive: If F is not 1-1, then F is not onto. Suppose F is not 1-1,
and let n = I X I. There are at least two elements of X with the same image. Pick two, and
call them xl and x2. Let the remaining elements of X be X3, X4. Xn. Now, count the
elements in

range(F) = {F(x) :x E X} = {F(xj), F(x 2), F(x 3), , F(xn)}

The Pigeon-Hole Principle 257

Since F(xl) = F(x 2), F(xl) and F(x2) account for one element in range(F). The elements

F(x 3), F(x 4) F(xn)

account for at most n - 2 more. That leaves at most n - 1 elements in range(F). Since Y
has n elements, range(F) is not all of Y, so F is not onto. 0

Theorem 6. Let X and Y be sets and X be finite. Let F : X --* Y be 1-1 and onto. Then,
Y is finite, and I X I = I Y 1.

As an example of applying Theorem 6, suppose a professor enters a classroom that she
knows contains 55 chairs. Now, suppose the professor can see that all students are seated,
no chairs are empty, and no chair has two people sitting in it. If the professor wants to
know how many students are seated in the room, it is not necessary to count them. Let
the function SeatOf map each student to the chair that student occupies. The professor has
observed that SeatOf is 1-1 and onto. Therefore, the number of students equals the number
of chairs: 55.

4.6.3 Application: Decimal Expansion of Rational Numbers

We will present several examples and prove several theorems that are applications of the
Pigeon-Hole Principle. These results are interesting in their own right, but they also give
insight regarding possible applications of the Pigeon-Hole Principle.

The first application concerns converting fractions to decimals or, in more formal lan-
guage, expressing rational numbers as decimals. A rational number of the form

0.di d2 ... dndi di +l ... dndidi+j ...' d, '

with the digits didi+l ... d, repeating is denoted as

0.dld2 ... di-ldidi+l ... d.

The following are examples of the conversion of a fraction to a decimal with the special
notation for the repeated digits:

1
- = 0.1 = 0. 10000... 00 ... = 0.10
10

102
- 4.08 = 4.08000.. ... =0. 4.080

25
1
-- = 0.333333 ... 33 = 0.3

3

2 = 0.181818... 1818 ... =0.18
11

The decimal expansions of 1/10 and 102/25 are finite or terminating. All but a fi-
nite number of their decimal digits are 0. The decimal expansions of 1/3 and 2/11 are
nonterminating or infinite. All these decimal expansions are repeating: After a certain
point, the decimal expansion can be generated by repeating a block of digits infinitely many
times. The decimal expansions of 1/10 and 102/25 have repeating O's. The expansion of
1/3 has repeating 3s. The expansions of 2/11 has the two digits, 18, repeating. There are
some rationals that have two repeating decimal expansions, such as 1.0000... and 0.9. (See
Exercise 14 in Section 4.5.)

258 CHAPTER 4 Functions

Study the example for finding the decimal expansion of the rational number 3/7, as
shown in Figure 4.24, to gain an insight regarding how the formal proof that follows will
proceed.

.42857 1 4...
7) 3.0000000...

28
20
14

60
56

40
35

50
49

10
7
30

Figure 4.24 Long division to calculate decimal expansion of 3/7.

The decimal expansion of 3/7 can be seen to repeat. After the sixth decimal place
has been calculated, the remainder is 3, and the rest of the division process corresponds
to dividing 7 into 0.000003. That is the same process as dividing 7 into 3, except that it is
shifted six decimal places to the right. Therefore, exactly the same sequence of quotients
and remainders will be generated as before, causing the sequence to repeat.

The ideas shown in these examples will now be incorporated into the general result
about the existence of repeating decimal expansions for rational numbers.

Theorem 7. A real number is rational if and only if it has a repeating decimal expansion.

Proof.

(::-) Suppose a real number r is rational. Show that it has a repeating decimal expansion.
First, express r as the fraction j/k where 0 < j < k. Now, consider the long division of k
into j. (For an illustration, look again at the computation of the decimal expansion of 3/7
in Figure 4.24.) The first division produces one digit (the tenths digit) of the quotient and
a remainder rl < k. The remainder is contained in {0, 1 ... , k - 1}. To prepare for the
next division, concatenate a 0 on the the end of ri. Now, repeat the procedure to calculate
another digit (the hundredths) of the quotient and another remainder r2 < k, follow this by
concatenating another 0 on the end of r2, repeat again, and so on.

The only k possible remainders at each step are 0, 1, 2 and k - 1. Hence, after
at most k + 1 steps of the division, two of the remainders must be equal. Then, however,
the process must start repeating, as in the previous illustrations. It is important that at the
end of each step, the same digit, 0, and not any other digit, is always concatenated onto
the remainder. The digit concatenated is always 0, because j and k are both integers and

0 < j < k. This guarantees that when remainders are equal, the entire process repeats. So,
r has a repeating decimal expansion.

(4=) Suppose a real number r has a repeating decimal expansion. Again, for convenience,
we will limit the proof to decimals in the interval (0, 1). For illustration, use

The Pigeon-Hole Principle 259

r = 0.4579909909909909... 909909...

with repeating block of digits 909. It is easier to work with expansions in which the repeat-
ing part appears beginning immediately to the right of the decimal point. To accomplish
this proof, we will need to multiply the decimal by some power of 10. This is really just
for our convenience and does not affect the proof.

If the repeating part has length k that begins j digits to the right of the decimal point,
multiply r by 1 0 j+k. In the illustration,

107 . r = 4579909.909909909... 909

Now, multiply r by 10', and subtract the product from 10 +k • r, giving d = (IOj+k -

10') • r. In the illustration,

107r = 4579909.909909909909... 909...

- 10 4r = -4579.909909909909... 909...

(107 - 104) r = 4575330.000000000000... 000...

Since all digits past the decimal point match, the subtraction results in all O's to the right of
the decimal point. Therefore, the difference d is an integer. It follows from this computation
that r = d/(lOj+k - 10'). Therefore, r is a rational number. U

4.6.4 Application: Problems with Divisors and Schedules
In scenarios as diverse as studying for exams or finding divisors of sums of numbers, the
Pigeon-Hole Principle can provide answers to many questions.

Example 4. Let m E N. Given m integers al, a2 am, there exist k and I with 0 <
k <1 <m such that

ak+1 + ak+2 + + + al

is divisible by m.

Solution. Consider the m sums:

al,al +-a2, al +-a2 +-a3 ... , al +-a2 +,,. +-am

If any of these sums is divisible by m, then the conclusion follows. If not, then we may sup-
pose that each sum has a nonzero remainder when divided by m. The possible remainders
are

Since there are m sums and only m - 1 possible remainders, at least two of the sums must
have the same remainder when divided by m (according to the Pigeon-Hole Principle).
Therefore, there are integers k and 1 with 1 > k such that

al +a2+.'.+ak

and

al +a2 + + al

260 CHAPTER 4 Functions

have the same remainder r when divided by m. That is, there are integers c, d, and r such
that

al +a2 +'+'ak =cm +r

and

al+a2±+'+al =dm + r

Subtracting the k-element sum from the i-element sum gives

ak+4 + ak+2 + + al = (d - c)m

Therefore,

ak+1 + ak+2 + + al

is divisible by m. U

Example 5 shows how a scheduling decision can be better understood.

Example 5. The local softball league wants to schedule at least one game every day
during the 11-week summer season. To keep the fields in good condition, it is decided to
schedule no more than 12 games in any week. Show that there is a succession of days
during which exactly 21 games are scheduled.

Solution. Let al be the number of games scheduled for day 1. In general let ai where
1 < i < 77 be the total number of games played on days 1 through i. The sequence of
numbers a I, a2 a77 is strictly increasing since at least one game is played each day.
Since al > 1 and at most 12 games are played in a week, we have a77 < 132. The se-
quence al + 21, a2 + 21 ... , a77 + 21 is also an increasing sequence. Each of the 154
numbers al, a2 ... , a77, al + 21, a2 ± 21 a77 + 21 is an integer between l and 153.
Since there are 154 numbers, then by the Pigeon-Hole Principle, two of them must be
equal. No two of the numbers al, a2 ... , a77 are equal, however, and no two of the num-
bers al + 21, a2 + 21 a77 + 21 are equal. Therefore, there are i and j such that

ai = aj + 21

Thus, on days aj+l, aj+2. ai, 21 games are scheduled. U

It would be nice if we knew how many days were used for these 21 games. The only
thing we can say for sure is that the number of days is no more than 21 and no less than 11.
In 7 days 12 games can be played. During a second week an additional 12 games can be
played. Since at least one game must be played each day, a total of 21 games cannot occur
in fewer than 11 days.

4.6.5 Application: Two Combinatorial Results

The two results included here are probably surprising as far as finite sequences of natu-
ral numbers. The first proves that two elements of certain finite sequences must have the
property that one divides the other. The second proves that some sequences always have
an increasing or decreasing subsequence that is at least of a length given as a function of
the number of elements in the sequence. Both of these results are credited to the eminent
mathematician Paul Erdds (1913-1996, b. Hungary).

The Pigeon-Hole Principle 261

To appreciate these two results, it is helpful to experiment with some subsets of a set,
say (1, 2, 3 ... , 17}, and see how large a subset you can find so that no elements of the
subset divides any other element of the subset. For a second experiment, write down these
17 elements in an arbitrary order (not in increasing or decreasing order), and see how long
a subsequence you can find that is either increasing or decreasing. For example, try

12,6,3,7,8, 1, 17, 16, 14, 15, 13,2,9, 10,4, 11

You should be able to find an increasing subsequence of length six but no increasing sub-
sequence of longer length. The theorems will tell us what we can always expect as answers
for these two problems.

Theorem 8. (Erdos) Let

X C {1,2,3,4,..., 2n - 1}

and I X I > n + 1. There are two numbers a, b E X with a < b such that a divides b.

Proof. For x E X, let F(x) be the largest odd divisor of x. So

F(1) = 1, F(2) = 1, F(3) = 3, F(4) = 1, F(5) = 5, F(6) = 3....

and so forth. For x E X, there are n possible values for F(x), namely 1, 3, 5,..., 2n - 1.
There are at least n + 1 elements of X. So, F is not 1-1 on X. Pick two elements of X
whose images under F are the same, and call the smaller one a and the larger one b. Now,
let

k = F(a) = F(b)

So a = 2i • k, and b = 2i. k where i < j. Then, b = a. 2j-', so a divides b. U

Theorem 8 is the "best possible" result. That is, if the hypothesis instead required only
that I X I = n, then the result would be false. To prove this for any n, choose

X = {n,n+ 1,n+2,..., 2n- 1}

Then, I X I = n. Now, show that no element of X is a factor of any other. Because if a were
a factor of b, then a . c = b for some c. Since a < b, we must have c > 1. However, a > n
and b < 2n - 1, so

n * c <a -c = b <2n - 1

Hence,

1 <c < (2n - 1)/n <2

However, there is no integer c between 1 and 2.
Theorem 9 tells that in a sequence of n2 + 1 elements, for any n E N there is always

a subsequence of at least n + 1 elements that is either increasing or decreasing. Even in
choosing a sequence of random numbers, this behavior occurs.

Theorem 9. (Erdos and Szeker6s) Let n E N and k = n2 + 1. Let

al, a2, a3, . .. , ak

be any sequence of k distinct numbers. Then, the sequence has either an n + 1 element
increasing subsequence or an n + 1 element decreasing subsequence.

Example to Motivate Proof. Let n = 3, and consider the 10-element sequence

5064982173

262 CHAPTER 4 Functions

The goal is to find either a four-element increasing subsequence or a four-element de-
creasing subsequence.

For each element of the sequence, find the longest increasing subsequence starting
with that element. For example, starting with 5, there are three increasing subsequences of
length three (5 6 9, 5 6 8, and 5 6 7), but none of length four. Starting with 0, there are sev-
eral increasing subsequences of length three but none of length four. Under each number,
write the length of the longest increasing subsequence starting with that number:

5 0 6 4 9 8 2 1 7 3

LongestlncSeq(*) 4, 4, I , 4, 4, 4, 4, 4, 4,

3 3 2 2 1 1 2 2 1 1

If any of these subsequences had length four or greater, then that subsequence would be the
example needed. In this case, there is no such subsequence, since each of the 10 elements of
the sequence mapped to 1, 2, or 3. By the Generalized Pigeon-Hole Principle, we know that
at least four elements of the sequence must map to the same value. In this example, each
element of the subsequence (6, 4, 2, 1) maps to 2, and each element of the subsequence (9,
8, 7, 3) maps to 1. Both of these subsequences are decreasing subsequences of length four.

Proof. Let k = n2 + 1 and the sequence aI, a2 ak be given as in the statement of
Theorem 9. For each ai, define a function F such that F(a,) is the length of the longest
increasing subsequence starting with ai.

We first show that if i < j and ai < aj, then F(ai) > F(aj). This follows because,
if, say, F(aj) = 1, then there is a length-I increasing subsequence beginning with aj :
aj = bj < b 2 < ... < bl. Then, ai < bj < b2 < ... < bl is a subsequence of length l +
1, which implies that F(ai) > 1 + 1 > F(aj). In particular,

if i < j and F(ai) = F(aj), then ai > aj

Case 1: For some i such that 1 <i <k, we have F(ai) > n. Then, there is an increasing
subsequence of length n + 1 starting with ai.
Case 2: There is no i such that 1 < i < k with F(ai) > n. Consequently, the range of F
is a subset of the n-element set { 1, 2, 3. n }. By the Generalized Pigeon-Hole Principle,
at least

[ý(k -1)j L (n 2+ 1)] +1I =n±1

elements of the sequence will be mapped to the same element of {1, 2,..., n). By the
remark before Case 1, these n + 1 elements form a decreasing sequence. 0

rn Exercises

1. Prove that in any set of 27 words, at least two must begin with the same letter assuming
at most a 26-letter alphabet.

2. Prove that in any group of five integers, at least two have the same value under the
(mod 4) operation.

Exercises 263

3. Prove that in any class of more than 101 students, at least two must receive the same
grade for an exam with grading scale of 0 to 100.

4. Prove that for any 44 people, at least four must be born in the same month.
5. Prove that in any class of 35 students, at least seven receive the same final grade, where

the scale is A-B-C-D-F.
6. Area codes are used to distinguish phone numbers for which the last seven digits are

the same. If you have 35,000,000 phone numbers in a state and an area code can
distinguish approximately 900,000 phone numbers, how many area codes are needed
to distinguish the phone numbers of this state?

7. There are 35,000 students at State University. Each student takes four different courses
each term. State University offers 999 courses each term. The largest classroom on
campus holds 135 students. Is this a problem? If so, what is the problem?

8. At Bridgetown University, there are 45 time periods during the week for scheduling
classes. Use the Generalized Pigeon-Hole Principle to determine how many rooms (at
least) are needed if 780 different classes are to be scheduled in the 45 time slots.

9. Suppose someone (say, Aesop) is marking days in some leap year (say, 2948). You do
not know which days he marks, only how many. Use this to answer the following ques-
tions. (Warning: Some, but not all, of these questions use the Pigeon-Hole Principle.)

(a) How many days would Aesop have to mark before you can conclude that he
marked two days in January?

(b) How many days would Aesop have to mark before you can conclude that he
marked two days in February?

(c) How many days would Aesop have to mark before you can conclude that he
marked two days in the same month?

(d) How many days would Aesop have to mark before you can conclude that he
marked three days in the same month?

(e) How many days would Aesop have to mark before you can conclude that he
marked three days with the same date (for example, the third of three different
months, or the 31st of three different months)?

(f) How many days would Aesop have to mark before you can conclude that he
marked two consecutive days (for example, January 31 and February 1)?

(g) How many days would Aesop have to mark before you can conclude that he
marked three consecutive days?

10. Prove that for any collection of n people, two persons have the exact same number of
acquaintances in the group provided that each person has at least one acquaintance.

11. There are five suburbs in the city of Melbourn. How many all-stars must be picked
from each suburb to guarantee that at least five players come from the same suburb?

12. A bowl contains raspberry and orange lollipops, with 15 of each. How many must be
drawn one at a time to ensure that you have at least three orange lollipops?

13. A man has 10 black socks and 11 blue socks scrambled in a drawer. Still half-asleep,
the man reaches in the drawer to get a pair of matching socks. How many socks
should he select, one at a time, before he will be sure that he has a matching pair. How
many selections are needed to be sure he has a blue pair?

14. Prove that:

(a) 0.999999.. .99... = 1
(b) 0.346270 = 0.346269

264 CHAPTER 4 Functions

15. Construct a sequence of 16 integers that has no increasing or decreasing subsequence
of five elements.

16. During a month with 30 days, a team will play at least one game a day but no more
than 45 games in all 30 days. Show that there is a stretch of consecutive days during
which the team plays exactly 14 games. (Hint: Let ai be the number of games played
on or before the ith day for 1 < i < 30.)

17. A widget-maker makes at least one widget every day but not more than 730 widgets
in a year. Given any n, show that the widget-maker makes exactly n widgets in some
set of consecutive days. For some n, it may take more than a single year.

18. A student has 37 days to prepare for an exam. From past experience, he knows that
he will need no more than 60 hours of study. To keep from forgetting the material,
he wants to study for at least one hour each day. Show that there is a sequence of
successive days during which he will have studied exactly 13 hours.

19. For any four integers, none of which is even and none of which is a multiple of
5, prove that some consecutive product of these ends in the digit 1. A consecutive
product is one term, two terms in a row, three terms in a row, or all four terms. For
example, for the four integers a, b, c, and d a consecutive product would be a • b but
not a . c. (Hint: Prove that if b c, b- c- d do not end in a 1, and if there is no integer
ending in 1 among a, b, c, and d, then a, a. b, a. b c, and a- b. c- d are all distinct.
Use Theorem 3 in Section 4.6.2).

20. Select 100 integers from the integers 1, 2 ... , 200 such that no one of the chosen
values is divisible by any other chosen value. Show that if one of the 100 integers
chosen from 1, 2,..., 200 is less than 16, then one of those 100 numbers is divisible
by another.

21. Prove the assertion in Example 4(c).
22. (a) Find two functions F, G : N - N that are 1-1 but not onto.

(b) Find a function G : N --* N that is onto but not 1-1.
(c) Challenge: Suppose G : N -* N is onto but not 1-1, and suppose G is specified

by an algorithm A. Show that there is an algorithm A' that computes a function
F : N - N, where G o F = IdN. Also, show that F must be 1-1 but not onto. We
have not been precise about what an "algorithm" is; you might choose to interpret
an "algorithm" as being a function written in some programming language. (Hint:
A' can use A as a subprogram.)

23. Infinite Pigeon-Hole Principle: Suppose X is an infinite set and Y is a finite set. Now,
suppose F : X -* Y. Show there is a y c Y such that for infinitely many x E X such
that F(x) = y.

W Countable and Uncountable Sets

In this section, we develop the notion of counting the elements of a set or cardinality more
carefully. The modem notion of cardinality is credited to Georg Cantor (1845-1918, b.
Russia), who found an abstract notion of counting that enabled mathematicians to speak
of the cardinality of an infinite set. The notion also enabled mathematicians to discuss the

Countable and Uncountable Sets 265

cardinality of finite sets more precisely. In Section 1.5.1, we gave a provisional definition
for counting the number of elements in a set that can now be made more precise.

Consider checking to see whether the sets {red, blue, green) and {Jean, Michele, Paul)
have the same number of elements. Of course, each set has three elements, and one merely
counts the elements:

{(0, red), (1, blue), (2, green))

and

{(0, Jean), (1, Michele), (2, Paul)}

Each of the two sets of ordered pairs are 1-1 functions, the first from {0, 1, 21 onto {red,
blue, green--call it Color-and the second from {0, 1, 2} onto {Jean, Michele, Paul)-
call it Person. Consider the set {0, 1, 2} only as an intermediary. The function Color-1 o
Person is a 1-1 function (Theorem 3(c) in Section 4.3.2 and Theorem 2(a) in Section
4.3.1) (from {red, blue, green) onto {Jean, Michele, Paul). This function shows, without
explicitly counting, that the two sets have the same number of elements in the sense that
we now make more precise.

Definition 1. (Cantor) Let X and Y be sets. Then, the cardinality of X is less than or
equal to the cardinality of Y, written I X I < I Y 1, if there is a 1-1 function F : X --* Y.
The cardinality of X is equal to the cardinality of Y, written I X I = I Y I, if there is a 1-1
correspondence F : X --> Y. The cardinality of X is less than the cardinality of Y, written
X I<IY 1, if IX l_<IYland IY I IX 1.

The definition of I X = I Y I generalizes Theorem 5 in Section 4.6. Notice that we
have not defined the term cardinality of X here, only some relationship between X and Y.

Using these notions, one can define the usual notion of cardinality for a finite set.

Definition 2. Let X be a set and n e N. If X has the same cardinality as the set
{0, 1,2 ... , n - 1}, then the cardinality of X is n. We say X is finite if X has cardinality
equal to some natural number. We say X is infinite if X is not finite.

At this point, the careful reader should note that, since we have redefined (or per-
haps, at last, defined) a term we have used throughout this book, some of our ear-
lier proofs may have been false, relying on unprovable intuitions. In fact, as the reader
surely suspects, the earlier results are not false by this definition; however, the proofs
may have important parts missing. This is not a book about the foundations of math-
ematics, so we shall not go back to recheck any proofs. We shall make one further
remark, however: The entire discussion of the Pigeon-Hole Principle depended crit-
ically on the result that if m and n are natural numbers and m > n, then the sets
{0, 1, 2 ... , m - 11 and {0, 1, 2, , n - 1) do not have the same cardinality. After the
previous discussion, the student likely has no idea what one is allowed to use in prov-
ing such a result. In the development of the foundations of mathematics, this theorem
can be proved by induction on m. The interested reader is invited to look for a simple
proof.

The following properties of cardinalities are easy to prove. They are also suggested by
the notations for equal (=) and less than or equal (<), but it is, of course, very dangerous
to assume such results by analogy based on notation.

266 CHAPTER 4 Functions

Theorem 1. (Properties of Cardinalities) Let X, Y, and Z be sets.

(a) IXI < IXI.
(b) If IXlI_<lIY Iand IYl_ <IZ1, then IX _ < IZ 1.

(c) IX =IXI.
(d) If I X I = l Yl, then lYI = IXi.
(e) IflXI = IYI andIYI-=I ZI,thenlXI---Z1.

Proof This proof is left as an exercise for the reader. 0

One is tempted to restate parts (c) through (e) of Theorem 1 by stating that the relation
has the same cardinality as is an equivalence relation. This is not done, however, because
if it is an equivalence relation, then it is an equivalence relation on the set of all sets-but
the set of all sets does not exist! Even so, it is correct to say that has the same cardinality
as is an equivalence relation on any set of sets.

A fundamental result regarding cardinality uses the work of Georg Cantor, Friedrich
Schrider (1841-1902, b. Germany), and Sergi Bernstein (1880-1968, b. Ukraine).

Theorem 2. (Cantor-Schroder-Bernstein) Let X and Y be sets, and let I X I <I Y I
and I Y I _ I X 1. Then, I XI = I Y 1.

The proof of the Cantor-Schroder-Bemstein Theorem is fairly complicated, and we re-
fer the reader to a text about set theory. A related question is whether there exist two sets X
and Y where I X I • I Y I and I Y I ;ý I X I. This question turns out to be related to whether
one accepts a famous and, sometimes, controversial axiom called the Axiom of Choice.
The reader is also referred to books on set theory and the foundations of mathematics for
discussion of this issue.

4.8.1 Countably Infinite Sets

Cantor's definition allows a more careful development of the study of finite sets, but the
study of infinite sets under Cantor's definition is sometimes surprising. The simplest infi-
nite sets are N and those other sets with the same cardinality as N.

Definition 3. Let X be a set. X is countably infinite if I X I = I N I. If X is countably
infinite, the cardinality of X is No (pronounced aleph nought), written I X I = Ko. X is
countable if it is either finite or countably infinite. If a set is not countable, then it is
uncountable.

In Definition 3 the object No was left undefined. For set theorists, No is another name
for N, but the symbol tRo is used almost exclusively to denote the cardinality of N.

Theorem 3. Any countably infinite set is infinite.

Proof. As noted earlier, N is infinite. Now, suppose a set X is both countably infinite and
finite. Then, there are 1-1 correspondences F : X -+ N and G : X -+ {0, 1, 2,..., n} for
some natural number n. However, then F-1 o G : N -* {0, 1, 2 ... , n} is 1-1 and onto by
Theorem 3(c) in Section 4.3.2, contradicting the result, noted above, that N is infinite. U

Theorem 5 in Section 4.6.2 says that for finite X and F : X -> X, F is 1-1 if and only
if F is onto. This result fails for infinite X. Earlier (see Section 4.1.8), a 1-1 function from

Countable and Uncountable Sets 267

JR to JR was given that is not onto, and an onto function from R to R was given that is not
1-1. We recommend the reader find a 1-1 function from N to N that is not onto and an
onto function from N to N that is not 1-1.

The next three results give proofs that some of the common sets we use are indeed
infinite.

Theorem 4. Evens = {n E N :n = 2k for some k e N} is countably infinite.

Proof. Let

F : N -+ Evens

be defined by F(n) = 2n. The graph of this function is shown in Figure 4.25.

1

1 2
2 3
3 4
4 5

5 6
67

8
9
10
11

12

Figure 4.25 Bijection F(n) = 2n maps N to Evens.

Show that F is both 1-1 and onto. First, show that F is 1-1. Suppose F(m) = F(n).
That is, suppose 2m = 2n. Dividing both sides by 2 gives m = n. So, F is 1-1. Now show
that F is onto. Suppose k is even, and show that k = F(n) for some n E N. Since k is even,
k = 2no for some no E N. Now, F(no) = 2no = k as required. 0

Theorem 5 tells us that there were infinitely many base cases in our proof of the Fun-
damental Theorem of Arithmetic.

Theorem 5. The set of prime positive integers is countably infinite.

Proof. First, show that the set of primes is not finite. Suppose it were, and let the set of
primes be

{p, pi P dn-1

The set is nonempty since 2 is a prime. Now, let k = Po" Pl ... •Pn-1 + 1. None of the
given primes divides k, because each divides k - 1. Thus, there must be some other prime
that divides k-perhaps even k itself. In any case, the existence of at least one more prime
contradicts our assumption that P0, P1. Pn-1 are the only primes. Therefore, there
must be infinitely many primes.

268 CHAPTER 4 Functions

Now, show that the set of primes is countably infinite. List the primes in increasing
order:

2,3,5,7, 11, 13, 17,19,23,29,31,37,41,43,47,53,59,....

Then, define a function

P : N --+ {2, 3,5,7, 11, 13, 17, 19,23,29,31,37,41,43,47,53,59,....

by the rule that P(n) is the nth prime on the list for n = 0, 1, 2, 3 We claim that P is
a 1-1 and onto function. Function P is 1-1, because it is strictly increasing. Function P is
also onto, because the nth prime is always larger than n, so if k is prime, then k = P(n)
for some n E {0, 1, 2 k - 11. 0

The first somewhat surprising result that follows from Theorem 5 is that there are no
more integers than there are prime numbers, even though there certainly are gaps between
consecutive primes.

Theorem 6. Z is countably infinite.

Proof. This part depends on listing the integers in a special order-in order of their ab-
solute values. First, list the integer with absolute value 0:

0

Then, add to the list the integers with absolute value 1:

0, -1, 1

and so forth:

0, -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, , -n, n....

We must now formalize this idea of a function. For any n E N, define G(n) to be
the nth number on this list. It is apparent that every integer is listed exactly once on the
list. In fact, it is easy to see that G(0) = 0, and for n > 1, we have G(2n - 1) = -n and

G(2n) = n. It follows that the function G : N -÷7 Z is 1-1 and onto. U

4.8.2 Cantor's First Diagonal Argument

Cantor found two important proof techniques for showing that two sets had the same car-
dinality. The first of these arguments, called Cantor's first diagonal argument, is used in
proving that I Z I = I Q I.

Theorem 7. Q is countably infinite.

Proof. The proof depends on listing all the rational numbers in a special order. For each
rational number r, pick out its expression p/q in lowest terms where q > 0. Lowest terms
means p and q have no common divisor. For every rational number p/q written in lowest
terms, compute the number I p I + q. Since p and q are integers and q > 0, I p I + q is a

Countable and Uncountable Sets 269

positive integer. For I p I + q = 1 and 2, we have

0
p Ip +q=l

-1 1

Then, for I p + q = 3, we have
-2 -1 1 2

For I p I + q = 4, skipping -2/2 and 2/2 (since they are not in lowest terms), we have

-3 3
1'1

and so forth.
The order in which the distinct rationals are listed is shown in Figure 4.26, where the

rationals p/q are represented as points on the plane with x coordinate p and y coordinate
q. As the indicated path is followed, just rationals not already occurring on the list are
added to the list.

y

(-6,6) (-5,6) (-4,6) (-3,6) ((-1,6) (0,6) 6 (2,6) (3,6) (4,6) (5,6) (6,6)

(-6,5) (-5,5) (-4,5) (7 (-1,5) (0,) 5) (3,5) (4,5) (,5) (6,5)

(-6,4) (-5,4) 7 7 (-24 (-1,4) (0,4) 4) (4,4) (5,4) (6,4)

(-6,3) (-5,3 (-4,3 (-33 3 (-13) (0,) 3) 3) 3) (5,3) (6,3)

(-1,2•) •• 62

(-,2 (-,2 (-,2(-3,2 (-2,2 g(0 (2)2) 2) 2) 2) (6,2)

.)) 1) (-2•1• 1) 0 O 1, (,1 (3,1) (4,1 (5,1) (6,1)•

(-6,0N) (-5,0) .0 - (-2,0) (-(,0) (0,0) (2,0) '(3,0) ,(,((6,0)

Figure 4.26 Order for listing elements of Q.
For any positive integer n, there are only finitely many different rational numbers p/q

with I p I + q = n. In fact, since q must be greater than zero, q must be one of 1, 2, 3 ... , n
for a total of n choices. There are two choices for p, n - q and - (n - q), giving a total
of 2n choices for p/q. Among these 2n choices, some, such as 0/2 and 2/2, will not be in
lowest terms and so will be ignored.

Let p/q be a rational number such that I p I + q = n. Then, there are fewer than

2.l+2.2+2.3+...+2.n =n.(n+ 1)

rationals that could be listed in front of p/q. Hence, every rational number ultimately
appears on the list. Furthermore, since each rational number is listed only in lowest terms,
each rational number is listed only once.

270 CHAPTER 4 Functions

Set G(n) to be the nth rational number on the list above. Then, by the discussion
above, G : N --* Q is 1-1 and onto. 0

The proof of Theorem 7 is especially important. This method of proof is called Can-
tor's first diagonal argument. Another view of how the positive elements of Q are arranged
and counted shows why this is called a diagonal argument (see Figure 4.27). Only elements
of Q with no common factors in the numerator and the denominator are shown so that no
element is counted more than once.

1/1 --* 1/2 1/3 - 1/4 1/5 1/6 1/7 - 1/8 ...

2/1 2/3 2/5 2/7 ...
177I.. 7 7J 7" 7" -
3/1 3/2 3/4 3/5 3/7 3/8 ...

7- , 7 77 7/ 7 7
4/1 4/3 4/5 4/7

5/1 5/2 5/3 5/4 5/6 5/7 5/8 ...

Figure 4.27 Counting positive rational numbers.

4.8.3 Uncountable Sets and Cantor's Second Diagonal Argument

After one sees Cantor's proof that Q is countably infinite, it is natural to conjecture that
all infinite sets are countably infinite. Hence, it may be a bit surprising that sets that are
not countable (or uncountable) exist. Cantor proved that IR is not countable. That proof
involves using the decimal expansions of real numbers.

Several familiar facts about the decimal expansion of rational numbers were presented
in Section 4.6.3. The fundamental idea needed here is that for any real number, there is a
decimal expansion of the form

C CO.C1 C2C3 ... Ci ...

where co is in Z and ci e 10, 1 ... , 91 where i c N - {O}. A thorough study of decimal
expansions requires careful development of the real numbers and will not be discussed in
this book. One property of some real numbers is that they have two decimal expansions-
for example,

117
0.233999 0.2340000

500
Important properties of the decimal representations of real numbers needed here are listed
in Theorem 8.

Theorem 8.

(a) Every real number has at least one decimal expansion, and no real number has more
than two decimal expansions.

(b) Every decimal expansion is the decimal expansion of some real number.

Countable and Uncountable Sets 271

(c) If real numbers x and y have the same decimal expansion, they are equal.
(d) If a real number has two decimal expansions, then one of them terminates in an infinite

string of O's and the other in an infinite string of 9's.

Of course, not all finite sets have the same cardinality, but by now, the reader is surely
wondering how two infinite sets could have different cardinalities. We are about to prove
that the cardinality of the open interval (0, 1) of real numbers is strictly greater than the
cardinality of N or, in other words, that (0, 1) is uncountable. We will do this follow-
ing Template 1.10, based on the fact that if (0, 1) were countable, we would be able to
list all its elements in a (countable) sequence without omitting any or duplicating any.
Let us assume that some function F defined on N lists all the decimal expansions of the
numbers in (0, 1). For the sake of developing the example to illustrate the idea of the
proof, let us suppose the function F, with F(0) = 0.254257..., F(1) = 0.751999...,
F(2) = 0.485259.•., F(3) = 0.254157.•., and continuing until our list contained every
element of (0, 1).

We need to show that such a list cannot contain all real numbers. We first display our
countably infinite sequence in a table whose diagonal elements-the first decimal digit of
F(0), the second decimal digit of F(l). the nth decimal digit of F(n - 1)-appear in
boxes:

F(0) 0.04157 ...

F(l) = 0.75]1999...

F(2) = 0.48]259...

F(3) = 0.000[J08...

We now show how to construct a number d = O.dld2 d3 ... that is not on the above
countably infinite list. Since we want to avoid having d = F(0), we decide to make the first
digit of d different from the first digit of F(0)-that is, we choose dl # 2. To be definite,
let us take dj = 5. Now, the second digit of F(l) is 5, so to avoid having d = F(l), we
take the second digit of d to be, say, 4. We continue in this fashion, taking care that dn-
the nth digit of d-is always different from the nth digit of F(n - 1). To be systematic,
we always choose d,, = 5 unless the nth digit of F(n - 1) is 5, in which case we choose
dn = 4. (So, in our example, we have d = 0.5445--..)

Thus, we have created a number d = 0.djd 2d3 ... E (0, 1), the decimal expansion of
which is different from all the decimal expansions on this countably infinite list. Further-
more, since we avoided using O's and 9's in d, we know by Theorem 8(d) that even when
some real number has a second decimal expansion, that decimal expansion cannot be d.
So, we have achieved a contradiction: We have created a real number d that could not pos-
sibly be on the countable list F(0), F(l), F(2) ... , which supposedly included all real
numbers. This example shows that the function chosen, F, did not work. The proof that
the reals are uncountable must show that no such function exists.

The proof of the next theorem formalizes this intuitive argument using an arbitrary
function. The argument is called Cantor's second diagonal argument.

Theorem 9. (Cantor) R is uncountable.

272 CHAPTER 4 Functions

Proof. It is enough to show that (0, 1) is uncountable, since clearly, 1 (0, 1) 1 < I R 1. (See
Exercise 7 in Section 4.9 for a function that is a bijection from (0, 1) to R.)

We assume that F is any 1-1 correspondence from N onto (0, 1). Let F(n) =
0. ft f2 f3 ... be a decimal representation of F(n). Construct a new decimal d =
O.d1d2d3 ... by putting d, = 4 if the f, is 5 and d, = 5 otherwise. Then, d differs from
F(n) in the nth digit. Since no digit of d is 0 or 9, by Theorem 8(d), d is the only decimal
expansion of the real number that it represents-call it D. So, if F(n) has two decimal
representations, then D is certainly not equal to F(n), and otherwise, D 7 F(n) because
dn * fn. This contradicts our assumption that F is onto. Since there is no 1-1 correspon-
dence from N to IR, we conclude the reals are not countable. U

Corollary 1: Not every real number is rational.

Proof. Since Q C R, either Q = R or there is a real number r E JR - Q. Since Q is count-
able and JR is uncountable, Q 0 R. Therefore, there is a real number that is not rational.

0

Corollary 2: The set R - Q is uncountable.

Proof. This proof is left as an exercise for the reader. 0

Working with infinite cardinalities gives us the impression that uncountable sets are
much larger than countable sets. So Corollary 2 states that almost all real numbers are
irrational. But it does not demonstrate any particular number to be irrational! It has been
known since the days of Pythagoras, an early Greek mathematician, that /2 is irrational.
Perhaps more stunning is the next theorem.

Definition 4. A real number r is algebraic if there is a polynomial P (x) of the form

P(x) = a, -x+ +- a,-I " xn-1- "I --+a2 • x 2 +- al . x + ao

where each ai is an integer and r is a root of the equation-that is,

P(r) =a, "r" +a,-, "r-I + -" +a2 .r2 +-al • r +ao = 0

For example, every rational number is algebraic: p/q where p and q are integers is a

root ofthe polynomial equation qx - p = 0. Also, '/2 and ý V9/§_ + 217 -(333/41)
are algebraic, as are almost all numbers humans normally write down.

Theorem 10. The set A of algebraic numbers is countably infinite. Furthermore, JR - A
is uncountable.

Proof This proof is left as an exercise for the reader. M

A number that is not algebraic is transcendental. Theorem 10 states that almost all
real numbers are transcendental, yet it is very difficult to show that any particular real
number is transcendental! The two standard examples are 7r and e. Proving that 7r is tran-
scendental is very complicated.

A more difficult question to answer is whether any X C R exists where I N I < I X I <
I R I. The conjecture that there is no such set X is called the continuum hypothesis. The
conjecture is a famous and much-studied question. Finally, work of the famous mathe-
maticians Kurt Godel (1906-1978, b. Austria-Hungary) and Paul Cohen (1934-, b. United

Exercises 273

States) showed that the continuum hypothesis is neither provable nor disprovable from the
standard axioms for set theory (unless it is possible to prove a contradiction from Zermelo-
Frankel set theory).

4.8.4 Cardinalities of Power Sets

A variant of Cantor's second diagonal method can be used to prove that for any set X,

I X I < I P(X) 1. Of course, that result is already known for finite sets X (see Theorem 2
in Section 1.7.4), but it is interesting that a single proof works for all sets, both finite and
infinite. This proof looks even more like the proof of Russell's paradox (see Section 1.1.1).
It follows that if F : X -+ P (X), then for each x E X, F(x) is a subset of X. So it makes
sense to ask whether x E F(x).

Theorem 11. Let X be any set. Then, I X I < IP(X) 1.

Proof. To show that [X < IP(X) 1, find a 1-1 function F: X -+ P(X). The function
F mapping each x E X to {x } is easily seen to be such a function.

To show that IP(X) I • I X 1, show that there is no 1-1 correspondence F :X -

P(X). This can be accomplished by showing that no function F : X --* P(X) is onto.
So, suppose F : X -÷ 7P(X) is an onto function. Let Y = {x E X : x ý F(x)}. Show that
Y ý range(F). Now, suppose it were, say, Y = F(y), and ask whether y E F(y):

y E F(y) , y 0 Y by definition of Y

€ y g F(y) by assumption that Y = F(y)

which is a contradiction. So, the assumption that Y E range(F) is false, and we conclude
that F is not onto. M

The cardinality of the set of all subsets of N is called 21°. It is equal to the cardinality
of IR, and it is denoted by c, for continuum.

Exercises

1. Show that ifXCY, IXI <IYI.
2. Prove that the sets X = {2n + 1: n E Z1, Y = {10j : j E Z}, and Z = {3n : n E Z}

have the same cardinality.
3. In the first quadrant of the x-y plane, draw a path that passes exactly once through each

point with both coordinates being integers. Each stopping place on the path should
only be one unit right, one unit up, one unit left, or one unit down from the previous
stopping place. Start the path at (0, 0). Use the path to construct a bijection from N to
NxN.

4. Show that the following sets are countably infinite:

(a) {q E Q: q > 101
(b) {q E Q :q 2 <q}

(c) {q E Q :q = i/j where i is odd and j is even}

274 CHAPTER 4 Functions

5. (a) Prove that if X and Y are countable sets, so are X U Y, X fl Y, X - Y, and X x Y,
(Caution: Countable means either finite or countably infinite, so there may be
separate cases to consider.)

(b) If X and Y are countably infinite, which of the following sets must be countably
infinite: X U Y, X n Y, X - Y, and X x Y?

6. Prove that every subset of N is countable.
7. Prove that the function F : (0, 1) --* R defined as F(x) = (1/2 - x)/(x (1 - x)) is a

bijection.
8. Find 1-1 and onto functions from R to the following sets:

(a) (0, 1)
(b) [0, 1]
(c) (0, 1)- {1/2}
(d) JR - Q, the irrationals

9. Prove Theorem 1.
10. Prove Corollary 2 to Theorem 9.
11. A chain-letter scheme is a famous (and usually illegal) get-rich-quick scheme. A per-

son X receives a letter with, say, five names on it. X sends $10 to the person whose
name is at the top of the list. X then deletes that name from the top of the list, adds
his or her own name to the bottom of the list, and sends the letter to five "friends," all
within one day. In around two weeks, X is supposed to receive $31,250.

Suppose every person who receives the letter follows the instructions (including
sending $10 to the person listed first!). Show that if there are only finitely many peo-
ple, the scheme cannot work (in some sense of "cannot work" that you should make
precise). Show that if there are countably infinitely many people, the scheme can work.

12. Show for the natural numbers N that

P(N)I > INI

13. Challenge: Show that I JR = P(N) 1. (Hint: Use the Cantor-Schr6der-Bemstein The-
orem. To show that IR I < I P(N) I, you might use function D : JR --+ P(Q) where for
r E R, D(r) = {q e Q : q <r}.)

14. Show that / is algebraic.
15. Show that there are infinite sets

XO, X 1 , X 2. Xk, Xk±1l....

where for each k E N, I Xk I < I Xk+1 I.
16. Challenge: Show how to modify Cantor's second diagonal argument so that the real

number produced is always irrational. (Hint: There is more than one way to do this.)
17. (a) Show that the set of all finite sequences of elements of the one-element set {0} is

countably infinite.
(b) Show that the set of all finite sequences of elements of the two-element set {0, 1}

is countably infinite.
(c) Challenge: Show that the set of all finite sequences of natural numbers is count-

ably infinite. (Hint: Use a diagonal argument.)

18. (a) Show that the set of all infinite sequences of elements of the one element set {0}
is finite.

Chapter Review 275

(b) Show that the set of all infinite sequences of elements of the two element set {o, 1
has the same cardinality as P(N).

(c) Challenge: Show that the set of all infinite sequences of elements of N has the
same cardinality as 'P(N).

rnChapter Review

Functions describe the transition from input information to output information. Functions
are a special class of relations, and they can be defined and studied in that context. Func-
tions can also be defined either as sets or as rules of correspondence. In addition, the rules
of correspondence can either give the value of the function directly from the input value
or recursively, in terms of other values of the function. There are even rules of corre-
spondence that do not always give an output value for each possible input value. These
correspondences are called partial function. Partial functions are especially important in
describing the behavior of programs.

Two key properties that a function may possess are being 1-1 and/or being onto. The
notion of functions being 1-1 and onto leads to two major topics. The first focuses on
functions that are 1-1 or measures how far a function is from being 1-1. The principles
introduced are the Pigeon-Hole Principle and the Generalized Pigeon-Hole Principle. Op-
erations such as composition and taking inverses are also defined on functions, and the class
of function called sequences is described formally. The second topic deals with counting
the elements of a set. The notion of cardinality makes precise what it means for two sets to
have the same number of elements. Infinite sets, such as Q and R, are shown to have dif-
ferent number of elements. Various relationships between other infinite sets are explored.
Two important tools for studying the cardinality of a set are Cantor's first diagonal argu-
ment and Cantor's second diagonal argument. The class of function called sequences are
described formally.

Among the applications discussed with this material is a characterization of the prop-
erties of inverse and of composition of functions when the properties of the functions are
given. It is also shown how boolean functions can be realized by combinatorial networks.
The Pigeon-Hole Principle and the Generalized Pigeon-Hole Principle can be applied in
such diverse settings as determining what competitive schedules must look like and guaran-
teeing that a set of integers contains at least two with a common divisor. Rational numbers
are shown to have repeating decimal representations. Both N, Z, and Q are shown to have
the same number of elements.

4.10.1 Terms, Theorems, and Algorithms

4.1 Summary

TERMS

1-1 and onto function bijective function
1-1 correspondence binary function
bijection ceiling

276 CHAPTER 4 Functions

codomain injection
collision resolution strategy injective function
decreasing mapped to
decrypt one-to-one (1-1)
domain onto
encoded partial function
encrypted preimage
equal range
floor recursive definition
function recursively
graph of a function restriction
graph of a partial function strictly decreasing
greatest integer function strictly increasing
hashing function surjection
horizontal line test surjective function
identify function total function
image undefined
increasing vertical line test
independent

4.3-4.5 Summary

TERMS

commutative infinite sequence
composition invertible
decreasing inverse
F list
(F + G) sequence
(F • G) stream
(F/G) strictly decreasing
finite sequence strictly increasing
increasing subsequence

4.6 Summary

TERMS

ceiling k to 1
decreasing subsequence nonterminating
Dirichlet Drawer Principle rationals numbers as decimals
finite repeating
floor terminating
increasing subsequence

THEOREMS

Erdds Generalized Pigeon-Hole Principle
Erdds and Szeker6s Pigeon-Hole Principle

Chapter Review 277

4.8 Countable and Uncountable Sets

TERMS

aleph nought (1 O) countably infinite
algebraic finite
Cantor's first diagonal argument infinite
Cantor's second diagonal argument lowest terms
cardinality transcendental
continuum hypothesis uncountable
countable

THEOREMS

Cantor-Schrbder-Bemstein R is uncountable
Properties of Cardinalities Z is countably infinite
Q is countably infinite

4.10.2 Starting to Review

1. Which of the following are functions?

i. X is the set of students at Purdue University. For x E X, define g(x) to be the

oldest brother of x.
ii. X is the set of governors of Oregon. For x E X, define g(x) is the year that x

was first sworn into office as governor.
iii. For x E R, define g(x) = x/I x 1.

(a) i
(b) ii
(c) iii
(d) None of the above

2. Let X = [1, 2, 3, 4) and Y = [a, b, c, d} be sets. Define the following subsets of
X x Y:

F 1 = {(1, b), (4, d), (2, c), (3, a)}
F 2 = [(3, b), (1, d), (4, c), (2, b))
F 3 = {(4, c), (2, a), (3, b), (1, d)}

Which of the sets F 1, F2 , and F3 are 1-1 functions?

(a) F1, F2 , F3

(b) F1, F3

(c) F2 , F3
(d) F1, F2

3. Let X = {11, 12, 23, 44} and Y = {r, s, t, vI be sets. Define the following subsets of
X x Y:

F1 = I (11, r), (44, v), (12, s), (23, t)}
F2 = {(23, s), (11, v), (44, t), (12, s)}
F3 = 1(44, t), (12, r), (23, s), (11, v)}

278 CHAPTER 4 Functions

Which of the sets F1, F2 , and F 3 are onto functions?

(a) Fl, F2 , F3
(b) F2 , F3
(c) F1, F3

(d) F1, F2

4. Which of the following is the correct definition of a decreasing function?

(a) If for all x 1 , x 2 E X, x1 > x2 implies F(xl) < F(x2).
(b) If for all Xl, x2 E X, xI < X2 implies F(x1) < F(x 2).
(c) If for all xl, x 2 E X, x 1 < x2 implies F(xl) < F(x2).
(d) None of the above.

5. For n = 0, 1 10, list the values of the following functions defined recursively:

(a) function s(n):

if n = 0 then
return (0)

else
return (2n + s(n - 1))

(b) function p(n):

if n = 0 then
return (1)

else
return (n . p(n - 1))

(c) function d(n):

if n = 10 then
return (100)

else
return (d(n + 1) - 10)

6. Express the function F(x) = x2 + 3x + 2 as the composition of two simpler func-
tions, neither of which is the identity function.

7. Let F and G be the functions defined on {1, 2, 3, 4, 5) as follows:

F: 1 - 2 G: 1 - 3

2-- 3 2-+ 1

3-- 5 3-- 2

4 4 4 5

5-* 1 5 * 4

Prove that F and G are 1-1. Also, prove that F o G and G o F are both 1-1 and onto.
8. Let X = 1-1, 0, 1, 2) and Y = {-4, -2, 0, 21. Define the function F : X -- Y as

F(x) = x2 - x. Prove F is neither 1-1 nor onto.

Chapter Review 279

9. If a class has 89 students, how many (at least) must have a birthday on the same day
of the week?

10. Of 15 A's, 20 B's, and 25 C's, how many letters must be chosen so that 12 identical
letters will always be included in the selection?

11. From the standard deck of 52 cards, how many cards must be chosen so that three
cards from the same suit will always be included in the selection?

4.10.3 Review Questions

1. We define three functions, with definitions involving unspecified constants a and b. In
each case, whether the function defined as onto depends on the values of a and b. For
what values of the constants a and b are the following functions onto?

(a) F1 :Q -Q where F1 (x) =ax + b with a, b E Q
(b) F2 : Z Z where F2 (x) =ax + b with a, b E Z
(c) F3 : N N where F3 (x) =ax + b with a, b E N

2. Let A and B be sets with B1 , B2 C_ B, and let F : A -+ B be a function. Show that:

(a) If B1 g B2, then F-'(B1) C F-I(B2).
(b) F-I(Bl U B2) = F-I(B1) U F-I(B2).
(c) F-'(B1 n B2) = F-'(B1) n F-I(B2).
(d) F-I(B1 - B2) = F-I(B1) - F-(B2).

(e) F(F-I(B1)) c B1.
(f) Find an example where B1 C B2 but F-I(B1) = F-I(B2).

3. Show that the set {3, 6, 9, 12,) is countable.
4. Prove that the function F : [0, 1] - (0, 1) defined as F(0) = 1/2, F(1/n) = 1/(n +

2) for n E N and n > 1, and F(x) = x for all other x E [0, 1] is a bijection.
5. (a) The lattice points in the plane R2 are the points (x, y) where x and y are both

integers. Prove that there are only countably many lattice points in 1R2 .
(b) The lattice points in three-dimensional space JR3 are the points (x, y, z) where

x, y, and z are all integers. Prove that there are only countably many lattice points
in R 3.

6. Let p be any natural number and Zp = {0, 1 p - 1) be the integers modulo p. For
each integer r where 1 < r < p, the function Fr : Zp -) Zp is the function F, (n) =
r. n(mod p). Show that for each p, every Fr is a bijection if and only if p is a prime.
(Hint: Examine cases for which r . n = r. O(mod p), and then use the Pigeon-Hole
Principle.)

7. Let S be a set of six positive integers with a maximum that is at most 14. Show that
the sums of the elements in all the nonempty subsets of S cannot all be distinct.

8. If 11 integers are selected from 11, 2, 3 ... , 100), prove that there are at least two, say,
u and v, such that

0 < I 'f-- V- [< 1

9. Uses First-Order Logic: This exercise concerns a result needed for the definition of
subsequence. We took it as obvious there, but it does need proof. So, let X C N.

Part of the job here is to use as simple set theory as possible to define the functions.
You may assume that (i) sets 0, X, N, and N x X exist; (ii) for every i, j E N, (i, j)

280 CHAPTER 4 Functions

exists; (iii) for any x, {x} exists; (iv) for any sets x, y, x U y and x - y exist; and
(v) the collection of elements of any set satisfying some formula of First-Order Logic
(with quantifiers ranging over numbers and sets) exists. You are to use just this much
set theory to show that the function defined by recursion exists. The problem is that
induction may naturally be used to prove that arbitrarily large, finite sets of ordered
pairs exist, but it does not allow one to conclude that a particular infinite set of ordered
pairs exists.

Prove the following:

(a) Suppose X is finite. Let n - I X I. There is at most one increasing function from
{0, 1 ... , n - 1) onto X. (Hint: Suppose there are two, say, F and G. Prove by
induction on i < n that F(i) = G(i).)

(b) If X is infinite, there is at most one increasing function from N onto X.

4.10.4 Using Discrete Mathematics in Computer Science

1. Let F be the function that maps strings of characters and blank spaces onto
strings of characters by removing all blank spaces and all vowels. For example,
F("dog cat") = "dgct." Let G be the function that maps strings of characters onto
integers such that the value of a string is simply the number of characters in the
string. What is F("george washington")? What is G("george washington")? What is
G o F("george washington")? The function F is a simple example of a compression
technique.

2. Let F : R --* R be a function with F(x) = x2 . Define a relation R on R such that
x R y for any x, y e R if F(x) = F(y). Prove R is an equivalence relation, and find
its equivalence classes.

3. A computer is used at least one hour a day and at most 102 hours in 12 days. Prove that
in at least one pair of the six pairs of nonoverlapping consecutive days, the computer
was used for 17 hours.

4. Triangle ACE is equilateral, with AC = 1. If five points are selected from the interior
of the triangle, there are at least two whose distance apart is less than one-half. (Note:
This is a simple version of a problem in the area called computational geometry that
is actively studied in computer science.)

5. Prove there is no surjection from N to the set of functions with domain and co-
domain N.

6. Construct a bijection from the set of all polynomials of one variable with coefficients
in N to N.

7. The circumference of each of two concentric disks is divided into 200 sections. For
the outer disk, 100 of the sections are painted red, and 100 of the sections are painted
blue. For the inner disk, the sections are painted red and blue in an arbitrary manner.
Show that it is possible to align the two disks so that 100 or more of the sections on the
inner disk have their color matched with the corresponding section on the outer disk.

8. Define a hashing function as a two-stage process that uses Social Security numbers
as input. The first step is to form a new number consisting of every other digit of
the Social Security number, starting with the leftmost digit. The hashing value is the
remainder when this number is divided by 31. For example, 357-75-8564 hashes to
37554 = 13(mod 31). Carry out this hashing procedure for the Social Security num-

Chapter Review 281

bers 534-27-3175, 289-13-3754,413-39-4431, 978-65-4891, 534-75-9614. How many
students in your class can have their Social Security numbers hashed this way without
generating a collision?

9. Define a hashing function on a Social Security number as follows: Let the digits of
the Social Security number be XlX2X3X4 X5X6X7x8x 9 and form the three digit number
Y1Y2y3 as follows:

Y1 = (x l + x4 + x7) (mod 5) (use the remainder when Xl + X4 + X7 is divided by 5)
Y2 = (x2 + X5 + x8) (mod 10)
Y3 = (x3 + X6 + X9) (mod 10)

Calculate the hash value for the following social security numbers:

(a) 234-54-7654
(b) 534-37-9021
(c) 435-54-6782
(d) 537-98-9092
(e) 239-67-4397

Do not deal with collisions, if any occur.
10. A half-adder takes two boolean inputs and produces a sum digit and a carry digit. The

output for a half-adder can be represented by a function as

Input and Output
For a Half-Adder
input Output

I 1 0 1

1 0 1 0
0 1 1 0

0 0 0 t

Draw a combinatorial network that represents this network with two outputs.

Analysis of Algorithms

We have frequently used the word algorithm to mean the idea, or plan of attack, behind
a computer program. More precisely, an algorithm can be thought of as a sequence of
steps, in which each step is unambiguously defined and can be executed mechanically in
some finite amount of time. An algorithm may have some input data, and it must have
some output. Many definitions used in explaining algorithms also require that an algorithm
halts (or stops or terminates) after some finite number of steps. We will not require this.
Therefore, we can say that the principle behind a computer program is an algorithm even
when the computer program goes into an infinite loop on some inputs and does not output
anything. However, when we say that A is an algorithm to solve a particular problem, we
will mean that A halts on all inputs-or at least on all input data that make sense for the
problem. A more detailed theoretical study of algorithms requires a more formal definition
such as the notion of a Turing machine, which is beyond the scope of our needs here.

Although experimental timing of programs is obviously important, it is quite inade-
quate for dealing with questions such as these. In this chapter, we introduce a mathematical
study, called computational complexity, that deals with these issues. This study is highly
important wherever complicated computer programs are needed, including areas such as
the design of layouts for computer chips and numerical analysis.

First, we study a general mathematical measure of (approximately) how fast functions
grow. For this, we will introduce some very standard vocabulary: asymptotic domination,
O(*), and 0 (*). The motivation for looking at how fast a function grows is as follows:
Define the amount of time taken by an algorithm to be a function of the input data. Say
that (i) A 1 and A2 are two algorithms to solve the same problem, (ii) they are encoded
as programs P1 and P2, and (iii) for input data D, TI (D) and T2 (D) are the amounts of
time taken by P 1 and P 2 on data set D. Now, let the number of elements in D increase: If
T1 (D) grows much faster than T2 (D) as D increases in size, then, except for small inputs
D, algorithm A2 is more efficient than algorithm A 1 . (The word small here is relative, as
we will see.)

Next, we will use these ideas of growth rates in analyzing algorithms. From looking
at the algorithm alone, one can deduce a great deal of information about the time functions
above. This also means that as you write an algorithm, you can, before you ever start
coding it, make some educated choices about better ways to organize it. We will also briefly
indicate some variants of this notion regarding computational complexity to show other
measures for algorithms that are of interest to computer science.

283

284 CHAPTER 5 Analysis of Algorithms

Finally, we briefly introduce another topic: Are there any functions that are, in princi-
ple, not computable by any computer program--on any computer, no matter how big, and
no matter how long we wait for a program to finish? We will prove the fundamental result
of Turing's about the "unsolvability of the halting problem."

M Comparing Growth Rates of Functions

There are three ideas to keep in mind as we develop a formal setting for determining the
complexity of an algorithm:

1. Since you can time the program on only a finite (usually small) number of input data
sets, how can you (reasonably) estimate the time on other input sets? For example, can
you (reasonably) extrapolate from the time you have taken to run your program on test
data sets to the expected time on real (and, probably, much larger) data sets?

2. Computer A may do one operation (say, swapping two integers) twice as fast as com-
puter B. Computer B may do some other operation (say, comparing two real numbers)
twice as fast as computer A. Can you (reasonably) compare the speeds of two algo-
rithms without knowing on which machine each program will be run?

3. Can you design your algorithm so that your program will "scale well"-in other words,
so that as the size of the data set increases, the time needed by the program will not
increase too rapidly? You may have seen algorithms to search for a number in a sorted
array (a special kind of list). Two standard methods for this purpose are called lin-
ear search and binary search. When these two algorithms are presented, people justify
BinarySearch as being obviously faster. How can they (reasonably) say this?

We would like to approximate how the time taken by a program increases as the size
of the input data set grows. Moreover, we would like to make an approximation that we
can compute by looking at a (detailed) algorithm alone, so that the program designer can
make reasonable choices about which algorithms to use without having to code an actual
algorithm.

Before we are ready to approximate the growth rate of algorithms, however, we need
to understand how the growth rate of functions can be compared. Once we understand
how functions can be compared, we will show how a function can be associated with the
running time of an algorithm. We then compare algorithms by comparing the functions
associated with describing their running times.

5.1.1 A Measure for Comparing Growth Rates

There has been much discussion among computer scientists about how to measure the
growth rate of algorithms. In this area, two major simplifications are useful:

1. If we have two algorithms, A 1 and A2 , where A t always runs faster on "small" inputs
and A2 always runs faster on "large" inputs, then we-at least under this measure-
prefer A2 : It is "almost always" faster. This measure ignores differences between the
two functions on "small" inputs, and here, "small" is taken to mean "smaller than any
fixed finite size." (This is a huge issue to ignore, but the approximation turns out to be
highly useful.)

Comparing Growth Rates of Functions 285

2. Sometimes, two different computers execute various instructions at different relative
speeds. C1 may be twice as fast as C2 at doing floating point operations, and C2 may
be twice as fast as C1 at doing logical operations. The measure ignores constant factors,
however, such as the two times factors.

We are interested in timing functions that input the size of the input data and output
the amount of time taken by the program. The input to such a function is a natural number,
and the output is a non-negative real number. Keep this idea in mind as we explore the next
notion.

Definition 1. Let F, G : [0, co) be functions. F asymptotically dominates G if,
for some integer No e N and some real number c E (0, oo) such that for all n > No,

G(n) < c. F(n)

The condition "for all n > No" in Definition 1 reflects the fact that finitely many inte-
gers can be ignored, since we are looking for a starting place for all following integers to
be instances where the condition holds: We do not worry about whether the inequality may
fail for some elements of the finite set {0, 1, 2 ... , No - 11. The multiplicative constant c
in Definition 1 reflects the fact that integer multiples of a function are considered to be the
"same" in complexity.

Example 1. Let F, G : N --+ [0, oo) be functions defined as G(n) = 3n and F(n) = n2 .
F asymptotically dominates G.

Solution. Let No = 0 and c = 3. It follows that for n > No,

G(n) = 3n

< 3n
2

< 3F(n)

< cF(n) U

Some authors allow F and G to take on negative values. Typically, the convention is
to study IF(n) I and IG(n) I in those cases.

It remains for us to develop the notion of asymptotic domination so that we can show
how a function represents the complexity of an algorithm. This notion is captured in the
"big 0" notation.

Definition 2. Let F, G : N -- [0, oo) be functions. Then,

O(F) = {G : F asymptotically dominates GI

The expression "F asymptotically dominates G" is usually not written out in full. It is
far more common to write "G E O(F)." The expression "O(F)" is pronounced "big-Oh of
F," or order of F. (With abuse of notation, people sometimes write "G is O(F)," or even

"= O(F)*" However, "O(G) = F" is never considered to be acceptable.)
If G E O(F) and F E O(G), the intuition is that F and G grow at approximately the

same rate. To understand this notion, we present some examples. Although the definition
is in terms of functions from N into [0, oo), we actually graph the functions on the usual
coordinate system for the (x, y)-plane.

286 CHAPTER 5 Analysis of Algorithms

Example 2. Let F1 , G I N --* [0, oo)where F, (n) = n and

Sn-2 forn>2
0 otherwise

as shown in Figure 5.1.

y

00

10 0oo

8 0 X

0 X
0 X6 0 xx

0

0 o

x

2 4 6 8 10

Figure 5.1 F, (n) and G, (n).

Then, F 1 E O(GI) and G1 E O(F1).

Solution. Obviously, F1 (n) > G 1 (n) for all n. Intuitively, however, the functions seem

to grow at the same rate. Indeed, for n > 2, their graphs have the same slope.

Showing that G 1 e 0(F 1) is easy. Clearly, G I (x) is always less than or equal to F1 (x).

So, pick c = 1 and No = 0, and the definition of asymptotic domination is satisfied.
To show F 1 E 0(G 1) is only slightly harder: Let c = 2, and let No = 4. For all n such

that n > 4, n - 4 > 0; hence,

FI(n) = n=n+0

< n + (n - 4)

= 2n -4

= 2(n - 2)

= 2. Gl(x)

= c. GI(x)

In Example 2, G1 (n) could have been zero for all n < No where No > 2, and a similar

proof would still work.
Example 3 shows that behavior at a single point will make no difference to the

0-relation.

Example 3. Let F2 , G2 : N --* [0, co) where F 2(n) = n and
G2 (n) = 100,000,000,000 for n = 0

n otherwise

Then, F 2 E O(G 2) and G 2 E O(F 2).

Comparing Growth Rates of Functions 2817

Solution. Here, G 2 (0) is much larger than F2 (0). For all other values of n, we have
G2 (n) = F2 (n). The intuition is that one value, or any finite number of values, makes no
difference to the growth rate of a function.

To show that F 2 c O(G 2) and G2 E O(F 2), choose c = 1 and No = 1 for both impli-
cations. Then, for all n such that n > 1, it follows that

F 2 (n) < 1 • G2(n)

and

G2(n) < 1 - F2(n)

This finishes the proof. U

The values of F2 and G2 in Example 3 could have differed at any point-say, no. At
no, let G2 (no) = F2(no) + 100,000. The only adjustment to the proof would be to choose
No such that No > no.

We will see in Example 4 what is involved in proving that one function is not asymp-
totically dominated by another function. The functions in Example 4 show that the relation
asymptotically dominates is not a symmetric relation.

Example 4. Let F4 , G4 N -- [0, oo) where F4 (n) = n and G4 (n) - n2, as shown in
Figure 5.2.

y
100 xG4(n)n21X

o F4 (n) =

8 0 0 F 4
x()

x

60 x
x

40 x
x

20 X
x

0 0 0 0 0 0 00 0
2 4 6 8 10

Figure 5.2 F4 (n) = n and G4 (n) = n2 .

Then, F4 E O(G4), and G4 0 O(F 4).

Solution. From the graphs of the functions, G4 seems to grow faster than F4 . More im-
portantly, G4 seems to grow faster than 2 • F4 , faster than 3 • F4 , and for each real number
c such that c > 0, faster than c • F4 , as shown in Figure 5.3 on page 288.

The intuition is that G4 grows much faster than F4 . We verify this intuition by proving
that (a) F4 E O(G4) but (b) G4 0 O(F 4):

(a) Pick c = 1 and No = 1. For n > 1, it is obvious that n 2 > n.

288 CHAPTER 5 Analysis of Algorithms

y

d
60 d G 4(n) = n

2
d

50 c F(n) = c d
a F4 (n) =a d C

40 x F 4(n)=x c

30 0 F 4(n) = n d c c c a a
S a

20' d cc a a
C a a x X x

10_C ca a x X

c cd 6qda x 0 a a a a a ai o " i• O X
2 4 6 8 10

Figure 5.3 Comparison of multiples of a function: G4 (n) = n2 , F4 (n)= n, 2F4 (n),
3. F4 (n) (shown a), and 4. F4 (n).

(b) We will show that for any No and any c, there is at least one n > No where

G4 (n) < c. F4 (n)

does not hold. Let No and c be given. If No > c, then pick n = No so that the inequality
fails. Let n > No, and since n > c, n2 > cn. That is, the inequality fails.

If No < c, pick any integer n > c. (We cannot just pick n = c, because we did not
require c to be an integer.) For this n, we have n > No and, again, n2 > cn, so the inequality
fails. In both cases, we have shown integers n such that n > No that are counterexamples
to the required inequality. 0

Although Example 4 deals with n and n2, the proof can be used as a model for nk

and nk+1 for k = 3, 4, 5 In Theorem 2 in Section 5.1.2, we will prove that asymptotic
domination is a transitive relation. This result will imply ni E 0(nj) for i, j E N and i < j.

A function F asymptotically dominates a function G if G(n) < c • F(n) for all but
finitely many values of n. It is unimportant what happens on those finitely many values.
In fact, it turns out to be convenient not even to require that F and G be defined on those
values. So, we extend the previous definitions to partial functions that are defined on all
but finitely many values.

Definition 3. Let F, G : N -+ [0, cc) be partial functions. Then, F asymptotically
dominates G if, for some No E N, and some c E (0, cc), for all n > No, both F(n) and
G(n) are defined and G(n) < c . F(n).

In the rest of this section, we assume that F : N [0, cc) will mean that F is a
partial function and that F(n) is defined for all but finitely many n in N.

There are many partial functions from N to [0, cc) with growth rates that are com-
monly discussed but are undefined for finitely many arguments. The following are typical
of such partial functions:

(1) ln(n) is undefined for n = 0 but is defined for all n > 1.
(2) In o ln(n) is undefined for n = 0, 1 but is defined for all n > 2.

Comparing Growth Rates of Functions 289

(3) F : N -+ [0, cc), given by the rule F(n) = n - 2, is undefined for n = 0, 1 (since
0 - 2 and 1 - 2 are less than 0) but is defined for all n > 2.

5.1.2 Properties of Asymptotic Domination

Most of the theorems in this section are chosen so that we could prove some fundamental
results about how polynomial functions are related with respect to complexity. Theorems
1-4 that follow are useful for that purpose but apply much more generally to arbitrary
functions.

Theorem 1. Let F : N --* [0, cc), and let a E (0, cc). Then, F asymptotically dominates
a . F.

Proof. By the general assumption, there is a natural number No such that F(n) is defined
for all n > No. Therefore, a • F(n) e [0, cc) for all n such that n > No. Now, choose
c = a. Then, for all n > No,

a • F(n) < c. F(n)

Therefore, a • F E O(F). U

Corollary 1: For any positive real number a and any F : N -+ [0, cc), both a • F E
O(F) and F E O(a • F).

Proof. By Theorem 1, a • F E O(F). However, since a > 0, (I/a) also exists and is
positive. So, since F = (1/a)(a • F), F E 0(a - F). N

In the case a = 1 in Theorem 1, the result says that the relation asymptotically domi-
nates is reflexive.

Theorem 2 tells us that the asymptotically dominated relationship is a transitive
relation.

Theorem 2. Let F, G, H :N --* [0,), with H E O(G) and G c O(F). Then, H E
O(F).

Proof. Since H e O(G), there are constants CH E [0, cc) and NH E N such that for all
n > NH, G(n) and H(n) are both defined and H(n) < cHG(n). Since G (O(F), there
are constants CG E [0, oo) and NG E N such that for all n > NG, F(n) and G(n) are both
defined and G(n) < cG F(n). Let No be the maximum of NG and NH, and let c = CH - cG.
Then, for any n > No,

H(n) < CH • G(n)

< CH • (co • F(n))

= (cH" CG) F(n)

= c. F(n)

Therefore, H E O(F). 0

One feature in the proof of Theorem 2 deserves comment. We picked No to be the
maximum of NG and NH and c to be cn • CG. We do not know whether smaller values for
c or No might have "worked": That depends on further information about G, H, cG, CH,

290 CHAPTER 5 Analysis of Algorithms

NG, and NH that we do not have. However, to verify that H e O(F), we were not required
to find the smallest possible constants c and NO; we were only required to find some such
constants.

In Theorem 3 we see that if two functions G and H are both asymptotically dominated
by a third function F, then both G + H and I G - H I are functions that are asymptotically
dominated by F. For example, if G(n) = n 2 , H(n) = n, and F(n) = n3, then n 2 + n
O(n3).

Theorem 3. Let F, G, H : - [0, oo), with G E O(F) and H E O(F). Then, G +
H E O(F) and I G - HI E O(F).

Proof Since G e O(F), there exist constants CG E [0, oo) and NG e N such that for
all n > NG, F(n) and G(n) are both defined and G(n) < cG • F(n). Similarly, there are
constants CH E [0, oo) and NH c N such that for all n > NH, F(n) and H(n) are both
defined and H(n) < cH • F(n).

Let c = cG + CH, and let No be the maximum of NG and NH. Then, for all n > No,
both F(n) and G(n) + H(n) are defined, and

G(n) + H(n) < cG - F(n) + cH • F(n) = c. F(n)

Furthermore, for all n > No, I G(n) - H(n) I is defined, and

I G(n)-H(n)I < IG(n) +IH(n)I = G(n)+H(n) < c.F(n)

Hence, G + H e O(F) and IG - H E o(F). U

Corollary 2: Let F, G 1 , G 2 ... , Gk : N - [0, cc) for some k e N such that for 1 <

i < k, each Gi E O(F). Then, for any real numbers at, a2 ... , ak,

IalGI + a2G2 +... + akGk l e O(F)

Proof Use induction on k. Separate arguments are needed depending on whether ak is
positive (or zero) or negative. The results in both Theorems 1 and 2 are used. The details
are left as an exercise for the reader. U

We can use our results to define an equivalence relation that is closely related to
asymptotic domination.

Theorem 4. Let F, G : N - [0, oo).

(a) Fe O(G) if and only if O(F) C O(G).
(b) 0(F) = 0(G) if and only if F E 0(G) and G e 0(F).
(c) The relation 0, defined as {(F, G) : 0(F) = 0(G)}, is an equivalence relation.

Proof This proof is left as an exercise for the reader. U

With the proof of Theorem 4(c) we see what condition is needed to define a symmetric
relation based on asymptotic domination. We showed that in general, asymptotic domina-
tion is reflexive and transitive, but the functions in Example 4 tell us there is no hope of
making the relation symmetric. The relation 0 tells us there is an equivalence relation that
depends on a slightly stronger relation than asymptotic domination. An ongoing problem
in computer science is to determine what functions are in each equivalence class of the
equivalence relation 0.

Comparing Growth Rates of Functions 291

The relation 0 considers seemingly different functions as being equivalent, at least in
the sense that they determine the same set O(*). For example, there are many unexpected
functions F where O(F) = O(x). Two such functions are shown in Figure 5.4.

F

14 o

12 0 x
0 XX X

10 0 x x

8 0 X0x x
0 X XX

4X 0 xX 0000
X XOX 0000

2 x x o o o o o o0
- I I I IG

2 4 6 8 10 12

Figure 5.4 F, G E O(x).

5.1.3 Polynomial Functions

A polynomial such as

17n 137 + 197n 45 - 20,143n 14 + 3

is a rule for computing a function. In a calculus class, for example, a polynomial function
is usually defined as having domain and range R. For the purposes of this chapter, a poly-
nomial is a rule for defining a partial function with domain of definition N and codomain
[0, 00).

Definition 4. A polynomial function (of n) of degree k is a function

P(n) = ak nk + ak-1 nk-1 + • • -+ a2 n2 + aI n + ao

where ak 0 0. The zero polynomial of n is the function F(n) = 0. The zero polynomial
has degree - 1. In general, a polynomial function is a polynomial function of any degree.
(You must read this definition carefully in other contexts, because some authors say the
zero polynomial has degree 0.)

According to the conventions of this section, for n E N, the polynomial function is
defined at n if the polynomial of degree k, evaluated at n, gives a non-negative value. Also,
by convention, P(n) should be defined for all but finitely many n's. For the polynomial

P(n) = aknk + ak-1 nk-1 + • • • + a2 n2 + al n + ao

(where ak 0 0) to satisfy this assumption, it is necessary that ai > 0.
The first result about polynomials shows that polynomials of different degree have

different growth rates. The essential step in this proof is true in the more general case of
the real numbers. We state the general result first.

292 CHAPTER 5 Analysis of Algorithms

Theorem 5. Let kI, k2 e R with 0 < kl < k2 . Let xkl and xk2 be functions of x, where
x E R. Then:

(a) xk 1 E O(xk2)

(b) xk2 g O(xkx)

Proof. Similar to that for Example 4. The details are left as an exercise for the reader.

Corollary 3: Let i, j E N with i < j. Let ni and ni be functions of n where n e N.
Then:
(a) n i E O(nj)
(b) nj e 0(n')

Theorem 5 is a first step in determining how polynomials of different degrees are re-
lated by the relation asymptotically dominates. For example, n5 E O(n8), but n8 0 O(n5).
Both Theorem 1 in Section 5.1.2 and Theorem 5 tell us how monomials are related. The-
orem 3 in Section 5.1.2 could be used to build polynomials from the individual terms
(monomials). In Theorem 6, we show how you can prove directly that a polynomial and its
terms are related to the monomial that is its highest power.

Theorem 6. For a polynomial function of degree k:

P(n) = ak nk + ak-1 nk-I +... + a2 n2 + al n + ao

Therefore:

(a) P(n) E O(nk)
(b) n k e O(P(n))

Motivation for Proof. Consider the polynomial x3 - 3x 2 - 1. For x = 10, the value
of 103 contributes approximately 70 percent of the value of this polynomial at x = 10.
For x = 100, the value of 103 contributes approximately 97 percent of the value of the
polynomial at x = 100. So, the intuition is that for large enough values of n, or all n
greater that some No, P(n) is almost the same as ak • nk and, hence, grows approximately
as fast. The major task of the proof is to establish that intuition. We will make no effort to
choose No as small as possible. Rather, we will choose an No that makes the proof easy.
(Part (a) can also be proved using Theorem 5 and Corollary 2.)

Proof. Set

No 2. FJak-1l+ lak-2I±+'"+ Jai l+ ao11 +2/ ak I

We leave it as an exercise for the reader to show that for all n > No,
1 k <

nk _ •ak n
•ak < P(n) <

Choose No as above and c = (3 / 2)ak. Then, P(n) < (3 / 2)ak nfk for all n > No. This
proves part (a). Now, choose No as above and c = 2 /ak. Then, nfk < (2/ak)P(n) for all
n > No. This proves part (b). N

Comparing Growth Rates of Functions 293

Corollary 4: For any integer k > -1 , the polynomial functions in 0(nk) are the polyno-
mial functions of degree less than or equal to k.

We now know that the complexity of any polynomial is completely determined by its
degree. For example, P(n) = n3 - 3n 2 + n is O(n 3), and R(n) = n3 + 3n is also O(n 3).

5.1.4 Exponential and Logarithmic Functions

Before proving some needed facts about the growth rate of the exponential and logarithmic
functions, we need to review some properties of these functions.

Familiar Facts About Exponential and Logarithmic Functions
(a) For m, n, r E l where m, n, r > 0, m < n if and only if mx < x'.
(b) The exponentiation function to a base greater than 1 is an increasing function: For

n,r,s R wheren > landr, s >0,0<r < s if and only if nr <ns.
(c) A logarithmic function to a base greater than 1 is an increasing function: For n, r, s E

R where n > 1 and r, s > 0, r < s if and only if logn(r) < log,(s).
(d) For b, x c R where x > 0, b > 0, and b : 1, 1Ogb(X) = ln(x)/ In(b).
(e) For all m, r, s E R where m > 0, mr+s mr . Ms.
(f) For all m, r, s E R where m > 0, (mr), mrs.
(g) For all m, n, r E R where m, n > 0, log.m(nr) = r logm(n).

We will not prove these facts in this text. Part (c) is equivalent to part (b) since the

functions logn (x) and n', as functions of x, are inverse functions.
The most commonly seen functions that grow faster than the polynomial functions

are the exponential functions. Figure 5.5 shows an example for each of these kinds of
functions.

Y
w

1000-

800
W

X W

600 X ,

x w

400 x
X W

200- x X w

•,• , o•A•,~gdxdwd c Wd d d d d d

2 4 6 8 10

Figure 5.5 n2 (d), n3 (x), and 2n (w).

Theorem 7. Let k E R such that k _> 2. Then:

(a) n k E 0(2n)
(b) 2 n 0 O(nk)

294 CHAPTER 5 Analysis of Algorithms

Proof. (a) We first establish an inequality involving nk and then define No and c:

nk < nC c= [k and

n <21 l1 [log2 (n)] then
nk < 2 c1

Choose No = cl. If n > No, then

nk < 2 No < 2n

(b) Suppose 2' E 0 (nk) for some natural number k. By part (a), nk+l E 0(2n). It follows
by the transitivity of asymptotic domination (Theorem 3) that nk+l E O(nk), contra-
dicting Theorem 5. U

Hand-checking values in the proof of Theorem 7(a) will make the reader suspect (cor-
rectly) that this constant is much larger than needed. It does, however, make the proof
easier to establish.

A more complete description of the general relation between exponential functions is
proven in Theorem 8. Examples of this result include 7r' E 0(4n), but 4' 0 0(7r').

Theorem 8. Let n E N.

(a) Let a and b be real numbers such that I < a < b. Then, a" E 0(bn) and bn 0 0(an).
(b) Let a, b, and c be real numbers, with 0 < a < b and c > 1. Then, can E O(cbn) and

Cbn _ o(Can).

Proof. This proof is left as an exercise for the reader. U

As another example that will be of use in analyzing sorting algorithms, we can show
that the function F(n) = n grows faster than the function G(n) = ln(n).

Example 5. Let F(n) = n and G(n) = ln(n) be functions from N to R. Then, G E O(F),
but F g O(G), as shown in Figure 5.6.

104 x
x

x

7.5 x
x

Fiue56Fn son x)n G on o In o (sow o)oo.

2.5- x 0 o

X o

0 2 4 6 8 10 12
-2.5-

Figure 5.6 F(n) = n (shown x) and G(n) = In(n) (shown o).

Solution. First, show that ln(n) E O(n). For all n E N, we have n < 2". Since e > 1, by
facts (c) and (g) cited previously about logarithmic functions, tn(n) < n ln(2). This estab-
lishes the result with No = 1 and c = ln(2). (We set No = 1, because ln(O) is undefined.)

Comparing Growth Rates of Functions 295

Now, show that n 0 O(ln(n)). Working toward a contradiction, suppose n E O(ln(n)).
That is, for some integer No and some real number c, n < c l In(n) for all n > No. Then,
however, for any integer n such that n > max {No, 11,

2n < e n (fact (a))
en <_ ec(ln(n)) = n • ec (fact (b) and assumption of proof)
2' < n • ec

This implies that 2' E O(n), contradicting Theorem 7. 0

Complexity Comparisons for Various Functions

To see the difference in the time requirement for processing data sets of arbitrary size, we
will assume a single machine cycle will require 10-6 seconds to be completed. Table 5.1
gives the time required to process a data set of size n, for six different values of n, if it
takes log2(n) (n, n2, n5 , and 2n, respectively) machine cycles to make the computation.
For example, in the column labeled n2 for the row labeled n = 100, 1002 operations are
needed to complete execution. The time is (102)210-6 seconds = 10-2 seconds.

Table 5.1 Complexity Table for Several Functions

F(n) 10g2(n) n n2 n 5 r

n = 10 3 x 10-6 sec 10-5 sec 10-4 sec 0.1 sec 10-3 sec

n=20 4x 10-6 sec 2x 10- 5 sec 4x 10-4 sec 3sec Isec

n = 50 6 x 10-6 sec 5 x 10-5 sec 3 x 10-3 sec 5 min 36 yrs

n = 100 7 x 10-6 sec 10-4 sec 10-2 sec 3 hrs 4 x 10 16 yrs

n = 1000 1 x 10-5 sec 10-3 sec 1 sec 32 yrs 3.9 x 10287 yrs

n = 100, 000 2 x 10-5 sec 0.1 sec 2.7 hrs 3 x 1011 yrs > 1030,089 yrs

To better appreciate the figures in the last column, note that the current conjectured
age of the universe is around 2 x 1010 years. Now, suppose we could speed up the com-
putation by a factor of 1010 (which is not conceivable at the time of this writing). Also,
suppose we could somehow replace every elementary particle in the universe with one of
those computers (a physical impossibility, of course)-less than 1090 computers by current
estimates-and somehow simply split the computation equally among all those computers
(and such a simple, optimal split also is not currently conceivable). That reduces the largest
running time to over 1029,989 years-or over 1029,979 times the current age of the universe.
(Computer users do not like to wait that long for answers.)

The discussion in this section has shown that a function F is more complex than a
function G when G E O(F) but F 0 O(G). To show how important this idea is in com-
puter science, we used some relatively familiar functions for a table to show how they
differed when acting on inputs of various sizes. It is instructive to see how important the
function that describes the complexity of a computation really is by comparing various
entries in Table 5.1.

296 CHAPTER 5 Analysis of Algorithms

U Exercises

1. Find a real number c and an No E N such that n2 + 5n < cn 2 for all n E N with
n > No.

2. Find a real number c and an No E N such that n3 + 5n 2 + 2n < cn 3 for all n E N with
n > No.

3. Find a real number c and an No E N such that n2 ± 3n < cn 3 for all n E N with
n > N o .

4. Find a real number c and an No E N such that n3 - 3n2 + 4n < cn 3 for all n e N with
n > No.

5. (a) Find a real number c and an No E N such that n2 < cn 3 for all n E N with n > No.
(b) Find a real number c and an No E N such that 5n < cn 3 for all n E N with n > No.

6. Using the proof of the Corollary 1 to Theorem 1 as a model, find a real number c and
an No E N such that 5n3 E O(n 3) for all n c N with n > No.

7. Using the proof of the Corollary I to Theorem 1 as a model, find a real number c and
an No c N such that 7n 4 E O(n4) for all n e N with n > No.

8. (a) Find a real number c and an No • N such that n2 - 3n E O(n 3).
(b) Find a real number c and an No e N such that 2n 2 + 7n e O(n 3).
(c) Using part (a), part (b), and Theorem 3, prove that 3n2 + 4n E O(n 3).
(d) Using part (a), part (b), and Theorem 3, prove that In2 - In I O(n 3).
(e) Using part (a), part (b), and Theorem 3, prove that 5(n 2 - 3n) + 6(2n 2 + 7n) E

O(n3).

9. (a) Find a real number c and an No E N such that 2n 2 + 7n E O(n 3).
(b) Find a real number c and an No E N such that 3n2 - 7n E O(n 3).
(c) Using part (a), part (b), and Theorem 3, find c and No to prove that 5n2 E O(n 3).
(d) Using part (a), part (b), and Theorem 3, find a real number c and an No E N to

prove that I n2 - 14n I E O(n 3).
(e) Using part (a), part (b), and Theorem 3, find a real number c and an No G N to

prove that 5(2n 2 + 7n) + 3(3n 2 - 7n) E O(n 3).

10. (a) Find a real number c and an No E N such that n2 + 3n E O(n 3).
(b) Find a real number c and an No E N such that 3n3 E O(n4).
(c) Using part (a), part (b), and Theorem 2, find c and No to prove that n2 + 3n E

O(n4).

11. (a) Find a real number c and an No E N such that 2n 2 - 5n e O(n3 + 5n2).
(b) Find a real number c and an No E N such that 6n 3 + 5n2 E O(n 4).
(c) Using part (a), part (b), and Theorem 2, find c and No to prove that 2n 2 - 5n E

O(n4).

12. Using the proof of Theorem 6 as a guide:

(a) Find a real number c and an No E N such that n2 - 3n E 0(n3).
(b) Show that n 3 0 O(n 2 - 3n).

13. Using the proof of Theorem 6 as a guide:

(a) Find a real number c and an No E N such that n2 + 5n + 3 E O(n 3).
(b) Show that n 3 0 O(n 2 + 5n + 3).

Exercises 297

14. Show that:

(a) sin(n) E 0(1)-that is, the sine function is asymptotically dominated by the con-
stant function 1.

(b) n sin(n) e O(n).

15. Prove that f/i E O(n) and that n 0 O(V'n-).
16. Prove or find a counterexample. If O(G) = O(F) and O(H) C O(F), then for all but

finitely many n E N, H(n) < G(n).
17. Prove that ln(n) E O(n) but that n O O(ln(n)) for n E N.
18. Prove that n 3 E 0(n') and that n' € O(n 3).
19. Prove that for all b, c > 1, O(logb) = O(logc).
20. Complete the proof of Corollary 2 to Theorem 3.
21. Prove Theorem 4.
22. Prove Theorem 5.
23. Prove Theorem 8.
24. Finish the proof of Theorem 6. For a polynomial function

P(n) = ak nk + ak-1 nk-1 + + a2 n2 + al n + ao

where ak > 0 and for

No= 2 Flak-l I + Iak-2E +' + jai I + lao 1+2

I ak

prove that for all n > No,

ak nk/2 < P(n) < 3ak nk/2

25. Consider a polynomial

P(n) = ak nk + ak-l nk-1 + + a2 n2 + al n + aO

as a function from IR to IR. Show how to compute a number N so that all roots of
P(n) = 0 occur between -N and N. Prove that your answer is correct.

26. For functions F, G : N -+ (0, oo), F is said to be in o(G) if

F(x)
lim --0

x--o G(x)

(a) Show that if F E o(G), then F E O(G) and G 0 O(F).
(b) Use this result to give an alternative proof of Theorem 5.

27. For functions F, G : N -- (0, co), F is said to be in 0(G) if

lim F(x)
x-oo G(x)

for some c E (0, c0).

(a) Show that if F E O(G), then O(G) = O(F).
(b) Use this result to give an alternative proof of Theorem 6.

298 CHAPTER 5 Analysis of Algorithms

(c) Find functions F, G : N --* [0, oc) where O(G) = O(F) but

F(x)x-o G(x)

does not exist.

28. There are many other natural ways to prove Theorem 7.

(a) Prove Theorem 7 using the result of Exercise 12(a).
(b) Prove Theorem 7 using the Taylor series for el.
(c) Prove directly that for all large enough sets X, there are more subsets of X than

there are k-tuples of elements of X. Use this to give a proof of Theorem 7.

29. Find functions F, G : N - [0, 00) where F e O(G) and G ý O(F) but

lim F(x)
x-*cc G(x)

does not exist.
30. (a) Find two functions F and G such that F 0 O(G) and G 0 O(F). (Hint: For

F 0(G), we need F(n) > 1 • G(n) infinitely often, F(n) > 2. G(n) infinitely
often, and so on. Similarly, for G 0 O(F), we need G(n) > 1 • F(n) infinitely of-
ten, G(n) > 2. F(n) infinitely often, and so on.)

(b) Find two functions, F and G, as in part (a), where in addition F and G are both
strictly increasing.

31. Is it true that for all functions F, O(F) = O(F + 1)? Is it true for all increasing func-
tions F?

rnComplexity of Programs

Recall the questions from the beginning of this chapter:

1. Since you can time a program on only a finite (usually small) number of input data sets,
how can you (reasonably) estimate the time on other sets of input data?

2. Computer A may do one operation (say, swapping two integers) twice as fast as com-
puter B. Computer B may do some other operation (say, comparing two real numbers)
twice as fast as computer A. Can you (reasonably) compare the speeds of two algo-
rithms without knowing on which machine each program will be run?

3. Can you design your algorithm so that your program will "scale well"-in other words,
so that as the size of the data set increases, the time needed by the program will not
increase too rapidly.

All these questions were used to motivate a comparison of the times taken by algo-
rithms and programs "up to 0." In this section, we will show some basic techniques for
computing that approximate time-without any actual timing.

Before continuing, we will expand on the first question so that you will understand
some of the problems we need to resolve. Suppose you record how much time program
P takes on machine M with data sets of size 10 (T(10)) and a data set of size 100

Complexity of Programs 299

(T(100)), and suppose you need to use this information to estimate how much time P
will take on a data set of size 10,000. (That is, suppose you need to estimate T(10,000)).
Can you do so?

One method is to find a function that passes through the given points and then evaluate
this function at other points. We call such a function an approximating curve. A simple
solution is the following: Plot the two points, (10, T(10)) and (100, T(100)) on a graph,
draw a straight line through them, and extend the line over larger values of x. See where
the straight line crosses the line x = 10,000, as shown in Figure 5.7. Use this value for
T(10,000).

Time
Consumed

10 100 5000 10,000
Time

Figure 5.7 Linear extrapolation of time.

This approximation makes a totally unjustified assumption. For it to be reasonable to
approximate the function T with a straight line, that time function must be a linear function
(or be fairly close to one at all points), and there is no reason to assume that T is linear.
You could improve the approximation a bit by measuring time for three sizes of data sets
(say, 10, 100, and 1000) and choosing the parabola that passes through those three points
as the approximating curve. However, that approximation would only be reasonable if you
had reason to believe the function was either quadratic or linear. For example, for some
computer programs, T will be an exponential function of the size of the data set. If that is
the case, then no amount of curve fitting with polynomial functions would give reasonable
grounds for extrapolation such as this.

The ideas presented in this section will provide tools for one to determine that the
time consumption of an algorithm is approximately linear, approximately quadratic, ap-
proximately exponential, or whatever. After coming to such a general conclusion, you can
(if you are very careful) legitimately use tools such as the curve-fitting procedure just de-
scribed to approximate times.

We are not saying that actual timing statistics are unimportant. We know this can be a
very important way to compare algorithms. All we are saying is that timing statistics are
usually far from enough.

300 CHAPTER 5 Analysis of Algorithms

The purely theoretical approach introduced here makes an approximation of the com-
plexity to an algorithm that ignores almost all differences among machines, languages,
and details of how the algorithm is coded. If functions T1 (n) and T2 (n) measure the times
taken by programs 1 and 2 on a data set of size n, then this approach asks only whether
T1 c O(T2) and whether T2 E O(TI). This approach is said to measure only time com-
plexity, not time in all its detail. Despite being highly theoretical, this approach has very
frequently proved to be an excellent guide for practical decisions. For example, it allows
one to conclude that a sorting algorithm that is in 0(n 2) is clearly inferior to a sorting
algorithm that is in O(n ln(n)). For the standard sorting algorithms, unless you are sorting
a very short list (of fewer than eight elements or so) or a list that is already almost in order,
an algorithm in 0(n ln(n)) is decidedly preferable.

There are many variations on the way to measure complexity. Different approaches
may work with different idealized models of what a computer is or of what is to be mea-
sured. What we do here is typical of most current discussions of complexity. At the end
of this section, we will discuss briefly some common variants of the notion of algorithm
complexity.

5.3.1 Counting Statements

To illustrate how to measure an algorithm's complexity, we start with some very simple
algorithms. The following algorithm tests whether a list of three numbers is in increasing
order:

INPUT: Values for three variables A, B, and C
OUTPUT: Message indicating whether A < B < C is TRUE

if (A < B and B < C) then
print "List is in order."

else
print "List is out of order."

Typically, you pick a single operation, or a small set of operations, called key opera-
tions, to analyze algorithms. You then count, for inputs of various size, how many times
these key operations are performed when an algorithm is executed. In the algorithm just
cited, we would count the number of comparisons made between elements of the list. In
this case, two comparisons obviously are made, no matter what the input list is. However,
counting statements executed just by looking at the program and its input often is not this
easy. Therefore, we illustrate here some simple techniques for doing this.

One of the basic tenets of structured programming is that all programs should be
built from just a few, simple, well-understood control structures. Although object-oriented

Complexity of Programs 301

programming has become a powerful new paradigm for program design, it remains neces-
sary to use the fundamental ideas of structured programming in implementing algorithms.
The three control structures used in structured programming are sequence, selection, and
repetition.

Control Structures

Sequence: A list of steps s5 : S2 :... : sk to be performed in the order given.
Selection: A choice of steps. In many programming languages, constructs such as
if-then, if-then-else, select, and case provide the methods to make choices.
Repetition (also called iteration and looping): A block of code is executed repeat-
edly, either for a certain number of times or until some condition becomes true. In
many programming languages, constructs such as for, while, do-while, and repeat-
until provide for repetition. (Repetition can also be accomplished with recursion. The
analysis is often similar, but we will not discuss recursion in this chapter.)

The remaining algorithms of this section, which demonstrate how to determine the
complexity of code using these control structures, will be simple sorting algorithms. The
routine Swap(A, B) will simply interchange the values of these two variables A and B so
that the original value of A ends in B's location and the original value of B ends in A's
location.

INPUT: Distinct alphabetic values for three variables A, B, and C
OUTPUT: The list of alphabetic values ordered by increasing value

if (A > B) then
Swap(A, B)

if (B > C) then
Swap(B, C)

if (A > B) then
Swap(A, B)

print A, B, C

Assume that when the Ordering Three Values I algorithm starts, the three alphabetic
values a, b, and c (ordered as a < b < c) are assigned to the variables A, B, and C in
some order. At the end of the algorithm, the values should satisfy A < B < C. There are
six possible input orders for the three letters a, b, and c. The reader should check that the
algorithm correctly sorts all six possible initial conditions.

302 CHAPTER 5 Analysis of Algorithms

Each if-then statement makes a single comparison. Three if-then statements are exe-
cuted in a sequence, so three comparisons are made.

Complexity of Sequence

If, for some n E N, an algorithm has blocks B1, B2 ... , B, in sequence and, on input
I to the algorithm, block Bi executes the key operations at most Fi(Bi) times for
1 < i < n, then the entire algorithm executes the key operations at most

FI(BI) + F2 (B2) +.. + Fn (Bn)

times.

If we choose comparison as the key operation in the Ordering Three Values I algorithm
and the blocks are just the three if statements, then

FI(BI) = F 2 (B 2) = F3 (B 3) = 1

since the process of Swap will not include any comparisons. The complexity of this algo-
rithm with this key operation is just the constant value 3, and the algorithm is said to be
0(1).

5.3.2 Two Algorithms Illustrating Selection

The next algorithm is like the previous one, except that the writer observed that if one first
tests whether A > B or B > C, then one can use only two tests, not three, for that case.

INPUT: Distinct values for three variables A, B, and C
OUTPUT: The list of letters ordered by increasing value

if (A > B or B > C) then /* list is out of order, so */
if (A > B) then Swap(A, B)

if (B > C) then Swap(B, C)
if (A > B) then Swap(A, B)

print A, B, C

In the Ordering Three Values II algorithm, only two comparisons are made if the list is
in order. On the other hand, if the list is out of order, the algorithm makes two comparisons
to identify that fact plus a sequence of three more comparisons to sort the values, for a
total of five comparisons at worst on any input data. The complexity of this algorithm with
comparison as the key operation is the constant value 5. This algorithm also is a member
of 0(1).

Complexity of Programs 303

Complexity of Selection

Let n E N. Let a step of an algorithm be to make a selection for execution of one of

n blocks, B 1, B2 ... , Bn, and, on input I, where each Bi executes the key operations
at most Fi (Bi) times for 1 < i < n and it then takes G(I) executions of the key op-
erations to make the selection of the block to execute. Then, the key operations are
executed at most

G(I) +-max{Fi(Bl), F2 (B 2). Fn (Bn)}

times.

The next algorithm also sorts a three-element list. To some people, it is more obvi-
ous than the preceding algorithm, since it breaks the algorithm down into the six possible
cases, asking first which element is least. For easy reference to individual lines of the al-
gorithm, we put line numbers on the left ends of the lines. We assume the procedure Swap

interchanges the values of the two elements that are in the storage locations named by its
arguments.

INPUT: Distinct values for three variables A, B, and C
OUTPUT: The list of values in increasing order

1. if(C <AandC<B) then
2. if(A <B) then /*C<A <B, so*!

3. Swap(A, B)
4. Swap(A, C)

5. else /* C < B < A, so*/

6. Swap (C, A)
7. else
8. if(B < A and B < C) then

9. if(A <C) then /*B <A<C, so*/
10. Swap (A, B)
11. else /* B < C < A, so*/
12. Swap (A, B)
13. Swap (B, C)
14. else
15. if (C < B) then /* A < C < B, so*/
16. Swap (B, C)
17. print A, B, C

This algorithm nests selections within selections within selections. The outermost
selection is in line 1, with its corresponding false range beginning at line 6. We will

304 CHAPTER 5 Analysis of Algorithms

concentrate on the selection at line 1. The condition at line 1 requires two comparisons.

The test in line 1 has two "selection blocks," lines 2 through 6 and lines 8 through 16, one
of which is then executed.

1. If the test in line 1 (C < A and C < B) returns the value true, one more comparison
(line 2) is made.

2. Otherwise, the algorithm next tests (B < A and B < C) given in line 8, which requires

two more comparisons. Then, whether this condition is true or false, the code makes
exactly one more comparison (line 9 or line 15). This gives a total of three comparisons

if the test of line 1 fails.

Now, translate this information into the notation of complexity. The notation says that
F1 (B 1) is the number of comparisons needed to execute lines 2 through 6, the "true range"
of the test in line 1. Let F2 (B 2) be the number of comparisons needed to execute lines 8
through 16, the "false range" of that test. G(I) is the number of comparisons needed to
execute the test in line 1 itself, which is 2 for all I. As we noted above, FI(B 1) = 1, and
F 2 (B 2) = 3. So,

G(I) + max{FI(B1), F2 (B 2)} = 2 + 3 = 5

The entire algorithm makes at most five comparisons on any input data. (This is the same
upper bound as the worst case for the Ordering Three Values II algorithm.) Again, this

algorithm is 0(l).
Suppose, however, the procedure Swap were chosen as the key operation instead of

the comparison operation. The third algorithm makes at worst two calls to Swap, whereas
the other two algorithms will actually make three calls to Swap if the list is exactly out of
order. This illustrates a potential pitfall of the method described here. If one chooses the
key operations badly, then the results can be misleading. The examples above illustrate a
potential trade-off. One sorting algorithm may require fewer comparisons but more calls to
Swap than another may require. Which algorithm is better may depend on the data being
sorted and the computers being used.

In the case of sorting algorithms, the key operations chosen are usually either the op-
eration of interchanging (swapping) two elements in memory or determining which of two

elements is larger (comparing), since those operations tend to determine the time consump-
tion of most sorting algorithms. If both comparisons and interchanges are chosen as key

operations, then the analysis is quite realistic for most sorting algorithms.

5.3.3 An Algorithm Illustrating Repetition

One would never expect to write an algorithm to sort a three-element list. If you want
to sort an n-element list where n is at least 5, it is impractical to write an algorithm like
the ones previously discussed, since the algorithm gets too long. Nevertheless, the second

algorithm we present is easily generalized into an algorithm called BubbleSort, probably
the easiest of all sorting algorithms. Ease of coding is its primary virtue. It is also one of
the slowest sorting algorithms, although if "optimized," it can run quickly on certain very
special data sets.

The command

for i =1 to N
S

Complexity of Programs 305

is a command to repeat operation S over and over, once with i = 1, once with i = 2, ,
and once with i = N. If N < 1, then operation S is not executed at all. (See Section 1.8.1
for further discussion of this command.)

INPUT: A list of N distinct integers List[l]... List[N]
OUTPUT: The same integers rearranged so that the values of

List[l] List[N] are in increasing order

BubbleSort-I(List, N)
1. for Pass=ltoN-ldo
2. for Position = I to N - 1 do
3. if (List[Position] > List[Position + 1]) then
4. Swap (List[Position], List[Position + 1])

The BubbleSort I algorithm contains two nested loops. We will first consider the inner
loop, or lines 2 through 4. This loop compares adjacent elements in the list, and whenever
it finds a pair that is out of order, it interchanges them. In the following example of a
four-element list, there are three adjacent pairs, so the algorithm interchanges at most three
times. We trace the results of lines 2 through 4 the first time they are executed-that is,
when Pass = 1. We assume that a < b < c < d is the final order.

Pass = 1
c b d a Initial list
c b d a Compare first pair
b c d a Out of order, so swap
b c d a Compare second pair
b c d a In order; don't swap
b c d a Compare last pair
b c a d Out of order, so swap
b c a d The final list for Pass = 1

The for statement causes lines 3 and 4 of the program, called the body of the loop, to
be executed N - 1 times, the first time with the value of Position equal to 1, the second
time with the value of Position equal to 2, and so on. Each time the loop is executed, the
algorithm executes the key operation of comparison one time. Hence, the algorithm makes
N - 1 comparisons each time the inner loop is executed. The outer loop is executed N - 1
times.

It is important to note that testing whether to end the loop may itself involve a key
operation. In this case (depending on the computer language and what looping command
is used), if the loop is executed N times, the test is usually performed N + 1 times, once

306 CHAPTER 5 Analysis of Algorithms

before each time the loop is executed and once again at the end. The result of that final test
shows that it is not necessary to execute the loop another time.

Complexity of Repetition

If an algorithm contains a loop B, where:

* On input I, the loop is executed at most n times for some n e N, and
* On input I, for 1 < i < n, the ith execution of the body of the loop executes the

key operations at most Fi (Bi) times, and
* The test of whether to stop or to execute the loop another time executes the key

operations at most c times,

then the number of times the entire algorithm executes the key operations during the
loop is at most

n

E(c + Fi(Bi)) + c
i=1

Normally, when the loop controls the number of times the body of the loop is exe-
cuted, the value of c is zero, because incrementing and testing a counter is usually not a
key operation. We can now compute the complexity of the BubbleSort I algorithm, with
comparison of the elements of the list as the key operation. Note that the termination con-
dition here does not involve a key operation-it compares indices, not array elements-so
C =0.

Analysis of the Inner Loop. The block Bi consists of lines 3 and 4. Hence, the number
of comparisons is always 1; that is, Fi(Bi) = 1 for i = 1. N - 1. So, by the previous

formula, the total number of comparisons is

N-1

#comparisons < Y I = N- 1
Position= 1

Analysis of the Outer Loop. Here each block Bi of the outer loop is just the (whole)
inner loop. So, Fi (Bi) = N - 1. The outer loop is executed N - 1 times. Hence, the total
number of comparisons is

N-1

comparisons < Y (N-) = (N- 1)2

Pass=1

Thus, the number of comparisons made by the BubbleSort I algorithm on an input list
of size N is

O((N - 1)2) = O(N 2 - 2N + 1) = O(N 2)

by Theorem 6 of Section 5.1.3.

Complexity of Programs 307

5.3.4 An Algorithm Illustrating Nested Repetition

Now look at the entire BubbleSort I algorithm. It is easy to see that after the first pass,
the largest element has reached the end of the list. This effect appears to be the origin of
the name "bubble sort"-the larger elements seem to bubble down through the list. After
the second pass, the second largest element is in place, and so on. After pass N - 1, the
second smallest element has bubbled down to position 2, and the smallest element is left
in position 1. So, in particular, at most N - 1 passes are needed.

BubbleSort I can be improved. Since the largest element bubbles to List[N] in the first
pass, there is no reason to look at the last position again. On the second pass, the second
largest element bubbles to List[N - 1], and that position need not be examined again, and
so on.

INPUT: A list of N distinct integers List[lI], List[N]
OUTPUT: List[l1], List[N], with values in increasing order

BubbleSort-II(List, N)
1. for Pass= ltoN-ldo
2. Limit = N - Pass
3. for Position = 1 to Limit do
4. if (List[Position] > List[Position + 1])
5. Swap(List[Position], List[Position + 1])

In BubbleSort II, the first pass through the loop in lines 3 through 5 still performs
N - 1 comparisons. In the second pass, however, the size of the list is reduced by 1, so the
second pass performs N - 2 comparisons. The third pass reduces the number of elements
considered again by one and performs N - 3 comparisons. Here, the function F1 (Bi) =

i - 1. So, the total number of comparisons is equal to

N-i

i = 1 + 2+3 +... + (N- 2) + (N- 1) = N(N-- 1)/2
i=1

Example 1. For the slightly optimized BubbleSort II algorithm, count the number of
Swap's.

(a) If the input list is out of order in the way shown here:

List[l] > List[2] > List[3] > ... > List[N - 1] > List[N]

the algorithm makes exactly N • (N - 1)/2 calls to Swap.
(b) If the input list is arranged so that

List[l] < List[2] < List[3] < ... < List[N - 1] < List[N],

the algorithm makes no calls to Swap.

308 CHAPTER 5 Analysis of Algorithms

Proof. This proof is left as an exercise for the reader. U

One might ask how much more efficient BubbleSort can be made. Further improve-
ments are possible. For example, if for an entire pass no calls to Swap have been made, then
the list is in order, and BubbleSort may stop. This modification makes some varieties of
BubbleSort very efficient for lists that are nearly in order before the sorting starts. However,
BubbleSort is inherently slow for arbitrary lists. More complicated analyses show that:

"* If a list of N elements is ordered as in Example 1(a), any BubbleSort must make at least
N • (N - 1)/2 calls to Swap. So, although such algorithms run faster on "nice" input,
they run no faster on the "worst" input.

"* If one considers all possible original orderings of a list of N distinct objects, then on
average, any BubbleSort must make N • (N - 1)/4 calls to Swap, so the average is no
better than half the worst-case time.

We discussed earlier one standard way to count how many key operations are per-
formed. For the moment, the reader just needs to be aware that this is not the only way.
Note that in our discussions of the complexity of selection (see Section 5.3.2) and of rep-
etition (see Section 5.3.3), we concluded only that the number of steps taken by the entire
algorithm was at most something. Some other argument might tell us that the number is,
indeed, far less. Return to the discussion of repetition: Sometimes, it turns out that al-
though in the i th time through a loop we might execute a large number Fi (Bi) of key
operations, most of the times through the loop, on any given input data set, we execute far
fewer than Fi (Bi) key operations. In this case, the total time taken by the repetition may
be far lower than the bound that we calculated. We will not discuss this issue further at this
point.

5.3.5 Time Complexity of an Algorithm

After the preliminaries that show us how functions correspond to a way of measuring the
number of key operations executed in an algorithm, we return to the original goal of mea-
suring the time complexity of an algorithm. We will again use BubbleSort as an example-
both because it's easy to analyze and because the reader will be able to understand the
analysis without having to understand more complex code. The goal is to measure time
consumption not as a function of the particular input but, rather, as a function of the size
of the input.

Time complexity is measured by the number of times that the key operations are per-
formed, but how is the size of the input measured? For sorting algorithms, and for many
other algorithms, size is usually taken to be the number of input data-that is, the number
of data to be sorted.

For a fixed input size n and a fixed set of key operations, we need to consider all pos-
sible input sets of that size. We must count the number of times that key operations are
executed by the algorithm on each possible set of size n. If there is a maximum possi-
ble (largest) number of steps, then that number is called the worst-case behavior of the
algorithm on input size N. If for each input size N there is a maximum possible num-
ber worst(n) of steps, then the function worst is called the worst-case complexity of
the algorithm. For example, the partially optimized BubbleSort presented earlier makes
N • (N - 1)/2 comparisons and at worst N • (N - 1)/2 calls to Swap.

Complexity of Programs 309

It is most common to look only at the growth rate-up to O(*)--of the worst-case
complexity function. For example, choose as key operations comparisons of list elements,
swaps of list elements, or both. By any of these measures, BubbleSort is worst-case O(N 2),
and no matter how BubbleSort is improved, it still is worst-case O(N 2). Other sorting
algorithms are worst-case O(N • ln(N))-that is, algorithms that are, usually, much more
efficient. The discussion of decision trees in Section 6.12.4 of Chapter 6 deals with a lower
bound for a sorting algorithm of the same sort as BubbleSort. (We will clarify then what
"of the same sort" means.)

Polynomial Time Algorithms

Any form of bubble sort algorithm, though intrinsically slow, can still be used for reason-
ably large data sets. A general question is to characterize what calculations are feasible. Of
course, that is really just a matter of how the word feasible is defined, but there is a signifi-
cant underlying intuition. Originally asked by theoreticians, the question also has practical
significance. For example, a basic goal of much modem research in cryptology, the study of
encrypting and decrypting messages, regards finding methods to encrypt messages where
breaking the code is, in principle, infeasible.

Definition 1. An algorithm A is polynomial time if it is worst-case 0(nk) for some
integer k. That is, the function measuring its worst-case time complexity is less than or
equal to some polynomial function.

A decision problem is a problem whose answer is simply TRUE or FALSE.1 The set
of all decision problems answered by polynomial-time algorithms is often referred to as P.
Sometimes, the notation P is also used to describe the set of polynomial-time algorithms.

The set of polynomial-time algorithms has been exceedingly important in studies of
computer algorithms. The interpretation given is that if an algorithm is polynomial time,
then it is conceivable that people might someday build a computer on which it can be run in
a reasonable amount of time for a relatively large input set. If an algorithm has a worst-case
time consumption greater than any polynomial, it is not.2

Nondeterministic Polynomial Problems

The rest of this subsection develops material presented in Section 2.5.6, where we first
mentioned polynomial-time algorithms and the P : /'P conjecture. Readers who have
skipped that material may want to read that section.

Example 2. There is an O(n 2) algorithm such that:

Given: A propositional formula 4), such as,

) = (a v b v c v d v -b) A (c v d v -c V e V f)

1 Many computer programs solve decision problems. Programmers write functions that return boolean values

to aid in similar programming circumstances. For example, while(NOT IsValidInput(InputData)) is true when
IsValidInput returns a value of FALSE. Sometimes, the purpose of an entire program is to compute a single
boolean result, such as "Can I buy this house with house payments of less than $1000 per month?" or "Did any
shop in my department have a below-average productivity during the month of December?" or "Can a salesman
visit all these cities and have to drive less than 1000 miles?"
2 If quantum computers become practically feasible, this view might change.

310 CHAPTER 5 Analysis of Algorithms

and a truth assignment I to its variables-typically, here, one lists the true literals, such as
a, -b, c, --d, e, and-f.

Returns: Truth value I (4).

Solution. See Exercise 5 in Section 5.4, where a proof is sketched for 4) in conjunctive
normal form (CNF). (A proof for more general formulas 40 would involve a digression into
"parsing": Given a formula, how can we construct its parse tree?) 0

When people formally measure the complexity of such algorithms, they are likely to
use variant definitions of complexity, as in variants 1 and 2 in the next section.

In Section 2.5.6, we noted that it is generally assumed-but not proved-that no fast
algorithm exists that, given a propositional formula 4), can decide whether 4) is satisfiable.
This latter problem is called the propositional satisfiability problem, which is sometimes
referred to simply as SAT.

What we meant in Section 2.5.6 by "fast" was "polynomial time." It is commonly
assumed that there is no polynomial-time algorithm to settle propositional satisfiability.
However, nobody can prove it! This is often considered to be the most significant open
problem in theoretical computer science-and one of the most significant open problems
in all of mathematics.

Propositional satisfiability is the problem of the paradigm nondeterministic polyno-
mial time (A/P). We use satisfiability to motivate an almost-precise definition of A!'r.
We do not give the most common definition, which is in terms of something called "non-
deterministic algorithms." The definition we give, however, would be equivalent if that one
small bit of precision were added.

A problem is said to be in .M'P, or nondeterministic polynomial time, if there is a
polynomial time verifier algorithm V for the problem. In other words, V is an algorithm
that takes any input or and a purported proof that the answer for a should be TRUE and, in
polynomial time, verifies that the proof is correct. (Such an algorithm is sometimes called
a "guess-and-check algorithm": First, it guesses C, and then it checks the result. Here, C
stands for certificate.) The set of all A/'7 problems is called, simply, A/'r.

Note that in the definition of AFP, it makes no difference whether there are any, or
many, k-ary relations C where A(ar, C) = FALSE. It matters only whether there exists one
C for which A(a, C) = TRUE.

An example of a nondeterministic polynomial time problem is to determine if a CNF
for which each term consists of exactly three literals is satisfiable. The problem can be
solved for a given interpretation for each of the literals by examining each of the n clauses
in some fixed order and determining whether each clause is TRUE or FALSE in this inter-
pretation. The CNF is satisfiable if each of its clauses is TRUE in the given interpretation.
The reader can devise a polynomial time algorithm for determining whether a clause with
three literals is TRUE or FALSE in a given interpretation. After repeating this process at
most n times, once for each clause, the answer will be found in polynomial time.

The definition above is not the traditional definition of the term nondeterministic poly-
nomial problem, but it is equivalent.

Every decision problem in 'P is also, trivially, in AF'P. (Why?) The famous P .AFT'
conjecture is the statement that this is true-that is, that not every problem in A/'7 is also
in P.

Complexity of Programs 311

Stephen Cook proved that if propositional satisfiability is in 7), then AfP ___ P. In fact,
Cook proved a stronger result-that satisfiability is A/P-complete-but we shall not even
define that notion here.

5.3.6 Variants on the Definition of Complexity

This material is included primarily to make you aware that there are many variants on
the complexity analysis we have done. We will list several variants here. Some give finer
measures for circumstances when the simplifying assumptions of our previous model are
too extreme. Others measure other important properties of algorithms.

Variant 1: Ways to Measure Input Data Size
We measured the size of the input by counting the number of input values. So, a very
long number counts the same as a very short number. For sorting algorithms, and for
many other algorithms, this is a reasonable simplifying assumption. Even so, for many
algorithms, it is highly unrealistic to count a one-digit number the same as a 1000-digit
number. A common measure is the number of characters it takes to represent the data. So,
for numbers, one can count digits-base 2 or base 10. For character strings, one can count
the number of characters.

For example, code-breaking programs may take only a single integer as data, but the
code breaking takes longer and longer as the numbers get larger. There may be no theo-
retical maximum at all on the number of key operations performed. There is only a finite
number of n-digit numbers, however, so as long as the program always terminates, there is
a maximum on the number of key operations that can be performed on any input from that
finite set.

With this measurement, counting just the number of input data, as we did for sort-
ing algorithms, would be viewed only as a useful approximation of the number of input
characters.

Yet another measure of the size of the input is simply the numbers themselves.

Variant 2: Choices of Key Operations

We have already noted the importance of choosing realistic key operations. We assumed
that each basic operation, such as comparison, addition, subtraction, multiplication, or
division, takes 0(1) time. For most programs, this is a reasonable assumption. However,
suppose we had to multiply arbitrarily large integers accurately. Ordinary long multiplica-
tion of two six-digit numbers takes 36 multiplications of one-digit numbers, as shown in
Figure 5.8.

111111

111111

111111

111111

111111
111111

111111
111111

12345654321
Figure 5.8 Multiplying six-digit numbers.

312 CHAPTER 5 Analysis of Algorithms

Consider the problem of performing multiplication with arbitrarily large integers. Or-
dinary long multiplication of two 100-digit numbers takes 10,000 single-digit multipli-
cations. Sometimes, it is far more reasonable to count operations on single-digit num-
bers as the key operations. Of course, when operations on single-digit numbers are taken
as key operations, the size of the input is generally measured in terms of the number of
digits.

Some very important issues in modem cryptology hinge on the problem of factoring
numbers into primes. Breaking some modem codes involves factoring very large numbers
(say, 400-digit numbers into primes), and that is presumed to take too long to be feasi-
ble. (If computers get substantially faster, one just increases the number of digits a bit.)
The standard translation of "too long to be feasible" is that there is no polynomial-time
algorithm for which the size of the input is measured as the number of digits and the key
operations are operations on individual digits.

Variant 3: Average Time Complexity

Often, worst-case complexity is not particularly important; what is more important is how
long it takes to run the algorithm on average. (For example, codes that are worst-case
difficult to break but, on average, are very easy to break might not be of much use.) We
will not deal with average time complexity in this book. Average time complexity is harder
to compute than worst-case complexity. Also, problems exist in deciding how to define the
idea. For example, many analyses assume that all data sets of size n are equally likely to
be input, which may be an unrealistic assumption.

Variant 4: Space Complexity

Another measure of the resources that a program requires is how much computer memory
the program takes. In this case, one can study analogues to all the variants discussed previ-
ously. One usually measures the space needed by excluding the space needed to represent
input and output.

Variant 5: Parallel and Distributed Algorithms

Another area of algorithm research concerns parallel and networked computation. A com-
puter may have many separate processors linked together or several computers scattered
across a network with huge network-traffic capacity, and work can be divided among the
various processors so that each execute their part simultaneously. If there are two proces-
sors, then the speed of doing a job can usually be decreased, though by no more than a
factor of approximately two-and usually noticeably less. Some current research centers
use a very large number of processors, as many as the programmers can figure out how to
use for the individual data. So, for sorting 1000 data, the model might allow 1000 separate
processors.

All the calculations presented in this book use a sequential model for computation.
The time needed on machines using parallel models for computation will normally be
substantially less. Analysis of such algorithms, though similar to what we have presented,
must account for simultaneous computations. Currently, there are many architectures for
parallel computers and many ways of measuring complexity on such machines, depending
on such things as whether all processors share a common memory or each has its own

Exercises 313

memory. If we have only a fixed number k of processors, then previous complexity bounds
are changed by at most 1/ k. If we allow the number of processors to grow as the size of
the data grows, however, then problem complexity is sometimes reduced significantly.

At the time of this writing, development of quantum computers, which would depend
on quantum-mechanical principles to implement massive amounts of parallelism, look to
be conceivable. For such computers, complexity analysis might also change.

W Exercises

1. Calculate how many times statement S is executed in each block of code. Simplify all
your answers.

(a) I = 1
while I < N

S
I =2-I

(b) Counter] = 1
while Counter] < N - 1

Counter2 = 1
while Counter2 < N - I

S
Counter2 = Counter2 + I

Counter] = Counter] + 1

(c) Counter] = 1
while Counter] < X

Counter2 = 1
while Counter2 < X

S
Counter2 = Counter2 + 2

Counter] = Counter] + I
(d) Counter] = I

while Counter] < N
Counter2 = 1
while Counter2 < N

S
Counter2 = Counter2 + 1

Counter3 = 1
while Counter3 < N

Counter4 = I
while Counter4 < N

S
Counter4 = Counter4 + 1

Counter3 = Counter3 + 1
Counter] = Counter] + I

314 CHAPTER 5 Analysis of Algorithms

(e) Counter] = 1
while Counter] < X

Counter2 = 1
while Counter2 < X

S

Counter2 = 2 * Counter2
Counter] = Counter] + 1

(f) Counter] = 1
while Counter) < N - I

Counter2 = 1
while Counter2 < Counter]

S
Counter2 = Counter2 + 1

Counter] = Counter] + 1

2. Confirm the claims of parts (a) and (b) of Example 1.
3. Show that the following SelectionSort algorithm, on any input list of size n, makes

exactly n(n - 1)/2 comparisons and exactly n - 1 calls to Swap.

INPUT: A list of distinct values List[l 1... List[N]
OUTPUT: List[lI], List[N] with values in increasing order

SelectionSort(List, N)
for Position = 1 to N - 1 do

Small = List[Position]

Place = Position
for I = Position + 1 to N do

if (Small > List[I]) then
Small = List[I]

Place = I
Swap(List[Position], List[Place])

4. Suppose you record the run times of program P. You find out that on inputs of length
1, its run time is always 1/8 second, and on inputs of length 10, its run time is always
1/4 second. Under each of the following assumptions, calculate how long it will take
to run the program on inputs of length 20, 100, 1000, and 10,000:

(a) For some constants a and b (the values of which you must determine), running the
program on a data set of size d always takes ad + b seconds.

(b) For some constants a and b, running the program on a data set of size d always

takes ad2 + b seconds.

Exercises 315

(c) For some constants a and b, running the program on a data set of size d always

takes a • 2 bd seconds.

5. Write an algorithm in pseudocode that follows the description in Example 2 for the
special case where the formula 0 is in CNE For the sake of simplicity, assume that
each proposition letter is a lowercase letter (a-z), but try to ignore the fact that there
are only 26 such letters. Also, assume that each of the symbols (A, v, -) is also just
one character, some ASCII character other than a through z. (Hint. Suppose you are
given the formula from that example,

0 = (avbvcvdv--b)A(cvdv-cvevf)

and the example truth assignment of TRUE to a, -'b, c, -d, e, and -f. Your program
should scan through 0 from left to right, keeping track of (i) the value so far of the

current clause-the disjunction of all the literals seen so far in that clause-and (ii)
the value so far of the entire formula-the conjunction of the values of all the clauses
completed so far.)

Since this can be done with just one scan through the formula, you may be tempted
to think the algorithm is linear time, but it is not. Why? For formulas not in CNF, the

algorithm is also 0(n 2) but more complicated: One must first parse the formula to get
an expression tree and then keep track of truth values on the tree. The student may have
seen such problems in a data structures or algorithms course.

6. For each of the problems (a)-(d) below;

(i) Write an algorithm in pseudocode to solve the problem (be sure your algorithm
works correctly if m = 0 or n = 0; it should not make any assignments to elements
of the array), and

(ii) Calculate how many assignment statements and how many comparisons the al-

gorithm causes to be executed as a function of m and n. In this case, count as-
signments to and comparisons of index variables, as well as assignments to and
comparisons of positions in the array. Simplify your answers.

(a) Initialize all the elements of an m x n array to 0.
(b) Initialize all the elements of an m x n array that lie on or above the diagonal to 0.

(Here, by "diagonal" we mean positions [r, c] where r = c.)
(c) Initialize all the elements of an m x n array that lie above the diagonal to 0.
(d) Initialize all the elements on the diagonal of an m x n array on the diagonal to 0.

7. It is tempting to compute the complexity of an algorithm by counting statements, as
we did with the BubbleSort example, but only keeping track of the number of steps
along the way up to 0(*). This turns out not to work with loops. For example, it is
possible that each time through the loop, the number of statements executed is in 0(1),

but that the number of statements executed by a loop of length n is not in O(n). Find an
example. (Hint: Each time through the loop, the number of statements executed may
be in 0(1), but the constants c and No may change).

8. Compare the graphs of F1 (x) = 3 ln(x + 1), F2 (x) = 2x, F3 (x) = x 2 , F4 (x) = x 3 ,
F5 (x) = 2 x1-, and F6 (x) = 3 x-1. What does this suggest about the usefulness of
nonpolynomial-time algorithms?

9. Is it reasonable to consider all polynomial-time algorithms to be practical? Why, or
why not?

316 CHAPTER 5 Analysis of Algorithms

10. Suppose somebody manages to prove that the time taken by some frequently used
algorithm is in O(nn). Why is this probably uninteresting information?

11. What is the output of each of the following blocks of code?

(a) cntr 0
for i 0 to N

cntr = cntr + 1
print cntr

(b) cntr 0
for = 0 to N

for j = 0 to N
cntr = cntr + 1

print cntr
(c) cntr = 0

fori =0 toN
for j = i to N

fork = j to N
cntr = cntr + 1

print cntr

U Uncomputability

In the first half of the twentieth century, a group of mathematicians set out to formalize the
notion of a function being computable by an algorithm. Of particular concern was identi-
fying which functions, in principle, are computable and which are not. For this research,
the idea of an algorithm was not what could be done on a computer. In fact, much of this
work was done before the first modem computer was built! Rather, the idea of an algorithm
was what a person could do with paper and pencil by following rules in a mechanical fash-
ion. The research was motivated in part by mathematicians who conjectured that maybe
no algorithms exist to solve certain problems. If one wants to argue that no algorithm ex-
ists, then one must have some formal way to talk about the set of all algorithms. Standard
examples of algorithms included operations such as multiplication and long division.

Several formalisms were proposed. Each arguably captures the intuition of the term
algorithm. Perhaps the most important point is that although, on the surface, they present
very different notions of what an algorithm is, it has been proven that all the major for-
malisms define exactly the same class of functions that are computable by algorithms.
The widely accepted philosophical statement that these models do, indeed, exactly capture
the intuition of the expression "computable by an algorithm" is called Church's thesis. We
shall not discuss these models here. Instead, we shall present an informal definition that we
expect to be more accessible. (Of course, it is certainly also very revealing to examine the
classical models, and that is normally expected in any formal treatment of computability
theory.)

One basic assumption of "in principle computable" is that there should be no limita-
tions on resources. There are no time limits: The computer just keeps calculating until it
is done. There are no memory restrictions: Whenever the computer needs more memory,
it asks for it and gets it. In most current languages, by adding the properties of unlim-

Uncomputability 317

ited time and memory resources, one can implement arithmetic procedures on arbitrarily
large integers and do string manipulation functions on arbitrarily long (but finite) character
strings. To keep things simple, however, we shall merely assume that our language allows
arbitrarily long character strings. Other than that, we use our algorithm notation; the same
constructions could be carried out in almost any common modem programming language.

The idea of a function subprogram, although we have used it informally before, needs
to be made explicit for this discussion. In particular, we need to formalize the idea of a
return value-a value returned by the function and then used by the rest of the program. A
function subprogram is a string of characters of the formfunctionName(paral, para2
paraN) where N can be any integer. The terms para 1, para2 ... , paraN are valid variable
or data types in the program that are made available to the code of the function subprogram.
We call the statement functionName(para , para2 ... ,paraN) a function call. The result
of executing the function call is the "return" of a single value to the program that is then
substituted for the function call. The returned value may be a numeric value, a boolean
value, or a character string. At some point of the program, it should be made clear what kind
of value is being returned by a function call. How that is done, however, is not necessary
for us to consider during this discussion.

At some level, humans ordinarily interact with computers through strings of charac-
ters. We shall simplify the context by assuming that each program takes just one character
string as input. That is, all its input is concatenated together into one (usually very long)
string. Similarly, assume that the program either has no output (if it never halts) or outputs
a single (perhaps very long) character string. Furthermore, consider a program itself to be
a single, long character string-again simply a concatenation of all the lines of code of the
algorithm.

Definition 1. (Rather arbitrary, and adopted for convenience.) An algorithm A is a pro-
cedure written in some programming language that is passed a single character string In,
which is referred to as the algorithm's input, and returns a character string Out, which is
referred to as the algorithm's return value (and which we may also think of as an output).
The string Out is also called A (In). On some (or all) inputs, an algorithm may never halt;
thus, it may return nothing. If it halts but has no apparent output, as when the algorithm
stops because of a run-time error, we shall think of it as returning the empty string.

Example 1. Foo(wordl)

if word 1 < "M
return word 1

else
return "Wrong starting letter"

is an algorithm that takes any string as input and determines whether the word begins with
one of the letters "A", "B", or "C". (For simplicity, we assume the only other possibilities
are D-Z.) If the word satisfies the condition, the word itself is returned. If the word does
not satisfy the condition, the string "Wrong starting letter" is returned.

We stipulate that the machine on which algorithm A is run can store arbitrarily long
strings. Presumably, then, it can also store arbitrarily large integers, arbitrarily large ar-
rays, and arbitrarily long lists, but allowing just arbitrarily long strings suffices for this

discussion.

318 CHAPTER 5 Analysis of Algorithms

If A is not a legal algorithm, or if running A on input In causes a run-time error (such
as treating the letter s as a digit), our convention is that A halts on input In and returns the
empty string.

5.5.1 The Halting Problem

Recall the term decision problem from Section 5.3.5.

Definition 2. A set D of strings is decidable if there is a decision algorithm A that, for
an arbitrary string d, returns A(d) = TRUE if d e D and A(d) = FALSE if d ý D. A set
D that is not decidable is called undecidable.

By definition, a decision algorithm cannot have run-time errors. A decision algorithm
must always halt. It cannot run on forever (for example, in an infinite loop).

Given the expectations many people have for the power of the computer, it is perhaps
surprising to find basic problems for which no algorithms exist. The standard example,
credited to Alan Turing (1912-1954, b. England), is:

The Halting Problem

Given an algorithm A and an input In, will A ultimately halt on In, or will it run on
forever?

Here, A need not be a decision algorithm. It may stop and return the empty string. Thus,
it is assumed that A is an algorithm for a partial function, and the problem is to determine
whether A(In) is defined or undefined.

Now, we simply recast our discussion in terms of making a decision about a set of
strings. To do this, we use a string-say, %%-that we assume does not occur elsewhere
in the programming language. We just use it as a separator, so that a program can easily
extract, from a concatenated string S1 %%s2, the two separate strings s, and s2.

Definition 3. The halting problem is the set Halt of all strings A%%In where A is an
algorithm and A halts on input In.

The reader may think of it as being odd to input an algorithm as data to a program.
However, since an algorithm is a string, it is perfectly legal to do so. Even so, using an
algorithm as data is, indeed, common. For example, a compiler is a program that takes in
one program (in a "high-level" language) as input and returns a translated program (in a
"low-level" language). Also, a computer itself may take two strings of data (a machine-
language program and a data file), and run the program on the data file. Here, it is possible
that A halts on input In and returns the empty string. In this case, the string A%%In C Halt.

An algorithm H solves the halting problem if it is a decision algorithm for the set
D = Halt. In other words, H is an algorithm with the following properties:

1. H is a legal algorithm with no run-time errors, since it cannot return the empty string.
2. H halts on all inputs, since it must return TRUE or FALSE on every input.
3. If an arbitrary string d belongs to Halt, then H returns TRUE on input d.

Uncomputability 319

4. If an arbitrary string d does not belong to Halt, either because d does not have the form
A%%In or because d does have this form but A does not halt on In, then H returns
FALSE.

Consider a simple-minded attempt at solving the halting problem. Given the string
d = A%%In, run the given program A on the input In and see what happens. Suppose
algorithm A is executed for 1,000,000 steps on input In. If, in 1,000,000 or fewer steps, A
comes to a halt, then A halts on input In. However, what if it does not halt within 1,000,000
steps? It might halt in exactly 1,000,001 steps. It might halt in exactly 9,876,543,210 steps.

It might never halt. The fact that the algorithm has not halted in any specific amount of
time does not, by itself, say anything about whether the algorithm will ultimately halt.

On the other hand, as anyone who has ever checked someone else's program knows,
there are many cases where a person can just look at a program and tell whether it will
go into an infinite loop. So, there seems to be some hope for testing whether a program
will halt by examining a program. Unfortunately, it is easy to write a program that is so
complicated that other people are totally baffled by it. Therefore, perhaps Turing's theorem
(see Theorem 1) now seems to be very plausible.

The proof of the theorem is reminiscent of the ancient liar's paradox: "This sentence
is a lie." Work through it: If it is a lie, then it is not a lie, and if it is not a lie, then it is a
lie. This paradox tells us, in part, why logicians are so careful in defining the syntax and
semantics of their logics (see Chapter 2): They want to make sure they do not allow "This
sentence is a lie" as a legal sentence in the formal logic.

Theorem 1. (Unsolvability of the Halting Problem, Turing) The halting problem,
Halt, is undecidable.

Proof Suppose such an algorithm H existed. Let NegSelfRef be the following algorithm,
with the input of a character string A representing an algorithm. 0

INPUT: Character string A
OUTPUT: That is the question

if (H(A%%A) = FALSE)
return TRUE

else
while (0 = 0) do /* repeat forever: */

x = 0 /* something trivial executed */

/* ... infinitely many times ...
return FALSE /* so this statement will

never be reached

Note that if H works as we supposed above, NegSelJRef (A) halts if and only if
H(A, A) = FALSE, if and only if the calculation of A does not halt on input A.

320 CHAPTER 5 Analysis of Algorithms

Now ask: Does NegSelfRef halt on input NegSelfRef? Substituting NegSelfRef for A,
we derive that NegSelJRef(NegSelfRef) halts if and only NegSelfRef(NegSelfRef) does not
halt. This is (blatantly!) a contradiction, so no such H exists.

Once one problem was proved to be undecidable, researchers used a technique called
reduction to show that many other problems are also undecidable. The technique used is to
assume that problem P is decidable by an algorithm T and then use T (technically, writing
another algorithm calling T as a subfunction) to solve the halting problem, contradicting a
known result. (Similar techniques are used to show that if CNF satisfiability is testable in
polynomial time, so is every other N'P problem. See Section 2.5.6.

Another basic theorem of Turing was the existence of a universal Turing machine. In
the terminology used here, that translates into a program Interpret, which accepts as input
a string A%%In and, essentially, runs algorithm A on input In. This is now a familiar idea.
BASIC and LISP interpreters do this, and it is similar to programs that compile and then
run other programs. Turing's viewpoint looks slightly different: There is a single machine
that can take a set of instructions as input and simulate any other machine. Such a machine
is, of course, just a general-purpose, programmable computer. Turing's idea foreshadowed
the modem computer, for which the program is input as just another set of data. Proving
the theorem requires extensive work (essentially, writing the interpreter and showing that
it works), and we shall not do it here.

Theorem 2. (Existence of Universal Algorithm, Turing) There is an algorithm Inter-
pret where, for each pair of strings A and In, Interpret(A%%In) = A(In).

In Chapter 4, we discussed two ways in which functions can be defined to be partial:

1. The person specifying the function did not specify its value in all cases.
2. The rule defining the function somehow specified that the function be partial.
3. One could question how different these two ways are. In particular, if a function is

specified by a rule that makes it partial, is that merely because the wrong rule was
chosen to specify the function? Before we answer this question, however, we need to
formalize the ideas.

Definition 4. An algorithm A2 extends an algorithm A1 if, for all input strings In, if
AI halts on input In, then A2 also halts on input In and A2 (In) = AI(In). A2 is a total
algorithm for A1 if A2 (In) = A 1 (In) whenever A1 returns TRUE, FALSE, or the empty
string and A2 returns TRUE or FALSE for every other input.

Given any algorithm A, can one always find an algorithm B extending A where B
defines a total algorithm?

Theorem 3. There is an algorithm A that cannot be extended to a total algorithm.

Proof Let A be the following algorithm, taking one string In as input:

otherOutput = Interpret(In%%In)
/* remember that the line above might never finish */

If otherOutput = the empty string then
output "0"

else
output the empty string.

Note what A does: It treats its input In as if it is an algorithm and tries to run In on input
In. If running In on input In halts-that is, if In(In) is defined-then A returns something

Chapter Review 321

other than In(In). Otherwise, A does not halt; it just keeps on interpreting the computation
of In(In) forever.

Now suppose an algorithm B computes a total algorithm extending A. Then, B(B) is
defined. So, A(B) is defined and does not equal B(B). Therefore, B does not extend A-a
contradiction. 0

The reader should note how this argument resembles both the proof of the undecid-
ability of the halting problem and Cantor's second diagonal argument (in his proof of the
uncountability of the reals).

rnChapter Review

This chapter presents a formal way of deciding the level of difficulty of a program and then
uses these ideas to compare programs. The definition of what it means for one function to
asymptotically dominate another function is the start of this analysis. First, we deal with
proving the basic properties of this relation and with showing that polynomials of different
degrees are actually functions of different complexity. Next, we show how basic program-
ming structures, such as sequence, selection, and repetition, can have functions defined
directly from the code that describes the complexity of these programming structures. Fi-
nally, we describe the halting problem of Turing that proves there are programs for which
it is impossible even to determine if they terminate.

5.6.1 Terms, Theorems, and Algorithms

5.1 Summary

TERMS

9 (F) exponential function order of F
algorithm halts polynomial function
asymptotic domination logarithmic function zero polynomial
degree O(F)

THEOREMS

F E 0(aF) andaF E O(F) F E O(G) if and only if O(F) g O(G)
HE O(G) and G E O(F), then O(F) = O(G) if and only if F E O(G)

H E O(F) and G E O(F)
G E O(F) and H E O(F), then a" E 0(bn) and bn g 0(a') where 1 <

G+HEO(F) a <b
G E O(F) and H E O(F), then

IG- HI E O(F)

5.3 Summary

TERMS

approximating curve Complexity of Sequence looping
average time complexity Control Structures nondeterministic polyno-
certificate decision problem mial time (ArP)
Complexity of Repetition iteration parallel and distributed
Complexity of Selection key operations algorithms

322 CHAPTER 5 Analysis of Algorithms

polynomial time (7P) selection time complexity
propositional satisfiability sequence verifier algorithm V
repetition space complexity worst-case behavior
satisfiable structured programming worst-case complexity

ALGORITHMS

BubbleSort I Ordering Three Values II
BubbleSort II Ordering Three Values III
Detecting Order for Three Values Selection Sort
Ordering Three Values I

5.5 Summary
TERMS

algorithm function call total algorithm
decidable halting problem undecidable
decision algorithm reduction universal Turing mechine
decision problem return value

ALGORITHMS

Existence of Universal Algorithm, Turing Unsolvability of the Halting Problem,
NegSelfRef Turing

5.6.2 Starting to Review

1. Express in words what G e O(F) means. Express in words what G 0 O(F) means.
2. Let F(n) = n and G(n) = 2n - 3 be functions defined on [0, oo). Find a real number

c and an No E N such that F E O(G).
3. Let F(n) = n and G(n) = 2n + 3 be functions defined on [0, cc). Find a real number

c and an No E N such that F e O(G).
4. Let F(n) = n and G(n) = n2 + 3 be functions defined on [0, cc). Show that F E 0(G)

but G 0• O(F).

5. Show that 0(1) g 0(log (n)).
6. Let F(x) = 7x be a function defined on [0, oo). Find a real number c and an No e N

such that F e 0(a 2).
7. Let F(n) = n2 - n + 550 and G(n) = 59n + 50 be function defined on [0, oo). Deter-

mine n such that F takes less time at n than G.
8. Show that E-n 0 i2 E 0(n 3). Conjecture about the complexity of 0 im for m e N.
9. Explain in words how the complexity of a sequence of statements is computed.

10. Explain in words how the complexity of a selection statement of the form if-then-else
is computed.

11. Explain in words how the complexity of a loop of the form for i = 0 to n is computed.

5.6.3 Review Questions
Prove the following set of inclusions:

O(1) C O(log(n)) C 0(JHn) C 0(n) C 0(n log(n))
C O(n 2) C 0(2n) C 0(n . 2n) C 0(3n) C 0(n!) C 0(nn)

Chapter Review 323

by means of solving Exercises 1 through 10. (Remember to show inequality.)

1. Prove that 0(1) c 0(log(n)).
2. Prove that 0(log(n)) C O(/ni).
3. Prove that 0(,/I-) C 0(n).
4. Prove that 0(n) c 0(n log(n)).
5. Prove that 0(n log(n)) c 0(n 2).
6. Prove that 0(n 2) C 0(2n).
7. Prove that 0(2n) C 0(n . 2n).

8. Prove that 0(n • 2n) C 0(3n).
9. Prove that 0(3n) C 0(n!).

10. Prove that 0(n!) c 0(nn).

5.6.4 Using Discrete Mathematics in Computer Science
1. Let F 1, F2 , G 1 , G 2 : N -* [0, oc). Prove the following, or find counterexamples:

(a) If F 1 E O(GI) and F 2 c O(G2), then F1 + F 2 E O(G1 + G 2).
(b) If F1 E O(GI) and F 2 E O(G 2), then I F1 - F2 1 e 0(1 G1 - G2 I).
(c) If F1 E O(G1) and F 2 E O(G 2), then F1 - F2 e O(G1 • G2) where F 1 • F2 (x) =

F1 (x) F2 (x).

(d) If F1 E O(Gl) and F2 E O(G 2), then FI/F 2 E O(G1/G 2) where F1 /F 2 (x) =

Ft(x)/F 2 (x) provided F2 (x), G2 (x) 0 0.
(e) If F1 e O(Ga) and F 2 e O(G2), then F 1 o F 2 e O(G 1 o G 2).

2. Use Exercise 1 and the chain of set inclusions proven in Section 5.6.3 to determine a
simpler bound for the complexity of the following functions:

(a) 2n 2 + n - nlog(n)
(b) n +n2n + e 2

(c) n3(n2 + 3n)
(d) 2n(n2 - 2n)
(e) 3n2 - 2n + 5 + n½1og(n)

3. (a) Find the complexity of the following algorithm for computing factorials:

INPUT: n E N
OUTPUT: n!
3=1

for i = 1 to n
X = x

print x

324 CHAPTER 5 Analysis of Algorithms

(b) Find the complexity of the following algorithm for computing the mean of n values:

INPUT: The number of values n and an array a[1.. n] containing them
OUTPUT: The mean of the values a[1], a[2]. a[n]

sumOfValues = 0
for i = 1 to n

sumOfValues = sumOfValues + a [i]
print sumOfValues/n

4. Find the complexity of the following algorithm for computing Fibonacci numbers:

INPUT: n E N
OUTPUT: F,

if n = 0 then
nthFib = I

else
if n = 1 then

nthFib = 1
else

fibnMinusTwo = 1
fibnMinusOne = 1
fori =2ton

nthFib = fibnMinusOne + fibnMinusTwo
fibnMinusTwo = fibnMinusOne
fibnMinusOne = nthFib

print nthFib

Chapter Review 325

5. Find the complexity for each of the following algorithms that evaluate a polynomial of
degree n at a value x0. Assume multiplication is the key operation.

a.

INPUT: n c N, the coefficients of P stored in a[O. .n], and a real number x0
OUTPUT: P(x0)
Poly = a [0]
x=1
for/= 1 to n

X =-X0 - X

Poly = a[i] • x + Poly
print Poly

b.

INPUT: n E N• and a real number x0 and the coefficients of a polynomial of degree n
stored in a [0. . n]

OUTPUT: P(xo)
Poly = a[01

fori =0ton
x=l

for j = 1 to i
X = X X0

Poly = Poly + a[i] - x
print Poly

326 CHAPTER 5 Analysis of Algorithms

6. The code that follows implements Homer's algorithm for evaluating polynomials. Find
its complexity, assuming multiplication is the key operation. Here, the phrase "for i ...
down to 0" down to means to subtract 1 each time through the loop until i < 0.

Evaluate P(x) = ao + a Ix + a2x 2 + •••+ an Xn at x0

INPUT: n E N and a real number x0 and the coefficients of a polynomial of degree n

stored in a[.O. n]

OUTPUT: P(xo)

Poly =xo . a[n] + a[n -1]

for i = n - 2 down to 0
Poly = Poly . xo + a[i]

print Poly

7. The Insertion Sort algorithm that follows is a good sorting algorithm to use when (i) the
size of the list is very small (say, <10) or (ii) the list is already almost in order. In this
respect, it is like bubblesort, but it is normally a bit better.

Calculate the complexity of the Insertion Sort algorithm on an input List of size
N. Let comparison of list elements be the key operation. (Hint: For this version, which
sorts the list into increasing order, the worst-case behavior occurs when the list is in
decreasing order.)

INPUT: A list List of values, List[] 11,. List[N]
OUTPUT: The same elements, but in increasing order

for positionToFix = 2 to N do
valueToPlace = List[positionToFix]
candidatePos = positionToFix

/* locate place to put valueToPlace, */
/* relative to previous elements, */

/* and open up room to insert it there.*/
while candidatePos > 1 and List[candidatePos - 1] > valueToPlace

List[candidatePos] = List[candidatePos - 1]
candidatePos = candidatePos - I

List[candidatePos] = valueToPlace

Chapter Review 327

8. One variant of the Merge Sort algorithm was given in Exercise 22 of Section 2.8.

Analyze the complexity of MergeSort. Count copying an element from array A to array
B, or from array B to array A, as the key operation. Note how much faster MergeSort

is, at least asymptotically, than SelectionSort, BubbleSort, and InsertionSort.
9. Challenge: This returns to an issue raised in Section 2.5.6. Show that for formulas 01

in CNF, the shortest equivalent disjunctive normal formula (DNF) 0' may be exponen-
tially longer than 0. Stated more precisely:

i. Count the length of a formula as the total number of symbols in the formula where
a proposition letter pi is counted as one symbol and, if a single symbol occurs
more than once in the formula, each occurrence is counted. So, the length of

(((P9,876,543,210 V P9,876,543,210) V P9,876,543,210) A (Pl V -P9,876,543,210))

is 18: There are five occurrences of proposition letters, four open parentheses, four
closed parentheses, one - sign, three v's, and one A.

ii. For each CNF formula 0, compute the length dnfl(k) of the shortest DNF equiv-

alent to 0. Now, for an integer n, define DNFL(n) to be the maximum value of
dnfl(o) for all formulas 0 of length less than or equal to n.

iii. Show that for some real number r, r' e O(DNFL).

10. The following is a simple-minded "algorithm" to check whether a CNF formula in
variables pl ... , p, is satisfiable. The "algorithm" has n nested loops, so we just
use three dots to indicate that an obvious block of code has been omitted. (By our
rules, this really is not an algorithm, because we had no formal mechanism to cover a
variable number of nested loops in an algorithm. However, the reader should be able
to understand exactly what it does.)

The notation "for p4 aI = F, T" below says to execute the following code twice,

once with p"' = F and once with prla = T.

328 CHAPTER 5 Analysis of Algorithms

INPUT: a set C of clauses
OUTPUT: "satisfiable" or "unsatisfiable"

1. N for pal = F, T
2. set C1 = C
3. if pval = T
4. remove from C 1 all clauses containing Pi.
5. remove -'pl from all clauses in C1 it occurs in
6. else
7. remove from C1 all clauses containing -Pl
8. remove pl from all clauses in C 1 it occurs in
9. if C1 is empty,

output "satisfiable" and stop
10. else
11. for pal = F, T
12. set C2 = C1

13. if p al = T
14. remove from C2 all clauses containing P2
15. remove -'p2 from all clauses in C2 it occurs in
16. else
17. remove from C2 all clauses containing -P2
18. remove P2 from all clauses in C2 it occurs in
19. if C2 is empty, output "satisfiable"
20. else

21.

22. for pvat = F, T
23. set C, = G-1• val
24. ifPn =T
25. remove from Cn all clauses containing Pn
26. remove -'Pn from all clauses in CG it occurs in
27. else
28. remove from CG all clauses containing -p,n
29. remove pn from all clauses in CG it occurs in
30. if CG is empty, output "satisfiable" and stop
31. output "unsatisfiable"

(a) Trace through the execution of the code on the set C = {P3, -"P3 V P2, -P2 V
Pl} (so, for n = 3). Show what each Ci is after lines 8, 18, and 28. If the algorithm
stops with a "stop" command, say which step caused it to stop.

Chapter Review 329

(b) Trace through the execution of the code on the set C = {Pl V P2, P1 V

"-P2, -IP V P2, -P11 V -P2} (so, for n = 2). Show what each Ci is after lines 8,
18, and 28. If the algorithm stops with a "stop" command, say what step caused
it to stop.

(c) Suppose C contains all possible clauses on the n proposition letters pl,
P2 Pn. Prove that the test in step 30 will be executed exponentially (in n)
many times.

(d) Challenge: Prove that GreedySAT correctly determines whether C is satisfiable.

11. Consider the following two algorithms to check whether a number n is prime. Let
computation of mod be the key operation.

The first algorithm directly reflects the definition of "prime." Primality testing
has been used in cryptography (secret coding), particularly in building "public key
cryptograms."

INPUT: An integer n > I
OUTPUT: "prime" or "composite"

for d = 2 to n - 1
if mod(n, d) = 0

output "composite" and stop
output prime

Algortm Shree rialt es

INPUT: An integer n > t
OUTPUT: "prime" or "composite"

d=2
while (d2 < n)

if mod(n, d) = 0
output "composite" and stop

d=d+1
output prime

(a) Show that if n is a k digit prime number, SimplestPrimalityTest executes the key oper-
ation approximately 10 k times.

330 CHAPTER 5 Analysis of Algorithms

(b) Suppose that cracking a public key cryptogram depends on finding the smallest 50-
digit prime. Suppose that a single execution mod of takes 0.01 nanoseconds (10-11
seconds) 3 and that the rest of the above program takes no time at all. Approximately
how long would it take, in years, to verify that a 50-digit number is prime?

(c) If n is a k digit prime number, approximately how many times does ShortenedPrimal-
ityTest execute the key operation? How much does this speed up our time from part
(b)?

(d) Show that ShortenedPrimalityTest correctly determines whether input integer n is
prime.

In fact, Manindra Agrawal, Neeraj Kayal, and Nitin Saxena of the Indian Institute of Tech-
nology showed that primality can be tested in polynomial time in the number of digits
in n.

More recent work has been based not on testing primality but, rather, on factoring
large integers, which seems to be harder.

3 This is sure to be an unrealistic assumption no matter how fast microprocessors get: With numbers of this size,
the amount of time to do one mod operation will almost certainly depend on the length of the number.

Graph Theory

Computer scientists use graphs to model problems as diverse as how to detect a dead-
lock condition in an operating system and how to plan efficient routings for transportation
networks. Some problems in artificial intelligence use efficient searching procedures on
the class of graphs called trees as effective heuristics. The scheduling of a sequence of
subassemblies so that no assembly process starts without all its required subassemblies
having been completed is also a problem that can be modeled and solved using directed
graphs. Some of the most difficult AJP-complete problems involve finding special sub-
graphs within large graphs. This chapter introduces graphs as a structure that is used to
represent and solve many problems in a variety of areas in computer science.

The chapter is organized into four main parts. The first introduces the terms that are
used to describe this structure. The second focuses on ideas dealing with graphs that are
connected. As an application of this idea, we will examine Euler's theorem, the first the-
orem of graph theory. This theorem explains when it is possible, for example, to stroll
across a series of bridges and return to the starting point without crossing any bridge twice.
The theorem can even tell how to plot a graph without taking the pen off the paper too
many times. The third part of the chapter covers the special graphs called trees. Trees are
a common data structure in computer science that are used to solve searching and sorting
problems. Finally, the last part of the chapter deals with directed graphs, which extend the
idea of a graph to include the notion of direction. Directed graphs are used to represent
and solve problems such as scheduling a production of subassemblies with no unnecessary
delays or designing a one-way street grid.

We begin the study of this important mathematical theory by examining a problem for
which graph theory may be used to build a model of the problem.

Introduction to Graph Theory

The problem we use to introduce graph theory involves filling positions from a pool of
qualified applicants.

331

332 CHAPTER 6 Graph Theory

Job Assignment Problem

GIVEN: A list of jobs to be filled and a list of job applicants who may be qualified
for more than one job.
FIND: An assignment of each job to a qualified applicant with no applicant assigned
to more than one job.

For this problem, every job needs a qualified applicant, but not every applicant needs to be
assigned to a job. Obviously, a necessary condition for the assignment problem to have a
positive solution is that the number of applicants must be at least as large as the number of
jobs. Clearly, however, this is not a sufficient condition, because two of the job applicants
could be qualified for exactly one and the same job as well as not qualified for any other job.

The first step toward the problem's solution will be to find an appropriate model. In
this case, we will use a graph. To begin, we present an intuitive notion of graphs; a more
formal introduction to this structure will follow.

The data for the Job Assignment Problem is shown in Table 6.1.

Table 6.1 Qualified Applicants and Jobs

Qualified Applicant Job

Jack technical writer
Jack market analyst
James sales representative
Jane photographer

Jane copy editor
Jane production manager
John photographer
John technical writer
June copy editor
June production manager
June sales representative

Table 6.1 suggests that the information can be represented as a relation between pairs of
objects, with one object being a qualified applicant and the other being a job. A graphical
representation of this information for Jane is shown in Figure 6.1.

photographer

Jane copy editor

production
Figure 6.1 Applicant and jobs. manager

Introduction to Graph Theory 333

A line or edge from a person to a job represents the fact that the person is qualified for
that job. The picture that represents all the data in the problem is shown in Figure 6.2.

photographer

John
technical writer

Jane
copy editor

James
production manager

Jack

sales representative
June

market analyst

Figure 6.2 Set of applicants and set of jobs.

The structure in Figure 6.2 is called a graph. The assignment problem is to choose a
set of the edges (lines joining pairs of points) such that each job is at the end of at most
one edge and no applicant is at the end of more than one edge. In this example, there are
more jobs than applicants, so it will be impossible to fill all the jobs. One solution that finds
qualified applicants for five of the jobs is shown in Figure 6.3.

John "ý photographer

0 technical writer

Jane 6 ý copy editor

James
production manager

Jack

sales representative

June

market analyst

Figure 6.3 One set of job assignments.

An efficient algorithm for finding a solution to the assignment problem is an applica-
tion of the theory of flows in networks. A solution of the problem using flows has complex-
ity O(1V13) where V is the set of points in the graph. A discussion of flows in networks
can be found in most books dealing with algorithms.

334 CHAPTER 6 Graph Theory

6.1.1 Definitions

The Job Assignment Problem gives an insight regarding how graph theory can be used
to model a problem. Before exploring more uses of this theory, however, a more careful
definition of graphs is needed.

Definition 1. A graph G = (V, E) consists of a finite nonempty set V, the elements of
which are the vertices of G, and a finite set E of unordered pairs of distinct elements of V

called the edges of G.

We can think of vertices as points and edges as lines joining pairs of points. Even
though edges are defined as unordered pairs of distinct vertices, it is common to denote an
edge consisting of the vertices a and b as (a, b). In graph theory usage, the notation (b, a)

denotes the same edge as (a, b). For any edge e = (a, b) in a graph, the vertices a and b
are the ends of e, e is incident to both a and b, and the vertices a and b are adjacent.

We often call adjacent vertices neighbors. If two distinct edges have a common end, then
the edges are adjacent. For any vertex v, the degree of v, denoted deg(v), is the number of
edges incident to it. A vertex is even (or odd) if its degree is even (or odd). A vertex of
degree zero is called an isolated vertex.

These terms are illustrated in Figure 6.4.

odd degree - ,.- isolated vertex

adjacent
, edges

/

ends / e
ofe eK

\/\

/ even degree

adjacent
vertices

Figure 6.4 Names of parts of a graph.

A sequence of n nonnegative numbers, dl, d2. d, is said to be graphical if there
exists a graph having n vertices with the degrees of the vertices being dl, d2 d, The
degrees of the vertices of a graph are called a degree sequence. Without loss of generality,
one can assume that d, < d2 < ... < dn. The graph in Figure 6.4 has degree sequence 0,
2,2,3,3,4.

Definition 2. A graph on n vertices having each pair of distinct vertices joined by an
edge is called a complete graph and is denoted by K,. Complete graphs are often called
cliques. A graph in which each vertex has the same degree is called a regular graph. A

Introduction to Graph Theory 335

regular graph is n-regular if each vertex has degree n. Graphs that are 3-regular are often
called cubic graphs.

Some examples of complete graphs and regular graphs are shown in Figure 6.5.

K, K 2 K3 K4 K 5

2-regular 3-regular 4-regular

Figure 6.5 Complete and regular graphs.

Another family of graphs that are used in matching problems, resource allocation prob-
lems, and computer architecture modeling is the family of bipartite graphs.

Definition 3. Let G = (V, E) be a graph. G is a bipartite graph if its vertex set V
can be partitioned into two nonempty disjoint subsets V1 and V2 , called a bipartition, so
that each edge has one end in V1 and one end in V2. A complete bipartite graph is a
bipartite graph with bipartition V1 and V2 in which each vertex of V1 is joined by an edge
to each vertex of V2 . A complete bipartite graph with I V1i = m and I V2 I = n is denoted
as Km,n.

Examples of bipartite graphs and the bipartitions they determine are shown in
Figure 6.6.

V, V2 1 4 4

1• 2 56 2•x2 * 4
3 6 3

7
K2 ,2 K 3,3 K3 ,4

V1 and V2 V = 1{1,2} V1 = {1, 2,3} V1 = {1, 2,31
forma V2 = {3,4) V2= {4,5,6} V2 = {4, 5, 6, 71

bipartition

Figure 6.6 Bipartition and complete bipartite graphs.

336 CHAPTER 6 Graph Theory

6.1.2 Subgraphs

In the Job Assignment Problem, the graph theory answer consists in identifying a graph
that is formed by some of the vertices and some of the edges of the graph that models
the problem. This idea of looking at part of a graph is made precise by the notion of a
subgraph.

Definition 4. A graph H = (V1 , El) is a subgraph of G = (V, E) provided that V1 _-
V, E1 C E, and for each e E E 1 , both ends of e are in V1. H is a spanning subgraph of G
if H is a subgraph of G and V1 = V. H is an induced subgraph of G if H is a subgraph
of G such that E1 consists of all the edges of G with both ends in V1.

An induced subgraph is found by choosing a subset of the vertex set of a graph and
then defining the edge set to be all the edges of the original graph with both ends in the
chosen subset of vertices. An induced subgraph with vertex set V is often denoted as < V>.
Examples of the different kinds of subgraphs are shown in Figure 6.7.

1
16

5 2
5 2 2

4 3 4 3
G Subgraph

1 1 6

2 5 1 2

4 3 4 3
<{ 1,2,3,41> Spanning

Induced Subgraph Subgraph

Figure 6.7 Subgraph, induced subgraph, and spanning subgraph.

The notation E(G) (respectively, V(G)) denotes the edges (respectively, vertices) of
the graph G. When more than a single graph is being discussed, this notation makes it clear
which edges and vertices are being considered. Normally, we use the letters alone, as in

G = (V, E).
Two useful operations for combining graphs include the union and the intersection of

two graphs. Let G1 = (V1, Ej) and G2 = (V2, E2) be graphs.
The union of G1 and G2 , denoted by G1 U G 2, is the graph G 3 defined as G3=

(V1 U V2 , E1 U E 2). The intersection of G 1 and G2 , denoted by G1 nl G2 , is the graph G4

defined as G4 = (V1 n V2 , EI n E2).
Another operation that is used with a single graph is complementation. For this defini-

tion, we need an analogue of a universal set. In this case, we use the complete graph on the
vertex set of the graph for which we would like to find the complement. Let G = (V, E)
be a subgraph of K1 v I, the complete graph on I V I vertices. The complement of G in KI v,
denoted as G = (V1, El), is the subgraph of KiVI with V1 = V and E1 = KivI (E) - E.

Introduction to Graph Theory 337

Example 1. Find the union and intersection of G and H as shown:

1 1

52 5 2

4 3 4 3G H

Solution.

5 1 2 5 1 2

4 3 4 3
GuH GnH

Example 2. Let G and H be graphs as shown:

2f 3 5 2
1 4 4 3

G H

Find G and H.

Solution.
1

2 3
5 2*x\ /* 5../ \ "u2

1 4 4 3

G H1

Distributed Network Architecture

A computer architecture for a set of processors (often called a topology) can be designed
so that each processor has its own memory and only certain pairs of processors are directly
linked to each other. For parallel processing of sorting algorithms, the topology chosen can
affect the efficiency of the algorithm. One widely studied topology is the hypercube. A
hypercube of size n, or an n-cube, denoted as Q, consists of 2' processors indexed by the
integers {0, 1, 2,..., 2n - 1). Processors A and B are directly connected if and only if the
binary representations for A and B differ in exactly one position. For example, if n = 3
and the two processors are 110 and 101, then the processors are not directly connected,
because they differ in both the second (1 and 0) and the third (0 and 1) positions. If the
two processors are 110 and 100, then the two processors are directly connected, since the

338 CHAPTER 6 Graph Theory

only difference is in the second position (1 and 0). An integer's binary representation can
be found by writing the number as a sum of powers of 2 and then using the coefficients of
this expansion as the binary representation. For example,

61 = I1.2'5+ 1.24 + 1. -2' + 1.22+ 0.-2' + 1.-2'°= 1111012

Example 3. Draw Q2 with the four vertices labeled 00, 01, 10, and 11.

Solution. 00 01

10 11

Obviously an architecture with only four nodes is pretty simple. Hypercubes can
also be used in much larger examples. To make sure you understand how the graphs are
formed, the next example shows Q3. Other properties of hypercubes will be explored in
the exercises.

Example 4. Draw a graph with eight vertices, labeled with the elements of {000, 001,
010, 011, 100, 101, 110, 111 }, the edges of which correspond to the edges of Q3.

Solution. 000 010

100 --- ----- 110

001 Oil

101 111 U

The picture shown in Example 4 should appear to be a "cube." In Exercise 11 of
Section 6.6, you can see how well you can represent Q4 as a "cube."

The Handshaking Problem

A university holds a reception for graduates of the past five years. During the course of
the reception, each attendee shakes hands numerous times. What, if anything, can be said
about the number of times that hands are shaken? For example, can each person shake a
different number of hands?

To find a model, we put this problem in the context of graph theory. We model this
problem with the graph G = (V, E), where

V = {people at the reunion)
E = {(u, v) u, v E Vand u and v shake hands during the reception)

A typical example of such a graph is shown in Figure 6.8. In this graph, there is a
pair of vertices that have the same degree. This means that this pair of people-Sue and
Phil-shook the same number of hands. Is it an accident that a pair of vertices of the graph

The Handshaking Problem 339

have the same degree? Theorem 1 says that in any graph with at least two vertices, there
are always at least two vertices of the same degree.

Jack
John

Phil Sue

4Bill

Jane Jil

Figure 6.8 Handshaking graph.

Theorem 1. (Handshaking Theorem) Let G be a graph with at least two vertices. At
least two vertices of G have the same degree.

Proof. The proof is by induction on the number of vertices n in a graph. Let no = 2 and
T = {n E N : any graph with n vertices has at least two vertices of the same degree}.

(Base step) For no, the only graphs to consider are the graph consisting of two isolated
vertices and the graph having a single edge. Clearly, the result holds for each of these
graphs. Therefore, the base case no = 2 is true and no E T.

(Inductive step) Let n > no. Show that if n E T, then n + 1 E T. Assuming that any
graph on n vertices with n > 2 has two vertices of the same degree, we must prove that any
graph on n + 1 vertices has two vertices of the same degree. Let G = (V, E) be a graph
with n + 1 vertices where n ± 1 > 3. Clearly, 0 < deg(v) < n for any v E V. If there is an
isolated vertex in G, then by the induction hypothesis, the subgraph of G consisting of all
the vertices but one isolated vertex must have two vertices with the same degree. Adding
an isolated vertex to the subgraph with at least two vertices having the same degree gives
the result for G. If there is no isolated vertex in G, then all the degrees of vertices v E V
satisfy 1 < deg(v) < n. In this case, we have at most n different values for the degrees of
vertices in G. Since G has n + 1 vertices, then by the Pigeon-Hole Principle, at least two
vertices of G have the same degree. Therefore, n + 1 E T.

By the Principle of Mathematical Induction, T = In E N : n > 2}. 0

It was indeed no accident that two people, at least, shook the same number of hands.
The graph shown in Figure 6.8 also has four odd vertices. Is it an accident that there

are an even number of odd vertices? Before proving the theorem that answers this question,
we need to prove a result that will be used in its proof.

Theorem 2. Let G = (V, E) be a graph. Then, ZvEV deg(v) = 2. I E I.

Proof. The sum

E deg(v)
vEV

represents the sum of the degrees of each of the vertices. This sum counts the number of
edges twice, since each edge is incident to two vertices. Therefore,

E deg(v) = 2. I E I
yEV U

340 CHAPTER 6 Graph Theory

We will now use this result to prove another property of graphs that can be interpreted
for the handshaking graph to mean that an even number of people shook an odd number of
hands.

Theorem 3. In any graph, the number of odd vertices is even.

Proof. Let G = (V, E) be a graph. By Theorem 2, we have

E deg(v) = 2. I El
vEV

The next step is to rewrite the left-hand side of the equation as

Sdeg(v) = L deg(v) + • deg(v)

vEV v odd v even

We now have

Z deg(v)+ ÷ deg(v) =2IE

"v odd v even

or

y deg(v) = 2 EI- I deg(v)

"v odd v even

Since the right-hand side of the equation is an even number, the left-hand side of the equa-
tion is an even number. Therefore, an even number of vertices are included in the sum on
the left-hand side, since the sum of an odd number of odd numbers would be odd. 0

Theorem 3 has proved it was no accident that an even number of people shook an odd
number of hands. Although this result was motivated by the handshaking problem, you will
find other important applications for these two theorems in many instances when a graph
models a problem.

W Paths and Cycles

The graph theory notions defined here are important not only because of their application to
describing problems but also because they give important tools to use in problem solving.
For example, the design for the layout of circuits in computer chips can be described in
terms of these notions.

Definition 5. Let G = (V, E) be a graph. A trail in a graph G is a sequence of not
necessarily distinct vertices v1, V2 Vk of G such that (vi, vi+i) G E for 1 < i < k - 1
and the edges are distinct. A trail with k vertices is denoted by Tr(k). If all the vertices in

a trail are distinct, the trail is called a path. The length of a path or a trail is the number of
edges it contains. A path or trail of length zero consists of a single vertex. A path of length
n is denoted by Pn. The distance between two vertices a and b is the length of a shortest

path joining a to b. If no path between a and b exists, then the distance is commonly

defined to be infinity or, in some instances, left undefined.

Although a trail is defined as a sequence of vertices and certain associated edges, we
often display a trail or a path simply as if it were a subgraph with the vertices and edges

Paths and Cycles 341

joined. In some cases, this will not be a subgraph, because vertices are repeated to indicate
that the trail returns to a vertex that has already been included. Figure 6.9 illustrates how
to find a path joining the ends of any trail with repeated occurrences of a vertex.

1 Trail

6 2 2 3 5 4 3 6 1
Repeated Vertex Identified

5 2/ 5 4 3\ 6 1

4 2 3 6 1
Path Formed

Figure 6.9 Refining a trail to find a path.

In addition to trails and paths in a graph we are often interested in trails that have the
same starting and ending vertex.

Definition 6. Let Tr(k) be a trail in a graph G = (V, E) for some k e N. Let the vertices
of Tr(k) be vi, V2 .- Vk. A trail for which v1 = Vk is a circuit. If Tr(k) has its first k - 1
vertices distinct and v, = Vk, then Tr(k) is a cycle. A cycle with three edges is a triangle.
A cycle with k edges where k > 3 is a k-cycle, denoted as Ck. A graph without cycles is
acyclic. A cycle that contains all the vertices of a graph is a Hamiltonian cycle.

Examples of all these notions are found in Figure 6.10.

Circuits
abedcbfa
a bcf beda

f b Cycles
adeba
abcdefae c bcfeb

d Hamiltonian Cycles
abcdefa
adcfeba

Figure 6.10 Circuits and cycles.

6.3.1 Hamiltonian Cycles

A graph that contains a Hamiltonian cycle is called a Hamiltonian graph after William
Hamilton (1788-1856, b. Scotland), who even invented a game based on this notion.
The question of whether a graph is Hamiltonian is not an easy one to answer. A graph
G = (V, E) with as few as I V I edges could be a Hamiltonian graph, but it need not be.
Many of the known sufficient conditions for a graph to be Hamiltonian involve restrictions
on the degrees of the vertices. For example, if every vertex has degree at least I V 1/2, then
the graph must be Hamiltonian. (See Exercises 40 and 41 in Section 6.6.) Showing that a
graph is non-Hamiltonian is often established by observations about conditions Hamilto-

nian graphs must satisfy.

342 CHAPTER 6 Graph Theory

Conditions Satisfied by Hamiltonian Graphs

1. A Hamiltonian graph cannot contain a vertex of degree zero or one.
2. If a vertex has degree two, then both edges incident to that vertex must be in every

Hamiltonian cycle in the graph.
3. Every vertex in a Hamiltonian cycle must be at the end of two edges.
4. If a vertex has degree greater than two and two of its edges are chosen to be in

a Hamiltonian cycle, then the other edges incident to the vertex can be removed
from further consideration.

5. In constructing a Hamiltonian cycle edge by edge, an edge cannot be chosen that

completes a cycle that does not include all the vertices of the graph.

The next two examples show how such observations can be used.

Example 5. Prove that neither of the following graphs is Hamiltonian:

b

6 5 4 f id

e

(a) (b)

Solution.

(a) By condition 3, vertex 2 must be an end to one of the following six pairs of edges:

i. (1, 2) and (2, 3)
ii. (1, 2) and (2, 4)
iii. (1, 2) and (2, 5)

iv. (2, 5) and (2, 3)
v. (2, 5) and (2, 4)
vi. (2, 3) and (2, 4)

The six cases are very similar, so we will just show the first case. Suppose a Hamilto-
nian cycle in the graph contains the edges (1, 2) and (2, 3). Edges (2, 5) and (2, 4) can
be removed from further consideration, since we have chosen (1, 2) and (2, 3) to be
the two edges incident to vertex 2 in a Hamiltonian cycle. We must then complete the
Hamiltonian cycle in the graph shown in Figure 6.11.

1 2 3

6 5 4

Figure 6.11 Remaining graph for Hamiltonian cycle construction.

Clearly, it is impossible to find any cycle in the graph shown. The remaining cases are
left as an exercise for the reader.

Paths and Cycles 343

(b) First, observe that the edges (1, k), (k, j), (1, m), and (m, j) must be included in any
Hamiltonian cycle by condition 2. Clearly, this is impossible, because these four edges
form a cycle with a smaller total number of vertices than the number of vertices in the
graph, which contradicts condition 5. U

The next example involves a graph that is very famous, because it is a counterexample
to a number of important conjectures about the structure of cubic graphs.

Example 6.

(a) Prove that the Petersen graph shown here is non-Hamiltonian.
(b) Prove that by removing any single vertex and its incident edges, the resulting graph is

Hamiltonian.

6
5 10 2

7

8

4 3

Petersen graph.

Solution.

(a) Suppose the Petersen graph has a Hamiltonian cycle. Two of the edges incident to
vertex 1 must be in the Hamiltonian cycle by condition 3. There are three possibilities:

i. (1, 2) and (1, 5)
ii. (1, 2) and (1, 6)

iii. (1, 6) and (1, 5)

Cases ii and iii can be dealt with using a single argument because of the symmetry of
the graph. We will show that Case i is impossible and leave the proof that Case ii is
impossible as Exercise 26 in Section 6.6.

Case i: Suppose (1, 2) and (1, 5) are contained in the Hamiltonian cycle. It follows
by condition 4 that (1, 6) can be deleted from further consideration. We must finish a
Hamiltonian cycle in the graph in Figure 6.12.

6
5 10 7 2

Figure 6.12 Start of Hamiltonian cycle.

344 CHAPTER 6 Graph Theory

Now, the second edges incident to vertices 2 and 5 must be one of the following four
pairs of edges:

(i) (2, 7) and (5, 10)
(ii) (2, 7) and (5, 4) or, symmetrically, (5, 10) and (2, 3)
(iii) (2, 3) and (5, 4)

If edges (2, 7) and (5, 10) are chosen, the edges (5, 4) and (2, 3) can be deleted by
condition 4. The edges (4, 9), (4, 3) (Case (i)) and (3, 8) must now be included in the
Hamiltonian cycle by condition 2. In Case ii, the choice of (2, 7) and (5, 4) will allow
edges (2, 3), (4, 9), and (5, 10) to be deleted by condition 4. The edges (3, 4) and (3,
8) must now be included in the Hamiltonian cycle by condition 2. Finally, in Case iii,
the choice of edges (2, 3) and (5, 4) will allow edges (5, 10) and (2, 7) to be deleted by
condition 4. The edge (3, 4) can be deleted by condition 5. The edges (4, 9) and (3, 8)
must now be included in the Hamiltonian cycle by condition 2. The graphs remaining
in which Hamiltonian cycles might be completed are shown in Figure 6.13.

1 11

6 6 6
5 2 5 0 7 2 5 10 7 2
107 27

99 8 9 8
4 3 4 3 4 3

i. ii. iii.

Figure 6.13 Graphs for finishing a Hamiltonian cycle, a. Case i. b. Case ii. c. Case iii.

In each of these graphs, a choice of a second edge incident to vertex 8 will lead to a
violation of condition 5.

Case ii: This proof is left as an exercise for the reader.
(b) By symmetry in the graph, we need only show the result for the subgraphs formed

by deleting one of the outer vertices and one of the inner vertices. Figure 6.14 shows
Hamiltonian cycles in the resulting graphs.

5 10 7 2 5 102

9 8

(a) (b)

Figure 6.14 Hamiltonian cycles in vertex-deleted subgraphs. a. Inner vertex deleted.
b. Outer vertex deleted. 0

Graph Isomorphism 345

W Graph Isomorphism

For two graphs given abstractly as vertex and edge sets, we need to be able to determine
whether they are the same or different. Even when representations of two graphs are drawn,
it is not always clear whether the graphs are the same. The next definition details precisely
what we mean when we say that two graphs are the same.

Definition 7. Two graphs G1 = (VI, El) and G 2 = (V2, E2) are the same, or iso-
morphic, if there is a bijection F from VI to V2 such that (u, v) E E1 if and only if
(F(u), F(v)) E E2 . F is referred to as an isomorphism.

Figure 6.15 shows two graphs and displays an isomorphism between them.

1 2 3 a b

6 5 4 d c
G H

F: V(G) -*V(1) E(G) -E(H)
1 - a (1, 2) -* (F(l), F(2)) = (a, b)

2 -- b (2, 3) - (F(2), F(3)) = (b, f)

3 . f (3, 4) - (F(3), F(4)) = (f, e)

4 - e (4, 5) - (F(4), F(5)) = (e, c)

5 - c (5, 6)- (F(5), F(6)) = (c, d)

6 - d (6, 1)--(F(6),F(1))=(d,a)
(2, 5) -(F(2), F(5)) =(b, c)
(1, 4) -- (F(1), F(4)) = (a, e)

(3, 6) -. (F(3), F(6)) = (f, d)

Figure 6.15 Graph isomorphism.

An interesting class of graphs are those that are isomorphic to their complement. A
graph that is isomorphic to its complement is called a self-complementary graph. Ex-
amples of self-complementary graphs on four and five vertices are shown in Figure 6.16.
Exercises 38 and 39 in Section 6.6 explore this class of graphs.

1 1

2 3 2 3
/ 5 2 --- _2

/ /" \ / N

1 4 1 4 4 3 4 3
G G H

Figure 6.16 Two self-complementary graphs.

As important as it may be to show that two graphs are the same, it is often just as
important to show that two graphs are not. Many algorithms for graphs need to distinguish
among graphs to complete the processing both correctly and efficiently. The two graphs
shown in Figure 6.17 are not isomorphic; can you prove it?

346 CHAPTER 6 Graph Theory

a 1

b 6 2

e: c 5 3

d 4

G H

Figure 6.17 Two nonisomorphic graphs.

One way to prove that these two graphs are not isomorphic is to show that they do not
share a property, called an invariant, that is preserved by an isomorphism. For example,
two isomorphic graphs will have the same number of even vertices. A triangle in a graph G
must be mapped to a triangle in any graph to which G is isomorphic. Since the graph G in
Figure 6.17 contains a triangle but the graph H in Figure 6.17 has no triangle, the graphs

are not isomorphic.
The exercises in Section 6.6 include problems about determining properties that are

preserved by an isomorphism. These results will be useful when you face the problem of
deciding whether two graphs are the same. Chemists use graph isomorphism to determine
if two graphical representations of a chemical are, in fact, the same chemical. Graph algo-
rithms, especially those dealing with coloring problems, often need to distinguish among
a set of graphs to determine appropriate processing steps. An algorithm must be able to
determine exactly which graph, up to isomorphism, is to be processed at a particular step
of the algorithm.

rnRepresentation of Graphs

Two methods commonly are used for representing graphs (other than drawing a picture
or just listing the vertices and edges). Both of these methods lead to widely used com-
puter representations of a graph. In some applications, the order of the complexity of the
algorithm will even depend on which representation is used.

6.5.1 Adjacency Matrix

For positive integers n and m, a matrix A of size it x m is a rectangular array of val-
ues organized as n rows, each with m entries called columns. The value at a location
row i and column j is denoted as A(i, j). Let G = (V, E) be a graph with n vertices
named 1, 2,, n. An n x n matrix A is an adjacency matrix for G if and only if for

1 < i, j <n,

Ai h)11 for (i, j)eEA0 for (i, j) g E

Representation of Graphs 347

Since A(i, j) = A(j, i) for 1 < i, j < n, an adjacency matrix is symmetric. The diagonal
entries of an adjacency matrix are zero, since a graph has no edge with both ends the same.
Figure 6.18 shows a graph and its associated adjacency matrix.

123456789

1010001000 9 23010100000
3 0 1 0 1 0 0 0 0 0 ,2
4001010000 7
5000101000

6110010000 6 37000000010
8000000101
9 0 0 0 0 0 0 0 10 4

Figure 6.18 A graph and its adjacency matrix.

Other adjacency matrices for this graph can be formed by labeling the rows and
columns of the matrix differently. The number of paths joining any pair of vertices in a
graph can be found using an adjacency matrix. Exercise 43 in Section 6.6 will explore
some properties of adjacency matrices.

6.5.2 Adjacency Lists

An adjacency list representation of a graph G = (V, E) with n vertices only stores infor-
mation about the edges that are in a graph. An adjacency list representation for a graph
consists of a list of its vertices VI, V2 v, together with a separate list for each vertex
that contains all the vertices adjacent to vi for 1 < i < n. Figure 6.19 shows the graph of
Figure 6.18 with an adjacency list representation.

List of
Vertices Adjacencies

1 26 6,.
2 1 6 3 8
3 2 4 2
4 3 5 7
5 4 6
6 1 5 2 6 3
7 8
8 79 5 4
9 8

Figure 6.19 A graph and its adjacency list.

Other adjacency list representations can be constructed both by listing the vertices in a
different order and by listing the adjacencies of a vertex in a different order. An algorithm
that examines all the edges of a graph as a computation step can have different measures of
complexity if the graph is represented by an adjacency matrix rather than by an adjacency
list. Neither representation introduced, however, is always better than the other.

348 CHAPTER 6 Graph Theory

W Exercises

1. Find a graph with 12 edges having six vertices of degree three and the remaining
vertices of degree less than three.

2. Give an example of a graph with at least four vertices, or prove that none exists, such
that:

(a) There are no vertices of odd degree.
(b) There are no vertices of even degree.
(c) There is exactly one vertex of odd degree.
(d) There is exactly one vertex of even degree.

(e) There are exactly two vertices of odd degree.

3. (a) Construct a graph with six vertices and degree sequence 1, 1, 2, 2, 3, 3.
(b) Construct a graph with six vertices and degree sequence 1, 1, 3, 3, 3, 3.

(c) Can you find at least two graphs with each of these degree sequences?

4. Construct all degree sequences for graphs with four vertices and no isolated vertex.
5. Determine all possible degree sequences for graphs with five vertices containing no

isolated vertex and six edges.
6. Determine all possible degree sequences for graphs with five vertices containing no

isolated vertex and eight edges.
7. Let d, d2 d, be a nondecreasing sequence of non-negative integers representing

the degrees of the vertices of some graph. Prove that Z j1 di is even. Is the converse
to this result true?

8. Show that the sequence 2, 2, 2, 3, 3, 4, 5, 5, 6 is graphical. Build an answer from a
graph with degree sequence 1, 1, 1, 1, 1, 1.

9. For n = 2, 3, 4, 5, determine a relationship between the number of edges and the num-
ber of vertices in an n-regular graph with p vertices where p = 1, 2, 3 Construct
all 3-regular graphs on four and six vertices.

10. Let G be a graph. Prove that G is bipartite if and only if G contains no odd cycle.
11. Draw a graph with 16 vertices labeled with the elements of {0, 1} x {0, 11 x {0, 11 x

10, 1 } and edges that correspond to the edges in Q4.
12. Prove that Q, where n is some integral power of 2 has 2n vertices and n -2n- edges.
13. Prove that Q, is bipartite for n = 2, 3, 4
14. Prove that for any graph G on six vertices, either G or G contains a triangle.
15. Construct C5 , K3,3, and K2 ,4 .

16. For the graphs

b

2 3 a-

5
414 e U V W

G, G2 G3

Exercises 349

identify:

(a) the degree of each vertex
(b) a path of length greater than four, if any exists
(c) a cycle of size greater than four, if any exists
(d) a trail of length six, if one exists
(e) one circuit with more edges than the number of vertices in the graph, if one exists

17. For the graph

6 \-2

5, 3

4

do the following:

(a) Find subgraphs without isolated vertices that are n-regular for n = 2, 3, 4, 5.
(b) Find one path for each of the lengths three, four, five, and six.
(c) Find one cycle of each of the sizes three, four, five, and six.
(d) Find one trail for each of the lengths 6, 8, 10, and 12.
(e) Find the induced subgraphs determined by the sets of vertices {1, 3, 4}, {2, 3, 5,

6}, {2, 4, 6}, and {1, 3, 4, 5, 61.
The solutions for parts (a), (b), (c), and (e) should be drawings of graphs with the
vertices labeled as in the figure. For part (d), list the vertices as they occur in the trail.

18. Prove that if a graph G has an n-circuit with n odd and n > 3, then G has an odd
cycle.

19. Show that 1, 2, 2, 3, 4 is graphical but that 1, 3, 3, 3 is not. Prove the theorem of
Havel-Hakimi that for n > 1, the sequence dl, d2 d, is graphical if and only if
d, d2, dn-d,, dnd,+1 - 1 ... , dn-I - 1 is graphical.

20. Let d, d2. , d, be a sequence of distinct integers where n > 1 and 0 < di <_ n - 1
for 1 < i < n. Prove that such a sequence is not graphical.

21. Let G = (V, E) be a bipartite graph with vertex partition V = A U B. Prove that if
I A I A B 1, then G is not Hamiltonian.

22. Find a Hamiltonian cycle in Q3.
23. Find a Hamiltonian cycle in the following graphs:I I

1

5 K 2 7 891

6 1* 3

10 13 12
4 3 5 4

G, G2

350 CHAPTER 6 Graph Theory

24. Find a Hamiltonian cycle in the following graph:

a

bp t
< 0

d h

e 9 k Ir

G H

S
f

Cl'

25. Complete the proof of Example 5 in Section 6.3. 1.
26. Complete the proof of Case ii of Example 6 in Section 6.3. 1.
27. Show that the function F(a) = 3, F(b) = 1, F(c) = 4, and F(d) th2 is an isomor-

phism between the graphs G and H as shown:

a b 1 2

V3

d C 4
G H

28. Prove that for two graphs G and H that G is isomorphic to H if and only if G is
isomorphic to R.

29. Let G = (V, E) and H =(V1 , EI) be isomorphic graphs. Prove the degrees of the
vertices of G are exactly the degrees of the vertices of H. Show that IV =V, and
I E I = I EI alone do not imply that G and H are isomorphic.

30. Prove that G and H as shown are isomorphic:

1 2 a

5 4 a b

A d
f

G H

3 1. Prove that G and H as shown are not isomorphic:

4 ab

G H

Exercises 351

32. Prove that G and H as shown are isomorphic:

1 3 a b

2 4 e
G H

33. Prove that no pair of G 1, G 2, and G 3 as shown are isomorphic:

GI G2 G3

34. Prove that G and H as shown are isomorphic:

1 a_

6 5• 3 f c

5 4 e d
G H

35. For each graph shown in Exercise 16, construct both an adjacency matrix and an adja-
cency list representation.

36. Construct two different adjacency matrices and two different adjacency lists for C4 .
37. Prove that if G = (V, E) is isomorphic to G, then I V I =_ 0, 1 (mod 4).
38. Given a self-complementary graph with 4m vertices for some m > 0, construct a self-

complementary graph on 4m + 1 vertices that contains the self-complementary graph
on 4m vertices as an induced subgraph.

39. Construct all self-complementary graphs on four and five vertices.
40. Let G = (V, E) be a graph with I V I > 3. Prove that if the degree of each vertex in G

is at least I V 1/2, then G is Hamiltonian.
41. Let G = (V, E) be a graph. Prove that if for any two nonadjacent vertices v and w of

G we have deg(v) + deg(w) > I V 1, then G is Hamiltonian.
42. Let g be a set of graphs. For all G, H E 0, define the relation R as G R H if and only

if G and H are isomorphic. Prove that R is an equivalence relation.

43. Let A" = [a I n)] be the nth power of the adjacency matrix of G. Prove that:

(a)2, i A j, is the number of i - j paths of length 2 in G.
(2)(b) a~i2) deg(i).

(c) (1/6)E aii is the number of 3-cycles in G.
(d) For each graph given below by its adjacency matrix representation, verify parts (a)

through (c). For each pair of vertices, determine how many paths of length 3 are

352 CHAPTER 6 Graph Theory

joining them. List all the 3-cycles in each of the graphs (3-cycle a-b-c is counted
as being different from the 3-cycle a-c-b.)

Adjacency Matrix Adjacency Matrix
1 2 3 4 1 2 3 4 5 6

1 0 1 0 1 1 0 0 0 1 1 1
2 1 0 1 1 2 0 0 0 1 1 1
3 0 1 0 0 3 0 0 0 1 1 1
4 1 1 0 0 4 1 1 1 0 0 0

5 1 1 1 0 0 0
6 1 1 1 0 0 0

rnConnected Graphs

How do we characterize the obvious difference between graphs G and H shown in Figure
6.20?

x VA B
G H

Figure 6.20 Two graphs.

This is an important question, because many algorithms that use graphs as models first
find the pieces of a graph, like A and B in H, and then solve the problem for each piece
separately. The notion we will use to resolve this question is based on the simple idea of
asking whether a pair of vertices can be the ends of a trail. Extensions of this simple idea
even play a role in efficient algorithms for numerical analysis involving large systems of
equations.

Section 6.8 also deals with the first problem of graph theory. The problem simply asks
whether you can stroll across the bridges over a river and return to your starting point
after having crossed each bridge exactly once. The result is interesting, because there is a
complete characterization of those graphs that model such a stroll.

6.7.1 The Relation CONN

The important building block for this section is the relation based on the idea of whether
two vertices can be the ends of a trail. This relation is an equivalence relation that allows
us to find the pieces of a graph, such as shown for H in Figure 6.20, in a unique way.

Connected Graphs 353

Definition 1. A graph for which each pair of (not necessarily distinct) vertices is joined
by a trail is connected. A graph that is not connected is disconnected. A connected com-
ponent of a graph is a subgraph that is connected but not contained in any connected
subgraph with more vertices or edges.

For the graphs drawn in Figure 6.20, it is easy to identify G as a connected graph and
the subgraphs A and B as the connected components of the disconnected graph H.

The key notion for designing an algorithm to decompose a graph into connected com-
ponents is the following relation defined on the vertices of a graph.

Definition 2. Let G = (V, E) be a graph. For all v, w e V, define v CONN w if and only

if there is a trail in G from v to w.

Example 1. Find the connected components of the graphs G and H:

b d a

a c cOf

G H

Solution. There is no trail in G from a to e. Therefore, G is disconnected. The two
components of G are

bd

a c

C1 C2

The graph H is connected, as can be seen by considering the trail a - b - c - d. H has
one connected component, itself! 0

To begin the process of decomposing a graph into its connected components, we will
show that the relation CONN is an equivalence relation on the vertices of the graph. Once
we know that the relation is an equivalence relation, we can use the fact that the distinct
equivalence classes form a partition. It will follow that the elements of the partition are the
vertex sets of the distinct connected components of the graph. The actual components of
the graphs are the subgraphs induced by the elements of this partition.

Theorem 1. CONN is an equivalence relation on the vertices of a graph.

Proof. The proof consists of showing that the relation CONN is reflexive, symmetric, and
transitive. Let G = (V, E) be a graph. For each v E V, the vertex itself is a trail from v to
v. Thus, v CONN v holds for each v E V, and CONN is reflexive. For vertices v, w E V
such that v CONN w, there is a trail in G from v to w. Such a trail can be reversed to
form a trail from w to v, showing that w CONN v. Therefore, CONN is symmetric. Now,

354 CHAPTER 6 Graph Theory

to show that CONN is transitive let v, w and x be vertices of G such that v CONN w and
w CONN x. Since v CONN w and w CONN x, there are trails in G from v to w and from
w to x. By following the trail from v to w and then following the trail from w to x, a trail
from v to x is formed in G provided no edge occurs in both trails. If an edge occurs in
both trails, it is easy to modify this sequence of vertices and edges to make it into a trail
from v to x. This shows that v CONN x. Therefore, the relation CONN is transitive. Since
CONN has been shown to be reflexive, symmetric, and transitive, CONN is an equivalence
relation. U

Since CONN is an equivalence relation, the vertex set of any graph is uniquely parti-
tioned into equivalence classes by means of the relation (see Theorem 2 in Section 3.6.1).
For a graph G = (V, E), let C C V such that C is an equivalence class of V determined
by CONN. The induced subgraph <C> contains all the edges of G that have both their
ends in C. The subgraph <C> is a connected component of G. Similarly, the subgraphs
induced by the other distinct equivalence classes of G relative to CONN determine all the
other connected components of G. Figure 6.21 shows an example of how CONN is used to
find the connected components of a graph.

G = (11, 2, 3, 4, 5, 6, 7, 8, 9, 101, [(1, 2), (2, 4), (2, 6), (1, 4),

(5, 6), (3, 5), (3, 4), (7, 8), (8, 9) (8, 10), (10, 7)])

Equivalence Classes of CONN

(1, 2, 3, 4, 5, 61 17, 8, 9, 10]

Components

1 7

6 /
10 8

5
3

4 9
<[1, 2, 3, 4, 5, 6]> <(7, 8, 9, 10]>

Figure 6.21 Connected components.

If a graph is connected, it contains a single equivalence class with respect to the re-
lation CONN. In any case, each vertex of a graph is contained in exactly one connected
component of a graph.

In solving problems such as finding the connected components of a graph, we need an
efficient method for examining all the vertices and edges of a graph. Two methods that are
very efficient are depth first search and breadth first search.

6.7.2 Depth First Search

A depth first search of a connected graph G = (V, E) is a recursive algorithm to examine
the vertices and the edges of a graph. To begin a depth first search, choose an adjacency
list representation for G. Different adjacency list structures will give rise to examining the

Connected Graphs 355

vertices and edges in different orders, but in any representation, each edge and vertex will
be visited.

First, mark all the vertices of G as "unvisited." For the next step, choose any vertex v,
and mark it as "visited." Suppose the first vertex on the adjacency list for v is w. If w is
marked "visited," do nothing with the edge that this entry represents, and proceed to exam-
ine the next vertex in the list of vertices adjacent to v. If w is marked "unvisited," use w as
a new starting point for this process. When all the edges incident to w are examined, return
to v, and examine the next unexamined vertex on v's list of adjacent vertices. The process
terminates when the procedure returns to the starting vertex and all the edges incident to
this vertex have been examined.

An example of a depth first search is shown in Figure 6.22. A depth first search en-
counters two kinds of edges. Some edges, called tree edges, join the vertex being examined
to a vertex that has not already been visited. All other edges incident to the current vertex
join the current vertex to an already-visited vertex. In a depth first search, the tree edges
are shown as solid lines, and all other edges are shown as dashed lines.

a Depth First Search

h beginning at a

9 bd

d
//

Lists of e
Vertices Adjacencies h le

a b c

b a d g edge to unvisited
c a d e g vertex (tree edge)
d c b f - - - edge to previously
e C f visited vertex
f e d
g b c h
h g

Figure 6.22 Depth first search starting at a.

In Figure 6.22, the search has examined the edges in the order in which they are listed
in the adjacency list.

The edges in a graph can be partitioned into two sets by the search procedure. One set
of edges consists of all the edges (v, w) for which both ends of the edge have Visited[*] =
"visited" when the edge is examined for the first time. The other set of edges consists of all
the edges (v, w) with one end-say, v-having Visited[v] = "visited" and the other end
w having Visited[w] = "unvisited" when the edge is examined for the first time. All the
edges in this second set form a special subgraph called a depth first search tree. Trees are
formally defined and discussed in more detail later in this chapter, but for the search just
shown in Figure 6.22, the depth first search tree is shown in Figure 6.23.

356 CHAPTER 6 Graph Theory

a

ob

Od

g e

h f

Figure 6.23 Depth first search tree.

If a graph is not connected, then the process is repeated for each connected component.
The algorithm given here is intended to deal with connected graphs.

INPUT: Connected graph G = (V, E) and start vertex v0 and vertices numbered
1, IvI
RESULT: Each vertex and each edge is examined

Create an array Visited with I V I positions initialized to "unvisited"
Dfs(G, vo, Visited) /* The initial call uses start vertex vo *f

Dfs(G, v, Visited)l* The recursive procedure */

Visited [v] = "visited"
for each vertex w adjacent to v do

if (Visited [w] = "unvisited") then
Dfs(G, w, Visited)

To prove Dfs is correct, we must prove that every vertex and every edge of a connected
graph G is examined when Dfs is called for any vertex of the graph. Since every adjacency
of a vertex v is examined when Dfs(G, v, Visited) is executed, we can prove that every
vertex and every edge is examined if we can prove that Dfs is executed for each vertex
of G.

Suppose for some vertex w E V that Dfs(G, w, Visited) is not executed and
Visited [w] = "unvisited" after execution of Dfs. Without loss of generality, we can as-
sume w is adjacent to a vertex v that had Dfs(G, v, Visited) executed, because the graph

is connected and Dfs(G, v, Visited) is executed. When the adjacencies of v were ex-
amined, however, Visited[w] would have been "unvisited." Therefore, Dfs(G, w, Visited)
would have been executed, and Visited [w] would have been asssigned "visited." This

Connected Graphs 357

contradicts the assumption that a vertex such as w exists. Therefore, the algorithm is exe-
cuted for each vertex of G, and the algorithm is correct.

6.7.3 Complexity of Dfs

The analysis of the complexity of this search method is restricted to the case of connected
graphs. The generalization to disconnected graphs is left for the reader. Also, assume that
a graph has an adjacency list representation. The analysis for the case using an adjacency
matrix representation for the graph is also left to the reader.

In proving the correctness of Dfs, we showed that for a graph G = (V, E), the proce-
dure Dfs is called I V I times, once for each vertex of G. We can calculate the complexity
of Dfs by adding up the time taken by each of these I V I calls to Dfs. There are two parts
to each call, the marking process and the for loop. The marking process takes a constant
amount of time-say, cl. Each time through the loop, the for loop takes a constant amount
of time to test the condition-say, c2-and a constant amount of time-say, c3-as an up-
per bound for the time to execute the body of the loop (that is, to test the condition and
make the recursive call to Dfs when the condition is TRUE). For each vertex, the loop
will be executed once for each entry on the vertex's adjacency list. The total time to exe-
cute the loop for a single vertex v is bounded by cl + (c2 + c3)deg(v). Summing the time
taken by each of the calls to Dfs gives an upper bound on the complexity of Dfs. Since

ZVEV deg(v) = 2- I E I by Theorem 2 in Section 6.2, we have

Running time of Dfs on G < Z(Cl + (C2 + c3)deg(v))
VEV

<cl C V I + (c2 + C3) 1deg(v)
vGV

< Cl • IV I+ (c2 + C3) . 2. I E I
=O(IVI+IEI)

Observe that this argument does not just count operations. It uses results about graphs
to provide a more careful analysis.

6.7.4 Breadth First Search

A breadth first search is one of the simplest algorithms for searching a graph. The range of
effective applications of this search method is quite different from the range of applications
typically used with a depth first search.

A typical problem using a breadth first search involves finding an optimal path between
two vertices. When the edges have weights, you might be asking how much information
can flow from one computer to another if the information passes through a number of
computers with different capacities. If the vertices represent plants or warehouses or retail
stores, you might be asking if you can supply each store with all the product they can sell.
When researching a family genealogy, this search could be used to print out the members of
the family tree, one generation at a time. For example, the family tree shown in Figure 3.2
(see Section 3.1) would have its members printed in the order Mary, John, Peter, Elaine,

358 CHAPTER 6 Graph Theory

Maude, Harold, George, and Elizabeth if a breadth first search was used. Even the Job
Assignment Problem introduced in Section 6.1 can be effectively solved using this search
procedure as part of the algorithm.

When a depth first search starts at a vertex v and finds a vertex w with Visited[w] =
FALSE, no other adjacency of v will be examined until all the adjacencies of w have been
examined. In contrast, a breadth first search examines all the vertices adjacent to a vertex
before any vertex not adjacent to that vertex is examined. A temporary storage area is used
to store vertices for later processing. This storage area is managed as a list, with entries
being added at the end and removed from the front (this is formally known as a queue, or
a first-in-first-out list, which we only need to deal with intuitively here).

To implement a breadth first search of a graph G = (V, E), examine the vertices and
edges of G as follows. For getting started, first mark all the vertices as "unvisited." Choose
any vertex-say, v. Mark v as "visited," and put it on the end of the list. Now, for each
vertex on the list, examine in some order all the vertices adjacent to v. When all the "un-
visited" vertices adjacent to v have been marked as "visited" and put on the end of the
list, remove the vertex from the front of the list and repeat this procedure for any of its
adjacencies that are marked as "unvisited." Continue this procedure until the list is empty.

A breadth first search will be performed on the graph used in the depth first search
example so that it will be easier to see the differences between the search procedures. As
with a depth first search, a breadth first search tree can be defined. One way to see the
differences between these two search procedures is to notice the difference between the
structure of the depth first search tree shown in Figure 6.23 and the corresponding breadth
first search tree shown in Figure 6.24. The same convention for tree edges and all other
edges explained for a depth first search are used for a breadth first search.

Lists of
Vertices Adjacencies

a b c
b b a d g

c a deg
9d cb f

\\/,,,,,-c e c f

f e d
d g bch

h g

Breadth First Search Breadth First
Beginning at a Search Tree

a a

b c bC

d d

f hf h

Figure 6.24 Breadth first search and breadth first search tree.

Connected Graphs 359

INPUT: Connected graph G = (V, E), and start vertex v0
RESULT: Each vertex and each edge is examined

Create an array Visited with I V I positions initialized to FALSE
Create a queue Q that is initially empty

/* Q holds the discovered vertices waiting to be processed *!
Bfs(G, vo, Visited, Q) I* Start the search at vo */

Bfs(G, v, Visited, Q) /* The recursive procedure */
Visited [v] = TRUE
Put v at the end of Q
while Q # 0

Remove the vertex w at the front of Q
for each vertex u adjacent to w do

if (Visited [u] = FALSE) then
Visited [u] = TRUE
Put u at the end of Q

By very similar arguments to the ones used for the depth first search, the reader
can prove that this algorithm is correct and that the complexity of Bfs is also
0(1 V I + I E 1).

6.7.5 Finding Connected Components

One use of connectedness in many graph algorithms is to find the components of a graph
and then solve a problem for each of the components separately. Since the components can
be found in O(1 E I + I V I) time, this operation does not affect the overall complexity of an
algorithm that must typically examine each vertex and each edge in a graph to determine
an answer.

The algorithm presented for finding connected components uses a depth first search
of the graph to find the components one at a time. The adjacency list representation of a
graph makes the depth first search particularly easy to implement. The procedure to find the
Connected Components that calls DfsComp uses a counter (CompNumber) to keep track of
how many connected components are found in the graph being processed. If all the vertices
are visited as a result of the first call to DfsComp, then this counter will have a value of 1
after the process is finished. In this case, the graph is connected.

360 CHAPTER 6 Graph Theory

INPUT: Graph G = (V, E)
OUTPUT: For each vertex, a number labeling its connected component

Create an array Visited[1.. I V I] with I V I positions each initialized
to FALSE

Create an array Comp with I V I positions each initialized to 0
/* Comp [v] holds the integer label of v's component */

CompNumber = 0 /* No components discovered yet *!
for v = I to I V1 do

/* Make sure each vertex gets visited "/
if (Visited [v] = FALSE) then /* New component! "1

Add 1 to CompNumber
I* CompNumber is the number of the new component */

DfsComp(G, v, Visited, Comp, CompNumber)
/* Explore the new component starting at v *!

DfsComp(G, v, Visited, Comp, CompNumber)

/* The recursive procedure "/
Comp [v] = CompNumber

/* Record the number of v's component *1
Visited [v] = TRUE

for each vertex w adjacent to v do
if (Visited [w]) = FALSE then

DfsComp(G, w, Visited, Comp, CompNumber)

The procedure DfsComp is a slight modification of the earlier procedure called Dfs.
The difference is that this algorithm ensures every vertex in the graph is eventually exam-
ined, even if the graph is not connected.

A better understanding of the roles of the arrays and variables in DfsComp will help
to show how the procedure operates. The variables Visited, Comp, and CompNumber im-
plement one way to keep track of what is learned by DfsComp at a vertex. At the end of
the algorithm's execution, all vertices with the same value in Comp have been identified
as belonging to the same connected component. The array Visited keeps track, as the al-
gorithm is executed, of whether a vertex has been examined. If Visited has a value TRUE
for a vertex, then it follows that Comp has been assigned a value for that vertex. Because
Visited only has its value changed once for each vertex, Comp is assigned exactly one value
for each vertex. The variable CompNumber is used to make sure that the same number is
assigned to each vertex in a particular component and that vertices in different components
are identified by different numbers.

The K6nigsberg Bridge Problem 361

A breadth first search could also be used to find the connected components of a graph.
The complexity of such an algorithm would be the same as the algorithm that uses a depth
first search. The design of an algorithm for finding connected components using a breadth
first search is left to the reader.

W The Konigsberg Bridge Problem

In the eighteenth century, the city of Konigsberg, Prussia, had seven bridges that crossed
the Pregel River. The bridges connected the two islands in the river with each other and
with the opposite banks. Figure 6.25 shows the configuration of the bridges.

C

KNEIPHOFF D
A

B

Figure 6.25 K6nigsberg bridges on the Pregel River.

The town's folk had wondered if the following problem, called the Konigsberg Bridge
Problem, had a solution: Is there a continuous walk starting at C that crosses each of the
seven bridges exactly once and returns the walker to C? The problem was initially solved
by the famous mathematician Leonhard Euler (1707-1783, b. Switzerland), who modeled
the problem with a graph and then found necessary and sufficient conditions for the graph
constructed to represent a walk of the required kind.

To define a graph that represents the problem, let each piece of land be a vertex. Each
bridge defines an edge joining the vertices that represent the pieces of land at the ends of the
bridge. For the Konigsberg Bridge Problem, the resulting graph is shown in Figure 6.26.

C

A >D

B

Figure 6.26 K6nigsberg bridge graph.

Properly speaking, the model in Figure 6.26 is not a graph, because there are pairs
of vertices with more than a single edge joining them. This extension of the notion of a
graph is called a multigraph. The extension of Euler's theorem to multigraphs would not

362 CHAPTER 6 Graph Theory

be difficult, but it would require that the terminology of multigraphs be explained. The
notions are obvious extensions of the ideas used with graphs and can be formulated by the
reader. The main point is to treat the multiple edges as distinct entities in the set of edges
rather than as multiple listings of the same element in a set. Euler's theorem will be proved
for graphs as defined in Section 6.1.1.

By trial and error, it will become clear that no circuit in the graph shown in Figure
6.26 starts and ends at the same vertex and contains each edge once. Hence, no walk of the
required kind exists in K6nigsberg. When there is a circuit (trail) in a graph that includes
each edge exactly once, the circuit (trail) is called an Eulerian circuit (trail). Euler's
theorem gives necessary and sufficient conditions for the existence of an Eulerian circuit
in a graph.

Theorem 1. (Kiinigsberg Bridge Theorem) (Euler, 1736) Let G be a connected
graph. G has an Eulerian circuit if and only if each vertex is even.

Proof. (=:) Let G be a graph that has an Eulerian circuit C, and show that every vertex
of G is even.

Let C be v1 , V2. Vn where a vertex vi for 1 < i < n may occur more than once in
the list. We want to show that each vertex vi has even degree.

Before continuing the proof, we consider an example that motivates how this part of
the proof will go.

Motivation for the proof: In Figure 6.27, the circuit

C = 1,2, 3, 1,4,5, 1,6,7,8,6,2,9, 1

with the edges

(1, 2), (2, 3), (3, 1), (1, 4), (4, 5), (5, 1), (1, 6), (6, 7), (7, 8), (8, 6), (6, 2), (2, 9), (9, 1)

is an Eulerian circuit. In Figure 6.27, you can follow the Euler circuit by traversing the
edges by going from vertex to vertex in the following order: 1-2-3-1-4-5-1-6-7-8-6-2-9-1.

3
2 2 4

8

6
~ 5

SStart
7

Figure 6.27 Graph with an Eulerian circuit.

For each of the vertices 2, 3 ... , 9, we can see that each time the vertex occurs as the
end of an edge, it is the beginning of the next edge. Thus, each time one of these vertices
occurs in the circuit, we can add 2 to the running total of the degree of that vertex. For the
vertex 1, the same computation works for all its occurrences except for the first and the last
in the circuit. Both the first and the last occurrence of vertex 1 contribute one to the degree

The Kbnigsberg Bridge Problem 363

of vertex 1 so there is an addition of two to the degree of vertex 1 for these occurrences. A
summary for these calculations is given in Table 6.2.

Table 6.2 Computing Degrees in Traversing an Euler Circuit

Traversal of an Euler Circuit
Add to Current Total-i1 When Entering a Vertex and 1 When Leaving a Vertex-

Table shows running totals

Euler Circuit (1,2)(2,3)(3,1)(1,4)(4,5)(5,1)(1,6)(6,7)(7,8)(8,6)(6,2)(2,9)(9,1)

Vertex Start 1- 2- 3- 1- 4- 5- 1- 6- 7- 8- 6- 2- 9- 1 Degree

1 0 1 3 5 6 6

2 0 2 4 4

3 0 2 2

4 0 2 2

5 0 2 2

6 0 2 4 4

7 0 2 2

8 0 2 2

9 0 2 2

Continuation of the proof: First, consider the case where v 0 xl; then, also, v = x,.
Vertex vi occurs in C some number t of times. In each case, there are edges in G from vi
to the preceding and succeeding vertices of G-two edges per occurrence of vi. Moreover,
no edge is allowed to occur twice in the circuit, so in all, there are 2t edges incident to vi.

If v = xl, then the argument is analogous, except that one pair of edges is (Xl, X2) and
(Xn-1, X0).

(4=) Conversely, suppose that every vertex of a connected graph G has even degree, and
prove that G contains an Eulerian circuit. Select a vertex v in G, and begin a trail T at v.
Continue this trail as long as possible until a vertex w is encountered that has all the edges
incident to it in T. To prove that a circuit has been formed, show that v = w. Suppose
v 5 w. Each time w is encountered on T, except for the last time, one edge is used to enter
w and another to leave w. The last time w is encountered in T, only one edge is used-the
one to enter w. Therefore, an odd number of edges incident to w occur in T. Since the
degree of w is even, there must be at least one edge incident with w that does not belong
to T. Therefore, T can be continued, which is a contradiction, and so w = v. If T contains
all the edges of G, then T is an Eulerian circuit of G.

Before continuing the proof, we consider an example that motivates how the rest of
this proof will go.

Motivation for the proof: Suppose the circuit T does not contain all the edges of G.
An example of such an occurrence is shown in Figure 6.28. (This graph is known as Mo-
hammed's Scimitar.)

364 CHAPTER 6 Graph Theory

12 8

3 69

4 10

G
1 8 8
1*2 7

36 39 4° •- 010

51 90 4 5 11

T u H

Figure 6.28 Circuit that is not Eulerian.

Continuation of the proof: Define H to be the spanning subgraph of G with edge set
E(G) - E(T). Since every vertex in T has even degree, every vertex in H has as degree
a value that is the difference of two even numbers and, hence, is an even number. Choose
an edge (u, v) that is in H and that has at least one endpoint, v, in T. Such a choice is
possible because G is connected. Let H1 be the connected component of H that contains
the vertex v.

Begin a trail U at v in H1, and continue it as long as possible. As before, U will end at
its starting vertex v and be a circuit. Now, form a circuit C in G that has more edges than T
by inserting U at v. The larger circuit is formed when v is reached while traveling around
T, by taking a side trip around U (splicing U to T) before completing the rest of T.

Motivation for the proof. An example of this operation is shown in Figure 6.29.

Start for U

1 2 7 8 1 8
3 6 9

5 1110 4 5 110

/ H
Start for T

T:4-3-2-6-7-8-9-10-11-5-4 U:2-1-3-5-6-11-9-7-2
t

Splice vertex

Spliced Circuit: C:4-3-2-1-3-5-6-1 1-9-7-2-6-7-8-9-10-11-5-4

Figure 6.29 Splicing circuits.

Continuation of the proof: If T now contains all the edges of G, then T is an Eulerian
circuit. If T still does not contain all the edges of G, then form the spanning subgraph with
edge set E(G) - E(T), and repeat the process outlined for U to find a circuit in this graph
that can be spliced onto T. Repeat this process until an Eulerian circuit for G is formed. U

No wonder the people of K6nigsberg could not find a good walk: Every vertex of the
graph in Figure 6.26 is odd!

The K6nigsberg Bridge Problem 365

6.8.1 Graph Tracing

In directing a plotting device, commands are given to indicate where a pen should be
positioned to begin to draw a portion of the diagram and how the point of the pen should
move on the paper. When the pen is being repositioned to draw a different part of the
diagram, the write head is in the up position, or off the paper. If the diagram is composed
of many different parts, then a considerable amount of plotting time may be taken up with
repositioning the pen. It would be helpful to know ahead of time how many times the pen
must be repositioned and to schedule the plotting to use only as many pen motions in the
nondrawing position as are absolutely necessary.

An application of Euler's theorem is to determine whether all the edges of a graph can
be traced by a plotter exactly once, starting and ending at a given vertex. The next result
will answer the question about whether a graph could be drawn (passing over each edge
exactly once) without lifting the plotting pen. Figure 6.30 shows a graph that cannot be
drawn without lifting the pen.

128

13

G

Figure 6.30 A graph to plot.

Clearly, the pen could be lifted and repositioned for each edge in Figure 6.30. The real
question is this: What is the fewest number of times that a pen must be lifted to complete
the tracing of a graph? In particular, how many times must the pen be lifted to trace the
graph shown in Figure 6.30? (Assume that at the end of the plot, the pen is lifted so the
paper can be removed from the plotter but that this lifting is not counted when answering
the question.) Theorem 3 gives an answer to this question.
Theorem 2. Let G = (V, E) be a connected graph with 2 • k > 0 odd vertices for some

integer k. Then, there are k edge-disjoint trails

TrI, Tr2. Trk

in G such that

E(G) = E(Tr1) U E(Tr2) U ... U E(Trk)

Proof. Let V1, V2. V2.k-1, V2.k be the odd vertices of G where k > 0. Let H be the
graph formed from G by adding the k edges

(VI, V2), (V3, V4), " • " , (V2k-1, V2.k)

(You may be joining pairs of vertices that are already adjacent and need Euler's Theorem in
the context of multigraphs. As long as you allow the edge "set" of the graph to contain and
treat as different multiple edges joining the same pair of vertices, this proof is valid.) Every
vertex in H has even degree, so H has an Eulerian circuit. List the edges of an Eulerian
circuit of H beginning with the newly added edge (VI, v2). Deleting the edge (vi, V2) from
the list results in a trail from v2 back to v1. Now, delete the added edge (v3, V4) from this
trail. The result will be two trails of the form v2 to v3 and v4 to vI or v2 to V4 and v3 to VI.

366 CHAPTER 6 Graph Theory

After deleting the remaining edges that were added to G to form H, k edge-disjoint trails
containing all the edges of G are formed. 0

Corollary 1: Let G be connected and have two vertices of odd degree. There is a Euleria
trail in G that begins at one of the odd vertices and ends at the other.

For the proof of Corollary 1, it is possible that the pair of odd vertices to which you
add an extra edge are already connected. Keeping track of such an edge as separate from
the one originally in the graph is all that is needed to make the proof valid.

For any decomposition of a graph into pairwise edge disjoint trails, each vertex of odd
degree must be the end of at least one trail. Therefore, since each trail has two ends, a
graph with 2 • k odd vertices with k > 0 cannot be decomposed into fewer than k trails.
In terms of the plotting problem, interpret this result to say that the pen will have to be
lifted and moved at least k - 1 times if the plot graph contains 2 . k vertices of odd degree
where k > 0. For the graph shown in Figure 6.30, it would be necessary to lift the pen once,
because there are four vertices of odd degree. The two part tracing of the graph shown in
Figure 6.31 accomplishes the tracing while lifting the pen a minimum number of times.

End

18 12 7

Start End 1

Start

Figure 6.31 Minimum tracing of a graph.

Figure 6.32 shows other possible trail decompositions of the graph shown in Figure
6.30. Theorem 3 mentions nothing about the uniqueness of the decomposition. Each dif-
ferent way of adding edges to pairs of odd vertices may give a different set of trails.

1 12 2 12

3 6 9 64•91 0 61 5

Tri 13 Tr

6 12
30 Tr2

5 1

Tr2
13

Figure 6.32 Other trail decompositions.

Exercises 367

W Exercises

1. Construct connected graphs of the following sorts:

(a) All graphs of five vertices with at least seven edges
(b) All cubic graphs with at most eight vertices
(c) One 4-regular graphs of six vertices

(d) Three 5-regular graphs of eight vertices

2. In a graph, the edges are pairs of vertices, with no ordering-unlike our formalization
with relations as sets of ordered pairs. So, here treat the edges as ordered pairs as
follows: For any graph G = (V, E), let k be the set of all ordered pairs (vi, v2) and
(v2, VI) where (V1, v2) e E. Show that CONN is the reflexive and transitive closure
of E.

3. Find a graph G such that G is not connected.
4. Let G be a graph. Prove that if G is disconnected, then G is connected.
5. Let G = (V, E) be a connected graph with at least two vertices. Prove that if I V I >

I E 1, then G has a vertex of degree one.
6. Suppose that 2n computers are networked so that each computer is connected to n

other computers. Prove that it is always possible for any pair of computers to pass
messages to one another. (Hint: See Exercise 40 in Section 6.6.)

7. Let G be a connected graph with average degree greater than two. Prove that G con-
tains at least two cycles.

For problems involving depth first and breadth first searches, assume the adjacency
lists are formed by listing the adjacencies of each vertex in increasing order.

8. Carry out a depth first search on the graph in Figure 6.22 starting at the vertex f.
Display the result of the search process as was done in Figure 6.22.

9. Carry out a depth first search on the graph in Figure 6.22 starting at the vertex e.
Display the result of the search process as was done in Figure 6.22.

10. Carry out a breadth first search on the graph in Figure 6.24 starting at the vertex f.
Display the result of the search process as was done in Figure 6.24.

11. Carry out a breadth first search on the graph in Figure 6.24 starting at the vertex g.
Display the result of the search process as was done in Figure 6.24.

12. Let the graph G be given by the following adjacency list:

Vertices List of Adjacencies

1 2 6 7 8
2 1 3 4

3 2 4 5 6
4 2 3
5 3
6 1 3
7 1 8 9 10
8 1 7 9 10
9 7 8

10 7 8

368 CHAPTER 6 Graph Theory

Draw the depth first search tree or the breadth first search tree that results from the
following:

(a) A depth first search on G beginning at vertex 1
(b) A depth first search on G beginning at vertex 6
(c) A breadth first search on G beginning at vertex 1
(d) A breadth first search on G beginning at vertex 6

13. For each of the following graphs:

(a) Carry out a depth first search starting at vertex b.
(b) Carry out a breadth first search starting at vertex b.
(c) Repeat parts (a) and (b) using vertex g as the starting vertex.

b a c
a

b cd

d f f h

9g >h .

In each case display the result of the search process as was done in Figures 6.22
through 6.24.

14. Perform a depth first search and a breadth first search on the graph given by the fol-
lowing adjacency list:

Vertices List of Adjacencies

1 9 2 4
2 1 3 5
3 2 4
4 3 1
5 6 2
6 7 9 5
7 8 6
8 7
9 6 1

Start each search at vertex 3. Repeat the problem starting with vertex 5. Draw the depth
first search tree and the breadth first search tree for each case.

15. Write an algorithm for finding a shortest path between any two vertices in a connected
graph.

16. Let G = (V, E) be a graph. Prove that if the minimum degree of G is greater than
(I V I - 1)/2, then G is connected.

17. Let G = (V, E) be a graph. Prove that if I E I < I V- 1, then G is disconnected.
18. Find connected graphs with at least eight vertices such that:

(a) G is Eulerian and not Hamiltonian.
(b) G is not Eulerian but is Hamiltonian.
(c) G is not Eulerian and not Hamiltonian.
(d) G is Eulerian and Hamiltonian.

Exercises 369

19. The Hall of Horrors at an amusement park challenges you to enter at the Start door
and find your way to the Escape door. After passing through a door, the door closes
and locks. How many doors can you leave closed as you find your way from the Start
door to the Escape door? The layout of the Hall of Horrors is shown below.

Start

A B C D

G : F E

H I
Q

0 N K
R -, -4 -

P I M L

L I
Escape

20. A real estate agent wants to show the three houses shown. Lay out a tour that goes
through each door.

2 3 4 5

2 3 4 6 7 8 9

1 10 11 12 13

]E F- F4 - -E-

House with 18 doors House with 31 doors

(a) (b)

2 3

6 5 4

House with 19 doors

(c)

370 CHAPTER 6 Graph Theory

21. Find a tracing that minimizes the number of pen lifts for the graph shown.

12 13 14

NA L 1

11 TO 9

22. Prove that any Eulerian graph can be decomposed into a set of pairwise edge-disjoint
cycles.

rnTrees
Historically, the study of trees was independently initiated by Arthur Cayley (1821-1895
b. England) and Gustav Kirchoff (1824-1887, b. Prussia). Cayley's work in the 1850s
used these graphs as a tool for counting the number of saturated hydrocarbons C, H2n+2
containing n carbon atoms and 2n + 2 hydrogen atoms. Kirchoff's work in 1847 used
this same family of graphs to solve a system of simultaneous linear equations that give
the current in each branch and around each circuit of an electrical network. Figure 6.33, on
page 371, shows examples of typical graphs representing the problems Cayley and Kirchoff
dealt with.

In Cayley's work, trees are used to represent the structure of hydrocarbons. Hydro-
carbons contain atoms of hydrogen, oxygen, carbon, and nitrogen. The letters in Figure
6.33(a) represent the atoms, and a line between a pair of atoms represents a chemical bond.
Methane, for example, is composed of four hydrogen atoms that are bonded to one car-
bon atom. Atoms of hydrogen always correspond to vertices of degree 1; atoms of carbon
always correspond to vertices of degree #1.

In Figure 6.33(b), the top figure represents an electrical network with resistances,
condensers, and inductances. This information was replaced with the graph G. Kirchoff
showed that it was not necessary to consider every cycle in the associated graph of an elec-
trical network separately to solve the system of equations in which he was interested. He
showed that all the needed information was contained in any tree, such as T.

In more recent applications, trees are used to solve problems regarding the most ef-
ficient way to link a number of locations, whether by roads or by computer networks. In
computer science, trees are used to represent hierarchical structures, such as file systems,
as well as arithmetic expressions.

This section provides several different characterizations of trees. In Section 6.11, at-
tention will focus on the problem of finding a "smallest" connected spanning subgraph in
a graph. After solving this problem, we will focus in Section 6.12 on rooted trees and the
application of these trees to sorting and searching. We will show how trees can provide a
model for determining a lower bound on the complexity of any sorting algorithm that is
based on the comparison of two elements at a time.

Trees 371

H H
H H HH

C CH H H H H C H
H

C CH C H H H H

H C

Methane H Hc-.H
Ethane H C H C

H H H1

Butane Isobutane

(a) Cayley's graphs for hydrocarbon compounds

G: T:

(b) Kirchoff's graphs for electrical network

Figure 6.33 Cayley's and Kirchoff's graphs. a. Cayley's graphs for hydrocarbon compounds.
b. Kirchoff's graphs for an electrical network.

6.10.1 Definition of Trees

A good way to deal with a new mathematical structure is to construct examples that satisfy
the definition. You should try this approach with the next definition, in which we will make
use of the term acyclic (see Definition 6 in Section 6.3).

Definition 1. A tree is a connected acyclic graph. A graph in which each connected
component is a tree is called a forest. A vertex of degree one in a tree is called a leaf,
or a terminal vertex. A vertex of degree greater than one in a tree is called an interior
vertex.

For the usual definition of trees, the vertex set may not be empty. Later, a special
application will be facilitated by relaxing this restriction on the definition of a tree.

In Figure 6.34, we see all the trees with fewer than six vertices. Can you deduce a
relationship between the number of vertices and the number of edges in a tree from these
examples?

372 CHAPTER 6 Graph Theory

n=1 n=2 n=3 n=4 n=5

Figure 6.34 Trees with five or fewer vertices.

6.10.2 Characterization of Trees

Because trees have been "discovered" in so many different contexts, such as mathematics,
chemistry, and electrical engineering, several seemingly different definitions of trees have
been given. The next theorem shows that a number of these definitions are equivalent.

To prove that each of the statements in this theorem describes the same objects, we
must prove that each pair of properties is equivalent. For two properties-say, A and B-
we would do this by proving that property A implies property B and then that property B
implies property A. In the next theorem, we want to prove that four different properties are
equivalent. To prove each pair to be equivalent as above would require 12 proofs. We can,
however, reduce the number of proofs required by using the fact that if property A implies
property B and property B implies property C, then property A implies property C. This
makes a direct proof that property A implies property C unnecessary. To show that n prop-
erties are equivalent, we form a circle of implications-that is, property 1 implies property
2, property 2 implies property 3 ... , property n implies property 1. Now, for example, to
complete a proof that property i implies property j for any i and j, we simply start at the
implication that property i implies property i + 1 and follow the circle of implications until
the conclusion is property j. Such a sequence of implications and the transitive property
of implication lead to the desired conclusion. More formally, what we observe is that the
formula

(PI +-+ P2) A (pl '+ P3) A (pl <-' P4) A (P2 <+- P3) A (P2 <+- P4) A (P3 <-+ P4)

is logically equivalent to the formula

(PI -' P2) A (P2 -- P3) A (P3 - P4) A (P4 -- P0).

The proof of Theorem 1 uses a circle of implications. In Theorem 1, the number of
proofs is reduced to four from 12 by using this proof technique.

Theorem 1. (Tree Characterization) Let T be a graph with n vertices and m edges.
The following statements are equivalent:

1. T is a tree.

2. T is connected and m = n - 1.
3. T is acyclic andm = n - 1.

Trees 373

4. T is acyclic and the addition of any edge joining two nonadjacent vertices creates a
cycle.

Proof.

(1 =. 2) The proof is an induction on n, the number of vertices in T. Let no = 1 and
T = {n e N : all trees on n vertices are connected and m = n - 1}.

(Base step) If n = 1, then the only tree to consider has one vertex and zero edges, so the
result is true for n = 1.

(Inductive step) Now, let n > no. Show that if n E T, then n + 1 E T. Let T be a con-
nected and acyclic graph with n + 1 vertices. Since T is connected, we only have to prove
thatm = n - 1.

Choose a path W in T of maximum length, and let v be an endpoint of W. Vertex v has
degree 1 in T, because W is a maximum length path and T is acyclic. Form the subgraph
T1 of T consisting of the vertices of T, except for v, and the edges of T, except for the
edge incident with v. T1 is connected and acyclic and contains n vertices. By induction, T1
contains n - 1 edges. Therefore, T contains n edges.

By the Principle of Mathematical Induction, T = {n E N : n > 1}.

(2 = 3) Suppose T is connected and m = n - 1. We must prove that T is acyclic and
m = n - 1. Since it is given that m = n - 1, it only remains to prove that T is acyclic.

Assume T has a cycle of length c, where c < n. There are c vertices and c edges in the
cycle. If c = n, then m > n, which is a contradiction. For c < n, each of the n - c vertices
not on the cycle is incident to an edge on a shortest path from that vertex to a vertex of the
cycle. Each of these edges is different. Therefore, T contains

m >c+n-c=n

edges, which is a contradiction.

(3 =ý 4) Assume T is acyclic and m = n - 1, and prove that the addition of an edge
joining two nonadjacent vertices creates a cycle.

Since T is acyclic, every component of T must be a tree. Suppose T had k > 1
components. Each component has one more vertex than edge, so n = m + k. However,
n - m = 1, so k = l and T is connected.

Let u and v be any two nonadjacent vertices in T. Since T is connected, there is a
path from u to v. When the edge (u, v) is added to T, a cycle is formed since there are two
distinct paths from u to v in T.

(4 =, 1) Suppose T is acyclic and the addition of any edge joining two nonadjacent
vertices creates a cycle. The proof will be completed by showing that T is connected, since
it is given that T is acyclic.

Suppose T is not connected. T must have at least two connected components. Let u
be a vertex in one component and v be a vertex in a different component. Adding the edge
(u, v) to T does not form a cycle, which is a contradiction. Therefore, T is connected. a

When we study a special class of trees used to represent family trees and various sets
with order relations, we will use the following characterization of trees. In this theorem,
we use only the original definition of a tree in the proof.

374 CHAPTER 6 Graph Theory

Theorem 2. Let T be a graph. T is a tree if and only if any two vertices of T are joined
by a unique path.

Proof.

(=•) Suppose T is a graph such that every pair of vertices is joined by a unique path. T
is connected, since each vertex pair has a path joining them. Furthermore, T is acyclic. For
example, suppose T were not acyclic. Let A and B be vertices on an existing cycle. A and
B have different paths between them, contradicting the assumption, so T must therefore
be acyclic.

(.=) Let T be a tree that satisfies the hypotheses. Clearly, T is connected, since there is a
path between any pair of vertices. If T is not acyclic, there are at least two vertices A and
B for which there are at least two paths from A to B, which is a contradiction. 0

Additional characterizations of trees will be given in the exercises (see Exercise 8 in
Section 6.13). Having so many different ways to think about trees can make some proofs
a lot easier: You can pick a characterization of trees that is convenient for the situation at
hand rather than having to use the original definition of a tree.

Spanning Trees

Recall that for a graph G = (V, E), a spanning subgraph is a subgraph H = (VI, El)
of G with V1 = V. Obviously, every graph has a spanning subgraph-namely, the graph
itself. The subgraph of a graph consisting of just the vertex set and no edges is also a span-
ning subgraph. Obviously, no "smaller" subgraph, in terms of the number of edges in the
subgraph, can be a spanning subgraph than this subgraph with zero edges. The problem of
more interest is to find the smallest, in terms of the number of edges, connected spanning
subgraph of a connected graph. Clearly, such a graph must be a tree. This smallest con-
nected spanning subgraph, a spanning tree, can be found using the algorithm of Kruskal.

6.11.1 Kruskal's Algorithm

Kruskal's algorithm proceeds by examining the edges of the graph one at a time, in any
particular order. As an edge is examined, the algorithm determines whether a spanning tree
exists that contains the edge and all the previously chosen edges. It turns out that the only
condition the edge must satisfy to be added to the edges already chosen is that it does not
form a cycle with any subset of the edges already chosen. If an edge does not form a cycle
with any subset of the previously chosen edges, then it is included in the chosen edge set. If
the edge does form a cycle with some of the previously chosen edges, then it is not chosen,
and the next edge is examined. When all the edges of a graph have been examined, the
edges in the subgraph consisting of the chosen edges form a spanning tree.

Kruskal's algorithm is an example of the family of algorithms that try at each stage to
advance toward the goal as far as possible in a single step. The algorithms of this family
are known as greedy algorithms, and they sometimes-but not always-find the best pos-
sible solution. As we have just seen, in the case of Kruskal's algorithm, the best possible
outcome, a spanning tree, is always found.

Spanning Trees 375

INPUT: Connected graph G = (V, E)
OUTPUT: A spanning tree T of G

V(T) = V(G) /* Initialize */
E(T) = 0
for each e E E(G) do

if ({e} U E(T) is acyclic) then
E(T) = E(T) U {e}

6.11.2 Correctness of Kruskal's Algorithm

To show that Kruskal's algorithm is correct, it must be shown that the subgraph T formed
by the algorithm is a spanning subgraph for G and that T is both connected and acyclic. T
is clearly a spanning subgraph, because V(T) is defined to be V(G). Since no edge is ever
added to T that forms a cycle, T is acyclic, but it remains to be shown that T is connected.
Suppose T is not connected. Let u and v be vertices that lie in different components of T.
Since G is connected, there must be a path P in G from u to v. Traveling along P from
u toward v, let e be the first edge that leaves the component of T containing u and enters
some other component of T. Since e bridges two components of T, e does not belong to
T. Since the endpoints of e are not joined by any path in T, E(T) U e is acyclic. Thus,
when e was considered in the execution of the algorithm, E(T) U e was acyclic; therefore,
e was added to E(T). This contradicts e ý E(T). Since assuming T is not connected led
to a contradiction, T must be connected.

The algorithm will be clarified by applying the proof to the example shown in Figure
6.35. The edges listed in each part of the diagram indicate the tree edges (solid lines) and
the edges that form cycles (dashed line) and, thus, are not included in T.

(1,2)
E(G) (3,4)
(1,2) (2,5) (1,4)
(3,4) (5,6) (1,6) 1 (2,3) 1
(2, 5)
(5, 6)
(1,6) 5 3 5 3 5 3
(1,4)
(2,3) 4 4
(4, 5)
(3,6) (4,5) 1 (3,6) 1

6 2 6 2 6 2

5 L' 3 5 * 3 5 3

4 4 4
T

Figure 6.35 Finding a spanning tree.

376 CHAPTER 6 Graph Theory

6.11.3 Kruskal's Algorithm for Weighted Graphs

Figure 6.36 shows a graph that models a communication network where the length of the
communication link is a measure of the cost associated with joining the two vertices.
The Communication Network Problem is to find a set of edges from this graph such that
all the cities are connected and the sum of the lengths of the edges is a minimum. To make
this problem clear, we introduce the notion of a value or a weight for a graph.

Boston

Minneapolis Cleveland
412 . 341 486 216

207437 109
Philadelphia

294/ 71224

San Francisco 187. Louis Richmond

•/ ..1--•' Atlanta

Dallas

Figure 6.36 Communication network.

Definition 2. Let G = (V, E) be a graph. A weighted graph is a graph G together with
a function F : E -* R. The weight, or cost, or value, of an edge e is just F (e). The weight
of a subgraph H of G is W(H) = -eEE(H) F(e).

Example 1. Let the values shown on the edges of G be their weights.

Y3 3
4

1
2

5 5 4

Determine the weight of the 4-cycle with vertices 1, 2, 5, and 6. Calculate the weight of G.

Solution. W(l-2-5-6)= 1+2+1+3=7, whereas W(G) = 1+3+3+5+
1+3+2+4=22. 0

Since the cost of constructing a communication link is often proportional to the dis-
tance between the sites being connected, a weighted graph, with weights equal to the dis-
tance between the locations represented by the ends of an edge, is a good model for a
network when deciding which links to construct. The problem is to find a good spanning
tree. To measure how good a spanning tree is, one sums the weights of all the edges in-
cluded in the spanning tree. By the previous definition, this is the weight of the tree. When
the edge weights represent costs, the smaller the weight (cost), the better the tree. Thus,
the problem is to find a spanning tree of minimum weight for the network. A spanning tree
of minimum weight is called a minimum cost spanning tree (MCST).

Spanning Trees 377

Kruskal's algorithm to find a spanning tree can be viewed as the special case of
finding an MCST in a graph with each edge having weight one. The modifications
needed to find an MCST where the edges have arbitrary weights are included in the next
algorithm.

INPUT: Connected graph G = (V, E) with weighted edges
OUTPUT:- A minimum cost spanning tree T of G

V(T) = V(G) /* Initialize */
E(T) = 0
Sort E(G) in order of increasing weight
for each e e E(G) in increasing order of edge weights do

if (e U E(T) is acyclic) then
E(T) = E(T) U {e)

Figure 6.37 shows MCST in the graph from Figure 6.36.

Boston
Minneapolis ClevelandS412 Chicag 437 NN216

• 341 ll109

Philadelphia

San Francisco Kansas City 252 St. Louis Richmond

SI /529
16 4951

Atlanta

Dallas

Figure 6.37 Minimum cost spanning tree.

Several approaches are used to determine which edge to examine next. One method is
to sort the edges of the graph in increasing order by weight and then examine the edges in
that order. A second approach involves repeating a process whereby only the next edge to
be examined is identified rather than preprocessing all the edges by sorting them. An ef-
fective data structure for this second possibility is explored in Exercise 26 of Section 6.13.
No matter what procedure is used to determine which edge to examine next, however, the
procedure can be stopped as soon as number of edges chosen is one less than the number
of vertices in the graph.

378 CHAPTER 6 Graph Theory

6.11.4 Correctness of Kruskal's Weighted Graph Algorithm

Since the order in which the edges are considered is the only difference between this ver-
sion of Kruskal's algorithm and the earlier version for unweighted graphs, the algorithm
correctly finds a spanning tree.

It remains to be proven that this algorithm generates an MCST. Let G = (V, E) be
a weighted, connected graph with weight function c. Let T be a weighted spanning tree
generated by Kruskal's algorithm. Let T1 be an MCST for G. Let E(T) be the edges of
T and E(T1) be the edges of T1. If E(T) = E(TI), then T is also an MCST. If E(T) :
E(T1), let e be a minimum cost edge such that e E E(T) and e 0 E(TI). Observe that
every edge of T with a weight strictly less than the weight of e is included in E(T1) because
of the way that e is chosen.

The graph E(T1) U {e} contains a unique cycle (see Exercise 6 in Section 6.13)-say,

el, e2, e3, ... , ek, e

Let ej be an edge on this cycle such that ej g E(T). The edge ej exists or else the cycle

el, e2,..., ek, e

would also be contained in T, which is a contradiction. If c(ej) < c(e), then ej would
have been included in T by the way that e was chosen. Therefore, c(ej) > c(e).

Now, consider the graph T2 with edge set E(T1) U (el. Removal of any edge of the
cycle

el, e2, . .. , ek, e

will result in a spanning tree. In particular, removing ej results in a spanning tree T3 with
a cost no more than the cost of T1 since c(ej) > c(e). Since T, is an MCST, T3 must also
be an MCST.

The argument that T3 is an MCST is worth a more careful look, because it is useful
in other contexts. We started with T1 being an MCST with weight wt 1. We then showed
that the weight of T3-say, wt2-has the property that wt2 < wtl. Now, if wt2 < wtl
we would be contradicting the fact that T1 is an MCST. Therefore, wt 1 = wt2, and 7T3 has
the same weight as T1, which makes T3 an MCST. Notice that we did not claim T1 was the
only MCST, just one of the possible choices.

After at most I V(Ti) I - I transformations of the sort described, all the edges of T1
not contained in T will be replaced by edges of T. Hence, T is an MCST.

Rooted Trees

In a family tree, such as that shown in Figure 3.2 (see Section 3.1), there is a clear in-
terpretation of the edges and vertices as being on paths from the root. The relation being
represented precludes thinking of edges as "going both ways." The special tree used to rep-
resent such relations is called a rooted tree. A rooted tree consists of a tree together with
one vertex distinguished as a root. For any vertex in a rooted tree, other than the root, there
is a unique path from the root to the vertex. We view the edges as directed along the path
from the root to a vertex (see Theorem 2 in Section 6.10.2). With this interpretation of di-

Rooted Trees 379

rection, a drawing of a rooted tree normally has the root vertex at the top and the remainder
of the tree displayed below the root. Depth first search trees and breadth first search trees
are both important examples of rooted trees. In those cases, the root of the tree is the vertex
at which the search begins. As another example, Figure 6.38 shows how rooted trees can
be used to represent a hierarchical structure, such as a file system for a computer support
group.

Systems Administration

Applications Tech. Support Groups Residential Network

Engr. Psych. Chem.

Word Excel Dreamweaver Labs Labs Labs Userl User2 . . . UserN

Cscil8O Csci203 Csci368

Figure 6.38 Computer center file structure.

As with ordinary trees, vertices of degree one, except the root, in a rooted tree are
called leaves, or terminal vertices, and the other vertices in a rooted tree are called internal
or interior vertices. The maximum length of any path from a vertex to a leaf beneath that
vertex is the height of the vertex. The height of the tree is the height of the root. The length
of a path from the root to a vertex is the level of the vertex. These notions are illustrated in
Figure 6.39.

4 - root - 0

0 3 1

0 2 2 >32

1 1

0 4
Height Level

(a) (b)

Figure 6.39 Height and level in a rooted tree. a. Height. b. Level.

Another widely used terminology for rooted trees draws on the analogy with geneal-
ogy. For any directed edge (v, w), the vertex v is the parent of w, and w, is the child of
v. If v and w are any two vertices in a rooted tree for which there is a directed path from v
to w, then the vertex v is an ancestor of w, and w is a descendant of v. Vertices with the
same parent are siblings. Figure 6.40 shows examples of these notions.

380 CHAPTER 6 Graph Theory

parent-child

ancestor
siblings

Descendantt,

Figure 6.40 Relationships between vertices.

In discussing graphs, the notion of a subgraph clarified what is meant by a substruc-
ture. In the case of a rooted tree, a rooted subtree is the analogue. To define a rooted
subtree, let v be a vertex of the rooted tree T. The rooted subtree of T rooted at v is the
induced subgraph of T defined by the vertex set consisting of v together with all its de-
scendants in T. Figure 6.41 shows two subtrees of the rooted tree shown in Figure 6.38. (A
similar notion was introduced with expression trees in Section 2.1.2.)

Residential Network Tech. Support Groups

Engr. Psych. Chem.

Userl User2 . . . UserN Labs Labs Labs

Cscil8O Csci203 Elec315

(a) (b)

Figure 6.41 Support area for the computer center. a. Residental network. b. Technical
support groups.

6.12.1 Binary Trees

A vertex in a rooted tree may have any number of children. The children of a vertex in a
rooted tree are not arranged in any order with respect to their parent or with respect to each
other. The two rooted trees in Figure 6.42 are isomorphic rooted trees. In addition to the
usual properties of an isomorphism between two graphs, an isomorphism between rooted
trees must map the root of one tree to the root of the other.

a a

b eZ c b

d d

Figure 6.42 Two isomorphic rooted trees.

Rooted Trees 381

Of special interest in computer science is the family of rooted trees in which each
vertex has at most two children and the children are ordered by being designated as either
the left child or the right child of the vertex.

Definition 3. A binary tree is either a tree with no vertices or a rooted tree for which
each vertex has at most two children. Each child of a vertex in a binary tree is designated
as the left child of the vertex or the right child of the vertex (but not both).

Normally, a tree may not have an empty vertex set, but in the case of binary trees, the
notion of an empty tree is useful. The leaves of a binary tree are considered to have empty
subtrees for both the left and the right child. This convention gives a convenient way to
determine when a leaf in a binary tree has been reached. The definition of isomorphism for
binary rooted trees includes more than the conditions for isomorphism between two graphs.
For two binary rooted trees T1 and T2 to be isomorphic, we require, as with any rooted tree,
that the root of T1 be mapped to the root of '2. We also require one additional property of
the isomorphism of binary rooted trees: If F : V(TI) -+ V(T 2) is an isomorphism for two
rooted binary trees T1 and T2, and if w is a left (right) child of v in T1, then F(w) must
be a left (right) child of F(v) in T2 . The fact that each child of a vertex is designated as
either the left or the right child of the vertex means the two binary trees in Figure 6.43(a)
and 6.41(b) are different.

a a

C C

Figure 6.43 Two distinct binary trees.

All binary trees with fewer than five vertices are pictured in Figure 6.44. That is, every
binary tree with fewer than five vertices is isomorphic to one of these binary trees.

nn=3

n=4

Figure 6.44 Binary trees with fewer than five vertices.

382 CHAPTER 6 Graph Theory

6.12.2 Binary Search Trees

In addition to directing the edges away from the root in a binary tree, we can assign values
to the vertices in a special way. This new kind of tree is called a binary search tree. A typical
application of a binary search tree includes searching an ordered set for an element.

Definition 4. Let X be a linearly ordered set. A binary tree T = (V, E) with vertices
labeled by elements of X is a binary search tree if and only if:

(a) The value of the label of each vertex in the left subtree of a vertex v and not equal to v
is less than the value of the label at v.

(b) The value of the label of each vertex in the right subtree of v and not equal to v is
greater than the value of the label at v.

(c) no element of X occurs as a label of more than one vertex of T.

We have several choices for managing data when it must be stored in alphabetical
order for ease of access in applications. Certainly, the data can be kept in order in a list.
The data can also be stored as labels of the vertices of a binary search tree. If the binary
search tree can be constructed with a relatively small height, then the search algorithm will
be very efficient.

When the data stored in a binary search tree are a collection of words or names, the
ordering relation that is used to determine the location of a label is simply the familiar
dictionary ordering of words (see Example 9 in Section 3.8.2). The tree pictured in Figure
6.45 is a binary search tree with respect to the usual dictionary ordering of words.

llama

elephant/ goath/ moose zebra

aardvark gnu horse

Figure 6.45 Binary search tree.

The search for a word in a set of words labeling a binary search tree can be imple-
mented with the algorithm on the facing page.

Since the labels for the vertices of the binary search tree come from a linearly ordered
set and no two vertices have the same label, each comparison of the elements sought with
the label of a vertex results in one of two outcomes: You find the element, or you restrict
the continuation of the search to a smaller subtree. Since each leaf has an empty subtree
for both its left and right subtrees, the search will terminate either by finding the element
as the label of a vertex or by exhausting the possibility of finding the element by coming
to a leaf of the tree.

Rooted Trees 383

INPUT: Binary search tree T with root R and an element item
of the type stored at the vertices of T

OUTPUT: TRUE if item is stored in T and FALSE if not

BinSrchTree(R, item) /* Begin the search at root R of T */

BinSrchTree(v, item) /* The recursive procedure */
if(v = 0) then

return FALSE
else

if (item equals the element stored at v) then
return TRUE

else
if item is less than the element at v then

BinSrchTree(item, left child of v)
else

if item is greater than the element at v then
BinSrchTree(item, right child of v)

As an example of the use of this algorithm, we will show how zebra is found on the
binary search tree shown in Figure 6.46.

llama

elephant ga
moose zebra

aardvark gnu horse

Compare zebra with llama
Continue search in light subtree with root ostrich

ostrich

moose zebra

Compare zebra with ostrich
Continue search in light subtree with root zebra

0

zebra

Compare zebra with zebra

Figure 6.46 Search using a binary search tree. SUCCESS!

384 CHAPTER 6 Graph Theory

The efficiency of searching a binary search tree depends on the form of the tree. In
Figure 6.47, we see extreme cases for a binary search tree with five vertices.

(a) (b)

Figure 6.47 Two binary search trees with five vertices.

The difficulty with the binary search tree shown in Figure 6.47(a) is that its height
is four. On the other hand, the height of the binary search tree in Figure 6.47(b) is only
two. These two facts say that a search using the tree shown in Figure 6.47(a) can require
five comparisons while a search using the tree shown in Figure 6.47(b) will require at most
three comparisons in any search. To be efficient, algorithms using a binary search tree must
deal with the problem of keeping the height of the tree as small as possible. This is called
"balancing" the tree, and it is often a major implementation problem. One technique for
dynamic balancing of a rooted tree involves operations called rotations. The family of
A-V-L trees use rotations to keep the tree "balanced." An A-V-L tree rebalances a vertex
when its left subtree has height two greater than the height of its right subtree. An example
of this procedure is shown in Figure 6.48.

10
66

6 /1% heights 4 10 10
15 7

7 height 2 height 2 height 2 e height
2 15 2 7 15

height 3 2 STEP 1 STEP 2

Balanced

Figure 6.48 Rebalancing an A-V-L tree.

When building a binary search tree one element at a time, the detection of a vertex
having a left subtree with height two greater than the height of the other subtree causes
a balancing action to take place. In this example, vertex 10 has a left subtree of height
three and a right subtree of height one. Step 1 in Figure 6.48 is to move the vertex that is
unbalanced (10) down one level in the tree and its left child (6) up one level to become
its parent. The problem now is that vertex 6 has three children! We observe, however, that
when vertex 10 was moved down one level, it lost its left child! Therefore, we can now
make vertex 7 the left child of vertex 10 (see Step 2 in Figure 6.48), and the tree becomes a
binary search tree with no vertex having a left subtree with height more than one different
from the height of its right subtree.

Rooted Trees 385

In general, if we suppose a binary search tree is built from a list of n randomly ordered
elements. The first element on the list creates the root; the second element creates a left or
right child of the root, depending on whether it is greater than or less than the first element;
and so on. It is possible to prove that the height of such a tree, on average, is O(log2 (n)).
This bound is independent of any balancing operation.

6.12.3 Tree Traversals

A binary search tree can be built for a sequence of elements by adding the elements
to the tree one by one. For example, consider the sequence D, G, B, F, H, A, E, C.
The elements have a natural linear ordering, the alphabetical ordering, but they do not
appear in alphabetical order in the sequence. The first element, D, becomes the root
of the tree. The next element, G, is greater than D in alphabetical order, so G be-
comes the right child of D. The third element, B, is less than D, so it becomes the
left child of D. The fourth element, F, is greater than D, so it belongs to the sub-
tree rooted at the right child, G, of D. Since F A G and F < G, F becomes the
left child of G. Continuing in this way creates the binary search tree shown in Figure
6.49.

A binary search tree can be traversed in a way that makes it possible to print out
its labels in their proper order. The directed trail in Figure 6.49 shows how this is done.
Traveling along the trail, which starts at the root, output the label of an internal vertex that
has a left child when the vertex is encountered for the second time. Output the labels of
leaves and internal vertices with no left child the first time they are encountered. (Recall
that the root is an internal vertex.) For the tree in Figure 6.49, the labels are encountered
along the trail in the order D, B, A, B, C, B, D, G, F, E, F, G, H, G, D. Following the
procedure will list the letters A, B, C, D, E, F, G, H in alphabetical order.

D
B -G4

B~ .7
3 , 7 8

A C H

5,
E

Figure 6.49 Listing the labels of the vertices. The numbers indicate the order in which
labels are ordered.

There are actually three ways to list the labels at the vertices of a binary tree using the
traversal shown. The listings that result are determined by choosing when to print out the
label at a vertex: before the labels in its subtree, after the labels in its subtree, or between
the labels in its left subtree and the labels in its right subtree. For a nonempty tree T with
root r, left subtree T1, and right subtree T2, the formal description of these procedures
follows.

386 CHAPTER 6 Graph Theory

VERTEX LABEL LISTINGS

r

left child /• * right child

T2

PREORDER

1. List the label at the root vertex r of T.
2. If T1 is nonempty, list the labels of the vertices of T1 in preorder.
3. If T2 is nonempty, list the labels of the vertices of T2 in preorder.

INORDER

1. If T1 is nonempty, list the labels of the vertices of T1 in inorder.
2. List the label of the root vertex r of T.
3. If T2 is nonempty, list the labels of the vertices of T2 in inorder.

POSTORDER

1. If T1 is nonempty, list the labels of the vertices of TI in postorder.
2. If T2 is nonempty, list the labels of the vertices of T2 in postorder.
3. List the label of the root vertex r of T.

Figures 6.49 and 6.50 illustrate inorder listings.

milk

5 5,
• -'•soda

cereal' , • soda
7',,/7',

banana" ,/ grape 87 4 6 8
1 ,,,, orange water

fruit 3

Figure 6.50 Inorder traversal.

In Figure 6.50, the tree shown is a binary search tree. The word fruit is listed by the
inorder traversal before grape, because the inorder process lists the label of the left subtree
before listing the label at the vertex itself and, finally, lists the labels in the right subtree of
that vertex. In this example, the vertex labeled grape has no right subtree, so this finishes
the listing of the labels in the right subtree labeled cereal (already listed). This in turn
completes the listing of the labels in the left subtree of the vertex labeled milk. So, the next
label listed is milk.

Rooted Trees 387

To carry out a preorder or a postorder listing, follow the same trail alongside the tree.
For a preorder listing, however, record the label on the vertex the first time the vertex is
encountered. For a postorder listing, record the label on the vertex the last time it is passed,
as the traversal moves up to the vertex's parent. Examples of these listings of the labels
are shown in Figure 6.51. Notice that for preorder and postorder listing, the labels at the
vertices are not listed in alphabetical order.

Postorder Preorder

milk milk

"c"soda " "soda
cereal• 8 7, cere�a�6�l milkl 8

banana" gape b\ grape
3 5 6 banana

1 /, orange water 3 / orange water

fruit 2 fruit 5

banana milk
fruit cereal
grape banana
cereal grape
orange fruit
water soda
soda orange
milk water

Figure 6.51 Tree traversals.

6.12.4 Application: Decision Trees

To find a lower bound for the complexity of a class of algorithms, it is necessary to find
a model for all possible algorithms of the class. The lower bound for sorting algorithms
based on using a comparison of two elements as the fundamental operation can be found
by using a decision tree model. A decision tree is a rooted binary tree with labeled vertices
and edges.

Each step of a comparison-based sorting algorithm involves the comparison of two
distinct elements (if two elements were the same, we would be reduced to a smaller case)
using the linear order on the set of elements being sorted. These comparisons are used to
label the vertices of the tree. The label a : b at a vertex indicates that a and b are to be
compared. The left edge from a vertex represents what is known about the order of the
elements when a < b is true. The right edge represents what is known about the order of
the elements when b < a is true. Each leaf represents the fact that the questions used to
get to that leaf have completely identified the order among the elements of the input. The
discovered order is then presented in a box. Figure 6.52 shows a tree that represents one
way to sort three elements.

388 CHAPTER 6 Graph Theory

a
b
C

a.-b
C

cb~

b:c a b:c
a<b a< b b<a c <a

b<c ~ ,<c ",,<,
a~c°/b a/•b: b c

[-•bf - a < b a < b < i b < -a- -•a
c<b c<b c<a /\c<a
Ca<c c<a bc cb

Figure 6.52 Decision tree for sorting three elements.

The number of vertices with boxes must be at least n!, since there are that many
possible orderings of n elements. Obviously, a sorting algorithm must be able to identify
each of these orderings.

The level of any vertex turns out to be the number of comparisons that must be made to
get from the starting question to the vertex-that is, the number of edges traversed in going
from the root of the tree to the vertex. Since each comparison results in one of two possible
answers, after k comparisons at most 2 k different vertices can be labeled with orderings.

Let S(n) be the minimum number of comparisons used by any sorting algorithm that
correctly sorts any input of n elements. The decision tree representing any sorting-by-
comparisons algorithm must have at least S(n) levels.

Thus, the decision tree representing any sorting-by-comparisons algorithm must have
at least S(n) levels. Since at most 2 S(n) orderings can be represented by vertices in a tree
with S(n) levels, we must have

2 S(n) > n!
S(n) >: 1092(n!)

The problem is to find a good approximation for log 2 (n!).

Example 2. O(log2 (n!)) = O(n log(n)).

Solution. We must prove that (a) log(n!) E O(n log(n)) and (b) n log(n) e O(log(n!)).

(a)

log2 (n!) = log2 (1) + 1092(2) + 1og 2 (3) +-.- + log 2 (n - 1) + log2 (n)

< log 2 (n) + log2 (n) + log2 (n) +.. + log 2(n) + log 2(n)

= n log2 (n)

Now, let c = 1 and No = 1. Since n log2 (n) < c log2 (n!) for all n > No, we conclude that
log2 (n!) E O(n log2 (n)).

Exercises 389

(b)

log 2 (n!) = 1og 2 (n) + log2 (n - 1) + + log2 (n/2) + 1og 2 (n/2 - 1) +

+ log 2 (4) + log2 (3) + log 2 (2) + log2 (1)

> (n/2) log2 (n/2) + (n/2) log 2 (2)

= (n/2) log2 (n) - (n/2) log2 (2) + (n/2) log 2 (2)

= (n/2)log2 (n)

= (1/2)(n log2 (n))

2 1og2 (n!) > n log2 (n)

Now, let c = 2 and No = 1. Since n log2 (n) < clog2 (n!) for all n > No, we conclude
n log2 (n) E O(log2(n!)). 0

From Example 1, it follows that any sorting algorithm based on the comparison of a
pair of elements at each step will have the complexity given by a function at least as large
as c(n log2(n)) where n is the size of the input set and c E (0, 0).

Exercises

1. Construct all trees on six vertices. Find an algorithm for constructing all possible trees
on six vertices if you know all possible trees on five vertices.

2. If the sequence dl, d2 dn of nonnegative integers represents the degrees of the
vertices of a tree with n vertices, then i=1 di = 2(n - 1). Show that the converse is
false.

3. Let G be a tree with all vertices having odd degree. Prove that G contains an odd
number of edges. Show that this is not true if G is not a tree.

4. Prove that a tree is a bipartite graph.
5. Use a graph to represent the possible paths through the maze shown. Use the graph to

find a path from A to N.

6. Let T be a tree. Prove that if an edge e joins two nonadjacent vertices in T, then
T U {e} contains a cycle.

7. Prove that any tree with two or more vertices has at least two vertices of degree one.
8. Prove that a graph T is a tree if and only if T is connected but the deletion of any edge

disconnects T.

390 CHAPTER 6 Graph Theory

9. Prove that a cycle and the complement of any spanning tree must have at least one

edge in common.
10. Let Ti and T2 be two spanning trees of a graph G. Prove that if a is any edge in T1,

then there exists an edge b in T2 such that the graph obtained from T1 by replacing a
with b is a spanning tree of G.

11. Prove that a graph G is connected if and only if G contains a spanning tree.
12. Find a MCST in the graph shown:

a

12 2 4

1
9 1e)3

d h f b

8 5
10 7 /6

C

13. For the following graphs:

(a) Find a MCST in each of the graphs G 1 , G 2, and G 3.
(b) Repeat part (a) for graph G1 if it must include (3, 5) and (1, 7) in the MCST.

(c) Repeat part (a) for graph G 2 if it must include (3, 10), (6, 11), and (8, 9) in the
MCST.

(d) Repeat part (a) for graph G3 if it must include (2, 9), (6, 8), and (4, 5) in the MCST.

2 7 3 23344 2

2 5 2 2 2 2~2 3 4

6 4 6 9 310, 11 8 5 1 5 4 8 3

N31 , 6 34 10 4 6~ 2

7 2 3V 3 2 5 62
3

S 7 47 58 67 56 6-3 -

G, G2 G3

14. Find a MCST in each of the graphs G and H:

1 1
3 2

2 2 35

2 5 7 Z 2

33

3 4 7

5 4 3 3

G H

(a) Is the MCST for graph G unique? If not, find all examples. Find an MCST in
the graph if (6, 3) may not be included. Is such an MCST unique? If not, find all
examples.

Exercises 391

(b) Is the MCST in graph H unique? If not, find all examples. Find an MCST in the
graph if (3, 4) and (2, 5) must be included. Is such an MCST unique? If not, find
all examples.

15. A university has eight buildings that need to be connected so that each building's
computer network is accessible to the networks in the other buildings. The distance
between buildings is given in units of 1000 yards. These distances between buildings
are given in the table that follows. The distance from building i to building j is the
same as the distance from building j to building i.

1 2 3 4 5 6 7 8

1 - 1.6 1.4 0.5 1.2 1.5 1.8 2.3
2 - 0.9 1.8 1.2 2.6 2.3 1.1

3 - 2.6 1.7 2.5 1.9 1.0
4 - 0.7 1.6 1.5 0.9
5 - 0.9 1.1 0.8

6 - 0.6 1.0
7 - 0.5
8

Which pairs of buildings should be directly connected to connect all the buildings with
a minimum total network length? What is the length of a minimum network? What are
the different possible minimum networks?

16. Assume that all the weights on the edges of a graph are positive. Prove that if no
two edges in a graph have the same weight, then the MCST is unique. (Hint: As-
sume G has more than one minimal spanning tree. Order the edges, and consider the
smallest subscript k of an edge that belongs to some, but not all, minimal spanning
trees.)

17. Find an algorithm for determining an MCST that is based on removing the maximum
cost edge from a cycle at each step.

18. Let F : T -* S be an isomorphism between binary trees T and S. Let v E T be a
vertex at level k for k > 0. Prove that F(v) is at level k in S.

19. For each of the following sets of words, find the binary search tree that is formed when
the underlined word is the label of the root and the remaining words are added to the
tree in left-to-right order as they occur in the sentence.

(a) The time has come for all good.
(b) The time has come for all good.
(c) The time has come for all good.
(d) Since all the words in this sentence are different, it is possible to represent them

with a binary search tree.

20. Write a recursive algorithm to traverse a binary search tree and list its labels in increas-
ing order. Write the procedure so that it can be extended easily to a program in some
programming language.

21. Write an algorithm for the postorder traversal of any rooted tree.

392 CHAPTER 6 Graph Theory

22. Design a minimum depth decision tree to solve each of the following problems:

(a) Take the water in an eight-gallon jug, and divide it into two four-gallon portions
using a three-gallon jug and a five-gallon jug that initially are empty.

(b) Take the water in a six-gallon jug, and end with two gallons in a four-gallon jug
using a four-gallon jug and a three-gallon jug that initially are empty.

23. Draw a minimal depth decision tree that represents sorting four elements from a lin-
early ordered set. Only five levels are required.

24. Let G = (V, E) be a connected graph. The distance between two vertices v, w E V,
denoted D(v, w), is the length of a shortest path joining v to w. A vertex u of G is
in the center of G if maxvEV(G) d(u, v) is as small as possible. Prove that a tree has
either one or two vertices in its center.

25. A binary tree is said to be complete if all its leaves occur at the lowest level. For a

complete binary tree of height h, determine the number of vertices at level i where
I < i < h. Prove that the number of leaves is one more than the number of internal
vertices.

Definition 1. A heap of height h is an arrangement of numbers at the nodes of a binary
tree such that the following hold:

(a) All the leaves are either at level h or at level h - 1.
(b) There are 2i vertices at level h for h = 0, 1 h - 1.
(c) All the leaves at level h are at the leftmost possible positions.
(d) The number at any internal node is larger than the number at either of its two

children.

26. Given a heap, what can you say about the number at its root? By removing the num-

ber at the root of a heap and replacing it with the number in the rightmost leaf, the
property of being a heap is destroyed. Devise an algorithm to restore the property of
being a heap. Use this algorithm to devise a sorting algorithm, and then determine the
complexity of this sorting algorithm.

Directed Graphs

The detection of a bottleneck in allocating resources to computer programs, the schedul-
ing of jobs that depend on the completion of other jobs, and the design of one-way street
grids are all problems that are modeled by graphs. An important facet in these problems,
however, is not reflected in the structure of a graph. Often, a natural notion of direction is
associated with the connection between vertices. For instance, one can associate the ver-
tices of a graph with the intersections of streets and the edges with pairs of vertices that
indicate the way that traffic is allowed to flow on the streets in a section of a town with only
one-way streets. We first introduce directed graphs, which deal with graphs that have a di-
rection associated with each edge. We then use this terminology to model deadlock in an
operating system. An analogue of a depth first search in an undirected graph will be used
with directed graphs to solve scheduling problems for sets of prioritized events. A distinc-
tion between the notion of connectedness for directed graphs and for undirected graphs will
be explored. Finally, an analogue of Euler's theorem will be presented for directed graphs.

Directed Graphs 393

6.14.1 Basic Definitions

To understand the differences between directed and undirected graphs, we must supply
definitions of directed graphs and of their subgraphs and induced subgraphs.

Definition 1. A directed graph, or digraph, D = (V, E) consists of a finite, nonempty
set V, the elements of V are the vertices of D, and a finite set E of ordered pairs of distinct
elements of V, the elements of E are the directed edges of D. For an edge (a, b) E E, the
vertex a is the tail of the edge, and b is its head. Both a and b are incident to the directed
edge (a, b). The vertex a is adjacent to b, but b is not adjacent to a unless (b, a) E E. Two
directed edges, (a, b) and (c, d), are adjacent if b = c or d = a.

The direction of an edge in a drawing of the graph is normally indicated by attaching

an arrowhead to the head of the edge. For a vertex a in a directed graph, the indegree of
a, denoted indeg(a), is the number of edges with a as the head, and the outdegree of a,
denoted outdeg(a), is the number of edges with a as the tail. When we think of two objects
as being adjacent-say, a is adjacent to b-we feel that we can just as well say that b is
adjacent to a. For undirected graphs, that is indeed true. For directed graphs, however, the
word has a more restricted meaning.

Subgraphs and induced subgraphs of a directed graph are defined very similarly to the
way they were defined for undirected graphs.

Definition 2. Let D = (V, E) be a directed graph. A directed graph D1 = (VI, El) is
a directed subgraph of D provided that V1 C V and E1 CS E and, for each e E E1 that
both ends of e are in V1. An edge in E1 will have the same head and tail as that edge when
considered as an edge of D. D1 is an induced subgraph of D if Dt is a subgraph of D

such that E1 consists of all the edges of D with both head and tail in V1.

Figure 6.53 illustrates these notions in a directed graph.

- tail
adjacent
edges~-. he Iad

- Subgraph Induced Subgraph
adjacent -- indegree 1
vertices outdegree 2

Figure 6.53 Directed subgraph and directed induced subgraph.

With each directed graph is an associated undirected graph, called the underlying
graph, that is formed from the same vertices and edges but considers all the edges to be
undirected. The underlying graph contains just one edge joining a to b when the directed
graph contains both the edge (a, b) and the edge (b, a) for some pair of vertices a and b.
A directed graph is called bipartite if the underlying graph is bipartite.

394 CHAPTER 6 Graph Theory

6.14.2 Directed Trails, Paths, Circuits, and Cycles
The definitions for a directed trail, a directed path, and a directed cycle in a directed graph
are straightforward generalizations of the corresponding notions for undirected graphs.

Definition 3. Let D = (V, E) be a directed graph. A directed trail in D is a sequence
of not necessarily distinct vertices vl, v), v2 . V Vk such that (vi, vi+]) E E for 1 < i <
k - 1 and the edges are distinct. If all the vertices in a directed trail are distinct, then the
directed trail is a directed path. A directed trail for which vi = Vk is a directed circuit.
A directed trail for which all the vertices V1, V2, ... , Vk-1 are distinct and vi = Vk is a
directed cycle. The length of a directed trail is the number of edges it contains.

Figure 6.54 gives examples of these notions.

1 2 3 6 5 4 3 1 6

S1 2 3 5 4
2 00 ~pe:

Directed Trail

Directed Path

1 6 5 1 4 3 1

Directed Circuit
4 1 2 3 5 1

D Directed Cycle

Figure 6.54 Directed trail, path, circuit, and cycle in D.

6.14.3 Directed Graph Isomorphism
The generalization of the notion of an isomorphism to the case of directed graphs gives a
formal definition of what it means to say that two directed graphs are isomorphic regardless
of how the vertices and edges are labeled.

Definition 4. Let DI = (V1, E1) and D2 = (V2 , E2) be directed graphs. D1 and D2 are
the isomorphic directed graphs if and only if there is a bijection F : V -* V2 such that
(a, b) E EI if and only if (F(a), F(b)) E E2.

Remember that in a directed graph, the edge directed from a to b and denoted (a, b)
is not the same as the edge denoted (b, a).

Application: Scheduling a Meeting Facility

A small meeting facility consists of three scheduleable resources: a meeting room for large
groups, a lobby area for small-group meetings, and a slide projector for use in either room.
Two organizations are planning to use the facility on the same afternoon, so a schedule
for the resources is needed. The first organization would like to start in the lobby for a
slide presentation for its program committee, then move into the large meeting room for
a slide presentation to its full membership. The second organization is planning a slide
presentation to its full membership in the large meeting room. The second organization

Application: Scheduling a Meeting Facility 395

would like to begin its meeting at the same time the first organization is completing its
program committee meeting.

At any point in time, we can build a model of the resource requests and allocation for
this meeting facility using a directed graph. An edge (a, b) where

a E {Organization One, Organization Two}

and

b E {Meeting Room, Slide Projector, Lobby}

indicates that group a has requested resource b, whereas (b, a) indicates that group a has
been allocated resource b. Assuming that Organization Two has scheduled the large meet-
ing room and Organization One is completing its use of the slide projector in the lobby,
a model at the time the meeting of the second organization is about to begin is shown in
Figure 6.55.

* Lobby

Organization One • Meeting Room

Organization Two Slide Projector

allocated requested
4----

Figure 6.55 Model of meeting facility.

From examining the model, it is clear that neither organization can continue its meet-
ing, because a resource needed by each organization is assigned to the other organization,
which has no plan to release it.

The graph of the meeting facility's resource allocation clearly is dependent on the
particular time the model represents. For example, the meeting facility would be repre-
sented by the directed graph shown in Figure 6.56 for the case that Organization One is
completing its meeting just as Organization Two is scheduled to begin its meeting.

* Lobby

Organization One • Meeting Room

Organization Two Slide Projector

allocated requested

Figure 6.56 A second model of the meeting facility.

Although this model is given in terms of organizations and meeting facilities, the same
problem arises in an operating system when two programs request the same printer, tape
drive, or disk drive at the same time.

396 CHAPTER 6 Graph Theory

6.15.1 WAITFOR Graphs

To model the general situation of handling the request for and the allocation of resources
involving many users and many resources, we formally define a special type of directed
graph.

Definition 1. A WAITFOR graph for the allocation status of a set of resources is a
directed bipartite graph D = (V, E) where V1 and V2 are a bipartition of V. The el-
ements of V1 = {P1 , P2 . . P} I represent users of the resources, and the elements of
V2 = {R1, R 2 . , Rm} represent resources. For P E VI and R E V2 , there is an edge
(P, R) e E if user P requests resource R and has not been granted resource R and an
edge (R, P) E E if user P has been allocated the resource R where P E V1 and R E V2.

A WAITFOR graph can be thought of as taking a snapshot of the status of requests for
and allocations of resources at a fixed point in time. Different points in time may generate
different WAITFOR graphs for the same users and the same resources.

In the operation of a computer, it is important to know at each point in time if any of
the processes being executed by an operating system cannot progress toward completion.
Two or more processes waiting indefinitely for an event that can only be completed by one
of the waiting processes are said to be in a deadlock state, or deadlock. A deadlock state
will depend on the scheme that is used by the operating system to allocate resources such
as input or output devices or files. Regardless of the allocation scheme, an operating system
must deal with the problems of detecting a deadlock state and deciding what to do when
a deadlock state is detected. One allocation scheme for an operating system is to allocate
resources so that any resource is assigned completely to one process at a time but can be
reassigned when one process has completed its use. Typically, printers, tape drives, and
files are allocated in this way. Such an allocation scheme is called a single-unit resource
scheme.

Figure 6.57 shows a WAITFOR graph that represents a deadlock state for an operating
system using the single-unit resource allocation scheme. User 1 needs both a tape drive and
a printer to continue. The tape drive is allocated to User 1, but the printer is allocated to
User 3. At the same time, User 3 needs both a tape drive and a printer to continue. User 3
has been allocated the printer but must wait for the tape drive. The problem is that neither
User 1 nor User 3 can proceed until one of the devices allocated to the other is freed.
Since neither can proceed until all their requested resources are allocated, the processing
comes to a deadlock state. The operating system could break the deadlock by taking the
tape drive away from User 1 or by taking the printer away from User 3. The reader should
draw the WAITFOR graphs that result from these drastic actions to see whether they are
deadlock free. Figure 6.57 also shows a second problem that an operating system must
solve. In the case, if User 1 finishes with the tape drive or the operating system takes it
away from User 1, should User 2 and User 3 be given access to that resource next? The
WAITFOR graph gives no help with this question. A key property about WAITFOR graphs
is summarized in the next theorem.

Finding a Cycle in a Directed Graph 397

User 1 I Tape Drive

User 2 Disk Drive

User 3 0*-- Printer

allocated requested

Figure 6.57 Deadlock.

Theorem 1. A WAITFOR graph represents a deadlock state for a single unit resource
scheme if and only if the digraph contains a directed cycle.

Finding a Cycle in a Directed Graph

The theorem that characterizes a WAITFOR graph that represents deadlock states is useful,
because there is an algorithm for detecting a directed cycle in a directed graph. The algo-
rithm proceeds by first recognizing a vertex v with outdegree zero as a vertex that cannot
be contained in any directed cycle. Then, all the edges with v as head can be identified
as not being in a directed cycle through v and eliminated from further consideration. This
follows because each of these edges leads to v, from which no continuation is possible. It
then follows that the process can be repeated for the subgraph formed by deleting all the
edges with v as head and putting v in the set of vertices that cannot be in a directed cycle.
This process can be repeated until no vertex remains or every vertex remaining is contained
in a directed cycle. An example of using this procedure is shown in Figure 6.58.

1 2 1 2 1 2 1 2

4 3 4 3 4 3 4 3

4 not 2 not 3 not no directed
included included included cycle
in a in a in a exists
directed directed directed
cycle cycle cycle

Figure 6.58 Cycle-free directed graph.

If all the vertices of the directed graph can be identified as not being in a directed
cycle, then no directed cycle was present in the original directed graph.

6.16.1 Directed Cycle Detection Algorithm

A number of data structures are assumed to be available to the algorithm. The algorithm
uses NotInCycle as the initial set of vertices known to be unable to lie in any directed

398 CHAPTER 6 Graph Theory

cycle-that is, those vertices of outdegree zero. Q is the queue of vertices in NotlnCycle
waiting to be processed. Array entry NumExits[v] is initialized as the current maximum for
the number of ways a directed cycle can exit vertex v. Initially, this is just the outdegree of
a vertex.

INPUT: Directed graph D = (V, E)
OUTPUT: TRUE if D contains a directed cycle and

FALSE if it does not

Initialize NotInCycle and Q to contain the vertices
with outdegree 0 and NumExits[1 . . I V I] to the outdegrees of the vertices of D

while Q 0 0
Remove the vertex v at the head of Q
for each w E V such that (w, v) e E do

Remove (w, v) from E
NumExits[w] = NumExits[w] - 1
if (NumExits[w] = 0) then

NotlnCycle = NotlnCycle U {w}
Put w at the end of Q

if (NotInCycle = V) return FALSE

else return TRUE

Initially, there is no way to know which vertices, other than vertices of outdegree zero,
cannot be in a directed cycle. The vertices with outdegree zero give the algorithm a place
to start. As the algorithm proceeds, any vertex v that is identified as not being in a directed
cycle has the edges with it as the head identified as edges not belonging to a directed
cycle. For all vertices w that are the tail of an edge not in a directed cycle, NumExits[w] is
decremented by one. If NumExits[w] becomes zero for some vertex w through this process,
then the vertex must have all the edges with it as the head the recognized as not being in
a directed cycle. The set NotinCycle merely collects the vertices that are identified as not
belonging to any directed cycle. If at the end of the procedure every vertex in the directed
graph is in NotlnCycle, then the digraph does not contain a directed cycle. If not every
vertex is an element of NotinCycle when the procedure terminates, there is a directed cycle
in D contained in the induced subgraph < V - NotlnCycle >.

6.16.2 Correctness of Directed Cycle Detection

Let us argue that the algorithm terminates and produces the correct answer. If no vertex
has outdegree zero, then the directed graph has a directed cycle by Exercise 2 in Section

Priority in Scheduling 399

6.20, and the correct result is returned. This follows because Q = 0 and the outer loop is
never entered. At the end of the procedure, NotlnCycle = 0 0 V.

If some vertex has outdegree zero, then at least one vertex is put in both NotlnCycle
and Q. The outer loop is executed, since Q # 0 is true. The inner loop may identify ad-
ditional vertices that cannot be in a directed cycle. All such additional vertices, as they
are recognized, are included in the set NotlnCycle and put on Q. Each instance of the in-
ner loop will terminate, since each vertex is adjacent only to finitely many other vertices.
The outer loop executes at most once for each vertex in V. This is because the first time
a vertex is put on Q, the vertex has outdegree 0 in the current graph. Hence, it can never
serve as the tail of an edge in the remaining graph and, so, cannot be put on Q a second
time.

Therefore, the outer loop terminates after at most I V I iterations. Finally, the procedure
determines whether there is a directed cycle in the directed graph by asking whether all the
vertices have been put in NotlnCycle. If V = NotlnCycle, then the directed graph does
not contain a directed cycle. If V : NotlnCycle, then it can be shown that the subgraph
induced by the vertices in V - NotInCycle contains a directed cycle by using Exercise 3 in
Section 6.20.

Priority in Scheduling

In addition to being able to determine whether a set of processes is in deadlock, an operat-
ing system must be able to schedule all the processes in a system so that each process has
its required input available before it is executed. When a complicated expression is evalu-
ated, each operator must have access to the values of its operands at the time it is carried
out, so the operators in the expression must be "scheduled."

One additional example involves a manufacturing assembly process. In manufacturing
a complex product, assembly is decomposed into a sequence of subassemblies that must
be scheduled so that required subassemblies are completed before their output is needed
by another subassembly. Figure 6.59 shows a directed graph that models the relationships
among a set of subassemblies in a manufacturing process. The directed graph has a di-
rected edge from subassembly A to subassembly B if subassembly A must be completed
before subassembly B can begin. A practical problem to solve is how to schedule all these
processes sequentially so that whenever a subassembly begins, all the subassemblies that
it requires have been completed.

B

A••G

E F

Figure 6.59 Related subassemblies.

400 CHAPTER 6 Graph Theory

Before examining the general problem, consider the smaller scheduling problem rep-
resented by the directed graph shown in Figure 6.60.

P

/%
Q

R;

Figure 6.60 A small scheduling problem.

Clearly, P must be scheduled first. For the remaining processes Q, R, and S, any order
in which S precedes R is acceptable. The possible schedules are

P---) Q-- SS--). R P--- S--+ Q--* R P-+S--S+ R--+ Q

What we have accomplished is to take the partial ordering relation represented by a directed
graph in Figure 6.60 and find a linear order of the vertices. The linear order has the property
that for each edge, we have the head of the edge in the directed graph occurring after the
tail of that edge in the final linear order. Check that each of the edges (P, Q), (P, S), and
(S, R) satisfy the property.

More formally, this process is known as embedding a partial order in a linear order
(see Section 3.8.6). The first problem is to know when a directed graph representing a set
of constrained events can be scheduled sequentially so that all the constraints are satisfied.
A second problem is to find a schedule if one is possible.

If the directed graph contains a directed cycle, then clearly, no schedule can satisfy all
the constraints. On the other hand, if the digraph has no directed cycle, then it is always
possible to schedule the events by a process called a topological sort.

Whether a digraph contains a directed cycle can be determined using the algorithm
presented in Section 6.16.1 (Directed Cycle Detection). Directed acyclic graphs are often
called dags.

One algorithm for finding a topological sort of a dag uses a depth first search on a
directed graph. The only difference between a depth first search for a directed graph and
for an undirected graph is that in the case of a directed graph, the edge (i, j) has j occurring
on the adjacency list for i but does not have i occurring on the adjacency list for j unless
the edge (j, i) is also included in the directed graph.

6.17.1 Algorithm for Topological Sort

An algorithm for topological sorting will be given followed by an argument showing its
correctness. Finally, an example of using the algorithm will be presented.

As an intuitive aid to understanding the algorithm, think of the vertices as representing
jobs and the edges as representing precedence constraints between jobs. At each step, the
list Stack correctly orders the vertices (jobs) considered so far.

Priority in Scheduling 401

INPUT: A directed acyclic graph D(V, E)
OUTPUT: An ordering of the vertices so that if D contains a

directed path from v to w, then v < w

Initialize the I V I positions Visited [1.. IV I] to FALSE
Stack = 0
for each v e V do

if (Visited [v] = FALSE) then
TopSort(v)

print the elements in Stack from top to bottom

TopSort(v) /* The recursive procedure */
Visited [v] = TRUE
for each vertex w at the head of an edge (v, w) leaving v do

if (Visited [w] = FALSE) then
TopSort(w)

Add v to the top of Stack

6.17.2 Correctness of Topological Sort Algorithm

We will use induction on the number of vertices that are topologically sorted to prove that
this algorithm is correct.

Theorem 2. The output of the Topological Sort algorithm is correct.

Proof. Let no = 1 and 7- = {n e N : the output of Topological Sort algorithm is correct
for every dag on n vertices}.

(Base step) The base case is no = 1. For a dag with one vertex, the algorithm is correct,
since the single vertex is printed.

(Inductive step) Choose n such that n > no, and suppose that for all dags with k vertices
where 1 < k < n that k e T. Now, let D be a dag with n vertices. Since the vertices are
initially marked FALSE, call TopSort(l) to start at vertex 1. The procedure is just a depth
first search with the added feature that the vertex passed to TopSort is put on a first-in-
last-out list, called a stack, before TopSort is exited. Any vertex that can be reached from
vertex 1 by a directed path will be visited before TopSort(1) is completed and, hence, will
be put on the list before 1 is put on the stack. Thus, I will be closer to the top of the stack
than vertices reachable from 1 by directed paths. These vertices reachable from 1 in D
and appearing below 1 on the stack are just the vertices that represent processes that must
be executed after 1. Therefore, when TopSort(1) is completed, all the vertices that can be
reached from 1 will be on the list below 1. After completing the call to TopSort(1), there
will be at most n - 1 vertices marked FALSE.

402 CHAPTER 6 Graph Theory

The induced subgraph D1 formed from the set of vertices still marked FALSE that
remain will be a dag with fewer than n vertices. Therefore, by the induction hypothesis,
this dag will be topologically sorted correctly. It remains to observe that no vertex in D1 -

say, v--can be the head of an edge-say, (w, v)-such that w is already on the list. This
is true because if w occurred on the list, then v would have been visited by the depth
first search when w was encountered and, consequently, v would have been put on the
stack before w. This means that each vertex in D, can be placed on the stack after all the
vertices already on the stack without violating any of the constraints represented by D.
Therefore, n E T.

By the Strong Form of Mathematical Induction, 7T = {n E N : n > 11. U

Figure 6.61 shows the resulting order for the dag shown where the depth first search
begins at A and the vertices adjacent to A are put on its adjacency list in the order B, E, D.

B

Figure 6.61 TopSort on a dag. Topological sort order: A, D, E, F, B, C, G. E F

U Connectivity in Directed Graphs
The notion of connectedness for a directed graph is not as simple as the notion of con-
nectedness for undirected graphs. The reason is that directed edges represent an adjacency
between the tail and the head of the edge, but not one between the head and the tail of the
edge. The simplest notion of connectedness for directed graphs, called weakly connected,
holds whenever the underlying graph (that is, the undirected graph formed by omitting the
directions on the edges of the directed graph and eliminating multiple edges if both (a, b)
and (b, a) are in the directed graph for some pair of vertices a and b) is connected. A
directed graph that is not weakly connected is called disconnected.

6.18.1 Strongly Connected Directed Graphs
A second notion of connectedness for directed graphs depends on the existence of directed
paths from v to w and from w to v for each pair of vertices v and w. A directed graph with
such paths for each pair of vertices is called strongly connected. A strongly connected
component of a digraph is a directed subgraph that is strongly connected and is not con-
tained in any larger strongly connected subgraph. The graph shown in Figure 6.62(a) is
strongly connected, and the graph shown in Figure 6.62(b) is not. The graph shown in
Figure 6.62(b) actually has three strongly connected components.

1

5 ý2 5 >2

4 3 4 3
(a) (b)

Figure 6.62 Digraphs with and without the path property.

Connectivity in Directed Graphs 403

The property of having two directed paths joining a pair of vertices, one path in each

direction, defines a relation on the vertices of a directed graph. This relation helps us to
understand strong connectivity in directed graphs.

Definition 1. Let D = (V, E) be a directed graph. For all v, w e V define v STCONN
w if and only if there is a directed path in D from v to w and a directed path in D from w
to V.

Although STCONN may seem to be an abstract way to approach the notion of connect-
edness for directed graphs, use of this relation makes it easier to find the strongly connected
components of a directed graph-that is, the largest strongly connected subgraphs.

Theorem 1. STCONN is an equivalence relation.

Proof. Show that the relation STCONN is reflexive, symmetric, and transitive. Let D -
(V, E) be a directed graph. For each v E V, the vertex itself is a directed path from v to
v. Thus, v STCONN v for each v E V, and the relation is reflexive. For vertices v, w e V
such that v STCONN w, there is a directed path in D from v to w and a directed path from
w to v. Since there is a directed path from w to v and a directed path from v to w, it follows
that w STCONN v. This proves that STCONN is symmetric.

Finally, for vertices u, v, w E V such that u STCONN v and v STCONN w, it will
follow that u STCONN w. Since u STCONN v, there are directed paths in D from u to v
and from v to u. Since v STCONN w, there are directed paths in D from v to w and from
w to v. Using the directed paths from u to v and v to w, form a directed trail that starts
at u and ends at w. If a vertex occurs twice in this path, it is easily eliminated so that a
path results. Similarly, form a directed trail from w to u. Delete any directed cycles from
these newly formed directed trails to form directed paths. Therefore, u STCONN w, and
the relation STCONN is transitive.

Since STCONN is reflexive, symmetric, and transitive, STCONN is an equivalence
relation. 0

The induced subgraphs determined by the equivalence classes of D relative to
STCONN are the strongly connected components of D. The example in Figure 6.63 shows
that the strongly connected components may not include all the edges of the directed graph.
In particular, (h, g) and (h, i) are such edges. A directed graph that has exactly one strongly

connected component is called strongly connected.

b h b

a a c gh

a f f

e d e d
D Strongly connected components

Figure 6.63 Strongly connected components.

404 CHAPTER 6 Graph Theory

6.18.2 Application: Designing One-Way Street Grids

To alleviate traffic problems on narrow, crowded streets, one strategy is to allow traffic to
flow in only one direction. One obvious condition for a system of one-way streets to satisfy
is that traffic can somehow get from any intersection to any other intersection. The first step
in designing a system of one-way streets with this property is to describe a suitable model.
For this purpose, define a graph with vertices representing street intersections and an edge
joining a pair of vertices if the intersections they represent are joined directly. This gives
a good model for the two-way street traffic pattern. To make this into a one-way street
pattern, place directions on the edges to represent the direction traffic may flow on that

one-way street.

Definition 2. Let G be an undirected graph. An orientation 0 for G is an assignment of
directions to the edges of G.

An orientation is simply a way to make an undirected graph into a directed graph.
Obviously, there are many ways to orient the same graph. Three different ways to orient
the same graph are shown in Figure 6.64.

d d

a b a b

CC

7A eAI
(a) (b)

d

a b

C
e f

(C)

Figure 6.64 Three orientations of a graph.

In Figure 6.64(a), the orientation does not permit any directed path starting at one of
a, b, or c to reach any of d, e, or f. In addition, no directed path from d can reach either e

or f. In Figure 6.64(b), directed paths beginning at d can reach e and f as well as a, b, and
c. The graph in Figure 6.64(c) has the property that for any two vertices v and w, there is a
directed path from v to w and a directed path from w to v where v, w E {a, b, c, d, e, f}.
The property of having directed paths joining each pair of vertices is just the property that
the directed graph is strongly connected. This property, as formally defined in Definition
3, is just the property needed in any grid of one way streets.

Eulerian Circuits in Directed Graphs 405

Definition 3. Let G be an undirected graph and 0 an orientation for the edges of G. G
is orientable if G with orientation 0 is strongly connected.

In Exercise 9 of Section 6.20, the reader is asked to prove that a directed graph is
orientable if and only if each undirected edge is contained in a cycle. This theorem tells
when a one-way street pattern with each intersection accessible from all other intersections
can be established. The theorem does not tell how good the traffic flow will be. Figure 6.65
shows two examples of orientations that make the graph orientable. Notice, however, that
the directed path from v to w in G is much shorter than the directed path from v to w in H.

V V

G H

Figure 6.65 Two orientations that make a graph orientable.

Eulerian Circuits in Directed Graphs

For a directed graph, we define a directed Eulerian circuit to be a directed circuit that
contains each edge in the graph exactly once. The necessary and sufficient conditions for
a directed graph to have a directed Eulerian circuit can be stated in terms of the indegree
and outdegree of each vertex in the graph

Theorem 1. Let D = (V, E) be a connected digraph. D contains a directed Eulerian
circuit if and only if indeg(v) = outdeg(v) for each v E V.

The proof of this theorem can be constructed by a straightforward modification of the
proof of the necessary and sufficient condition for the existence of an Eulerian circuit in an
undirected graph. The necessary and sufficient condition for the existence of an Eulerian
circuit in the undirected case is that every vertex has even degree. In the Euler Theorem for
directed graphs, this hypothesis translates into the condition that there are as many directed
edges with a vertex as head as there are directed edges with the same vertex as tail. The
adaptation of the proof of the Euler Theorem in the undirected case to the directed case
involves observing that each time the directed Eulerian circuit passes through a vertex, it
accounts for one of the edges contributing to the indegree of the vertex and for one of
the edges contributing to the outdegree of the vertex. Thus, each time an edge is directed
into a vertex in the directed Eulerian circuit, an edge is also directed out of the vertex
and can be used to continue the directed Eulerian circuit-unless this vertex happens to
be the start of the circuit being constructed. In the case of the vertex at the start of the
directed Eulerian circuit, the outdegree contribution from the start vertex is matched with
the indegree contribution of the vertex at the end.

4M6 CHAPTER 6 Graph Theory

Information Links on the Web

The pages accessible from a Web browser can be represented by a graph in which the
vertices are the pages and there are directed edges between pages that are linked. A query
will determine the importance of a page by incorporating information about the importance
or relevance of the information in pages pointed to and from the page being examined.
When you make a Web query, the pages associated with a given page are as important as
the page itself. The final listing of pages of interest for a query are determined by searching
the graph that represents the linkages of a page. Additional mathematical techniques are
used to discern the final selection of pages to present to the user. Optimization techniques
involving linear algebra and probability are used to rank pages that are found by the search
procedure.

Exercises

1. In each of the following graphs:

6

2 3 a c x Y

14 e d U V W

D, D2 D3

(a) Determine the indegree of each vertex.
(b) Determine the outdegree of each vertex.
(c) Find a directed cycle of length four or greater, if any exists.
(d) Find a directed path of length four or greater, if any exists.
(e) Find a directed circuit of length at least six.

2. Let D be a directed graph with an outdegree of each vertex of at least one. Prove that
D contains a directed cycle. Show that the same result holds if the hypothesis is that
each node has an indegree of at least one.

3. Prove that any directed acyclic graph contains at least one vertex with an indegree of
zero. Use this result to devise a different algorithm to do a topological sort.

4. Verify that the following graph D is a dag. Perform a topological sort on the vertices
of the graph.

2 3

1 4

6 5
D

Exercises 407

5. Verify that the following graph D is a dag. Perform a topological sort on the vertices
of the graph.

a

h

f

e
D

6. Prove that if C1, C 2 . Ck is a sequence of cycles in a directed graph D such that
every two consecutive cycles have at least one common vertex, then the subgraph
determined by the union of these cycles is strongly connected.

7. Prove that if a graph G contains an Eulerian circuit, then G is orientable.
8. Prove that each of the following graphs is orientable:

68 1

5 7 7 123 9 21

10 12
12 11

D1 D2 D3

9. Prove that a connected undirected graph is orientable if and only if each edge is con-
tained in a cycle.

10. Show that any graph with a Hamiltonian cycle is orientable.
11. Prove that if a directed graph is Eulerian, then it is strongly connected.
12. Prove that a directed graph D = (V, E) is strongly connected if and only if for any

partition V1, V2 of V there is an edge (x, y) with x E V1 and y E V2.
13. Find a directed graph that is not Eulerian but for which the underlying graph is

Eulerian.
14. Devise an algorithm to find an Eulerian circuit in a directed graph, if one exists. Modify

the algorithm to find all Eulerian circuits in a graph.
15. Challenge: A complete directed graph is a directed graph whose underlying graph is

a complete graph. Show that the sum of the squares of the indegrees over all vertices
is equal to the sum of the squares of the outdegrees over all vertices in any directed
complete graph.

Definition 1. A tournament Tn is a directed graph on n vertices such that each pair of
vertices v, w is joined by one and only one of the directed edges (v, w) or (w, v). The
score of a vertex of a tournament is its outdegree. The score sequence, or ranking, of a
tournament is the sequence formed by arranging the scores of its vertices in nondecreasing
order. A tournament is transitive if the existence of edges (a, b) and (b, c) imply the
existence of the edge (a, c). The complement of a tournament is formed by reversing all
the directions on the edges of a tournament.

408 CHAPTER 6 Graph Theory

16. For the tournament shown, find a ranking of the players:

a b

d c

17. Let D = (V, E) be a tournament. Prove that if a has maximum score, then for any
vertex y, either there is an edge (a, y) or a vertex w and edges (a, w) and (w, y).

18. Prove that a tournament with no cycles is transitive.
19. Prove that if D is a tournament, then it has a directed Hamiltonian path.
20. Show that a transitive tournament can have its vertices ordered so that if a precedes b,

then the score of a is greater than or equal to the score of b.
21. Show that the figure

6 3

54

can be used to schedule a "tournament" for seven players. The tournament has a di-
rected edge (i, j) if and only if i beats j. (Hint: Rotate the edges but not the vertices.)

Representing a Relation. A digraph can be used to represent a relation. For a relation
R on a set A, define the digraph D = (V, E) as follows: Let V = A. There is an edge
(i, j) e E if and only if (i, j) E R. The definition of a digraph needs to be extended slightly
to allow representation of elements of the form (x, x) c R. A loop in a digraph is an edge
with both ends the same. We think of a loop as starting and ending at the same vertex. For
example, we can represent the relation R on {1, 2, 3, 4, 5} with elements {(1, 1), (2, 3), (3,
4), (4, 1), (2, 5)) as

4 3

22. Represent by a digraph the partial order defined on P({ 1, 2, 3, 4}) where the relation
is set inclusion.

23. Represent by a digraph the partial order divides defined on the integers 0 through 11.
24. Let R be the relation on {1, 2, 3, 4, 5} with elements {(1, 1), (2, 1), (3, 2), (2, 3), (1, 4),

(3, 5), (5, 2)). Represent R as a digraph.
25. Let R be the relation on {1, 2, 3, 4, 51 with elements {(l, 1), (2, 1), (3, 2), (2, 3), (1, 4),

(3, 5), (5, 2)). Represent the reflexive closure of R as a digraph.

Chapter Review 409

26. Let R be the relation on {1, 2, 3, 4, 5} with elements {(1, 1), (2, 1), (3, 2), (2, 3), (1, 4),
(3, 5), (5, 2)}. Represent the symmetric closure of R as a digraph.

27. Let R be the relation on {1, 2, 3, 4} with elements {(1, 1), (2, 1), (3, 2), (2, 3), (1, 4)).
Represent the transitive closure R* of R as a digraph.

Chapter Review

Definitions and notation are the first hurdles in studying graph theory. Vertices, edges, inci-
dence, adjacency, and degrees are the core terms. Using these terms, one learns to identify
parts of a graph, such as a subgraph, a spanning subgraph, an induced subgraph, a trail,
a path, a circuit, and a cycle. The idea of a graph isomorphism is needed to distinguish
between graphs that are truly different and graphs that are simply labeled differently. The
standard representations of graphs by adjacency matrices and adjacency lists finish the in-
troduction to the basic vocabulary. The next major topic involves determining whether a
graph is connected and, if not, what its connected components are. Two fundamental search
procedures, depth first search and breadth first search, are explained. The complexity of the
algorithms for carrying out these search procedures as well as the determination that the
algorithms are correct concludes this discussion. The search procedures are also used in an
algorithm to identify the connected components of a graph. These algorithms are proven
to be correct, and their complexity is determined. The chapter then examines two special
kinds of graphs: trees, and directed graphs. Various definitions of trees are proven to be
equivalent. Minimal connected spanning subgraphs are introduced. Kruskal's algorithm
for finding an MCST is presented, with correctness and complexity issues being explained.
A second class of trees, called rooted trees, is then introduced and used in searching pro-
cedures. Finally, with directed graphs, the vocabulary is introduced, as are two further
algorithms. The first detects a directed cycle, and the second carries out a topological sort.
The directed form of Euler's Theorem is presented, as is the notion of a strongly connected
directed graph.

Applications include developing a process to determine if a graph has a Hamiltonian
cycle. Euler's Theorem is used to determine an effective way to draw a graph. Decision
trees are used to find a lower bound for the complexity of any sorting algorithm based on
comparing pairs of elements. Directed graphs are used to characterize deadlock in an op-
erating system that uses a single resource allocation scheme. The notion of being strongly
connected is used to describe effective grids of one-way street patterns.

6.21.1 Terms, Theorems, and Algorithms

6.1-6.5 Summary

TERMS

acyclic bipartite graph complete bipartite graph
adjacency list bipartition complete graph
adjacency matrix circuit cubic graph
adjacent clique cycle
binary representation complement degree

410 CHAPTER 6 Graph Theory

degree sequence intersection regular graph
distance invariant same
edges isolated vertex self-complementary
even (odd) isomorphic graph
graph isomorphism spanning subgraph
graphical k-cycle subgraph
Hamiltonian cycle length trail
Hamiltonian graph n-cube (Qn) triangle
hypercube neighbros union
incident n-regular vertex
induced subgraph path vertices

THEOREMS

Handshaking theorem In any graph the number of odd vertices is
even.

6.7-6.8 Summary

TERMS

breadth first search depth first search tree Konigsberg Bridge
breadth first search tree disconnected Problem
connected Eulerian circuit multigraph
connected component Eulerian trail queue
depth first search first-in-first-out list

THEOREMS

Conn is an equivalence relation.
K6nigsberg Bridge Problem

ALGORITHMS

Breadth First Search (Bfs) Connected Components Depth First Search (Dfs)

6.10-6.13 Summary

TERMS

ancestor height right child
A-V-L tree inorder root
binary search tree interior vertex rooted subtree
binary tree leaf rooted tree
child left child rotation
cost level sibling
decision tree Minimum Cost Spanning spanning subgraph
descendant tree (MCST) spanning tree
forest parent terminal vertex
greedy algorithm postorder tree
heap preorder value

Chapter Review 411

vertex label weight
vertex label listing weighted graph

THEOREM

Tree Characterization

ALGORITHMS

Minimum Cost Spanning Tree-Kruskal Spanning Tree-Kruskal
Search Using a Binary Search Tree

6.14-6.19 Summary

TERMS

adjacent edges embedding a partial order score sequence
bipartite head single-unit resource
complement incident scheme stack
dag indegree STCONN
deadlock induced subgraph strongly connected
digraph isomorphic directed strongly connected com-
directed circuit graphs ponent
directed cycle linear order tail
directed edge orientable topological sort
directed Eulerian circuit orientation tournament
directed graph outdegree transition
directed path partial order underlying graph
directed subgraph ranking WAITFOR graph
directed trail schedule weakly connected

THEOREM

STCONN is an equivalence relation

ALGORITHMS

Directed Cycle Detection Topological Sort

6.21.2 Starting to Review

1. A trail may contain

(a) Repeated occurrences of vertices and edges
(b) Repeated occurrences of vertices but no repeated occurrences of edges
(c) No repeated occurrences of vertices, and no repeated occurrences of edges
(d) None of the above

2. Let G = (V(G), E(G)) and H = (V(H), E(H)) be graphs. If G is isomorphic to H,
what may we correctly conclude?

(a) IV(G)I = V(H)j and IE(G)I = IE(H)I
(b) IV(G)I = IV(H)t only.
(c) IE(G)I = IE(H)I only.
(d) None of the above

412 CHAPTER 6 Graph Theory

3. Let D = (V, E) be a directed graph. An edge (a, b) E E:

(a) Contributes one to the indegree of a
(b) Contributes one to the outdegree of a
(c) Contributes one to the indegree of a and one to the outdegree of b
(d) All of the above

4. The longest directed trail in the graph shown contains how many edges?

(a) 8
(b) 7
(c) 6
(d) 5

5. Construct a graph with degree sequence 1, 2, 2, 3, 4, 5, or prove that none exists.
6. Answer the following questions for the following tree

a

b c

d e f

g h j

k p q s t

(a) What vertices are leaves?
(b) What vertex is the root?
(c) What vertex is the parent of g?
(d) What vertices are the descendants of c?
(e) What vertices are the siblings of s?
(f) What is the level number of the vertex f?
(g) What vertices are at level four?
(h) What is the height of the tree?

7. Find an MCST in G. Show all the steps of the algorithm you use.

a 3 b

4e____

e 5 d 7 c

Chapter Review 413

8. List the vertices in the tree shown when they are visited in a preorder traversal and in
a postorder traversal.

2 3

4 2 5X6

X7 8 9 10

11 12 13 14

9. Find an Eulerian circuit in G. Show all steps of the process.

2 3

6 5

G

10. Topologically sort D.

a b c

g f e d

h

D

6.21.3 Review Questions

1. Let G = (V, E) be a graph for which deg(v) > r with r > 2 for every v E V. Prove
that G contains a cycle of length at least r + 1. Use this result to show that if everyone
at a party knows at least n others, then it is possible to seat n + 1 of the guests at a
circular table so that everyone know the persons seated on their left and their right.

414 CHAPTER 6 Graph Theory

2. Prove that G has no Hamiltonian cycle that contains the edge (e, j).

a

h

g e c

f d
G

3. Prove that the G and H are isomorphic.

1 2

5 4 j h

G H

4. Let G and H be graphs, and let v E V(G). Let F: G - H be an isomorphism be-
tween G and H. Let edges (v, w), (w, y), (y, x), and (x, v) form a 4-cycle in G. Prove
that the images of these edges under F form a 4-cycle in H.

5. Construct the Dfs and Bfs trees for the following graph starting at vertex 1: Assume
the adjacency lists are formed by listing the adjacencies of each vertex in increasing
order.

9 2

12
10 1

8 413

811 t•

14

7 154

6 5

6. Let G = (V, E) be a graph. Prove that if 8(G) and A (G) represent the minimum and
the maximum degrees of all the vertices of G, respectively, then

b(6) < 2. - E1l/Il <_ A(G)

7. Prove by induction that the sequence 1, 1, 2, 2, 3, 3 n - 1, n - 1, n, n is graphi-
cal for all n such that n > 1.

8. Let G = (V, E) with I V >__ 2 be a graph with all vertex degrees occurring exactly
once except for a single degree that occurs twice. Find the value(s) for the repeated

Chapter Review 415

degree value. (Hint: If I V I is even, then the repeated degree can have two possible
values. If I V I is odd, then the repeated value is unique.)

9. Prove that a graph is connected if and only if every two-part partition of the vertices
of the graph has an edge with ends in both parts of the partition.

10. Using the picture of the bridges connecting the two islands in the middle of the Seine
in Paris, describe a trail that takes you over each bridge exactly once. See the comment
about multigraphs in Section 6.8.

a b c dfg

3
0 nmlI k i h

4

Paris bridges joining the islands in the Seine.

11. Prove that if a tree has a vertex of degree p, then it has at least p vertices of degree
one.

12. Agents A, B, C, D, E, F G, and H are embroiled in a conspiracy called the Bucknell-
gate Affair. To coordinate their cover-up efforts, each conspirator must be able to com-
municate with each other either directly or indirectly (through another conspirator).
A table of risk factors is given for each possible direct communication link. What
is the least total possible risk while still meeting the requirements for communica-
tion?

Agent A A A A A B B C C C C D D E
Pairs B C E F G C F D F G H E H H

Risk
Factor 6 3 7 4 13 6 5 4 6 7 9 2 8 5

13. Prove that D1 and D2 are not isomorphic.

2 50

a e

416 CHAPTER 6 Graph Theory

14. Topologically sort D.

5

4 6

3 7

2
8

D

15. Prove that G contains no Hamiltonian cycle.

G

16. Let A be the adjacency matrix of a graph G = (V, E) with V = {1, 2 ... n}. Prove
that the sum of the entries in any column is the degree of the corresponding ver-
tex. Prove that the (i, j) entry of An, n > 1, is the number of different trails be-
tween i and j of length n in G. An denotes matrix multiplication of A with it-
self n times. For A, a 3 x 3 matrix, define A • A to have (i, j)th entry equal to

_k=1 aik "akj.

6.21.4 Using Discrete Mathematics in Computer Science

1. A vertex in a directed graph that has an indegree of zero is called a transmitter Identify
the transmitters in D. Devise a strategy for spreading a rumor so that all the nodes of
the graph, which can be thought of as people on the ends of telephone lines, know the
rumor.

c d

a b

g f
D

Chapter Review 417

2. Prim's Algorithm for MCST: Carry out the following procedure for the graph shown in
Figure 6.34 in Section 6.11.3. Let G = (V, E) be a graph. Maintain two sets: E1 and
V1 where E1 is initially empty and V1 is a subset of V initially containing any vertex of
the graph. Repeat I V I - 1 times: Find an edge e E E of least cost that joins a vertex
V E Vi to a vertex w (V1. Let E1 = E1 U {e} and V1 = VI U {w}.

3. A printer has one printing machine and one binding machine. Let pi and bi denote
the printing time and binding time for book i, respectively. For any two books i and
j, either bi > pj or bj > pi. Show that it is possible to specify an order in which the
books are printed (and then bound) so that once the first book is printed, the binding
machine will be kept busy until all the books are bound. As an example, find a schedule
for four books with printing time and binding time given as an ordered pair. (The first
coordinate is the printing time, and the second coordinate is the binding time.) D =
{(2, 3), (3, 5), (4, 1), (3, 3)}.

4. Eight computers must be networked together. Each computer must be accessible from
every other computer, but the connection does not have to be direct in all cases. The
computers (A-H) are represented by the vertices of the following graph, and the label
on an edge is an estimate of the cost of running the network cable. Find the set of
cables connecting all the computers with the minimum cost.

7

3 B6
A 79 C

G6 5H 6 D

4 4 86 9 5

7 F E

5. A bank plans to use special data lines to connect each of its branch offices with the
main office. The data line from a branch office need not be connected directly to the
main office. A branch office may be connected indirectly to the main office by con-
necting to another branch office that is connected (directly or indirectly) to the main
office. Every branch must be connected to the main office by some route. The distances
between pairs of offices are as follows:

1 2 3 4 5 6

1 X 160 270 75 70 190
2 160 X 310 80 210 50
3 270 310 X 175 120 215
4 75 80 175 X 150 240
5 70 210 120 150 X 100
6 190 50 215 240 100 X

Determine which pairs of offices should be connected by data lines so as to connect
every branch office (directly or indirectly) to the main office with a minimum total

418 CHAPTER 6 Graph Theory

cost. Repeat the procedure if there must be a data link between branches 2 and 5.
Repeat the procedure if branches 1 and 4 cannot be connected by a data line.

6. Suppose that a group of computers were linked together in a simple ring as shown:

A B

In this arrangement, each computer can communicate directly with the computers on
either side of it. Since the communication lines are all separate, each computer can
pass information to the computer to the right of it all at the same time. To pass a
message from computer A to computer B, just pass it along the line from computer to
computer until it reaches its destination. The communication lines are supposed to be
bidirectional, so the message can be passed in seven steps if it is passed to the right
and in three steps if passed to the left.

Some obvious graph-theoretic data are important to how quickly the computers
can share information and to how much it costs to connect the computers together. For
example, consider:

(a) The Degree of the Graph: The maximum degree of any vertex. For example, in the
graph shown, each computer has a degree of two, so the degree of the entire graph
is two. Here, the communication lines are fairly cheap to build. If the degrees of

each vertex were large, or if there were many interconnections then the network
of computers would be much more expensive to build.

(b) The Diameter of the Graph: The maximum distance between any two vertices.
For example, in a path with n vertices, the diameter is n. For such a graph, it
can take a relatively long time to send information from one computer to another.
This also means that a programmer, trying to get maximum programming speed

out of such a computer configuration, will have to program very cleverly to avoid
communication taking too long.

For each of the following graphs, compute the degree and diameter of the graph:

(a) A complete graph with n vertices.
(b) A hypercube with n vertices. (Of course, here, n has to be a power of 2.)
(c) A complete binary tree (see Exercise 25 in Section 6.13) with n vertices where

n = 2m - 1 for some non-negative integer m:

Level 0

Level 1
Level 2

Level 3

(d) A square grid with n vertices (pictured with 16 vertices):
•-0-e-•--0

I I _ I I
I _ I _ I _ I
I I I

O--0 -S-0-

Chapter Review 419

(Another very important feature is how many "bottlenecks" there are in a graph. For
example, in the tree, all information from the left side to the right side must flow
through the root, making the root a bottleneck in the communication.)

7. Use Fleury's algorithm to find an Eulerian circuit in each of the following graphs given
by the following adjacency list representation:

Vertices Lists of Adjacencies

1 2 3 4 6
Vertices Lists of Adjacencies 2 1 10 3 5

1 2 3 4 5 6 7 3 1 2 4 5
2 3 4 5 6 7 1 4 1 3 6 7 5 8
3 4 5 6 7 1 2 5 2 3 4 9 10 8
4 5 6 7 1 2 3 6 1 4 7 11
5 6 7 1 2 3 4 7 4 6 8 11
6 7 1 2 3 4 5 8 4 5 7 9
7 1 2 3 4 5 6 9 5 8 10 11

10 2 5 9 11
11 6 7 9 10

Fleury's algorithm is as follows:

(a) Choose an arbitrary vertex v and set W = v.
(b) Suppose that the trail Wi = v, vI vi has been chosen. Then, choose edge ei+1

from E - {el, e2 ... , ei} in such a way that
i.ei+l is incident to vi.

iiUnless there is no alternative, the removal of the edge ei+l does not disconnect
the graph remaining after isolated vertices are removed.

(c) Stop when part (b) can no longer be implemented.

8. A Huffman code is a technique for compressing messages based on the frequency
of the characters that occur in the message. The procedure for creating a Huffman
tree starts by choosing the two characters with the lowest frequencies and creat-
ing a subtree with them as leaves. A character not in the message is used to name
the tree with the two chosen characters from the message as leaves. The special
character is given a frequency that is the sum of the frequencies of its leaves. The
process is repeated with the remaining characters augmented by this new character.
Draw the Huffman tree associated with the character with frequencies given in the
table:

ce 0.45
f6 0.07
y 0.12
3 0.08
E 0.15
" 0.13

420 CHAPTER 6 Graph Theory

9. Recall the discussion of satisfiability in propositional logic from Chapter 2 in Section

2.3.1. One of the cases in which satisfiability is easy to check is the case of 2-CNF
formulas-conjunctions such as

0 = (-p V -q) A (-'p V q) A (p V -q) A (p V q)

X = (-'p V q) A (p V -q) A (p V q)

where each clause has just two literals. That is, each clause is of the form X1 V X 2 ,

where each)q is either a proposition letter xi or its negation -xi.
In this problem, the negation of a literal ;Xi is the negation of xi, denoted -;Xi, and

the negation of -'Xi is Xi. That is, when negating -'Xi, first form --- Xi, and then drop
the double negation sign.

Given a 2-CNF formula Oo, construct a digraph as follows: The vertices are all
literals X-i and -. ki where Xi is a propositional variable in the program. For each clause
Xi v•Xj, add directed edges from vertex -'Xi to vertex Xj and from vertex -Xj to)q.

(a) Draw the digraph constructed for the sample formulas 0 and X given previously.
(b) Show that for literals XI and k2 , if there is a directed trail from vertex X-1 to vertex

X 2 , then 0 • k I --- k 2 .

(c) Call a strongly connected component of the graph self-contradictory if it includes
both Xi and -Xi, for some literal Xi. Show that if the graph has a self-contradictory,
strongly connected component, then tk is unsatisfiable.

(d) Use part c to show that formula 0o is unsatisfiable.
(e) For a directed graph G, define a binary relation -< on the strongly connected com-

ponents of the graph as follows: C1 i_ C 2 if there are vertices al E C, and a2 E C 2

where there is a directed trail in G from al to a2. Show that if C 1 -< C 2, then for
every vertex al E C1 and every vertex a2 E C2 , there is a directed trail in G from
a to a2. (Remember that there is always a directed trail, of length zero, from any
vertex to itself.)

(f) Continue part e: Show that -< is a partial ordering of the strongly connected com-
ponents of G.

(g) Return to the graph defined from the 2-CNF formula x. Since the formula has only

finitely many proposition letters, it has only finitely many literals, and the graph
has only finitely many strongly connected components. For the partial ordering -<
defined in part e, pick a strongly connected component Co that is minimal in the

_ ordering.
Assume that Co is not self-contradictory. Start constructing a truth assignment

for 0 by setting each literal in Co to FALSE-that is, if xi E Co, set xo to FALSE,
and if --xi e Co, set xi to TRUE. Show that if c is any clause of (P, either this
assignment sets one of the literals in c to TRUE or this assignment does not assign
truth values to any literal in the clause. (Such a partial truth assignment is called

an autark assignment.)
(h) Challenge: Prove the converse of part c. (Hint: Use induction.)
(i) Challenge: Earlier, we presented an algorithm to check whether a 2-CNF for-

mula is unsatisfiable: Form the graph, find the strongly connected components,
and check whether any strongly connected component is self-contradictory. Ana-
lyze the complexity of this algorithm.

Cm min APT lR

Counting and Combinatorics

How many passwords can be formed using five letters and two special characters? How
long would it take a computer to generate all such passwords as a way of compromising
computer security? How many ways can 25 people be arranged for a group photo? How
many ways can the manager of a tour of European capitals order the cities to be visited?
How many ways can $100 be divided among four students? How many lottery tickets
are needed to cover all the possibilities? Counting techniques introduced in this chapter
provide tools for answering questions like these.

Counting techniques are also used in the study of probability to determine the number
of events in a sample space and the number of successful outcomes for an experiment.
Probability theory commonly uses these counts to assess the likelihood of a particular
event. In computer science, elementary counting methods provide useful tools and tech-
niques for dealing with problems such as the enumeration of all possible states that must
be considered in proving that a program is correct. More generally, counting methods are
used at several stages in the development of a correct and efficient program. For example,
a first decision about which algorithm to use in a particular application is often based on
knowing how the various alternative algorithms compare with respect to running time or
storage use. A step in the process of determining the running time or the storage use of a
program often includes one or more counting arguments.

In this chapter, we discuss four major topics. First, we introduce the two fundamental
counting principles: the Multiplication Principle and the Addition Principle. Second, we
introduce permutations and combinations, which deal with the ways of selecting subsets of
a set in which the order of selection of the elements may-or may not-be important. With
these preliminaries, we introduce the final two major topics: The first involves counting the
number of selections possible from collections with repeated elements; the second involves
combinatorial identities, such as the binomial theorem. In addition, Pascal's triangle is
presented. The first example of this chapter involves determining the complexity of an
algorithm to solve a well-known problem in computer science.

rnTraveling Salesperson's Problem

The Traveling Salesperson's Problem (TSP) is deceptively easy to state but deceptively
difficult to solve. A salesperson's territory includes n cities that must be visited on a regular

421

422 CHAPTER 7 Counting and Combinatorics

basis. Between each pair of cities, air service is available. The problem is to schedule a
sequence of flights that visits each city exactly once before returning to the starting point
so that the total time spent flying is minimized.

A naive algorithm for the solution of the problem uses three steps.

STEP 1: Find all possible routes.
STEP 2: Find the travel time for each route found in Step 1.

STEP 3: Choose a route with travel time equal to the minimum
of the travel times calculated in Step 2.

Example 1 carries out the steps of this algorithm for a set of four cities.

Example 1. Find a best route for visiting the four cities with the travel times given. The
entry in row I and column J is the time to travel either from city I to city J or from city
J to city I. Edges indicate direct air service between cities. The number on an edge gives
the distance for a flight between the two cities that are the ends of the edge.

8 1 2 3 4

1 - 18 30 16

"16 31 2 - 31 19
30 3-- 17
19 ~4-

17

Solution.

Step 1: Find all possible routes.

1-2-3-4-1
1-2-4-3-1
1-3-2-4-1
1-4-3-2-1
1-3-4-2-1
1-4-2-3-1

Step 2: Calculate the travel time for each route.

1-2-3-4-1 :18 + 31 + 17 + 16 = 82
1-2-4-3-1 :18 + 19 + 17 + 30 = 84
1-3-2-4-1 :30 + 31 + 19 + 16 = 96
1-4-3-2-1 :16 + 17 + 31 + 18 = 82
1-3-4-2-1 : 30 + 17 + 19 + 18 = 84
1-4-2-3-1 :16 + 19 + 31 + 30 = 96

Step 3: Choose a minimum-distance route.

1-2-3-4-1 : 18 + 31 + 17 + 16 = 82

A more general description of a solution for n cities gives insight regarding the number
of operations required to find a solution. Assume that n cities need to be visited and that one

Counting Principles 423

city is designated as the starting point for all routes. There are n - 1 cities that remain to be
visited immediately after the starting city. Thus, there are n - 1 ways to choose the second
city to visit. For each of these n - 1 partial routes consisting of city 1 and the choice of a
second city, there are n - 2 remaining unvisited cities. In all, we have (n - 1) ... (n - i)
partial routes starting at city 1 and containing i + 1 cities. The total number of routes
starting at one city and not returning to that city until all the other cities have been visited
is (n - 1)... (n - (n - 1)) = (n - 1)!. Therefore, (n - 1)! routes exist for visiting each of
the n cities exactly once provided that one city is designated as the starting and ending city.

As the second step in this algorithm, the travel time for each of the (n - 1) ! possible
routes must be calculated. Calculation of the traveling time for each possible route requires
adding the n numbers that represent the travel times of all the flights of a route. Each
addition will require at most some constant number k of such elementary operations. This
means that when n additions are performed, they are carried out by at most kn elementary
operations for some positive natural number k. Therefore, the number of elementary opera-
tions in calculating the length of all the routes is at most (n - 1)! kn (or O(n!)) operations.

For the third step, finding the minimum for a set of (n - 1)! numbers requires
(n - 1)! - 1 comparisons. Suppose the comparison of two numbers consists of some fi-
nite number 1 of elementary operations. This means that when (n - 1)! - 1 comparisons
are performed, there are at most I ((n - 1)! - 1) elementary operations for some fixed
constant 1. Putting the analysis of these three steps together gives the complexity of this
solution for the TSP. This solution will require at most kn! + 1 - ((n - 1)! - 1) operations.
The order of the algorithm is O(n!).

The upper bound on the running time of our naive algorithm for the TSP looks very
bad, but in fact, it is not known whether the TSP can be solved by an algorithm with the
complexity of a polynomial in n. The problem has many practical applications, and at
times, some algorithm to solve an instance of this problem must be used, however much
time it will take.

This TSP example has provided a first illustration of the major counting principles that
we now want to introduce more formally.

Counting Principles

Two principles of counting form a foundation for most counting techniques. The first prin-
ciple, called the Multiplication Principle, is used for counting the number of elements
arising from several choices that are made independently. This situation occurs, for exam-
ple, in counting the number of ways to order a meal consisting of an appetizer, a main
course, and a desert. The second principle, called the Addition Principle, is used to count
the number of elements in a set that can be partitioned into disjoint subsets. This situation
occurs, for example, in taking a census by adding the contributions from different regions.
We discuss the Multiplication Principle first and then the Addition Principle.

Suppose that Fast Lease, Inc., has three brands of microcomputers available for lease.
Each microcomputer is leased together with one of four different software packages. To
have leases available for customers to sign regardless of the options they choose, how
many different leases should be drawn up and available at any time?

The solution of this problem uses the following kind of analysis: First, a customer
must choose a microcomputer from among the three possibilities. Second, after choosing

424 CHAPTER 7 Counting and Combinatorics

a microcomputer, the customer must choose an appropriate software package, which can
be done in four ways no matter which microcomputer was chosen. Consequently, the total
number of choices is

(# Choices for microcomputer) . (# Choices for software package) = 3 • 4

= 12

Fast Lease should therefore have 12 different leases available at all times.
The choices can be explicitly displayed using the tree shown in Figure 7.1. Each inte-

rior vertex of the tree-that is, each vertex with an edge to its right in the figure-represents
a point at which a choice can be made in a number of ways. Since a customer has three
choices for choosing a microcomputer, three branches of the tree emanate from the starting
point that is represented by the leftmost vertex. After choosing one of the three options for
a microcomputer, a customer must then choose one of the four software packages, giving
the 12 choices enumerated by the vertices at the right edge of the tree.

r software 1
micro 1 • software 2

software 3
i I software 4

j
software 1

/micro2 software 2
"software 3
software 4

software 1
software 2

micro3 software 3
software 4

Figure 7.1 Choices for micros and software packages.

7.2.1 The Multiplication Principle

The problems of counting the number of possible tours for the TSP and of counting
the number of leases are among the counting problems solved using the Multiplication
Principle.

The Multiplication Principle

Let m E N. For a procedure of m successive distinct and independent steps with n 1
outcomes possible for the first step, n 2 outcomes possible for the second step and
n1m outcomes possible for the mth step, the total number of possible outcomes is

nl . n2 ... nm

Example 2. A university offers six sections of a physics course. Each student registered
for the physics course also registers for 1 of 11 lab sections and 1 of 12 problem session

Counting Principles 425

sections. Any combination of lecture, lab, and problem session is possible. How many
different ways can a single student be registered for the physics course?

Solution. To use the Multiplication Principle, we need to identify the steps of the proce-
dure and the number of outcomes possible for each step. We also must convince ourselves
that the process for each step does not depend on the process at any other step. This inde-
pendence will be obvious. The steps proceed as follows: Choose a section, choose a lab,
and choose a problem session. There are 6 possible outcomes for the first step, 11 for the
second, and 12 for the third. Therefore, the Multiplication Principle gives

(# Ways to register for physics course) = (# Choices for section) • (# Choices for lab)
- (# Choices for problem session)

=6 . 11 12

= 792 0

Example 3. Single characters displayed on a digital watch's display are formed by turn-
ing on some of the areas in a rectangular grid. Figure 7.2 shows the seven lines that a typical
digital watch uses to form characters. How many different characters can be formed?

a

f g b

e IC

d

Figure 7.2 Figures on a digital watch's display.

Solution. The digits can be represented as shown in Figure 7.3.

a a a

f1 lb lb g lb g lb fj lb

el Ic Ic eI Ic Ic
d d d
a a a a a

f g f g 1b f g lb f[g b

IC el Ic Ic el Ic Ic
d d d

Figure 7.3 Representation of the digits.

Notice that a total of seven different line segments are used in forming the different
numerals. You can form a pattern of lines by indicating for each of the seven line segments
whether it is "on" or "off." Since there are seven line segments and each can be on or off

426 CHAPTER 7 Counting and Combinatorics

independently of whether any other line segment is on or off, the Multiplication Principle
says that 27 = 128 characters can be represented by this grid. U

It is easy enough to represent the digits using seven segments, but the reader should
think about how many segments, and what pattern of segments, could be used to represent
the letters of the alphabet as well as the other characters on a keyboard.

Example 4. Show that the number of subsets of a finite set with n elements is 2'.

Solution. Let the elements of an n-element set be al, a2. a,. Each subset of these
elements can be uniquely associated with an n-tuple of 0's and I's, with 1 in the ith position
indicating that the element ai is in the subset and 0 in the ith position indicating the element
ai is not in the subset. In this procedure, for I < i < n, the ith step has one of two possible
outcomes: Either the ith element of the set is an element of the subset and the entry is 1,
or the ith element of the set is not an element of the subset and the entry is 0. Therefore,
by the Multiplication Principle, there are 2n such n-tuples and, consequently, 2n possible
subsets of an n-element set. 0

The reader should compare this proof with the one in Theorem 2 in Section 1.7.4
That proof is far more complicated, because it does not use the Multiplication Principle.
(It also makes the induction very explicit. Indeed, if one wanted to prove the Multipli-
cation Principle from "first principles," then the proof might look rather like the one in
Section 1.7.4

7.2.2 Addition Principle

Another counting principle arises when choices are made from sets of mutually exclu-
sive options. For example, suppose that Fast Machine Repair, Inc., offers two categories
of service contracts. The first is a full-service contract that provides parts and services as
needed for a fixed annual fee. The second is a service-on-demand contract that charges
a small annual fee and then charges separately for services by the hour and for parts as
they are needed. To satisfy different kinds of customers, Fast Machine Repair offers three
levels of full-service contracts and two levels for service-on-demand service. These two
sets of choices are disjoint. How many different contracts should be available so that no
matter what option the customer may choose, the appropriate contract is ready for signing?
Since there are three choices for the full-service option and two-choices for the hourly
charge option, and because these two sets of choices are disjoint, the total number of
choices is

(# Service options) (# Full-service options) + (# Hourly charge options)

=5

Rather than representing these choices by a tree as was done with the Multiplication Prin-
ciple, the possible choices here are represented by a collection of disjoint sets. Each set
represents a collection of options in the same category. The options available in this prob-
lem are represented by the two disjoint sets pictured in Figure 7.4.

Counting Principles 427

Hourly 1
Full Service 1

Hourly Full Service 2

Full Service 3

Figure 7.4 Set representation of choices.

The total number of possible choices is just the sum of the number of elements in each
of the disjoint sets. This counting problem is one in which the Addition Principle is used
to find a solution.

The Addition Principle

For a collection of m disjoint sets with nl elements in the first, n2 elements in the
second ... , and nm elements in the mth, the number of ways to choose one element
from the collection is

nl +±n2+'"+nm

As an example, suppose we would like to know the number of elements between
1 and 100 that are divisible by 11 or 13. Setll = 111, 22, 33, 44, 55, 66, 77, 88, 99},
and Setl3 = {13, 26, 39, 52, 65, 78, 911. Since Setall Setl3 = 0, the answer is found by
simply adding together I Setl 1 and I Setl3 I to get 16 as the answer.

Two steps need to be completed before the Addition Principle can be applied. The first
is to verify that the sets being considered are disjoint. This often proves to be more difficult
than you might expect. The second is to count the number of elements in each of the sets
as defined in the first step.

Example 5. How many ways can you choose a 9, a red card with value greater than 9, or
a black card with a value less than 6 from a standard deck of cards? (A standard deck of
cards is defined in Section 3.1. In this example, an Ace is a high card.)

Solution. The choices can be put into three disjoint sets as shown in Figure 7.5 on page
428. The Addition Principle says that there are

4 + 10 + 8 = 22

possible choices. U

428 CHAPTER 7 Counting and Combinatorics

9 of Clubods 1Jack of Diamonds 5 of Clubs
9 of Dia ds JkQueen of Diamonds 4 of Clubs

9of Heaubs Quee of Diamonds 3 of Clubs
9 of Spades King of Diamonds 2 of Clubs

Ace of Diamonds 5 of Spades
10 of Hearts 4 of Spades
Jack of Hearts 3 of Spades
Queen of Hearts 2 of Spades
King of Hearts
Ace of Hearts

Figure 7.5 Card choices.

Set Decomposition Principle

Counting is not done using just the Multiplication Principle or the Addition Principle. In
fact, many problems are solved by breaking the problem into subproblems, each of which
can be solved without reference to any of the other subproblems. After solving each of
the subproblems, you combine these results to solve the original problem. The solution
of each subproblem may use the Addition Principle, the Multiplication Principle, or some
combination of both. Since the problem is broken down into subproblems that are solved
independently, the last step involves using the Addition Principle to add the number of
solutions of the subproblems to solve the original problem.

Example 6. Student registration for computer science courses in the spring semester in-
volves choosing two courses from Comp240, Comp225, and Comp326. If six sections of
Comp240, seven sections of Comp225, and five sections of Comp326 are offered, then how
many different registrations are possible? Assume that course conflicts are not an issue.

Solution. Break the problem into three different subproblems that represent the three
pairs of ways that courses can be chosen. Then, count the number of solutions for each
of these three subproblems separately using the Multiplication Principle. The final answer
uses the Addition Principle and sums the number of ways that each of the three subprob-
lems can be solved.

Subproblem 1: Choose Comp240 and Comp225:

(# Ways to choose Comp240) • (# Ways to choose Comp225) = 6 . 7

Subproblem 2: Choose Comp240 and Comp326:

(# Ways to choose Comp240) • (# Ways to choose Comp326) = 6 . 5

Subproblem 3: Choose Comp225 and Comp326:

(# Ways to choose Comp225) • (# Ways to choose Comp326) = 7 • 5

Set Decomposition Principle 429

Final Result:

(# Choices) = (# Choices for subproblem 1) + (# Choices subproblem 2)

+ (# Choices subproblem 3)

=6.7+6.5+7.5

=107 U

Example 6 introduces a very useful strategy for counting problems. The strategy in-
volves breaking a problem into a number of subcases, each of which can be solved inde-
pendently. The insights that are needed to see how to break a problem into subproblems
can be developed by examining the solutions of similar problems and then attempting to
solve other similar problems.

7.3.1 Counting the Complement

To count the number of objects in a subset of a class of objects that have a common prop-
erty, you can begin by counting all the objects in the class. Then, you can count the number
of objects in the class that do not have the required property. The difference between these
two counts is the number of objects in the subset that have the property in question.

Example 7. How many 3-strings or words with three letters have a letter repeated if the
words are formed from {a, b, c, d, e)?

Solution. It is easier to determine this count indirectly. We will count the total number
of 3-strings possible and the total number of 3-strings with no repeated letters. The answer
will be the difference between these two counts.

There are five possibilities for each of the letter positions in forming an arbitrary word.
By the Multiplication Principle, there are 53 words in all. For the words with distinct letters,
the first position can be filled with any of the five letters, the second position with any of
the four remaining letters after the first letter is chosen, and the third position with any
of the three remaining letters after the first two choices are made. By the Multiplication
Principle, this gives 5 • 4 • 3 possible words with all letters distinct:

(# Words with repeated letters) = (# Words) - (# Words with distinct letters)

=53 - 5 . 4. 3

=65 U

The same idea of counting the complement will tell us how many functions are not
1-1. It would not be as easy to do this count directly as it would have been with the previous
example.

Example 8. Let S = {a, b, c, d, e} and T = [1, 2, 3, 4, 5, 6}. How many functions from
S to T are not 1-1 ?

Solution. The general class of objects to count is the number of functions from S to T.
The second count that is needed determines how many of these functions are 1-1. The
answer is the difference between these two counts:

(# Functions) = (# Possible images of a) • (# Possible images of b)
... (# Possible images of e)

430 CHAPTER 7 Counting and Combinatorics

= 6.6-6.6.6

= 7776

(# 1-1 functions) (# Possible images of a) • (# Possible images of b)

(excluding the image of a) ... (# Possible images of e)

(excluding the images of a, b, c, d)

=6.5.4.3.2

= 720

Therefore, the total number of functions that are not 1-1 is

7776 - 720 = 7056 U

7.3.2 Using the Pigeon-Hole Principle

The Pigeon-Hole Principle (see Section 4.6) states that if m objects are to be put in n
locations, where m > n > 0, then at least one location must receive at least two objects.
Thus, to prove that a set of objects has at least two elements with the same property, first
count the number of distinct properties of objects in the set, and then count the number of
distinct elements. If the total number of elements is larger than the number of distinct prop-
erties of objects, then the Pigeon-Hole Principle implies that at least two of the elements
have the same property. The next example is an illustration of this type of argument.

Example 9. A local bank requires customers to choose a four-digit code to use with an
ATM card. The code must consist of two letters in the first two positions and two digits in
the other two positions. The bank has 75,000 customers. Show that at least two customers
choose the same four-digit code.

Solution. First, use the Multiplication Principle to calculate the number of distinct codes
possible:

(# Four-symbol codes) = (# Choices of letter 1) • (# Choices for letter 2)
- (# Choices for digit 1) • (# Choices for digit 2)

= 26 . 26. 10. 10

= 67,600

Now, apply the Pigeon-Hole Principle. Since there are 75,000 customers and only 67,600
codes, the Pigeon-Hole Principle implies that at least two of the customers choose the same
code. E

The Pigeon-Hole Principle gives very sketchy information about what could actually
happen when the 75,000 customers choose four-digit codes. One possibility is that the
same code is chosen by all customers. Another possibility is that all codes are chosen at
least once and at most twice. In Example 4, the Pigeon-Hole Principle only says that at
least two customers choose the same code.

The Generalized Pigeon-Hole Principle can give us answers that will tell us more than
simply that a single value is repeated at least once.

Set Decomposition Principle 431

Example 10. Suppose a group of vacationers is split into 159 teams. How many leagues
must be formed if a league should contain at most 8 teams? 10 teams? 12 teams?

Solution. The Generalized Pigeon-Hole Principle tells us that the answers are
Fl591 r 1591 r 159-1

-59 = 20 [-1-5 = 16 j159]= 14

It remains for the organizers to determine which size of a league is most manageable. U

In many applications, the Pigeon-Hole Principle is used to prove that a problem cannot
be solved. A typical example involves deciding what letter and digit patterns to use on
a state's license plates. Problems that must be considered when designing license plates
include how long the plates will be used and what scheme of letters and digits should
appear on a plate so that every car that is registered during the period can have a distinct
letter-digit pattern. The counting problems for license plates are good, simple examples
of using the Multiplication Principle, because each position must contain a fixed kind of
symbol. (Later, we will consider problems for which we do not know explicitly that a letter
or a digit will occur in a particular place in a pattern, just that letters and digits will occur.)

Example 11. Determine the number of different license plates that are possible using
each of the following schemes, where D represents one of the digits 0, 1, 2,..., 9 and L
represents one of the letters A, B, C ... , Z. The leading digit must not be zero (the digit in
the leftmost position).

(a) DDDDDD
(b) DDDDDL
(c) DDDLDDD
(d) DDDLLL

Solution.

(a) There are nine choices for the first digit, since it cannot be zero. There are 10 choices
for each of the other five digits. By the Multiplication Principle, the number of possi-
bilities is

9 • 10 = 900,000

(b) There are nine choices for the first digit, since it cannot be zero. There are 10 choices
for each of the other four digits. The letter can be chosen in 26 ways. By the Multipli-
cation Principle, the number of possibilities is

9. 104 • 26 = 2,340,000

(c) There are nine choices for the first digit, since it cannot be zero. There are 10 choices
for each of the other five digits. There are 26 choices for the letter. By the Multiplica-
tion Principle, the number of possibilities is

9. 102 . 26.103 = 23,400,000

(d) There are nine choices for the first digit, since it cannot be zero. There are 10 choices
for each of the other two digits. There are 26 choices for each of the letter positions.
By the Multiplication Principle, the number of possibilities is

9. 102'. 26' = 15,818,400 E

432 CHAPTER 7 Counting and Combinatorics

Once the number of possibilities is known for a particular license plate scheme, it can
be decided whether enough different license plates will be available for all the cars to be
licensed. The Pigeon-Hole Principle will tell which schemes cannot be used. For example,
if there are three million cars to license before the scheme is changed or new plates are
issued, only alternatives (c) and (d) in Example 6 may be used.

7.3.3 Application: UNIX Logon Passwords

The UNIX operating system requires that users prove their identity before accessing system
resources. A user typically begins a session by providing a username and a secret password
to a login program. This program then verifies the password using a systemwide password
file. A program called crypt takes a user's password and turns it into an entry in the sys-
tem's password file. To crack a system by guessing a password, you must figure out what
sequence of characters gives rise to the image of the crypt operation. A fast workstation
with specially designed software can try more than 200,000 words a second to see if any
trial word gives rise to the output of crypt. The question is whether it is reasonable to try all
possible combinations of symbols that can be valid passwords to discover a legal password.

The UNIX operating system has the following requirements for the user forming a
password:

"* Each password must have at least six characters. Only the first eight characters are
significant.

"* Each password must contain at least two alphabetical characters and at least one numeric
or special character. In this case, alphabetical refers to all uppercase or lowercase letters.

"* Each password must differ from both the user's login name and any reverse or circular
shift of that login name. In the application of this rule, an uppercase letter and the cor-
responding lowercase letter are considered to be the same; for example, user johnson
could not have password hnsOnjO.

"* A new password must differ from the old one by at least three characters. In the applica-
tion of this rule, an uppercase letter and its corresponding lowercase letter are considered
to be the same.

Example 12. How many passwords can be formed in the UNIX system? How long would
it take a user to try all possible combinations with the crypt program to discover a valid
password?

Solution. We are going to simplify the problem a bit: First, assume that all passwords
are six characters long. (We shall remove this restriction in an exercise at the end of the
chapter.) Second, temporarily assume that the required letters in the password occur as the
first two symbols of the password as we solve the problem. Also, temporarily assume that
the required special character occurs as the last symbol. (In Section 7.5, we will see how
to remove these two temporary restrictions.) We will find that these two restrictions add a
factor of 60 to the count. We will just add that factor without explanation at this time. We
will also assume that all 32 special characters on a standard keyboard count as possible
special characters.

(# Passwords) = 60. (# Possible at position 1) ... (# Possible at position 6)

= 60 . 52 . 52. 84. 84. 84 . 32

= 3,077,129,502,720

Exercises 433

If we use the rate estimate for crypt operations of 200,000 per second, then it would
take about 15,385,647 seconds-about 4273 hours, which is almost half a year-to try all
possible passwords. U

rnExercises
1. How many license plates can be made using two uppercase letters followed by a 3-digit

number?
2. How many ways can you draw a club or a heart from an ordinary deck of cards? A

spade or an ace? An ace or a jack? A card numbered 3 through 9? A numbered card
(Aces are not numbered cards) or a king?

3. How many ways can one choose one right glove and one left glove from six pairs of
different gloves without obtaining a pair?

4. In planning a round trip from Cleveland to Dover by way of New York, a traveler
decides to do the Cleveland-New York segments by air and the two New York-Dover
segments by steamship. If six airlines operate flights between Cleveland and New York
and four steamship lines operate between New York and Dover, in how many ways can
the traveler make the round trip without using the same company twice?

5. Given the digits 1, 2, 3, 4, and 5, find how many 4-digit numbers can be formed from
them:
(a) If no digit may be repeated
(b) If repetitions of a digit are allowed
(c) If the number must be even, without any repeated digit
(d) If the number must be even

6. How many odd numbers between 1000 and 10,000 have no digits repeated?
7. How many natural numbers greater than or equal to 1000 and less than 5400 have the

properties:

(a) No digit is repeated.
(b) The digits 2 and 7 do not occur.

8. How many 7-digit numbers are there such that the digits are distinct integers taken
from { 1, 2 ... , 9} and the integers 5 and 6 do not appear together in either order?

9. How many 6-digit numbers can be formed using { 1, 2, 3,..., 9) with no repetitions
such that 1 and 2 do not occur in consecutive positions?

10. Answer the following questions about 9-digit natural numbers with no repeated digits
(leading zeros are not permitted):

(a) How many such 9-digit numbers exist?
(b) How many are divisible by 2?
(c) How many are divisible by 5?
(d) How many are greater than 500,000,000?

11. How many positive integers less than 1,000,000 can be written using only the digits 7,
8, and 9? How many using only the digits 0, 8, and 9?

12. Find the number of ways that flipping five coins can give at least three heads. Use the
Multiplication Principle and symmetry to conclude that the answer is 24.

434 CHAPTER 7 Counting and Combinatorics

13. A palindrome is a string that reads the same forward and as it reads backward. An
example (if blanks and punctuation are ignored) is: A man, a plan, a canal, Panama.
How many n-letter palindromes can be formed using the alphabet {0, 11?

14. In the United States and Canada, a telephone number is a 10-digit number of the form
NXX-NXX-XXXX where N c {2, 3,..., 9} and X c {0, 1, 2,..., 91. How many tele-
phone numbers are possible? The first three digits of a telephone number are called an
area code. How many different area codes must a city with 23,000,000 phones have?
A previous scheme for forming telephone numbers required a format of NYX-NXX-
XXXX where N and X are defined as above and Y is either a 0 or a 1. How many more
phone numbers are possible under the new format than under the old format?

15. How many ways can a computer system be configured if there are k input devices,
m processors, and n output devices. A configuration consists of an input device, a
processor, and an output device connected for use together. If k = 3, m = 6, and n = 4,
draw three possible system configurations if every processor must be connected to at
least one input device and two output devices.

16. The Omnibus Society has four officers: chair, secretary, treasurer, and editor. The by-
laws for holding office state that one person shall be eligible to hold two, but not more

than two, offices concurrently. If the Society has 1000 members, in how many ways
can the officers be selected?

17. A flag is to consist of six vertical stripes in yellow, green, blue, orange, brown, and
red. It is not necessary to use all the colors. The same color may be used more than
once. How many possible flags are there with no two adjacent stripes the same color?

18. A convex polygon is a polygon such that any line segment joining two points inside the

polygon lies entirely inside the polygon. If no 3 of the 15 diagonals of a convex, six-
sided polygon intersect at a point common to all three, into how many line segments
are the diagonals divided by their intersection points? Can you conjecture and prove a
general result for an n-sided convex polygon?

19. How many sequences of length n can be formed using the alphabet {0, 1 }? Using the
alphabet {0, 1, 2}? Using the alphabet [1, 2 ... , k} for k E N? How many possible
words are there in the English language of length 13 at most? If a dictionary contains
500,000 words of length less than or equal to 13, what percentage of all words of
length less than or equal to 13 does it contain?

20. How many ways can three integers be selected from 3n consecutive integers so that the
sum is a multiple of 3? Here, n is a positive integer. What if the three chosen integers

must be distinct?
21. A three out of five series is a competition between two teams consisting of at most

five games and ending as soon as one of the two competing teams wins three games.
How many different three out of five series are possible? Two series are "different" if
the sequence of winners and losers in one series is not the same as in the other series.
Draw a tree to represent the possibilities.

22. A four out of seven series is a competition between two teams consisting of at most

seven games and ending as soon as one of the two competing teams wins four games.
How many different four out of seven series are possible? Two series are "different" if
the sequence of winners and losers in one series is not the same as in the other series.
Draw a tree to represent the possibilities.

23. How many injective functions are there from S to T if S1 = n and ITI = m where
n <m?

Exercises 435

24. A survey asks the respondent to order by importance 10 properties of a car. How many
orderings are possible? How many orderings are there if the first and last property are
given?

25. Find the number of paths from A to F in the following diagram with six letters. A path
can only go through letters that are consecutive, either horizontally or vertically, and
it goes only to the right or up at each step.

F
E F
D E F
C D E F
B C D E F
A B C D E F

Prove that a similar path with n letters has 2'- 1 paths from the lower left corner to any
letter in the rightmost position in a row.

Internet Addresses: IPv4 and IPv6. The Internet requires an address for each machine
that is connected to it. The address space of the addressing architecture of Internet Protocol
version 4 (IPv4) consists of a 32-bit field. Since not every combination of bits can be used
as an address, plans are underway to change the address space to a 128-bit field in IPv6.
The 32-bit IPv4 addresses are usually written in a form called dotted decimal. The 32-
bit address is broken up into four 8-bit bytes, and these bytes are then converted to their
equivalent decimal form and separated by dots. For example,

10000000 00000011 00000010 00000011

is written as 128.3.2.3, which is obviously more readable. The 128-bit IPv6 addresses
are divided into eight 16-bit pieces. Each 16-bit piece is converted to its equivalent
hexadecimal value (each sequence of 4 bits is converted to one hexadecimal digit).
The eight four-character hexadecimal strings are separated by colons. It is not prac-
tical to list 128 bits and show the conversion to the final IPv6 address form. As
an example of what you might end up with, however, we show one IPv6 address:
FEDC:BA98:7654:3210:FEDC:BA98:7654:3210.

26. How many IPv4 addresses are possible?
27. Write the following IPv4 address in dotted decimal format:

01001010 11001010 10001000 11011101

where XlX 2X3X4X5x6X7x8 as a binary number is the decimal number

xl • 27 +X2 • 26 + x3 • 2 5 + x4 • 24 + x5 • 23 +x6. 22 + x7 • 2 1 + x8 • 20

28. How many IPv6 addresses are possible?
29. What would the string

01001000 11101010 01101001 01110111

look like as the first part of an IPv6 address?

436 CHAPTER 7 Counting and Combinatorics

U Permutations and Combinations

In scientific experiments used to determine how well several nutrients interact to stimulate
plant growth, a sequence of different treatments may be proposed. The order in which the
treatments are performed may make a difference. To show whether the order of application
for the nutrients or the nutrients themselves is the important factor, all possible orders of
application must be known and tried. On the other hand, when a court system selects a
number of citizens to be in a jury pool, it is not important in what order citizens were
chosen, only that they were chosen. There are many fewer ways to select a jury pool of a
given size than there are ways to schedule the sequential application of the same number
of treatments in a scientific experiment. In this section, the Multiplication Principle is used
to count the number of possibilities for both kinds of problems.

7.5.1 Permutations

The first problem to consider here is how to count the number of possibilities when the
order of choice is important. We also consider that each of the elements being chosen is
distinguishable from all the other elements. Recognizing whether the elements that are
being arranged or counted or chosen are distinguished from one another is a key step in
deciding what formula is applicable.

Definition 1. Let n, r E N. A permutation of an n-element set is a linear ordering of
the n elements of the set. For n > r > 0 an r-permutation of an n-element set is a linear
ordering of r elements of the set.

Example 1. List all permutation of the elements a, b, and c.

Solution. The permutations are abc, acb, bac, bca, cab, and cba. U

Let P(n, r) denote the number of r-permutations of an n-element set. We define

P(n, 0) = 1 for all n E N.

Theorem 1. Let n > r > 0. Then, P(n, r) = n • (n - 1) - (n - 2)... (n - r +1).

Proof Theproofis by induction onn. Letno = 1. LetT = In EN : P(n,r) =n • (n -
1)...(n-r+l)forn>r >0}.
(Base step) There is only one way to arrange the one element of a one element set. Thus,
P(l, 1) = 1, and 1 E T.
(Inductive step) Let n > no, and assume n c T. Now, prove n ± 1 e T. That is, P(n +
1,r) = (n + 1)n... ((n + 1) - (r + 1)) for allr such that n > r > 0.

Let X be any set of n + 1 elements for which we must form an ordering of r of the
elements. Choose one element from X-say, x-to be the first element of the ordering.
This can be done in n + 1 ways. The problem remaining is to form an ordered arrangement
of r - 1 of the remaining n elements. By the inductive hypothesis, this can be done in
P(n, r - 1) ways. The total number of ways to form an ordered r-arrangement of a set
with n + 1 elements is (n + 1) • P(n, r - 1) = P(n + 1, r). Therefore, n + I E T.

By the Principle of Mathematical Induction, T = N - {0}. E

Permutations and Combinations 437

Using the factorial function, we can express P(n, r) as

P(n, r)= n (n - 1)... (n - r + 1)
(n • (n - 1)... (n - r + 1))((n - r)(n - r - 1)...2.1)

((n - r)(n- r - 1)...2-.1)
n!

(n - r)!

This formula includes the case r = 0. If n = r, then P(n, n) = n! (Remember: 0! = 1.)

7.5.2 Linear Arrangements

An arrangement of n books on a shelf can be associated with a permutation of the integers
1, 2, 3,... n, where each number represents one of the books. The permutation indicates
the order in which the books are stored on the shelf from left to right. Two arrangements
of three books are shown in Figure 7.6.

C J A A C J
0 a r r 0 ao z t t 0 Zr o

Mk z k z

n n
g g

Figure 7.6 Arrangements of three books on a shelf.

Example 2.

(a) How many ways can eight different books be arranged on a shelf?
(b) How many ways can four of eight different books be arranged on a shelf?
(c) How many ways can eight different books be arranged on two shelves so that each

shelf contains four books?

Solution.

(a) The answer is the number of ordered ways of arranging the books on the shelf.
That is,

P(8, 8) = 8! = 40,320

(b) The number of ways to arrange four of the eight books is

P (8, 4) = 1680

(c) The answer is the product of the number of ways to put four books on one shelf and
the number of ways to put the remaining books on the second shelf. The number of
ways to arrange four books on the first shelf is P (8, 4), and the four remaining books

438 CHAPTER 7 Counting and Combinatorics

can be arranged in P(4, 4) ways on the second shelf. Therefore, the total number of
arrangements will be

(# Arrangements of books on two shelves) = (# Arrangements on first shelf)

- (# Arrangements on second shelf)

= P(8,4)- P(4,4)

= (8!/4!) - (4!/0!)

=8!

= 40,320

The solution to part (c) is the same as the one found for part (a). To see that the answer for
part (c) is the same as the answer for part (a) just put the last four books in any arrangement
for (a) on the second shelf. Similarly, for any arrangement for part (c), move the books on
the second shelf up to the first shelf, placing them after the books that are already there. N

In some instances, certain objects must be placed in specified positions. The next ex-
ample shows how such a counting problem can be solved.

Example 3. A collection of eight books consists of two books on artificial intelligence,
three books on operating systems, and three books on data structures.

(a) How many ways can the books be arranged on a shelf so that all books on a single

subject are together?
(b) How many ways can the books be arranged on a shelf so that the three books on

operating systems are together?
(c) How many ways can the books be arranged on a shelf so that the two books on artificial

intelligence occur at the right end of the arrangement?

Solution.

(a) Identify the books on each subject with a single "book". Let BK1 represent the two
books on artificial intelligence, BK2 represent the three books on operating systems,
and BK3 represent the three books on data structures. The problem becomes one of
arranging three "books" called BKI, BK2, and BK3. The first step is to determine the
number of ways these three "books" can be arranged, these books can be arranged
3! ways. The second, third, and fourth steps involve finding the number of ways to
arrange the books represented by BKI, BK2, and BK3, respectively. Wherever the two
books on artificial intelligence occur, they can be arranged in 2! ways. The three books
on operating systems and the three books on data structures can each be arranged in 3!
ways. Therefore, by the Multiplication Principle, the total number of arrangements is

(# Ways to arrange the three categories of books)
- (# Ways to arrange the artificial intelligence books (BK1))

- (# Ways to arrange the operating systems books (BK2))
- (# Ways to arrange the data structures books (BK3))

- 3! • 2! • 3! - 3!
= 432

(b) This problem can be considered the same as the problem of arranging six "books" on
a shelf where one "book" represents the three books on operating systems that must

Permutations and Combinations 439

occur together. After the six books are arranged, the location for the three books on op-
erating systems that are considered as a single "book" to this point of the arrangement
process can be arranged in 3! ways. The number of arrangements is

(# Ways to arrange six books) - (# Ways to arrange the operating systems books)

= 61 • 3!
= 4320

(c) In this case, there are six books to arrange, and for each of these arrangements, the two
artificial intelligence books must follow in some order. The number of such arrange-
ments is

(# Ways to arrange six books) • (# Ways to arrange two artificial intelligence books)

- 6! - 2!
= 1440

7.5.3 Circular Permutations

The permutations considered to this point assume that the ordering is a linear ordering. A
slight variation of this occurs when one tries to count the number of ways to seat n people
at a round table. Three possible arrangements of five people seated at a round table are
shown in Figure 7.7.

Kevin Henry Cristin

Henry 52Cristin Cristin 52Andrew Kevin52Her

4 3 4 3 4 3
Maure~enn Andrew Kevin Maureen Maureen Andrew

Figure 7.7 Different seating arrangements.

For the seating arrangements shown in Figure 7.7(a) and 7.7(b), each person does not
have the same pair of neighbors. By convention, two seating arrangements are considered
to be equivalent if one arrangement can be transformed into the other by a clockwise rota-
tion of all the people by the same number of seats around the table. The seating arrange-
ments shown in Figure 7.7(b) and 7.7(c) are considered to be the same seating arrangement,
since everyone in the seating arrangement shown in Figure 7.7(b) can be shifted one place
around the table in a clockwise direction to form the seating arrangement shown in Fig-
ure 7.7(c). Thus, for any fixed seating arrangement, n seating arrangements are considered
to be the same; that is, we move all the people i seats in a clockwise direction for any
i e {1,2. n}.

440 CHAPTER 7 Counting and Combinatorics

To count the number of possible seating arrangements at a round table, consider the

case of 12 people. Suppose that one of the people is named Henry and that Henry's seat is
chair number 1. We number the remaining chairs clockwise around the table from Henry's
chair. There are P (11, 11) = 11! ways to seat the remaining 11 people in chairs 2 through
12. Counting the ways of seating people relative to Henry avoids counting arrangements
that are considered to be the same. By a similar argument, it can be shown that the number
of circular permutations of n people is just P(n - 1, n - 1) = (n - 1)!.

7.5.4 Combinations

A card game uses only Aces, Kings, and Queens from a deck, with four of each. Each card
of a given value is from one of four suits, called Clubs, Diamonds, Hearts, and Spades. At
the beginning of the game, each player is dealt three cards. How many different three-card
combinations can be dealt?

We solve this problem by answering two questions and then combining the answers to
those questions to find the final answer. The first question is how many ordered arrange-
ments are comprised of 3 of 12 cards? The answer to this question is P (12, 3). The second
question is how many ordered arrangements are generated by a single set of three cards?
For example, the two sets of choices of cards shown in Table 7.1 cannot be distinguished
from one another.

Table 7.1 Different Orders for Choosing Cards

Choice 1 Choice 2

Card 1 Ace of Spades King of Hearts
Card 2 Queen of Diamonds Ace of Spades
Card 3 King of Hearts Queen of Diamonds

The answer to this question is P(3, 3). Since the answer to the second question tells how
many times each set of three cards occurs as a different ordered arrangement, the answer
to the original question is P(12, 3)/P(3, 3).

We now define more formally the general notion illustrated in this example for count-
ing elements that are indistinguishable from one another.

Definition 2. Let n, r E N such that n > r > 0. An unordered selection of r elements
from an n element set is called a combination.

Example 4. List all the combinations of the set {a, b, c}.

Solution. The combinations will be of sizes 0, 1, 2, and 3. All combinations are 0,
{a}, {b}, {c}, {a, b), {a, c}, {b, c}, and {a, b, c}. 0

Let C(n, r) denote the number of combinations of r elements selected from a set of n
elements. Another common notation for C(n, r) is ("). Note that C(n, 0) is defined to be 1
for all n c N. C(n, r) is also called a binomial coefficient, because these numbers occur
as coefficients in the expansion of powers of binomials, such as (x + y)n. We will prove
this in Theorem 5 in Section 7.9.1.

Permutations and Combinations 441

Theorem 2. Forn > r >0,

C(n, r) - (n,r)
P(r, r) (n - r)! r!

Proof. The number of r-permutations of an n-element set is P(n, r). An r-permutation
can be formed by choosing an r-element set without regard to order and then arranging
these elements in P (r, r) different ways. Therefore,

P(n, r) = C(n, r) • P(r, r)

C(n, r) = (n, r)
P(r, r)

n!

(n - r)! r! U

Corollary 1: C(n, r) = C(n, n - r).

Proof C(n, r) is the number of ways of choosing r elements from an n-element set. Each
choice of r-elements determines a unique subset of n - r elements-namely, the comple-
ment of the set of elements chosen. Therefore, the function F (A) = A with A ranging over
the r-element subsets of an n-element set is well defined. It is easy to show this function

is 1-1 and onto using the fact that A = A (see Theorem 7 in Section 1.3.2). Therefore,
C(n, r) and C(n, n - r) count the same number of elements. U

You can also formulate a direct argument to prove Corollary 1 by using the identity
n! n!

(n - r)!r! (n - (n - r))!(n - r)!

7.5.5 Poker Hands

A class of interesting examples that uses counting techniques involves poker hands. A
poker hand is a set of five cards dealt from a deck of 52 cards, divided into four suits (or-
dered as Clubs, Diamonds, Hearts, and Spades in increasing order), with each suit contain-
ing 13 cards with the values 2, 3, , 10, Jack, Queen, King, and Ace (listed in increasing
order for purposes of poker). The Ace can be either the highest or the lowest card in a hand.
The order in which the cards are dealt does not make a difference. For example, the two
hands shown in Table 7.2 are the same poker hand.

Table 7.2 Poker Hands

Order Dealt Name of Card Name of Card

1 Ace of Hearts Jack of Hearts
2 King of Spades 3 of Diamonds
3 4 of Clubs King of Spades
4 Jack of Hearts Ace of Hearts
5 3 of Diamonds 4 of Clubs

442 CHAPTER 7 Counting and Combinatorics

Basic questions about hands for card games include how many hands of a certain kind
exist and what percentage of the total number of hands are of a certain kind.

Example 5. How many different poker hands are there?

Solution. This answer is just the number of ways of choosing five cards from the 52-card
deck:

52!
C(52, 5) = = 2,598,960

47! 5!

Example 6. What percentage of poker hands contain four of a kind? A hand that contains
four of a kind has four cards with the same value. For example, a hand with four Queens
and a fifth card having any other value is of this type.

Solution. The total number of poker hands was determined in Example 5. It remains to
be determined how many different poker hands contain four of a kind.

Since there are 13 different card values in a deck and four of a kind consists of four
cards of the same value, there are 13 possibilities for these four cards. It remains to be
determined in how many ways the hand can be completed. Since four of a kind uses four
of the 52 cards in the deck, there are 48 cards remaining from which the last card in the
hand can be chosen. Use these two observations and the Multiplication Principle to find
the total number of such hands:

(# Hands with four of a kind) = (# Possibilities for four of a kind)

- (# Ways to complete the hand)

= 13 . C(48, 1)

= 624

The percentage of such hands is 624/2,598,960 ; 0.02%. U

Example 7. How many poker hands contain exactly one pair and three other cards, no
two of which have the same value?

Solution. As an example, there are four Jacks. Any two of these can be chosen for the
pair, so there are six pairs of Jacks. There are C(4, 2) = 6 pairs for any card value. Since
there are 13 values for cards and we want to choose one of these values to represent two
of the cards in the poker hand, there are C(13, 1) • C(4, 2) ways to choose two cards with
the same value. The remaining three cards have values different from the value of the pair,
and at the same time, no two of the three have the same value. Since there are 12 values
for cards not in the pair, there are C(12, 3) ways to choose the values for the three other
cards. After choosing the three values for the other cards, the suit of each of these cards
can be chosen in C(4, 1) ways, since there are four cards from different suits in the deck
with each value:

(# Hands with 1 pair and 3 unmatched cards) = (# Pairs) • (# Ways to complete the hand)

= C(13, 1) C(4, 2) C(12, 3) C(4, 1)3

= 1,098,240

The percentage of such hands out of the total number of hands possible is 1,098,240/
2,598,960 • 42%. U

Permutations and Combinations 443

We now look at a noncard problem that uses the same technique for counting.

Example 8. An examination consists of 20 questions, of which the student must answer
any 12.

(a) How many different ways can a student choose questions to answer?
(b) The 20-question exam is split into three parts. There are 6 questions in the first part,

10 in the second part, and 4 in the third part. A student must choose three from the first
part, eight from the second part, and one from the third part. How many ways can a
student choose questions to answer?

Solution.

(a) The answer is just the number of different 12-element subsets of a 20-element set, or
C(20, 12) = 125,970.

(b) By the Multiplication Principle, the answer will be the product of the number of ways
to make choices in each category:

(# Possible choices) = (# Choices for part 1) • (# Choices for part 2)

- (# Choices for part 3)

= C(6, 3) . C(10, 8) . C(4, 1)

= 3600

7.5.6 Counting the Complement

We return to the idea of counting the complement introduced earlier. This time, it is a
useful technique, because direct counts often can involve detailed analysis to determine all
the cases. An illustration of this is given in Example 9.

Example 9. How many poker hands consist of five cards of the same suit, but not in
sequence? Such a poker hand is called aflush.

Solution. First, count the number of hands with all five cards from one suit. This count is
just the number of ways to pick five of the 13 possible values, and there are C(13, 5) such
hands. A poker hand with all five values in sequence is called a straight. A straight with all
the cards from the same suit is called a straight flush. We want to subtract the number of
straight flushes in this suit from C(13, 5) to get the number of flushes for the suit.

To find the number of straight flushes in a suit, note that all five cards in a sequence are
determined by the lowest card in the sequence. In the case of a straight, the rule is that the
Ace can be used as either the highest or the lowest card in the sequence. The card values
are arranged as

Ace 2 3 4 5 6 7 8 9 10 Jack Queen King Ace

The smallest card in a straight can be any one of the card values underlined. Therefore,
there are C(10, 1) straight flushes for a suit, so there are C(13, 5) - C(10, 1) flushes for a
suit.

444 CHAPTER 7 Counting and Combinatorics

The answer to the original question is then found by multiplying this answer by the

number of ways to choose the suit of the flush.

(# Hands with all cards from a given suit - # Straight flushes in that suit)

- (# Possible suits)

= (C(13, 5) - C(10, 1)) . C(4, 1)
= 5108

The percentage of such hands is 5108/2,598,960 • 0.2%. U

7.5.7 Decomposition into Subproblems

Many problems can be solved by decomposing the original problem into a set of subprob-
lems. Two examples of this technique include finding how many different pizzas with a

certain number of toppings can be ordered in five years and finding how many poker hands
contain more Aces than Kings.

Example 10. Pat's Pizza claims that it stocks enough topping ingredients so that you can
order a pizza with a different combination of up to five ingredients every night for five
years. What is the least number n of topping ingredients that must be available to make
this claim true?

Solution. Split the problem into six cases, depending on how many ingredients are cho-
sen. The possibilities are to choose from zero to five ingredients for a pizza. The number
of different pizzas is

(# Pizzas with 0 ingredients) + (# Pizzas with 1 ingredient)

+ (# Pizzas with 2 ingredients) + (# Pizzas with 3 ingredients) + (# Pizzas with
4 ingredients) + (# Pizzas with 5 ingredients)

=C(n, 0) + C(n, 1) + C(n, 2) + C(n, 3) + C(n, 4) + C(n, 5)

This sum must be greater than 5(365) + 2 (the maximum number of days in five con-
secutive years, allowing for at most two leap years). The answer to the original question
involves finding the smallest n that makes the following inequality true:

C(n, 0) + C(n, 1) + C(n, 2) + C(n, 3) + C(n, 4) + C(n, 5) > 1827

which is the same as

n(n - 1) n(n - 1)(n - 2) n(n - 1)(n - 2)(n - 3)l~n+ +
2! 3! 4!

n(n - 1)(n - 2)(n - 3)(n - 4)-+ > 1827
5!

The answer is n = 13, since the expression has the value 2380 for 13 and only 1586 for
n =12. 0

In Example 10, it was not difficult to see how to break up the elements to count into six

cases. In the next example, however, the count for each of the cases will be more complex.

Example 11. How many poker hands have more Aces than Kings?

Permutations and Combinations 445

Solution. First determine all the different cases that are possible, and then count the num-
ber of hands for each separate case. Finally, add up the counts for each case to get the total
count required. The different cases are listed in Table 7.3.

Table 7.3 Distribution of Aces and Kings

of Aces Possible # of Kings

0 No hand possible
1 0
2 0or I
3 0orl or2
4 0 or 1, since the hand has only five cards

There are eight subcases for which the number of hands must be counted. The count
for each of these cases is given in Table 7.4.

Table 7.4 Number of Hands with Given Aces and Kings

of Aces # of Kings Aces Kings Other Cards # of Hands

1 0 C(4, 1)- C(44,4) = 543,004
2 0 C(4, 2) - C(44, 3) = 79,464
2 1 C(4,2). C(4, 1). C(44,2) =22,704
3 0 C(4, 3) • C(44,2) = 3784
3 1 C(4,3)- C(4, 1). C(44, 1) =704
3 2 C(4,3). C(4,2) =24
4 0 C(4, 4) • C(44, 1) = 44
4 1 C(4,4)- C(4, 1) =4

The answer is the sum of the number of hands in each of the eight subcases, which is
649,732. N

In Example 11, we saw how the Multiplication Principle was first used in each case
and then how the Addition Principle was used to find the total number for all cases. This
analysis proceeded fairly directly, because we first split all the cases into disjoint subsets
so that each of the possible hands being counted arose in one and only one of the subcases.

Using the Principle of Inclusion-Exclusion

In many problems, it is not particularly easy to verify that a set of subsets are pairwise
disjoint. If you want to count the number of elements in the union of such subsets, the
Principle of Inclusion-Exclusion is often useful as a proof technique.

Let X = {x1, X2 ... , xn} be a set. A permutation y y2 .. y., y, of the elements of X
has a fixed point, or fixes, xi if yi = xi for some i where 1 < i < n. A derangement of X
is a permutation of X with no fixed point.

Example 12. Find the number of derangements of a set with three elements.

Solution. Let X = {1, 2, 3}. Let Ai = {permutations of X that fix i} where 1 <
i < 3. To compute I AI U A 2 U A3 1, we need to compute IA 1, 1A2 1, JA3 1, A1 n A2 1,

446 CHAPTER 7 Counting and Combinatorics

IAI n A3 1, IA2 N 4 3 1, and JAI nA 2 n A3 J. A1 = {1 23,1 32). A2 = {1 23,32 1}. A3 -
{123, 2134. JA1 A2 1 = A1 nA 3 1 = IA2 n A3 1 = 1{123}I- =1. A1 nA2 n A3 1 = 1.
We first count the number of permutations that fix at least one element:

IAI U A2 UA 3 1 = JAl + jA2j + lA31 - JA1 nAA2 - JA1 NA 3 - IA 2 NA 3 I
+JA 1 nA 2 NA 3 I

=2+2+2-1-1-1+1

=4

The number of derangements is just the difference between the number of permutations
and the number of permutations that fix at least one element: 6 - 4 = 2. U

The reader should compare this solution to the Hat Check Problem in Section 1.5.3.

Constructing the kth Permutation

Computer simulations often use randomly generated permutations of sets of n elements as
test data. If all the permutations on n elements are listed in some order, then by generating
a random number k such that 1 < k < n, it is possible to choose the kth permutation of n
elements at random.

An alternative to storing all the n! permutations of an n-element set is to find a method
for constructing the kth of n! permutations on n elements one element at a time without
constructing any of the other n! - 1 permutations.

The kth of n! permutations of n elements must be found relative to some ordering of
the permutations. For the method shown here, assume that the permutations are in lexi-
cographical or dictionary order (see Example 9 in Section 3.8.2). This ordering for the
permutations on three and four elements is shown in Figure 7.8. Observe that the permuta-
tions are numbered beginning with 0, not with 1.

3 Elements 4 Elements

Permutation # Permutation # Permutation

0. 1 2 3 0. 1 2 3 4 12. 3 1 2 4
1. 1 3 2 1. 1 2 4 3 13. 3 1 4 2
2. 2 1 3 2. 1 3 2 4 14. 3 2 1 4
3. 2 3 1 3. 1 3 4 2 15. 3 2 4 1
4. 3 1 2 4. 1 4 2 3 16. 3 4 1 2
5. 3 2 1 5. 1 4 3 2 17. 3 4 2 1

6. 2 1 3 4 18. 4 1 2 3
7. 2 1 4 3 19. 4 1 3 2
8. 2 3 1 4 20. 4 2 1 3
9. 2 3 4 1 21. 4 2 3 1
10. 2 4 1 3 22. 4 3 1 2
11. 2 4 3 1 23. 4 3 2 1

Figure 7.8 Lexicographical Ordering of Permutations.

Constructing the kth Permutation 447

As a result of examining the dictionary ordering of the permutations of three and
four elements, a predictable pattern is found for determining which element occurs at each
position in the permutation. For the case of four elements, observe that I is the first element
of the first 3! = 6 permutations, 2 is the first element of the second 3! = 6 permutations,
3 is the first element of the next 3! = 6 permutations, and finally, 4 is the first element
of the last 3! = 6 permutations. Now, observe the pattern of occurrence of the elements
in the second position. For example, the pattern in the second elements following the six
occurrences of 2 in the first position has each of the remaining elements repeated 2! times.
The element 1 occurs as the second element in the first 2! = 2 of these permutations, 3
occurs as the second element in the next 2! = 2 of these permutations, and finally, 4 occurs
as the second element in the last 2! = 2 of these permutations. The elements occurring in
the second position occur in increasing order. The next observation is that the two elements
that follow 2-3 in permutations 8 and 9, for example, are the elements 1 occurring 1! times
and then 4 occurring 1! times. Again, the elements that did not occur in earlier positions
occur in increasing order with frequency 1!.

In any sequence of (n - 1)! permutations with the same element in all the first posi-
tions, the second positions will have (n - 2)! occurrences of the smallest element not in
position 1, followed by (n - 2)! occurrences of the next smallest element not in position
1, and so on, for each of the n - 1 elements not in position 1. Similarly, in any sequence
of (n - 2)! permutations in which the elements in positions 1 and 2 do not change, the
third position will have (n - 3)! occurrences of the smallest element not in positions 1 or
2, followed by (n - 3)! occurrences of the next smallest element not in positions 1 or 2,
and so on. Any sequence of (n - k)! permutations for which the elements in positions 1
through k do not change begins with a permutation whose (k + 1)-st position is occupied
by the smallest element not in positions 1 through k.

A procedure for generating a particular permutation element by element is straightfor-
ward to implement using these ideas-provided that divisions by (n - 1)!, (n - 2)! . 2!
can be done. The next example illustrates the process.

Example 1. Find the 79th permutation of the elements 1, 2, 3, 4, and 5 relative to the
lexicographical order.

Solution. There are 120 permutations of five elements. Imagine ordering them in lexico-
graphical order and then numbering them from 0 to 119. Permutations 0 to 23 begin with
1, permutations 24 to 47 with 2, permutations 48 to 71 with 3, and permutations 72 to 95
with 4. Consequently, the first element of the 79th permutation is 4. To find the second
element of the permutation, imagine decomposing permutations 72 to 95 into sets of six
permutations. Permutations 72 to 77 have 1 as a second element, and permutations 78 to
83 have 2 as a second element. Therefore, the second element of the 79th permutation is 2.

To find the third element of the permutation, imagine decomposing permutations 78
to 83 into three sets of two permutations. Permutations 78 and 79 have 1 as the third
element. Thus, the third element of the 79th permutation is 1. The two elements 3 and
5 are in the fourth position in the 78th and 79th permutation following the 1 in the third
position of these permutations. Since we are constructing permutation 79, the next element
is 5. Finally, the only element not yet found is 3, and that occurs in position 5 of the 79th
permutation.

Therefore, the 79th permutation of 1, 2, 3, 4, and 5 relative to the lexicographical order
is 4-2-1-5-3. U

448 CHAPTER 7 Counting and Combinatorics

U Exercises

1. A "word" is a string of one or more lowercase letters. How many words can be formed
using all the letters of the word hyperbola? In how many words will h and y occur
together? In how many will h and y not occur together?

2. A bookshelf contains three novels, six books of poetry, and four reference books.
In how many ways can these books be arranged so that the books of each type are
together?

3. A shelf has room for 10 books.

(a) Given an inventory of 25 books, how many years will it take to display all combi-
nations of 10 books if the display is changed once a week?

(b) How many years will it take if the display is changed five times a week?

4. A passenger train consists of two baggage cars, four day coaches, and three parlor
cars. In how many ways can the train be made up if the two baggage cars must be in
the front and the three parlor cars must be in the rear? Assume that the baggage cars
can be told apart, that the day coaches can be told apart, and that the parlor cars can be
told apart.

5. The English alphabet contains 26 letters, including five vowels. In each case determine
how many words of length five are possible provided that:

(a) Words contain at most two distinct vowels
(b) Words contain at most one letter that is a vowel
(c) Words contain at least four distinct vowels

6. How many five-letter words formed with a, b, and c have at least one letter missing?
7. A student has four examinations to write, and there are 10 examinations periods avail-

able. How many ways are there to schedule the examinations?
8. A student must complete the following sequence of courses: Two of four lab science

courses, one of two literature courses, two of three mathematics courses, and one of
seven physical education courses. Assume that none of these courses is a prerequisite
for any other.

(a) How many ways can courses be chosen if the possibility of time conflicts is
disregarded?

(b) How many ways can courses be chosen if two different lab courses are scheduled
at the same time as one of the literature courses?

(c) How many ways can courses be chosen if all the physical education courses are
offered at the same time as one of the literature courses?

9. A student must answer 8 out of 10 questions on an exam.

(a) How many choices does the student have?
(b) How many choices does a student have if the first three questions must be

answered?
(c) How many choices does a student have if exactly four out of the first five questions

must be answered?

10. How many ways can you list the 12 months of the year so that May and June are not
adjacent?

Exercises 449

11. How many permutations are there for the 26 letters of the alphabet if the five vowels
occur together?

12. How many n-bit binary numbers have exactly r l's assuming n > r? Prove by induc-
tion that for n > 1, exactly half the n-bit binary strings have an even number of l's.

13. Twelve-tone music requires that the 12 notes of the chromatic scale be played before
any tone is repeated. How many different ways can the 12 tones be played? How long
will it take to play all possible sequences of 12 tones if one sequence can be played in
four seconds?

14. Find the sum of all four-digit numbers that can be obtained by using the digits 1, 2, 3,
4, and 5. Repeats are not allowed. Explain your reasoning.

15. A raffle has three prizes to award to 10,000 ticket holders. How many different ways
can the prizes be distributed if no one can win more than one prize? If one person can
win more than one prize?

16. Thirty contestants, including the local champion, enter a competition. When the first
six places are announced:

(a) How many different announcements are possible?
(b) How many different announcements are possible if the local champion is assured

of a place in the first six?

17. How many ways are there to seat eight people at a round table? How many ways if
Smith and Jones cannot be seated next to each other?

18. How many ways can 12 people be seated at a round table if a certain pair of individuals
refuse to sit next to one another?

19. How many ways can n men and n women be seated at a round table if no two women
are seated next to each other?

20. A party has n guests. Two of the guests do not get along well with each other. In how
many ways can the guests be seated in a row so that these two persons do not sit next
to each other?

21. Determine the number of five-card poker hands with the following patterns:

(a) Four deuces (2's) and one other card
(b) Four of a kind and one other card
(c) Two pairs (but not four of a kind) and one card with a different value
(d) Three cards of one value and two cards of a second value (this is called a full

house)
(e) A straight flush (a straight with all the cards from one suit)
(f) A hand with five different card values that is not a straight and is not a flush
(g) Three of one kind and two other cards with different values

22. A bridge hand consists of 13 of the 52 cards from a standard deck of cards. How many
bridge hands contain no cards in one or more suits?

23. There are six points in a plane, no three of which are collinear. In how many ways can
you draw a pair of triangles with the six points as vertices.

24. For an even integer n, prove that C(n, n/2) does not have polynomial order. Interpret
this in terms of implementing an algorithm that examines this number of subsets of a
set.

25. Winning a state lottery is based on trying to guess which six randomly picked numbers
in the set { 1, 2,..., 30} will be chosen. No repeats are allowed. Winning a second state

450 CHAPTER 7 Counting and Combinatorics

lottery is based on trying to guess which six randomly picked numbers from the set
{1, 2 ... , 38} will be chosen. Winning a third state lottery is based on trying to guess
7 of 11 randomly picked numbers from the set of {1, 2,..., 80). How many possible
winning combinations are there for each of these lotteries?

26. Given 1, 2 11, select a subset of five elements from this set and a second subset
with two of these elements. In how many ways can these groups be formed if:

(a) There are no restrictions.
(b) Each group contains all even or all odd integers.
(c) No repetitions are allowed, and the smallest member of the second group is larger

than the largest member of the first group. Show that it does not matter whether
the two-element set or the five-element set is chosen first.

27. How many ways can a committee of three men and two women be chosen from six
men and four women? What if Adam Smith and Abigail Smith will not serve on the
same committee?

28. How many ways can a committee of three be chosen from four teams of two with each
team consisting of a man and a woman if:

(a) All are equally eligible.
(b) The committee must consist of two women and one man.
(c) A man and a woman from the same team cannot serve on the committee.

29. Two committees of five persons each must be chosen from a group of 375 people. If
the committees must be disjoint, in how many ways can the committees be chosen? If
the committees need not be disjoint, in how many ways can this be done?

30. A series of articles about 26 athletic teams will appear over 26 consecutive weeks. How
many ways can the articles be ordered? What if the first week's article must be about
the current champion? What if team A and team B must be featured in consecutive
weeks?

31. Solve the problem in Example 10 if the claim is that a different pizza can be ordered
every day for three years.

32. Magic Ice sells ice cream sundaes. With m flavors of ice cream and k possible toppings,
how large should m and k be so that a customer can have a different sundae every
night for five years? A sundae has just one kind of ice cream and at most three types
of toppings.

33. How many ways are there for a person to travel from the southwest corner to the
northeast comer of an m x n grid? Enumerate all the ways possible if the grid is 5 x 3.
How many ways are there if the grid is 10 x 10 and no move may take the person
below the main diagonal (those positions that are k steps over and k steps up from the
starting point where 1 < k < 10).

34. Five students (A, B, C, D, and E) are scheduled to present papers in class.

(a) How many ways can this be arranged?

(b) How many ways can this be arranged without B speaking before A?
(c) How many ways can this be arranged if A speaks immediately before B?

35. How many ways can 12 black pawns be placed on the black squares of an 8 x 8 chess
board? How many ways can 12 black pawns and 12 white pawns be placed on the
black squares of an 8 x 8 chess board? Half the 64 squares are black and half are red.
No black (red) square shares an edge with a black (red) square.

Counting with Repeated Objects 451

36. The Old Town Softball League has 16 teams arranged in four groups of four teams
each. How many different ways can these groups be made up?

37. How many ways can a committee be selected consisting of two Independents, two
Republicans, and two Democrats if the choices are made from seven Independents,
nine Republicans, and eight Democrats?

38. A team of 11 players is to be chosen from a group of 15 candidates.

(a) How many different teams can be chosen?
(b) How many teams can be chosen if one player is designated captain and must play

on the team?

39. How many seven-digit sequences can be formed using the symbols J0, 1, 2, 3)?
40. How many four-person teams can be formed from three men and five women if at least

one man and at least one woman are on each team?
41. (a) Which permutation of {1, 2, 3, 4, 5) follows 3-1-5-2-4 in the lexicographical or-

dering of the permutations of five elements?
(b) Repeat the question for 4-6-1-3-7-5-2 as a permutation of [1, 2 ... , 7}.

42. (a) Construct the permutation numbered 39 in the dictionary ordering of the permuta-
tions of the letters {1, 2, 3, 4, 5). Remember this is actually the 40th permutation,
since the numbering of permutations starts with 0.

(b) Construct the permutation numbered 387 in the permutations of {1, 2, 3, 4, 5, 6).
(c) Construct the permutation numbered 3764 in the permutations of { 1, 2, 3, 4, 5,

6,7}.
(d) Construct the permutation numbered 27,459 in the permutations of { 1, 2, 3, 4, 5,

6,7,81.

43. What is the 311th permutation of {1, 2, 3, 4, 5, 6, 71 relative to the lexicographical
ordering? (Remember that the 31 1th is numbered 310, since the first element is num-
bered 0). What is the 2374th?

44. A football team of 11 players is to be selected from a set of 15 players. Five players
in this set can only play in the backfield, eight can only play on the line, and two can
play either in the backfield or on the line. A team has seven players on the line and
four players in the backfield. How many different teams can be selected?

45. A classroom has two rows of eight seats. There are 14 students in the class. Five
students always sit in the front row, and four always sit in the back row. In how many
ways can the students be seated?

46. How many ways are there to roll 10 dice so that all six different faces show?

Counting with Repeated Objects

Although the word abracadabra has 1 letters, there are not 11! permutations that result
in different words. For example, the first two occurrences of a can be interchanged, and no
different word would be apparent.

In the word abracadabra the letters a, b, and r occur more than once. If we permute the
letters of this word, then it is impossible, for example, to recognize two anagrams as being
different when they simply interchange different pairs of occurrences of a repeated letter.
A generalization of results about permutations and combinations is needed when some

452 CHAPTER 7 Counting and Combinatorics

objects are identical and not distinguishable, as in this case. Sections 7.8-7.10 explain
methods for handling such situations as well as introducing combinatorial identities. In
Section 7.10, a representation of the binomial coefficients known as Pascal's triangle is
also introduced and used to prove several useful combinatorial identities.

7.8.1 Permutations with Repetitions

A typical problem that motivates how to count permutations of objects not necessarily

all distinct-or permutations with repetitions-is the problem of counting the number of
permutations of the letters in a word with repeated letters. As an example, let us determine
the number of distinguishable permutations of the letters in the word abracadabra. The
letter a is repeated five times, the letter b two times, the letter r two times, and the letters
c and d just once each. A permutation of these 11 letters can be constructed as follows:
Pick 5 of the 11 positions for the letters of this word, and assign them the letter a. This can
be done in C(1 1, 5) different ways. Of the remaining six letter positions, choose two of
these positions for the occurrences of the letter b. This can be done in C(6, 2) ways. Now,
choose two of the remaining letter positions for the occurrences of the letter r. This can be
done in C(4, 2) ways. Choose one of the two remaining letter positions for the occurrence
of the letter c. This can be done in C(2, 1) ways. Put d in the letter position remaining. By
the Multiplication Principle, the total number of arrangements will be the product of the
number of ways of assigning each of the different letters.

(# Permutations of the letters of abracadabra)

= C(l1, 5). C(6, 2). C(4, 2). C(2, 1). C(1, 1)
11! 6! 4! 2! 1!

6!5! 4!2! 2!2! 1!1! 1!0!
11!

5!2!2! 1! 1!
11!

5!2!2!
83,160

When the binomial coefficients are replaced with their factorial equivalents, many of the
factors cancel. The terms remaining in the denominator represent the number of times that
each letter is repeated in the permutation.

A question that should arise here is whether it makes any difference in what order let-
ters are assigned places. For example, suppose the abracadabra problem is solved by plac-
ing the occurrences of r first, c second, a third, b fourth, and d fifth. The answer would be

(# Permutations of the letters of abracadabra)

= C(ll, 2)- C(9, 1)- C(8, 5)- C(3, 2). C(l, 1)
11! 9! 8! 3! 1!

9!2! 8!1! 3!5! 2!1! 1!0!
11!

5!2!2! 1! 1!
11!

5! 2! 2!
= 83,160

Counting with Repeated Objects 453

We see that the answer is the same in both cases. In general, the order in which letters
are assigned locations will not affect the answer, since we only use the number of such
cases.

This example is a special case of the theorem stated below that gives the number of
permutations of n letters with repetitions allowed. In this case, we have sets of distinguish-
able objects, but the objects within each set are indistinguishable from one another.

Definition 1. Let ml1, m2 • , Ink be distinct symbols. Let a set of n symbols consist of
ri copies of mi for I < i < k such that Ek=I ri = n. The number of permutations with
repetitions using these n symbols is denoted as P (n; , r2 rm).

In the notation given by Definition 1, the terms ri for 1 < i < k are not assumed to be
in any particular order. Observe that P(n, r) and P(n; r) represent very different ideas.

Theorem 1. Let n = rl + r2 + •.. + rk be any sum of positive integers. The number of
ways to arrange rl objects of type 1, r2 objects of type 2 . and rk objects of type k is
given by

P(n; ri, r2. rk) = C(n, ri) • C(n - rl, r2) ... C(n - r ... rk-1, rk)
n!

rl!r2! .. rk!

Proof. The proof is by induction on n. Let no = 1 and r, + r2 + .+ + rk = n. Define

n!
T = {n : P(n; rl, r2 ... , rk) = rl! r2!. .rk!

(Base step) The base case is 1. We leave that case to the reader.

(Inductive step) Let n > no. Assume that for all m where no < m < n, m e T. Now,
prove that n E T.

The number P(n; r, r2 rk) is, by definition, the number of ways that n letters

can be arranged if ri of the letters are the same for 1 < i < k.
Choose rl of these locations for occurrences of the first letter. This can be done in

n !
C(n,) = Trl! (n - rl)!

ways. After any choice of r, locations, there are n - rl locations remaining to be filled by
the k - 1 other letters. There are P(n - rl; r2, r3 T rk) ways to arrange the remaining
letters, and, since no < n - rl < n, by the inductive hypothesis

(n - rI)!
P (n - ri; r2, r3, rk) = (-!

r2! ... rk!

It follows from the Multiplication Principle that

P(n; ri, r2. rk) = C(n, rl) • P(n - rl; r2, r3... rk)

n! (n - rl)!

rl!(n- rl)! r2! ... rk!
n!

ri!, r2! ... rk!

Thus, n e T. Therefore, by the Strong Form of Mathematical Induction, T {n e N:
n > 1). U

454 CHAPTER 7 Counting and Combinatorics

The result just given is a generalization of the case in which all n letters of the per-
mutation are distinguishable, since in that case, the denominator consists of 1! occurring n
times.

The following examples will show how to count the number of permutations when
some elements are not distinguishable among themselves, like repeated letters in a word.

Example 1. How many permutations are there of the letters in the word excellent?

Solution. The letter e occurs three times, and the letter I occurs twice. Each of the remain-
ing letters x, c, n, and t occurs once. By Theorem 1, the number of such permutations is

9!
P(9; 3, 2, 1, 1, 1, 1) 3--3!2 17 1! 1! 1!

= 30,240 U

Example 2. How many four-letter words can be formed using the letters a, a, a, b, b, c,
c, c, c, d, d?

Solution. The first step in finding the required count is to decompose the problem into a
number of disjoint subcases. Theorem 1 can be used on each subcase, and the final answer
is found by using the Addition Principle with the answers for the subcases. A description
of the subcases and the count for each subcase are given in Table 7.5.

Table 7.5 Subcases for Example 2

Subcases

Kinds of Letter No. of Choices for Letters No. of Arrangements for Letters

(a) 4-same C(1, 1) P(4; 4)
(b) 3-same C(2, 1) P(4; 3, 1)

1--different C(3, 1)

(c) 2-pairs C(4,2 2) P(4; 2, 2)
(d) 2-same C(4, 1) P(4; 2, 1, 1)

2-different C(3, 2)
(e) 4--different C(4, 4) P(4; 1, 1, 1, 1)

Using the Addition Principle, the final answer is

Words = C(1, 1) • P(4; 4) + C(2, 1) • C(3, 1) - P(4; 3, 1) + C(4, 2) . P(4; 2, 2)

+ C(4, 1) . C(3, 2) . P(4; 2, 1, 1) + C(4, 4) . P(4; 1, 1, 1, 1)

= 1 + 2.3.4 + 6.6 + 12 + 1.2.3.4

= 229 U

When the partitions consist of sets of fixed size and the sizes are not all distinct, we
must take into account that the elements of the partition can be permuted among themselves
without changing the count that is needed.

Example 3. In how many ways can 12 examinations be split into three sets of four ex-
aminations each?

Counting with Repeated Objects 455

Solution. By Theorem 1, we get

12!

4! . 4! • 4!

This count does not take into account, however, the fact that the three sets can be permuted
among themselves, so the final answer is

12!

4!. 4!. 4!. 3! 0

This last example shows how to count partitions of indistinguishable elements in sets
that may themselves be indistinguishable from one another.

7.8.2 Combinations with Repetitions

The methods developed so far have involved counting the objects directly. Another tech-
nique used for counting combinations with repetitions is to find a bijection from the
instances of a given problem to a subset of the instances of a standard problem. The num-
ber of objects in the subset of the standard problem is then just the number of instances in
the original problem.

As an example of this technique, suppose that 10 identical marbles are to be distributed
among three youngsters. The question is how many ways this can be done. Begin by rep-
resenting each marble by an X as shown:

XXXXXXXXXX

Suppose the first and the second youngsters will receive three of the marbles while the third
will receive four. To denote this, put a I following the X that represents the third marble.
Now, put a second I following the sixth X to represent the fact that the second youngster
also received three marbles. The remaining X's in locations 7 through 10 represent the four
marbles received by the third youngster. Thus, one partition of the 10 marbles consisting
of two sets of size three and one set of size four can be represented as

XXX I XXX I XXXX

If one youngster is to receive no marbles, then two of the dividing marks would be placed
next to each other. Thus, the technique handles both the case in which each set of the
partition is nonempty as well as the case in which some of the sets in the partition may be
empty.

We can generalize the process for this problem of marbles and youngsters to solve
other problems as well. We proceed as follows. For an arbitrary partition of n identical
elements into k subsets, first display n + k - I positions. Choose k - I of these locations
for the occurrence of the symbol 1. This choice can be made in C(n + k - 1, k - 1) ways.
The k - 1 locations chosen will completely define k sets as follows: (1) the elements before
the first mark, (2) the elements between the first and the second mark ... , and (k) the
elements following the (k - 1)-st mark. Each choice for locating the k - 1 marks will
determine a different partition of the n elements into k subsets. This example is a special
case of the next theorem.

Theorem 2. The number of partitions of n identical objects into k sets is C(n + k -
1, k - 1), where n > k > 0.

456 CHAPTER 7 Counting and Combinatorics

Proof. Associate with the problem a set of n + k - 1 marks arranged as

- - - - - -- - n + k - 1....

Choose k - 1 of these locations to designate the boundaries between the k sets. The objects
are placed in the positions that are not designated as boundary positions. N

Example 4. Four members of a soccer team are working together to sell 100 raffle tickets.
In how many different ways can members contribute to this effort?

Solution. The number of ways to split 100 into four subsets will represent the number of
ways the players could have sold the tickets. To solve the problem, use Theorem 2, with
n = 100 and r = 4. The answer is

C(103, 3) = 176,851 U

One more variation of the problem of distributing identical objects into disjoint sets is
to count the number of ways to distribute n identical balls into k distinct urns when n > k.
Although this problem is posed in terms of balls and urns, this is simply the problem of
distributing n identical objects into k distinct sets. The answer to this question is C(n +
k - 1, k - 1). As a related question, in how many ways can k urns be filled with n balls
provided that each urn contains at least one ball? This number will give the number of
partitions of n elements into k nonempty sets. When a certain number of the balls must
be in particular urns, just put this number of balls where required and count the number of
ways to distribute the remaining balls into the original number of urns. In the case that each
urn is required to be nonempty, put one ball in each urn, and then distribute the remaining
n - k balls in C((n - k) + k - 1, k - 1) = C(n - 1, k - 1) ways. Put the balls occurring
before the first mark into the first urn, the balls between the first and second mark in the
second urn, and so on, until the n - k balls are put into the k urns that already contain one
ball each.

Example 5. A data set contains 500 observations. Analysis of the data is carried out by
three programs that together process the 500 observations such that each program pro-
cesses at least 100 observations. If the partition of the 500 observations for use by the three
programs is done by arbitrarily choosing the observations for each program, in how many
ways can the data be processed?

Solution. Think of the programs as urns and the observations as balls. The problem asks
in how many ways 500 balls can be put into three urns, with each urn containing at least
100 balls. The answer is

C(500 - 300 + 3 - 1, 3 - 1) = C(202, 2) = 20,301 U

Example 6. How many ways can the equation

k1 +k 2 +'"+kr =n

for r < n be solved with integers ki > 0 for r > i > 1 ?

Combinatorial Identities 457

Solution. First, restate the problem in terms of urns and balls. How many ways can n
balls be put into r urns? This number is just C(n + r - 1, r - 1). The number of balls in
urn i is just ki for i = 1, 2 r. M

Example 7. How many ways can you solve

k1 +k 2 +k 3 +k 4 = 18

provided that k1, k2, k3, and k4 are integers and k1 , k2 > 0, k3 > 3, k4 > 2?

Solution. First, put the five required values in k3 and k4 . Then, ask how many ways there
are to solve

k1 + k2 + k3 + k4 = 13

with k1, k2 , k3, k4 > 0. This number is just

C(13 +4- 1,4- 1) = C(16, 3) 0

rnCombinatorial Identities

In this section, a representation of the binomial coefficients known as Pascal's triangle is
introduced and used to prove several useful combinatorial identities. Typical arguments
for solving counting problems can be algebraic or combinatorial in nature. We will show
examples of how to prove combinatorial identities using both types of arguments. Com-
binatorial arguments for proving combinatorial identities usually involve counting the
same objects in two different ways. Since the same objects are being counted, the two ex-
pressions for the count must be equal. Often, a combinatorial argument restates the problem
in a context with an obvious interpretation for the two sides of the identity. Theorems 3,
4, and 5 give examples of this kind of a proof. An algebraic argument normally involves
straightforward algebraic manipulations to turn the expression on one side of the identity
into the expression on the other side. Pascal's Triangle is also used to prove a number of
combinatorial identites.

The next two theorems have two proofs each, one an algebraic proof and the other a
combinatorial proof.

Theorem 3. (Newton's Identity) Let n > k > m > 1. Then,

C(n, k) • C(k, m) = C(n, m) • C(n - m, k - m)

Proof (Combinatorial) The left-hand side first counts the number of k-element sub-
sets of an n-element set. The left-hand side then counts how many m-element subsets are
contained in an arbitrary k-element subset. The right-hand side first counts the number of
m-element subsets of an n-element set. The right-hand side then determines how many
ways an m-element subset could have elements added to form a k-element subset of the
original set. Since the first step chooses m elements, the augmentation for that m-element
set is done by choosing from the (n - m) elements of the original set that were not chosen.
In both cases, the result is the number of k-element subsets of an n-element set with m of
the k elements distinguished. Therefore, the result follows.

458 CHAPTER 7 Counting and Combinatorics

(Algebraic)
n! k!

C(n, k) • C(k, m) =
k! (n - k)! m! (k - m)!

n! k!(n - m)!

k!(n - k)! m!(k - m)!(n - m)!
n! (n - m)!

m! (n-rm)! (k-m)!(n-m -(k-rm))!

=C(n, m) • C(n - m,k- k) -

Corollary 1:
n

C(n,k) =- C(n- 1,k- 1)
k

Proof. By Theorem 3, we have

C(n, k) • C(k, m) =C(n, m) C(n - m, k - m)

Substitute m = 1 in this identity to get

C(n, k) • C(k, 1) =C(n, 1) • C(n - 1,k- 1)

C(n,k) • k =n C(n - 1, k- 1)
n

C(n,k) =-•.C(n- l,k-1) U
k

To calculate a particular binomial coefficient, Corollary 1 leads to a good method.
When Pascal's Triangle is introduced, you will see a way to calculate all the binomial
coefficients for 1, 2, ... , n for any n e N.

The next identity is credited to Pascal (1623-1662, b. France). This result is used to
compute the entries in Pascal's triangle, which is a way of displaying binomial coefficients.

Theorem 4. (Pascal's Identity) Let n > k > 1. Then,

C(n,k) = C(n - 1,k) + C(n - 1,k- 1)

Proof (Combinatorial) The left-hand side counts the number of k-element subsets of
an n-element set. The right-hand side can be interpreted as follows. Let A be an n-element
set, and pick any x E A. Then, C(n - 1, k) k-element subsets of A do not contain x; the
k elements must be chosen from the remaining n - 1 elements of A. On the other hand,
the number of k-element subsets of A that do contain x is C(n - 1, k - 1), since k - 1
elements must be added to x to get such a k-element subset. Since these two collections of
k-element subsets of the original set are disjoint, the Addition Principle gives C(n, k) =

C(n - 1, k) + C(n - 1,k- 1).

(Algebraic)

C' 1' C k 1- (n-i1)! (n-i1)!C(n - 1, k) + C(n - 1, k- 1) (n1= + ()
k! (n - I - k)! (k - 1)! • (n - k)!

(n - 1)! (n - k) (n - 1)! k

k! (n - k)! k! (n - k)!
(n - 1)! (n - k + k)

k! (n - k)!

Combinatorial Identities 459

n!

k! (n - k)!
- C(n, k) 0

In the combinatorial proof that the two sets of subsets are disjoint, we are claiming
that no set in one collection of k sets belongs to the other collection of k sets. This is not
the same as claiming that each k set in one collection is disjoint from each k set in the other
collection, which is clearly not the case.

7.9.1 Binomial Coefficients

The binomial coefficients derive their name from the role they play as coefficients in the
expansion of a binomial, such as (x + y) 7 . For small exponent n-say, n = 1, 2, 3-the
coefficients of (x + y)n can be remembered, because they are often used. For larger n,
the problem of expanding (x + y)n is not as simple. However, by giving these numbers a
combinatorial interpretation, it is quite easy to write down the coefficients for each term in
the expansion of (x + y)n for any n.

Example 8. Expand (x + y) 3 .

Solution. The product is found by choosing, in all possible ways, one term from each of
the three factors and then multiplying those choices together. To see these choices, we have
numbered the elements in each term in the first two steps of the computation.

(x + y)3 = (Xl + yl)(X2 + y2)(X3 + Y3)

= X1X2X3 + X1X2Y3 + X1Y2X3 + X1Y2Y3 + ylX2X3 + ylX2Y3

+ y1y2X3 + Y1Y2Y3

= xxx + 3xxy + 3xyy + yyy

= C(3, O)x 3 + C(3, l)x2 y + C(3, 2)xy 2 + C(3, 3)y 3. U

We now prove a theorem that shows how to find all coefficients for the expansion of a
binomial.

Theorem 5. (Binomial Theorem) Let n E N. For all x and y,

(X + y)n = C(n, O)xn + C(n, l)xn-ly + C(n, 2)xn- 2 y 2 +... + C(n, n)yn
n

- •C(n, i)xn-iyi
i=0

Proof The proof is by induction on n. Let no = 0 and T = {n E N the identity is true).

(Base step) For n = 0, the formula is

0

(x + y) 0 = EC(O'i) xO-i yi
i=0

= C(O, 0) x0 y 0

=1

which is true.

460 CHAPTER 7 Counting and Combinatorics

(Inductive step) Choose n > no, and assume n E T. Now, prove that n + 1 E T. Begin
by setting

(x + y)n+l = (x + y)(x + y)n.

By the inductive assumption, this is

n

(X - y)n+l = (X + y) • * C(n, i) Xn-i yi

i=O

= x 1 C(n, i) xn-i yi) + y C(n, i) xn-i yi)

ni=0 i=O

n

= C(n, O)xn+l -+ C(n, i) xn-i+l yi

i=1

n-1

- C(n, i) Xn-i yi+l + C(n, n)yn+1

i=O

Next, replace i by i - 1 in the third term, giving

n-1 n

Y C(n,i)xn-i yijl =: C(n, i - 1) xn-i+l yi

i=O i=t

This makes the two sums start at the same value so that they can be added term by term to
get

n

S(C(n, i) +4 C(n, i - 1)) xn-i+t yi

By Pascal's Identity, the sum becomes

n

Y' C(n + 1, i) xn-i+l yi

i=1

Combining these results gives
n

(X + y)n+l - yn+l -+ Z C(n + 1, i) Xn-i+l y i +t xn+

i=1

n+1

S L C(n ± 1, i)xn+l-i yi

i=O

Therefore, n + 1 E T.
By the Principle of Mathematical Induction, T = N. U

Knowing the form of the coefficients of (x + y)n allows some interesting results to be
proven.

Theorem 6. For n E N,

2n = C(n, O) + C(n, 1) - ' C(n, n)

Combinatorial Identities 461

Proof. Expand (x + y)f with x = y = 1. 0

Corollary 2: The number of subsets of an n-element set is 2n.

For different arguments to prove Corollary 2, see Theorem 2 in Section 1.7.4 and
Example 4 in Section 7.2.1.

Theorem 7. For n > 1,
n

E C(n, i)(-1)' = 0
i=O

Proof. The idea of the proof is to use the Binomial Theorem and expand (x + y)n
with x = 1 and y = -1. By the Binomial Theorem with n > 1, we have (x + y)n+l =

ZinO C(n, i)xn- yt . Let x = 1 and y = -1. The identity then becomes

n+1

(1 + (- 1))n+l = LC(n,)ln-i (-1)i
i=0

n+1
0 E C(n, i)(-1)i

i=O

Corollary 3: For n even,

n/2 n/2-1
E C(n' 2i) Y' C(n, 2i-+-1)

i=0 i=O

Corollary 4: For n odd,

[n/2J Ln/2j+1
SC(n, 2i)= C(n, 2i+ 1

i=0 i=O

The corollaries to Theorem 7 can be interpreted as saying that for any n-element set,
there are as many subsets with an even number of elements as there are subsets with an
odd number of elements. An obvious result of the corollaries is that

n/2 Ln/2j
C C(n, 2i) Y' C C(n, 2i)

i=0 i=O

Since it is also true that

n/2 [n/21
ZC(n' 2i) + Y' C(n, 2i) = 2

i=0 i=O

it follows that

n/2 [n/2J

C(n, 2i) = C(n, 2i) = 2-1

i=0 i=0

462 CHAPTER 7 Counting and Combinatorics

A second technique for proving identities using binomial coefficients involves recog-
nizing that the expression

n

(1 +x)n = C(n, i)x'

i=O

can be viewed as a polynomial identity. Since this expression is an identity, its derivative
will also be an identity, so

nn (x + 1)n-1 = i(n, i)xi-1

i=1

This fact is used in evaluating the next sum.

Example 9. Show that in= iC(n, i) = n 2n-1.

Solution. Compute the derivative of

n

(X + 1)n L C(n, i)xn-i

i=0

getting

nn(x + 1)n-1 = •iC(n, i) xi-1.

i=1

Now, substituting x = 1 gives

n

n2n-1 = Z iC(n, i)

In addition to differentiating an identity to produce another identity, it is also possi-
ble to multiply an identity by a power of the variable to produce another identity. Such
techniques will be explored in the exercises (see Section 7.11).

7.9.2 Multinomials

The computation of the coefficients of terms in expansions of a multinomial such as
(a + b + c) 6 is an obvious generalization of the problem of finding the coefficients for the
expansion of powers of a binomial. These multinomial coefficients can be computed using
the result about counting permutations with repeated letters. For example, the coefficient
of a 2bc3 in

(a + b + c) 6 = (a + b + c)(a + b + c)(a + b + c)(a + b + c)(a + b + c)(a + b + c)

is determined by choosing, in all possible ways, a from two factors of this product, b from
a different factor, and c from the remaining three factors. The number of ways to do this is
just

6!

2! 1!3!

Pascal's Triangle 463

as was proved in Theorem 1 of Section 7.8.1. These coefficients are called multinomial
coefficients.

Pascal's Triangle

Pascal's Identity (see Theorem 4 in Section 7.9) can be used to calculate the binomial
coefficients for any n and m such that 0 < m < n using the boundary conditions and the
binomial coefficients for n - 1. The terms pointed to by a pair of arrows in Figure 7.9 are
found by adding the two values at the head of the arrows.

... C(n - 1, O) C(n - 1, 1) C(n - 1, 2) ...

... C(n, 0) C(n, 1) C(n, 2) C(n, 3)...

Figure 7.9 Finding terms in Pascal's Triangle.

There is a long history for the binomial coefficients and an extensive list of identities
they satisfy. The display of these numbers in triangular form in Figure 7.10 is called Pas-
cal's triangle even though these numbers were displayed in that fashion centuries before
Pascal's time.

C(O, 0)

1 1

C(1, 0) C(1, 1)

1 2 1
c(2, 0) c(2, 1) c(2, 2)

1 3 3 1
C(3, 0) C(3, 1) C(3, 2) C(3, 3)

1 4 6 4 1
C(4, 0) C(4, 1) C(4, 2) C(4, 3) C(4, 4)

Figure 7.10 Five rows of Pascal's triangle.

The rows of Pascal's triangle represent the coefficients of the terms in (x + y)n. By
representing the numbers in Pascal's triangle in a slightly different form, as seen in Fig-
ure 7.11 on page 464, it is natural to define rows, columns, and diagonals for Pascal's
triangle.

The next theorem gives a formula for the sum of elements in a row, consecutive ele-
ments from the beginning of a column, or elements on a diagonal of Pascal's triangle.

Theorem 8. Let n > r > 0. Then,

Row Sum :C(n,0)+C(n, 1)+.-.+C(n,n)=2'.

Column Sum :C(r,r)+C(r+1,r)+...+C(n,r) =C(n+ 1,r+ 1).
Diagonal Sum :C(n,0)+C(n+ 1, 1)+..+C(n+r,r) =C(n+r+l,r)

464 CHAPTER 7 Counting and Combinatorics

Row 0 1
C(O, 0)

Row 1 1 1
C(1, 0) C(1, 1)

Row 2 1 2 1
C(2, 0) C(2, 1) C(2, 2)

Row 3 1 3 3 1

C(3, 0) C(3, 1) C(3, 2) C(3, 3)

Row 4 1 4 6 4 1
C(4, 0) C(4, 1) C(4, 2) C(4, 3) C(4, 4)

Column 0

D n l Column 1

C(D, 0) 1

C(1, 0) C(1, 1) •un

Q21,0) Q2,1) Q(2, 2) Comn

C(1, 0) C(3, 1) C(3, 2) Q(1, 3)

cQA, 0) C(44, 1) C(6, 2) Q(4, 3)

Diagonal 0 1

Diagonal 3 1

Diagonal 2 1" ' 2 1

7(2, O) C(2 ,1) Q"..C2, 2)
Diagonal 3 1" -. 3". 3"-. l•x.

Diagonal 4 14 6 4 1Q(4, 0) Q4, 1)• (42) Q4, 3) Q4, 4)•

Figure 7.11 Rows, columns, and diagonals in Pascal's triangle.

Proof. The Row Sum is the content of Theorem 6 in Section 7.9.1. The proofs of the
other identities are left as exercises for the reader. M

By recognizing how to represent powers of integer variables as linear combinations of
binomial coefficients, the row, column, and diagonal sum identities can be used to evaluate
finite sums of such powers.

Theorem 9. (Sums of Powers) Let n > 1. Then,

(a) l+2+3+...+n=n(n+1)/2

Exercises 465

(b) 1 2 + 2 2 +3 2 n 2 = (2n+l)n(n+l)-+n 6

Proof

(a) Since C(k, 1) = k, the sum is found using the column sum formula.

n nn (n ± 1)
I: k= 3C(k, 1) = C(n + 1,2= 2

k=1 k=1

(b) The formula for the column sum is used twice to evaluate the sum of the first n squares.
First, write k2 = k (k - 1) +- k. Since k (k - 1) can be written as 2 C(k, 2) and k as
C(k, 1), the sum now becomes

n n n

Ek 2= E-2C(k, 2) - E C(k, 1)
k=1 k=2 k=1

= 2C(n + 1, 3) + C(n + 1,2)
(2n + I)n (n + 1)

6

U Exercises

1. How many permutations are there for the letters of the name Bathsheba? Solomon?
Ahab? your own name?

2. How many arrangements are possible for the letters of the following words:

(a) Tennessee
(b) Mississippi
(c) Kansas
(d) Oregon
(e) Manitoba
(f) Visiting

3. How many words or strings of 12 letters can be formed from the symbols

a, a, a, a, b, b, b, b, b, b, b, b

provided that no two a's can occur together?
4. Find the number of arrangements of the word engineering.

(a) In how many of these are the three e's together?
(b) In how many of these are exactly two e's together?

5. How many ways can five identical advertisements be placed in three mailboxes if each
mailbox receives at least one advertisement? How many ways if a mailbox may receive
none? (The order in which a messenger delivers a message is immaterial).

6. A word consisting of five letters is just a string of five letters with no meaning required.
For example, xqzrp is a five-letter word. How many five-letter words or strings can be
formed using an alphabet consisting of 35 letters if no repetition of letters is allowed?
How many repetitions of a letter are allowed?

466 CHAPTER 7 Counting and Combinatorics

7. How many ways can you choose eight letters from

aaaaa bbbbbb cccccccc

with at least one a, one b, and two c's?
8. How many integer solutions are there for the following equations?

(a) x+y+z=8wherex>0, y>0, andz>0
(b) x + y + z + t = 18 where x, y, z, and t are each greater than zero
(c) x+y+z+t=12wherex>1,y>_2, andt > 1

9. How many ways can two booksellers divide between themselves 300 copies of one
book, 200 copies of another, and 100 copies of a third if neither bookseller is to get all
the copies of any one of the books?

10. A bookbinder is to bind 10 different books using red, green, or blue cloth for each
book. How many ways can this be done if each color is to be used for:

(a) At least one book
(b) At least two books
(c) With no restriction on the number of times a color may be used

11. How many ways can six candy bars be distributed among three children if every child
is to receive at least one candy bar?

12. How many ways can a class of 25 students be assigned to three different lab sections
if each lab section has at least 5 students?

13. A king is placed on the bottom left-hand square of an 8 x 8 chess board and is to move
to the top right-hand comer square. If the piece can move only up or to the right, how
many possible paths does it have?

14. An XYZ-3000 is a front-end processor to five mainframe computers at RST U. There
are 64 incoming phone lines to the XYZ-3000. In how many ways can the front-end
processor assign lines to computers so that 8 are directed to C1, 14 to C2 , 17 to C3, 16
to C 4 , and the remaining to C5? A program called TUNE monitors the performance
of a computer system. Suppose each user is assigned to one of the 64 memory areas
when first logged onto the system. TUNE samples memory areas or partitions when
a user is first logged on to the system to decide how to assign the new user memory.
How many can this be done if TUNE samples 17 of 64 system partitions? How many
if the one fixed partition Z is always excluded from the sample? How many if two
fixed partitions are always chosen?

15. Three first-year, three second-year, and three third-year students are to be seated in
a row. The students in each class are indistinguishable. How many ways can they be
seated so that no three students of the same class sit together?

16. How many ways can an examiner assign 90 points to 12 questions with each question
getting at least four points?

17. A shop sells six flavors of ice cream. Each ice cream cone holds one, two, or three
scoops of ice cream. How many ways can four ice cream cones be made such that:

(a) All the cones have a different flavor, and each cone has a single flavor for each of
its scoops.

(b) Not necessarily all the cones have a different flavor.
(c) The cones contain only two or three flavors of ice cream.
(d) The cones contain three different flavors.

Exercises 467

18. A six-person committee is to be chosen from 16 university students, (4 from each
class-first, second, third, and fourth years). Determine how many committees are
possible if:

(a) Each class is represented.
(b) No class has more than two representatives, and each class has at least one

representative.

19. How many ways can an eight-person committee be chosen from a group of 10 new
members and 15 old members if the committee is composed of:

(a) Four members from each group
(b) More new members than old members
(c) At least two new members

20. A string consisting of O's and 1's has even parity if 1 occurs an even number of times;
otherwise, the string has odd parity. How many strings of length n have even parity?
How many strings of length n have odd parity?

21. A domino is made of two squares, each of which is marked with one, two, three, four,
five, or six spots or is left blank. A set of dominoes consists of dominoes with all
possible pairs showing in the two squares. How many different dominoes are there in
a set?

22. A bridge hand consists of 13 cards dealt from the 52-card deck. Bridge involves four
players named North, East, South, and West. How many ways can the cards be dealt
so that the game can be played?

23. Prove Z•=o C(n, k) 2 = C(2n, n).

(a) Prove the identity using the fact that (1 + x) 2n = (1 x)(1 + x)n.
(b) Give a combinatorial proof of the identity in part a.
(c) Find the number of 14-digit binary sequences for which the number of l's in the

first seven digits is the same as the number of O's in the last seven digits of the
sequence. Enumerate all such sequences of length six.

24. Prove that n(n + 1)2n-2 = y=1 k2 C(n, k).
25. Sum 13 + 23 + + + m3 using the fact that m3 can be represented as

m3 = aC(m, 3) + bC(m, 2) + cC(m, 1)

where a, b, and c are rational numbers. This problem should not be solved using a
proof by induction.

26. Prove that 1.2+2.3+...+n-(n+l)-=n(n+1)(n+2)/3. This problem
should not be solved using a proof by induction.

27. Prove that
1.2.3 +2.3.4+... +n. (n + 1) • (n +2) = n (n + 1) (n + 2)(n + 3)/4.

This problem should not be solved using a proof by induction.
28. Given that (2n)!/n! = 2(1 • 3 • 5 •... • (2n - 1)), conclude that 2 . 6. 10.... • (4n -

6) • (4n - 2) = (n + 1)(n - 2)(n + 3)(n + 4)... (2n - 1)2n.
29. Construct the first 10 rows of Pascal's triangle.
30. Using the Binomial Theorem, expand:

(a) (x + y) 5

(b) (x + y) 6

31. Expand (1 ± x) 8 using the Binomial Theorem.

468 CHAPTER 7 Counting and Combinatorics

32. Expand (2x - y) 7 using the Binomial Theorem.
33. In the expansion of (3x - 2y) 18, what are the coefficients of:

(a) x 5 •y 13

(b) x 3 y15

34. Expand (a + b + c)2 .
35. Use the Binomial Theorem to prove that

n

3n - • C(n, k)2nk.
k=O

Write out what the identity says for n = 4.
36. Use the Binomial Theorem to prove that

n

2n = L(--)kC(n, k)3n-k.
k=O

Write out what the identity says for n = 4.
37. Theorem 4 in Section 7.9 proves that C(n, m) C(m, k) = C(n, k) C(n - k, m - k).

Use this result to prove that C(n, k) C(n - k, m) = C(n, m) C(n - m, k).
38. Prove the Diagonal Sum formula of Theorem 8 in Section 7.10.
39. Prove that C(n, r) > C(n, r - 1) if r < n/2 for each row of Pascal's triangle.
40. Prove that C (2n, n) + C (2n, n - 1) = (1/2) C (2n + 2, n + 1).
41. Find a closed form for F"=1 kC(n, k).
42. Count the number of triples (x, y, z) where z > max{x, y) and 1 < x, y, z < n + 1.

Deduce that 12 + 22 +... + n2 = C(n + 1, 2) + 2C(n + 1, 3).
43. Evaluate (1/4) 5= I k (6 - k) and deduce the number of points of intersection for

the diagonals of an octagon if no three diagonals meet at a point.
44. Find the following multinomials:

(a) The coefficient of x2 y 3 z5 in the expansion of (x + y + z)10
(b) The coefficents of x 3y 4 z2 and x 3y 3z 3 in the expansion of (3x + 2 y - z)9

45. Show that there are (3 n + 1)/2 strings of length n consisting of the letters a, b, and x

in which a occurs an even number of times.
46. For n = 1, 2, 3 ... , write

[x]t = x(x - 1)(x - 2)-... (x - t + 1)

for 0 < t < n. We can represent [xIt as a linear combination of powers of x. The
coefficients for this expansion are denoted as s(n, t) and are known as the Stirling
numbers of the first kind. Thus, for any n, we can write

n

[X]t = s(n, t)x t

t=O

The numbers s(n, t) can be defined as s(n, 0) = 0 forn = 1, 2, 3 . s(n, n) = 1 for
n =0, 1,2,.... ; and

s(n,t)=s(n- 1,t-1)-(n-1)s(n- l,t)

Chapter Review 469

for t = 1, 2,..., n - 1. Make a table of the Stirling numbers of the first kind for n =
1,2,3,4,5,6.

47. For a positive integer t, define [x]t = x(x - 1) ... (x - t + 1). We can represent xn
as a linear combination of [x1t, where n = 1, 2, 3 ... , and t = 0, 1, 2 ... , n. The
coefficients for this expansion are denoted as S(n, t) and are known as the Stirling
numbers of the second kind. Thus, for any n, we can write

n

xn E S(n, t)[x],
t=O

The numbers S(n, t) can be defined for n = 1, 2, 3,... as S(n, 0) = 0; S(n, n) = 1;
and

S(n, t) = tS(n - 1, t) + S(n - 1, t - 1)

for 1 < t < n - 1. Make a table of the Stirling numbers of the second kind for n
1, 2, 3, 4,5, 6.

48. Still another application of the Principle of Inclusion-Exclusion: Prove that

m

Z(.-1)r C(m, r) (m - r)n
r=O

counts the number of surjections from a set of size n to a set of size m. Use this result
to determine the number of ways to discharge eight people who get on an elevator at
the ground floor of a four-story building. The elevator discharges its last passenger on
the fourth floor.

49. Still another application of the Principle of Inclusion-Exclusion: Let

X1 X2 ... Xn-- Xn

be a permutation of {1, 2, 3, . n - 1, n} such that for 1 < i < n, there is no xi = i.
A permutation with this property is called a derangement. We denote the set of de-
rangements on n elements as D,. Find a formula for the number of derangements on
1, 2 n - 1, n for any n e N. Evaluate this formula for n = 2, 3, 4, 5, 6. Construct
all derangements for n = 2, 3. (Hint: see example 12 in Section 7.5.7.)

Chapter Review

Most counting results are based on two fundamental principles, the Multiplication Prin-
ciple and the Addition Principle. Permutations (orderings of elements) and combinations
(sets of elements) provide a foundation for analyzing problems. Solution techniques for
counting problems include counting the complement, decomposing a problem into disjoint
subproblems, and using the Pigeon-Hole Principle. Counting problems are quite different
when the objects are not distinct. Results about counting permutations and combinations
involving repeated elements are presented. A more practical problem for experimentation is
to choose a random permutation of n elements from the n! possible permutations. A tech-
nique for constructing a random permutation is given. In quite a different context, it is
necessary to expand both powers of binomials and powers of multinomials. Both of these

470 CHAPTER 7 Counting and Combinatorics

problems are solved using the Binomial Theorem and techniques for counting permuta-
tions with repeated objects. The Binomial Theorem leads to a number of combinatorial
identities that are useful in a variety of counting problems. Pascal's triangle is introduced
and used to prove a number of important combinatorial identities.

Besides solving problems that count the number of ways to arrange objects and design
letter patterns, counting is used as a step in determining the complexity of an algorithm that
solves the TSP. Counting the number of ways to distribute identical objects among other
objects is often seen in probability theory. Even counting the number of integer solutions
for a linear equation with several variables is an application of counting combinations
with repeated objects. The chapter focuses on presenting the foundations for approaching
counting problems rather than focusing on particular problems.

7.12.1 Terms, Theorems, and Algorithms

7.1-7.3 Summary

TERMS

Addition Principle password
complement Pigeon-Hole Principle
crypt subproblems
Multiplication Principle

ALGORITHMS

Traveling Salesperson's Problem (TSP)

7.5-7.6 Summary

TERMS

binomial coefficient fixes
C(n, r) k-th of n! permutations
circular permutation ordering of permutations
combination P (n, r)
derangement permutation
dictionary ordering r-permutation
fixed points

7.8-7.11 Summary

TERMS

algebraic argument multinomial coefficients
columns permutations with repetitions
combinations with repeated elements P (n; ri, r2 , rm)
combinations with repetitions Pascal's triangle
combinatorial arguments permutations with repeated letters
combinatorial identities rows
diagonal Stirling numbers of the first kind
multinomial Stirling numbers of the second kind

Chapter Review 471

THEOREMS

Binomial Theorem Pascal's Identity
Newton's Identity Sums of Powers

7.12.2 Starting to Review

1. What are the values of C(5, 3) and P(5, 3)?

(a) 60, 10
(b) 60, 20
(c) 60
(d) None of the above

2. There are 12 roads to Merced, 8 roads from Merced to Planter, and 13 roads from
Planter to San Francisco. How many possible ways are there to get to San Francisco
from Merced?

3. How many ways can you roll two dice and get a total of six appearing on the top faces?
4. Names on Ork are formed according to the rules that a name is six characters long and

has two vowels. The vowels may not be in either the first or the last positions, and the
two vowels may not occur in adjacent locations. How many people can live on Ork
with each person having a different name?

5. To graduate, Sally needs two courses to complete the general education requirement.
Courses in anthropology and economics will satisfy the requirement. If Sally has sat-
isfied the prerequisites for 18 anthropology and 21 economics courses, how many
schedules are possible?

6. A bakery sells six different kinds of pastries. How many different dozens of pastry can
you buy? What if you buy at least one of each kind?

7. There are 10 geography books, 12 chemistry books, and 18 detective novels. How
many ways can you pick two books from each of two different groups of books?

8. Using the Binomial Theorem, compute 114 . Show all work.
9. Find n such that C(n, 0) + C(n, 1) + ... + C(n, n) = 128.

10. Compute the coefficient of x3y2zw 2 in the expansion of (x - y + 2 z - 2w) 8 .

7.12.3 Review Questions

1. Find the number of ways in which nine 3's and six 5's can be placed in a row so that
no two 5's are together.

2. Determine the number of sequences of length r for any r E N if the first portion is
comprised of the letters a, b, c, and d with the remainder being comprised of the Greek
letters {a, fi, y,)}.

3. In the interest of efficiency, spelling rules for words have been revised. The word relief
can be spelled in the ways described by the following rules:
"* The number of letters must not exceed six.
"* The word must contain at least one 1.
"* The word must begin with an r and end with anf
"* There is just one r and onef and only the letters e, i, and 1 may occur in the middle

positions.

How many ways can relief be spelled?

472 CHAPTER 7 Counting and Combinatorics

4. How many r - digit sequences composed of O's, l's, 2's, and 3's are there in which
each of 1, 2, and 3 appears at least once?

5. How many solutions are there for x1 + X2 + x3 + X4 = 30 with -10 < xi < 20 for
1 <i <4.

6. Find the number of solutions for x, + x2 + X3 + X4 = 18 with xi < 7 for 1 < i < 4.
7. How many solutions in integers are there for

X1 + X2 + X3 = 14

if -2 < x1 _< 4; x2 < 5; and2<x 3 _<6?
(Hint: Let U be the set of solutions satisfying the conditions xi > -2; x2 > 0; X3 >_ 2.
Treat the -2 as if you could put -2 elements in box 1, and then solve the equation
for 16. The upper bounds are handled by the Principle of Inclusion-Exclusion us-
ing the sets A1 , {(X, x2, x3) e U : Xl > 5}, A2 = {(Xl, X2, x3) E U : X2 > 6}, and
A3 = {(X, x 2 , x3) E U : x3 > 71.

8. Give a combinatorial proof of P(n, r) = rP(n - 1, r - 1) + P(n - 1, r).
9. Prove that Y=0 C(m, k) • C(n, r - k) = C(m + n, r). This is called Van Der-

monde's Identity.
10. Prove that C(n, m) • C(m, k) = C(n, k) • C(n - k, m - k). This is called Newton's

Identity. Prove that C(n, k) • C(n - k, m) = C(n, m) • C(n - m, k).
11. Count the number of ways to choose 10 elements from among three pears, four apples,

and five bananas. (Hint: Ai = the set of 10-combinations with more than three pears.
A2 = the set of 10-combinations with more than four apples. A3 = the set of 10-
combinations with more than five apples.)

12. How many ways can the 26 letters of the alphabet be permuted so that none of the
patterns car, dog, pun, or byte occurs?

13. Prove that () (n) .- (nf+'r) both algebraically and combinatorially.

14. How many derangements are there of the set {1, 2, 3, 4}? List all these permutations.
15. A "word" is a string of one or more lowercase letters. How many words can be formed

from the letters of the word ... In how many words will p and i occur together? In how
many will h and y not occur together? How many words can be formed from the letters
in the word zigzag where no two consecutive letters are the same?

7.12.4 Using Discrete Mathematics in Computer Science
1. In Section 7.3.3, we counted the number of UNIX passwords of length six, except that

we left a factor of 60 underived.

(a) Derive the factor of 60.
(b) Count how many UNIX passwords there are of length six, seven, or eight.
(c) At a speed of 200,000 words a second, how long would it take to try all the pass-

words you counted in part (b)?
2. Assume that a computer stores each file at consecutive locations on a hard disk, with

files written on both sides of the disk. When a large file is erased and a smaller file is
written in its place, only some of the space is used. If the original disk had files written
on both sides, a small block of space is left unused. After many changes to the disk-
that is, after a sequence of additions and deletions mixed together-there may be many

Chapter Review 473

available storage locations, but these may be scattered across the disk in pieces too small
to use. This sort of problem is called fragmentation.

Suppose a hard disk can store a total of 230 bytes of data and you need to store a file
that is 212 bytes long. Suppose each file currently on the disk is 210 bytes long. What is
the minimum number of files that could be on the disk so that there is no room to add
the new file (in 212 consecutive bytes).

3. Suppose that in a computer program we want an easy way to list-and to access-all
the edges of the complete graph Kn, with each edge listed only once and no unused
space. We can use a part of the adjacency matrix:

n-lI n
n-2 n-I n

3 4 5 6 7... n
2 3 4 5 6 7 ... n
1 2 345 6 7 ... n

where after vertex i, we list only the edges going to higher-numbered vertices. Now, we
could list all the edges in a single array:

{n-l,n} {n-2, n-1} {n-2, n} {n-3, n-2} ... {1,n-l} {1,n}

Use combinations to express the position of edge (i, j) in the array above.
4. One method of checking for errors in data is to add "parity bits." If a number n has the

form X1X2 ... Xn where xi is either 0 or 1 is to be transmitted, an additional bit Xn+l is
added at the end of the original n bits. The added bit is 1 if n has an odd number of 1
bits and 0 if n has an even number of 1 bits. When the number is received, the receiving
computer can check the number and see whether the parity bit is correct. This way, the
receiving computer can recognize any 1-bit error in transmitting the number.

(a) A string of 0's and l's is to be processed, from left to right, and converted to an
even-parity string by adding a parity bit to the end of the string. The parity bit is
initially 0. When a 0 character is processed, the parity bit remains unchanged. When
a 1 character is processed, the parity bit is switched from 0 to 1 or from I to 0. Prove
that the number of 1's in the final string-that is, including the parity bit-is always
even.) (Hint: Consider cases).

(b) A string consisting of 0's and 1's has even parity if 1 occurs an even number of
times; otherwise, the string has odd parity. How many strings of length n have even
parity? How many strings of length n have odd parity?

5. Six distinct symbols are transmitted through a communication channel. A total of 12
blanks are to be inserted between the symbols, with at least two blanks between every
pair of symbols. How many ways can the symbols and blanks be arranged? How many
ways can the symbols and blanks be arranged if there are 25 blanks?

6. A boolean function of n boolean variables is defined by the assignment of a value of
either 0 or 1 to each of the 2n ordered n-tuples of 0 - 1 values for the variables. Recall
the usual convention that 0 represents FALSE and 1 represents TRUE.

(a) How many different boolean functions of n variables are there?
(b) Approximate, in ordinary decimal notation, the number of boolean variables in

eight variables: How many decimal digits in length is that number?

474 CHAPTER 7 Counting and Combinatorics

(c) A self-dual, two-valued boolean function defined on an n-bit binary number whose
bits are a,, a2, ... , an is a function F where

F(al, a2 an) = F(1 - a, 1 - a2. 1 -a,)

How many self-dual boolean functions of n variables are there?
7. In Section 2.5.3, we discussed formulas in CNF. A CNF formula, such as

(X13 V X17 V -X23) A (-X2 V X5) A (X2 V -X13 V -X17)

is a formula that is composed of a conjunction (A) of disjunctions (v) of literals (propo-
sition letters xi and their negations --xi). Note that if we assume a v applies to as few
literals as possible, reversing normal operator precedence rules, we can unambiguously
drop parentheses-for example,

X13 V X17 V -X23 A -X2 V X5 A X2 V -X13 V -X17

The CNF formulas are very convenient in computer representations of logic, but they
also tend to get exponentially long. Show that for any fixed k, for large enough n, there
are boolean functions of n variables that are not expressed by any CNF formula with less
than or equal to n k literals. (Actually, allowing any mixing of A's and v's would still not
solve the exponential length problem.) (Hint: Count the number of CNF formulas with

less than or equal to nk literals. In fact, this overcounts the number of n-ary boolean

functions expressible by such CNF formulas, since several CNF formulas may express
the same boolean function-that is, be logically equivalent).

8. A system encodes integers as strings of O's and l's, with no two consecutive O's. (Two
O's are used to indicate the end of one number and the start of the next.) Approximate,
as best you can, how many different integers can be represented in no more than 100
digits. Compute the maximum error of your approximation-and prove that your error
assertion is correct.

Discrete Probability

Expressions of chance and probability are common in everyday language and thinking. We
speak of the chance of rain, the probability of getting heads when flipping a coin, and the
chance of surviving a disease. We may wonder which of several moves in a board game
is most likely to succeed or whether responding to a magazine's contest is worth the price
of a stamp. This chapter makes these ideas mathematically precise so that we can reason
about them and compute with them.

The chapter contains discussion of five major topics sections. The first gives the formal
definition of a probability density function and shows how to use the frequency of occur-
rence for an outcome in defining a probability density function. The probability of unions
and intersections of events are also discussed. The second introduces the idea of interpret-
ing events in sample spaces as events in the product of these sample spaces. The important
application to Bernoulli trial processes is discussed, and the relationship between the prob-
abilities on individual sample spaces and the probability in the cross product of sample
spaces is explored. The third deals with the important ideas of independent events and con-
ditional probabilities. Independence tells when the probabilities of two events do not affect
each other. Conditional probability gives insight regarding how probabilities can change if
one knows that some outcome has occurred. For example, asking the probability of flipping
a head using two fair coins is a question whose answer may change if new information is
received (for example, the first coin landed tails). The last two topics deal with random
variables, which are in fact functions defined on a sample space that is endowed with a
probability density function. We see how a probability density function can be associated
with a random variable, and we ask questions about what values can be expected from a
large number of repetitions of an experiment and how likely it is that these values deviate
very much from their average.

W Ideas of Chance in Computer Science

Ideas of chance arise in computer science in at least two important and related ways.
First, many systems (for example, the stock market, traffic flow in a network, ecological
systems) behave in complex ways that have seemingly random aspects. Probability theory
is used to create models for the computer simulation of such systems. Second, probability

475

476 CHAPTER 8 Discrete Probability

theory is used to design and to analyze the performance of algorithms that are run on
computers. As just one example, suppose that a certain algorithm for alphabetizing a list of
n names performs c • n 2 comparisons if the input to the program gives the names in reverse
order but only c • n comparisons if the input happens to give the names in order. Since the
performance differs greatly in these two situations, we might ask how many comparisons
are required on average, assuming that each of the n! permutations of the names is equally
likely to occur. If it is not easy to compute the average number of comparisons required,
then we might try the algorithm on several randomly chosen permutations of n names to
get an estimate of the algorithm's average performance. To do this, we would want to know
how to generate permutations at random using a computer.

Many of the examples in this chapter will be about dice, cards, and coin-flipping exper-
iments, because these provide simple and interesting ways to illustrate the basic concepts
of probability. Familiarity with basic probability concepts applied to these situations will
enable the reader to extend these ideas to other contexts, because they also arise in com-
puting courses, such as Artificial Intelligence, Algorithm Design and Analysis, Software
Engineering, Graphics, Networks, and Simulation.

Statements about probability and chance have many possible interpretations. For ex-
ample, what do we mean when we say that we have a 50-50 chance of getting heads when
we flip a coin? We may have in mind that there is no reason for the experiment to favor
either outcome, so we assign equal likelihood to the two outcomes and arrive at a 50%
chance for each. Perhaps we imagine that if we continue flipping the coin, we would get
heads about 50% of the time. (Nevertheless, we would be surprised to get heads exactly
500 times after 1000 repetitions of the experiment.) This so-called frequency interpretation
breaks down, however, when we consider an experiment that is not repeatable. If we say
that a certain daredevil has a 50% chance of surviving a plunge over Niagara Falls in a
barrel, do we mean that survival would be the outcome about half the time if the experi-
ment could be repeated many times under exactly the same conditions? And what do we
mean by "about half the time" and "exactly the same conditions"? Perhaps we mean that
we would be willing to bet "even money" on the daredevil-that is, we would stand to lose
or gain the same amount-depending on the outcome.

Probability theory has a philosophical and interpretive aspect that is not found in most
other branches of mathematics. No one has been able to give a single, precise definition of
probability that everyone agrees on, but it is possible to give mathematical rules for com-
bining probabilities once they are assigned. Everyone can agree on these rules, and they
form the basis for the mathematical subject of probability theory. One of the challenges
of this subject is to be alert to the difference between the following: making mathematical
deductions based on the axioms of probability, and reasoning based on common sense and
everyday experience.

8.1.1 Introductory Examples
To begin the mathematical treatment of probability theory, we introduce some basic termi-
nology informally. Let us start by considering a familiar situation. Suppose that we roll a
pair of dice, A and B, and that we are interested in our chances of getting the sum of the
spots (also called pips) on the top faces to be a certain one of the values 2 through 12. This
is a typical instance of the following situation: There is a process (rolling the dice) with a

Ideas of Chance in Computer Science 477

set of possible results that we can enumerate. However, the result that will actually occur
in any given execution of the process is not known in advance. A single execution of such
a process is called an experiment, and each possible result is called an outcome. The set
of all possible outcomes is called the sample space.

The symbol co will denote an outcome, and 02 will denote a sample space. For cO E 02,

we say that ca is an outcome in sample space Q to emphasize the probability context. Of
course, we can also say that co is an element of the set Q2.

In the dice-rolling situation just described, each roll of the dice is an experiment. What
are the outcomes, however, and what is the sample space? Here, we have a choice to make.
On the one hand, since it is the sum of the spots that is of interest, each possible sum can
be regarded as an outcome, giving a sample space

Q I = {2,3,4,5,6,7,8,9, 10, 11, 121

On the other hand, the outcome of a particular experiment (roll) can be regarded as an
ordered pair (i, j) where i is the number of spots shown by die A and j is the number
shown by die B. (We sometimes call the number of spots or pips on the top face of the die
the value of the die.) From this point of view, the sample space is

Q"2 =• ((1, 1), (1, 2),..... (6, 5), (6, 6)1

which has 36 ordered pairs as elements or outcomes. Each of these sample spaces is legit-
imate, as are others. The choice of sample space is made according to what fits best with
the questions we want to ask. The only requirement is the following:

* Whenever an experiment is run, there is exactly one outcome co E 02 to describe what
happens.

Also, it is usually pointless to include impossible situations in 02, leading to a second
requirement:

* There are no impossible outcomes in QŽ.

Once we have decided on a sample space Q, we next assign a probability p(co) to
each outcome co E Q2. This is done by choosing a value for p(co) between 0 and 1 inclusive,
subject only to the requirement that all the probabilities sum to 1:

wP(c)=

This requirement expresses the idea that we are 100% certain that exactly one outcome
will occur when we roll the dice.

In the example, if we choose the sample space to be

2 {(1, 1), (1, 2),..., (5, 6), (6, 6)}

then it is natural to choose

1
p(l, 1) = p(l, 2) ... p(5 , 6) = p(6 , 6) = -36

because we see no reason to favor one outcome over another. It would not be wrong mathe-
matically to choose other probabilities, but this would not agree with our experience. Since

478 CHAPTER 8 Discrete Probability

we believe that the 36 outcomes are equally likely, we choose p(co) to be 1/36 for each
(0 E S22.

The important point here is that mathematics does not tell us exactly how to assign
probabilities, nor does it provide us with a precise definition of "experiment" or tell us
what sample space to choose. In fact, mathematics does not even offer a definition for
"probability of an outcome" in terms of our intuitive ideas about likelihood of occurrence
of uncertain phenomena. It is entirely up to us to supply the meanings and interpretations,
to define the sample spaces, and to make the probability assignments. This we do on the
basis of what seems to be reasonable to us. Once we have done this, mathematics can help
us to determine the logical consequences of our assumptions.

8.1.2 Basic Definitions

Here we give the mathematical definitions of the terms we have been using. The definitions
make no reference to the notions of likelihood, randomness, and uncertainty that we all
have in mind when we talk about probability.

Definition 1. A discrete sample space is a nonempty set that has only a finite or count-
ably infinite number of elements.

The word discrete in the definition refers to the fact that the set has only a finite or
countably infinite number of elements. Although it is meaningful to consider processes
having more than countably many outcomes, all the sample spaces in this chapter will be
discrete. Hence, from now on, we will usually just say "sample space" instead of "discrete
sample space." Definition 1 does not say that a sample space must be the set of possible
outcomes of an experiment, but this is the interpretation we will have in mind when we
elect to call a set a sample space.

Definition 2. An outcome is an element of a sample space.

Definition 3. An event is a subset of a sample space.

Sample spaces will be denoted by Q's and outcomes by w's. Events will generally
be denoted by E's, although other capital letters will sometimes be used. According to
Definition 3, both the entire sample space Q and the empty set 0 are events. An event E
can also consist of a single outcome a) E Q, in which case we write E = {o}.

Example 1. Suppose we take

[Saturday, Sunday, Monday, Wednesday, Friday)

as a sample space QŽ. Then, Wednesday is an outcome, but Thursday is not. Wednesday
can also be regarded as the event E = {Wednesday}. The weekend can also be regarded as
an event in Q2, since

{Saturday, Sunday} C Q

(Watch out for the notation: {Wednesday) is a subset of Q2 and denotes an event, whereas
Wednesday is an element of Q2 and denotes an outcome.) 0

Suppose a probability experiment with sample space Q2 is executed. Then, an event
E C f2 is said to occur if the outcome wo of the experiment belongs to E.

Ideas of Chance in Computer Science 479

Example 2. Suppose Q2 = {0, 1}. Then, 0 and 1 are the outcomes. Here, 0 might represent
the outcome that a communication line is busy and 1 that the line is free. The experiment
might be to check the status of the line. Four events are associated with Q2-namely, 0, {0},
{1}, and {O, 1). The event E = {0, 1} always occurs, because the line is always either busy
or free. 0

Example 3. Suppose Q2 is the set of positive integers. Then, each positive integer is an
outcome. This sample space might be used when the experiment is to flip a coin until it
comes up heads. The outcome is the number of flips. The set

E = {2 n : n is a positive integer}

expresses the event of an even number of flips. U

Definition 4. A probability density p on a discrete sample space Q2 is a function with
domain Q2 satisfying

Fo eaho E 02, 0 < p ((o) < 1, and Y, p (0)) =IFor eachwE ,~~) 1,n~~ 1.

(OEQ

Any function satisfying these properties is, mathematically speaking, a legitimate
probability density function. The value of the probability density function on an outcome
is the probability of the outcome.

In the dice-rolling experiment, suppose that the sample space Q2 is chosen to be

Q I = 12,3,4, 5,6,7, 8,9, 10, 11, 121

Then, the following function on Q1 is a legitimate probability density function:

1
p(2) = p(12) = 36

2
p(3) = p(ll) =

36
3

p(4) = p(10) =- 36

4
p(5) = p(19) = 36

5
p(6) = p(18) =

36
6

p(7) = -36

Clearly, p(w) > 0 for each outcome, and the sum of the probability density function over
all the outcomes is 1. Hence, the two requirements of Definition 4 are satisfied.

Definition 5. Let E be an event in a sample space Q2 endowed with a probability density
function p(wo). If E 0 0, the probability P (E) of event E is

P(E) = YP(a)
wc E

480 CHAPTER 8 Discrete Probability

If E = 0, there are no terms in the sum, and P (0) is 0.

Example 4. For the sample space { 1, 2, 3, 4, 5, 61 that represents the outcomes of record-
ing the number of pips on the top face after rolling a fair die, define

1
p(l) = p(2) = p(3) = p(4) = p(5) = p(6) = 6

Determine the probability that the top face shows an even number of pips, and determine
the probability that the number of pips on the top face is greater than four.

Solution. The event that the top face shows an even number of pips is E1 = {2, 4, 6}, and
its probability is P(EI) = p(2) + p(4) + p(6) = 1/2. The event that the top face shows
more than four pips is E2 = {5, 6}, and its probability is P(E 2) = p(5) + p(6) = 1/3. U

Note that for any event E, we have 0 < P(E) < 1. Also, note that P(Q2) = 1, and that
for a singleton event E = {w}, we have P(E) = p(co). (Why?)

8.1.3 Frequency Interpretation of Probability

In the preceding discussion, we defined the probability of an event, including that of a sin-
gleton event. The probability was defined in terms of a probability density function that can
be chosen arbitrarily, subject only to the two conditions in Definition 4 in Section 8.1.2. The
usefulness in practice of computations based on the definitions depends on how well the
chosen probability density function models the situation of interest. When we can imagine
doing a probabilistic experiment over and over, we generally choose pc(w) to estimate the
proportion of times that we think outcome a) will occur. When we compute the probability
of an event E, we generally interpret it as an estimate of the proportion of times that the
event should occur. This is called the frequency interpretation of probability.

The Frequency Interpretation of Probability

The frequency interpretation of probability is to take the quantity P(E) as an es-
timate for the proportion of times that event E will occur when an experiment is
repeated over and over. The reasonableness of the estimate depends on how well the
probability density function estimates the frequencies of the outcomes.

8.1.4 Introductory Example Reconsidered

To illustrate the difference between mathematical requirements and personal choices, let
us reconsider the sample spaces Q21 and Q22 from the dice-throwing example in light of the
definitions of the preceding subsection. In the 36-element sample space

Q2 = {(1, 1), (1, 2) ... , (6, 6))

obtaining a sum of 3 is described by the event E = {(1, 2), (2, 1)}, which breaks the situ-
ation into its smallest subcases, showing exactly how the 3 can be obtained. However, for
the sample space

Q1 = {2, 3, 121

Ideas of Chance in Computer Science 481

obtaining a sum of 3 is both an outcome and a one-element event E = {3}.
Suppose, now, that we want to represent the situation of obtaining at least one 1 on a

die. This can be expressed as the 11-element event

E = {(1, 1), (1, 2) ... , (1, 6), (2, 1), (3, 1) ... , (6, 1))

in Q22 and cannot be expressed at all as an event in 021. Hence, choosing a very detailed
sample space makes it possible to represent more situations as events.

What about the probability of obtaining a sum of 3? First, we must choose probability
density functions Pl and P2 for Q21 and Q22, respectively. For 022, we are comfortable with
assigning P2(w) = 1/36 for all outcomes w. Definition 5 then leads us to calculate

P(sum = 3) = P({(1, 2), (2, 1)M) = P2(1, 2) + p2(2 , 1) = (2) (- = I

which seems to agree with experience. If we choose pi by assigning the same probability
density to each of the 11 outcomes in 0 1, we get

1
P(sum = 3) = P({3}) = L pI(w) = pl(3) 1

This is not mathematically incorrect, just out of line with the experience of people who
roll dice often. To repair things requires assigning a different probability density to f21.
What probability is obtained for this event if the probability density function following
Definition 4 (in Section 8.1.2) is chosen for Pi ?

What about the probability of having at least one of the two dice show one pip on
the top face after a roll? Using the probability density P2 defined on Q22, we compute the
probability of the event

E ={(i, j) : i = 1, and 1 <j <61 U {(i, j) :I <i <6, andj = 11 _2

to be

P(E) = Z p2(w) = (11) =

wEE

With Q1, we are stuck. The situation cannot be described as an event in Q1, so we cannot
compute a probability for it, no matter what we choose for pl.

As this discussion illustrates, it is important to define a sample space with elements
that are versatile building blocks for the events of interest. One way to do this is to choose
outcomes that do not themselves decompose into subcases. In other words, the outcomes
should be the most basic, elemental situations that can occur.

Terminology Summary

"* A sample space Q2 is a set.
"* An outcome (o is an element of a sample space: o) E Q.
"* An event E is a subset of a sample space: E C 02.
"* The probability P(E) of an event E is the sum of the values of the probability

density function for the outcomes in the event.

482 CHAPTER 8 Discrete Probability

How to Calculate the Probability of Events

1. Describe in words the experiment and the event or events of interest.
2. Choose a sample space Q2 so that the events of interest are easy to describe in Q.
3. Define a probability density function p on Q2.
4. Formulate the events of interest as subsets of ý2, and calculate their probabilities

by summing the probability density function on the outcomes of the events.

8.1.5 The Combinatorics of Uniform Probability Density

Choosing a sample space with outcomes that do not decompose into more detailed subcases
makes it easy to express situations of interest as events in the sample space. Choosing such
a sample space has the further advantage that it is often easy to define an appropriate
probability density function on it. Whenever we have no reason to believe that one basic
situation is any more or less likely to occur than any other, we set p(w) = 1/1 Q I for each
) e Q provided that I[2I is finite. (Recall that putting vertical lines on each side of the

symbol for a finite set denotes the number of elements in that set.)

Definition 6. A probability density function p such that p(w) = 1/1 Q I for all a) in a
finite sample space Q2 is called a uniform probability density function.

For the standard deck of cards, it is useful to think of the cards as being represented by
the values 1, 2, 3 ... , 51, 52. Usually, we do not need to be concerned about which card
is represented by which value. We know, for example, that 26 of these values represent red
cards (hearts and diamonds) and that four of these values represent each card value. We
also assume that the deck is fair-that is, no card is more likely than any other to be chosen
in a random pick.

Example 5. Define a uniform probability density function on the standard deck of cards.
Determine the probability of drawing one of the 3's and the probability of drawing a face
card (Jack, Queen, or King).

Solution. For each card in the deck, p(card) = 1/52. The event El (that the card is a 3)
consists of four elements-3 of Clubs, 3 of Diamonds, 3 of Hearts, and 3 of Spades-so
P(Ei) = 1/13. The event E2 (that the card is a face card) is a set consisting of 12 cards,
so P(E 2) = 12/52 = 3/13. 0

When a finite sample space ý2 is assigned a uniform probability density p, the combi-
natorial counting methods of Chapter 7 can provide shortcuts to computing the probability
of an event E. Since

[ElP (E) = .,p(0) E

o)EE

when Qi2 is finite and p is uniform, evaluating probabilities in this case is a matter of count-
ing set sizes.

The following examples illustrate the use of counting techniques to evaluate probabil-
ities. Throughout this chapter, unless stated otherwise, all coins, dice, and decks of cards

Ideas of Chance in Computer Science 483

are assumed to be fair, meaning that each card of a deck, face of a coin, or side of a die is
equally likely to occur.

Notation. Since we will be using the counting techniques of Chapter 7, now is a good
time to recall that C(m, n), denotes the binomial coefficient-that is, the number of ways
of choosing n elements from a set of m elements. See Section 7.9.1 for more details.

Example 6. A (fair) coin is tossed three times. What is the probability that at least two
heads turn up?

Solution. The experiment is to toss a coin three times. The event E of interest is that
either two or three heads turn up. To make this event easy to describe, we choose a sample
space 02 with outcomes co that are ordered triples (H representing heads and T representing

tails) describing what happens on each toss:

(01 = (H, H, H) (05 = (H, T, T)
0)2 = (H, H, T) (06 = (T, H, T)
(03 = (H, T, H) w7 = (T, T, H)
0o4 = (T, H, H) (08 = (T, T, T)

Hence, 2 = {o01,0&2.. U81 and E = {11, (02 , (03, (04).

Since the coin is fair, we choose a uniform probability density function for Q2. This
assigns a probability of p(o) = 1/I Q2 I = 1/8 to each outcome wi for 1 < i < 8. Hence,
by Definition 5 in Section 8.1.2, P(E) I E 1(1/8) = 4/8 = 1/2. U

Example 7. A coin is tossed 10 times. What is the probability that eight or more heads
turn up?

Solution. Choosing £2 = {(fl, f2_. , flo) : fi E {H, T}} gives a sample space with
outcomes that can describe every possible result of flipping the coin 10 times. Since the
coin is fair, the outcomes can be assumed to be equally likely. Since I Q2I = 210, set-
ting p(w) = 2-10 for each o E Q2 defines a uniform probability density function on £2.

Rather than enumerate all the elements of Q2, we use counting techniques from com-
binatorics to compute the size of the set E that describes the situation "eight or more

heads." This set E is the disjoint union of three other events-namely, getting exactly
8 heads, exactly 9 heads, and exactly 10 heads. These events are given by sets of size

C(10, 8) = 45, C(1O, 9) = 10, and C(10, 10) = 1, respectively. Consequently, P(E) =
(2-10)(45 + 10 + 1) = 56. 2-10. N

Example 8. A die is rolled five times. What is the probability of obtaining exactly one 2?

Solution. We choose the sample space with outcomes that are all the length of five se-
quences of die values. Each single roll results in one of six numbers, so there are 65 possible
outcomes in £2. Putting a uniform probability density function on £2 gives p(a) = 6-5 for
each sequence (0. We can count the number of length-five sequences with exactly one 2
using the Multiplication Principle. First, choose a location for the 2. This can be done in
C(5, 1) ways. For the other four locations, we can fill each in five ways using all the values
that can occur on the top face after the roll of a die, except for 2. Therefore, the total num-
ber of such sequences is C(5, 1) • 54. It follows that the probability of obtaining exactly
one 2 is C(5, 1)(54)(6-5). U

484 CHAPTER 8 Discrete Probability

Example 9. Suppose the analysis of a sorting algorithm shows that the worst case (the
one requiring the most comparisons of names) occurs when the input data lists the names
in reverse order. What is the probability that this occurs if there are n names? Assume that
all orderings of the names are equally likely.

Solution. There are n! permutations of the names. These make up a sample space Q2.
Assuming that each permutation is equally likely to occur implies that the probability of
reverse order is just (I/n!). M

Example 10. Suppose that incoming computer mail messages are equally likely to be
addressed to user 1, 2, or 3. Three messages are received for delivery to these users. What
is the probability that no two messages are addressed to the same person?

Solution. The sample space should reveal all the ways the messages can be addressed.
This can be done by choosing

S= {(UI, U2, U3) 1 < Ul, U2, U3 < 31

Here, ui is the user to whom message i is addressed. The sample space consists of 33

outcomes, which we assume are equally likely. The event E (that no two messages go to
the same user) consists of all 3-tuples that are permutations of (1, 2, 3). There are 3! of
these, so P(E) = (3!)(3-3) = 2/9. M

Example 11. Suppose in the previous example that there are three messages and five
users. What is the probability that no two messages go to the same person?

Solution. Now, Q2 has size 53. However, E no longer consists of permutations of (1,
2, 3). Instead, it consists of permutations of the elements in sets of the form {ui, uj, U•}

where ui, u j, Uk are three distinct integers chosen from {1, 2, 3, 4, 5). There are C(5, 3)
choices for a set {ui, uj, Uk}, and there are 3! ways to permute the elements of a given
three-element set. Therefore, P(E) = C(5, 3)(3!)(5-3) = 12/25. U

Event Probabilities Under Uniform Density

To calculate the probability of an event E when the sample space Q has been assigned
a uniform probability density function:

1. Use counting techniques to determine I EI and 12 1.
2. Compute P(E) = E I/1 E 2 I.

8.1.6 Set Theory and the Probability of Events
The sample spaces in Examples 6 through 11 were chosen to make it easy to formulate the
situations of interest as events-that is, as subsets of the sample spaces. The combinato-
rial counting techniques of Chapter 7 were then used to determine the number of elements
in those subsets. For finite sample spaces with uniform probability densities, this essen-
tially determines the event probabilities. This section shows that the operations on sets

Ideas of Chance in Computer Science 485

introduced in Section 1.3 also help in computing the probability of events (with or without
uniform probability densities).

As a simple example, suppose we know that an event E in a sample space Q is the
disjoint union of two other events A and B. To find the probability of the event E, we sum
up the probabilities of the individual outcomes in E. This can be done by summing the
probabilities of outcomes in A (which gives P (A)), summing the probabilities of outcomes
in B (which gives P(B)), and then adding the two totals together (which gives P(A) +
P(B)). No double counting occurs, because A and B are disjoint. Each outcome in E
contributes its probability, since it belongs either to A or to B. In other words, if A n B =

0, then

P(A U B)= L
wEAUB

= p(,)+ E p(a)
WEA WEB

= P(A) + P(B)

This observation extends to collections of more than two mutually disjoint sets and
gives the Additive Principle of Disjoint Events.

Additive Principle of Disjoint Events

If El, E 2 ... , E, are pairwise disjoint subsets of a sample space Q2, then

P(Ul<,i< Ei) = E P(Ei)
l<i<n

In other words, the probability of a union of pairwise disjoint events is the sum of
their probabilities. This statement remains valid for countably infinite collections of
pairwise disjoint subsets of a countably infinite sample space.

We now use this principle to obtain several useful relationships among the probabilities
of events.

Theorem 1. (Elementary Probability Facts) Let Q be a sample space endowed with
a probability density p, and let E and F be subsets of Q2. Then:

(a) E C F implies P(E) <_ P(F).
(b) P(E) = P(E n F) + P(E n F) where F = Q2 - F.
(c) P(E) = >Ji P(E n Ai) where Q2 = Un=lAi for some n E N and the set of Ai's form

a partition of 02.
(d) P(E U F) = P(E) + P(F) - P(E n F).

Proof.

(a) Since E C F, set F can be written as the disjoint union of E and (F - E). Hence, by
the Additive Principle of Disjoint Events,

P(F) = P(E) + P(F- E)

Since probabilities are nonnegative, P(E) < P(F).

486 CHAPTER 8 Discrete Probability

(b) Since E is the disjoint union of (E N) F) and (E n F), the Additive Principle implies
statement (b).

(c) Since the Ai's form a partition of Q2, set E can be written as the union of the pairwise
disjoint sets (E n Ai). Hence, statement (c) follows from the Additive Principle.

(d) Expressing events E, F, and (E U F) as unions of disjoint events and applying the
Additive Principle gives

P(E U F) = P(E - F) + P(F - E) + P(E n F)

P(E) = P(E - F) + P(E n F)

P(F) = P(F - E) + P(E n F)

Adding together the expressions for P (E) and P (F) gives

P(E) + P(F) = P(E - F) + P(F - E) + 2P(E n F)

Comparison with the expression for P(E U F) shows that

P(E) + P(F) = P(E U F) + P(E n F)

Statement (d) is just a rearrangement of this last equation. 0

The proof of Theorem 1 (d) is identical in form to the proof of the theorem found in
Section 1.5.2. In particular, the idea of expressing a set as a union of other, pairwise disjoint
sets is used in both places. The difference is that in Chapter 1, the numbers of elements in
the sets are counted, whereas here, the probabilities of the elements are totaled. Thus, in
Chapter 1, each element contributes a 1 to the total, whereas here, each element contributes
its probability to the total.

The next example shows the usefulness of expressing an event as a disjoint union of
other events.

Example 12. What is the probability that a card drawn at random from a 52-card deck
will be an Ace or a spade?

Solution. We take Q2 to be the 52-element set of cards and model drawing a card at
random by assigning a uniform probability density. The event E of getting an Ace or a
spade can be written as E = A U S where A is the set of four Aces and S is the set of 13
spades. The intersection A n S = {the Ace of Spades}. Hence, by Theorem 1(d),

P(E) = P(A) + P(S) - P(A n S)

4 13 1

52 52 52
4

13

Sometimes it is easy to evaluate the probability that an event does not occur. This
immediately gives the probability that it does occur, as the next result shows.

Theorem 2. (Probability of the Complement) Suppose E is an event in a sample

space Q, and let E = Q - E. Then,

P(E) = I - P(E)

Ideas of Chance in Computer Science 487

Proof Since 0 = E U E expresses Q as a union of disjoint sets,

P(Q) = P(E) + P(E)

Since P(Q2) = 1, P(E) = 1 - P(E). M

Example 13. Two parts are chosen at random from a bin containing 10 parts, three of
which are defective. What is the probability that at least one of the parts chosen is good?

Solution. Consider the sample space Q2 to be the set of all C(10, 2) pairs of items, and
give 02 a uniform probability density. Let E be the set of all pairs of parts in which at least
one is good. Then, E = Q - E is the set of all pairs of parts in which both are bad. There
are C(3, 2) pairs in E, so P(E) = C(3, 2)/C(10, 2). Hence,

P(E) =I- (C((3, 2) (3) =14
P(E)(10, 2C--,)) = 45 15 = 0

Of course, P(E) could also be computed directly: E can be written as the disjoint

union of A, the set of all pairs containing two good items, and B, the set of all pairs
containing exactly one good item. Set A contains C(7, 2) pairs, and set B contains 7 • 3
pairs. Hence,

(C(7, 2) + 21) _ (21+21) _ 14

C(10, 2) 45 15

In the preceding example, finding 1 - P(E) provided an alternative to computing
P (E) directly. In the next example (a classic), this idea is extremely useful.

Example 14. (The Birthday Problem) What is the probability that in a group of n
people, at least two have the same birthday? (Leap years are ignored, and all combinations
of birthdays are assumed to be equally likely.)

Solution. Represent the birthdays of the group by an n-tuple with components that are
integers in the range I through 365. Take QŽ to be the 365n possible n-tuples, and put the
uniform probability density on Q. If E is the event that at least two people have the same
birthday, then E = Q - E is the event that no two people have the same birthday. Hence,
E consists of all possible n-tuples of distinct birthdays.

If n > 365, there are no such n-tuples. Then, E = 0, P(E) = 0, and P(E) = 1.
If n < 365, there are C(365, n) ways to choose n distinct birthdays and n! ways to

assign the chosen birthdays to the n people. Hence, E contains C(365, n) • (n!) n-tuples,
and

P(E) =1 - P(E)

I C(365, n) . (n!)

365n

Alternatively, the number of elements in E can be counted by imagining that the first
person has any of 365 birthdays, the second has any of the 364 remaining possibilities, and
so on. Hence, there are 365 • 364 (365 - n + 1) n-tuples in E. In fact, this is just the
number of k-permutations of a 365-element set, as defined in Section 7.5.1, where k = n
in the present case. The reader can check that this is equal to C(365, n) • (n!). Thus, the
two methods of calculating I E I give the same result.

488 CHAPTER 8 Discrete Probability

Now that we have derived an expression for P(E), how do we evaluate it? Trying to
compute n! or 365' or C(365, n) for other than the first few values of n involves numbers
that are huge. However, this difficulty can be avoided by noting that the expression for
P (E) can be rewritten

365) (364)] (363). (365 -n+ 1

35 \365J \365J 365

Using a calculator, it is easy to compute that for n > 23, P(E) < 0.5 and P(E) > 0.5. In
other words, if at least 23 students are in a class, then the chances are greater than 50% that
some two or more of them have the same birthday. 0

These examples have illustrated two ideas that aid in computing the probabilities of
events, which we now highlight.

Aids to Computing the Probability of Events

"* Set theory can be used to rewrite events in terms of other events. The Additive
Principle of Disjoint Events and Theorem 1 in Section 8.1.6 apply this idea.

"* The probability of the complement E of an event E can be used to determine the
probability of E, since by Theorem 2 in Section 8.1.6,

P(E) = 1 - P(E)

U Exercises

1. Suppose that Q2 is a sample space with a probability density function p and that
E C __.

(a) Prove that 0 < p(E) < 1.
(b) What is the probability of the singleton event E = {[w}?
(c) What is the probability of the event E = Q?

2. Suppose that sample space ý21 is chosen to model the experiment of rolling a pair
of dice and that the probability density function p assigned to 01 is p(0)) = 1/36
for w e Q]. Under these assumptions, compute the probability of rolling a sum of
3. Compare your answer to the answers of 1/18 and 1/11 obtained in the text, and
discuss.

3. Consider a sample space Q consisting of five outcomes:

{0)1, 02, W03, 0)4, 605)

Which (if either) of the following functions pl and P2 can be probability densities on
QŽ? Explain your answer.

Exercises 489

w0 p1 (w0) P2 (W0)

Woi -1/2 1/31f7
(02 1/4 2/31/7-
W03 1/4 1/3/7

a04 1/2 2/3/7

(05 1/2 (,/7--2)/17

4. Two nickels and a dime are shaken together and thrown. All the coins are fair. We
are allowed to keep the coins that turn up heads. Give two sample spaces together
with probability density functions that reasonably describe this situation. Explain your
answer.

5. A penny, a nickel, and a dime are shaken together and thrown. Someone proposes
the sample space 0Ž = {1, 5, 10), explaining that the outcomes represent the values of
the coins. Then, the person suggests the probability density function p(l) = p(5) =
p(10) = 1/2, explaining that since the coins are fair, a uniform probability density
is appropriate. Comment on several aspects of this situation. Do you agree with this
model?

6. A penny, a nickel, and a dime are shaken together and thrown. Suppose that the nickel
turns up heads twice as frequently as the penny and that the dime turns up heads half
as frequently as the nickel. Define a sample space, and using the frequency interpreta-
tion, assign a reasonable probability density function based on the assumption that the
penny is a fair coin.

7. Given the sample space

Q = {0, 5, 10, 15, 201

which of the following events are in the sample space?

(a) (5, 101
(b) 10, 5, 10, 15, 20)
(c) 0
(d) 0
(e) {0}
(f) {5)

8. Two nickels and a dime are shaken together and thrown. We are allowed to keep the
coins that turn up heads. We choose a sample space 02 = {0, 5, 10, 15, 20), the out-
comes of which correspond to the amounts that we can keep. For each of the following
situations, either describe the situation as an event in 02 by listing the elements in the
appropriate subset of Q2 or state that the situation cannot be described as an event in
this particular sample space:

(a) No heads.
(b) All heads.
(c) Exactly one coin turns up heads.
(d) Exactly one of the nickels turns up heads.
(e) The dime turns up heads.

490 CHAPTER 8 Discrete Probability

9. For the two nickels and the dime in Exercise 8, there are eight possible combinations
of heads and tails: tails on all coins; heads on nickel 1, tails on nickel 2, tails on the
dime; and so on.

(a) Assuming that each of these eight combinations is equally likely, what probabil-
ity density should be assigned to the sample space Q2 of Exercise 8? Specify the
probability density by giving its value on each 0 E QŽ.

(b) Invent a new sample space Q such that each of the situations in Exercise 8 can
be described as an event, and specify a reasonable probability density for the new
sample space.

(c) Describe each of the situations in Exercise 8 as an event in the new sample space
from part (b).

(d) Calculate the probability of each of the events in part (c) using the new probability
density.

10. Consider a sample space 2 = {a, e, i, o, u} endowed with the following probabil-
ity density: p(a) = 0.22, p(e) = 0.35, p(i) = 0.13, p(o) = 0.20, and p(u) = 0.10.
Determine the probabilities of the following events:

(a) {a, ol
(b) 0
(c) The event E consisting of all those outcomes in 02 that come after the letter k in

the alphabet

11. A small zoo records the proportions of visitors who prefer various animals as their
favorites. Suppose that the elephants are preferred by 15%, the monkeys by 25%, the
polar bears by 30%, the seals by 20%, and the boa constrictors by 10%. Suppose we
are going to select a visitor at random and ask what animal that person prefers.

(a) Set up a sample space QŽ, and define a probability density on it using the given
data.

(b) Reformulate the descriptions of the following events as subsets of S2:
i. The preferred animal has four legs
ii. The preferred animal has legs
iii. The preferred animal has either a trunk or flippers.

(c) Calculate the probability of each event in part (b).

12. A fair coin is tossed five times. Determine the probability that:

(a) It turns up tails every time.
(b) It turns up heads at most three times.
(c) It turns up heads twice in a row exactly one time.

13. Suppose that five names are drawn from a hat at random and listed in the order in
which they are drawn. A name on the list is "out of order" if its position is not the
same as its position after the list has been alphabetized. Determine the probability of
each of the following:

(a) Exactly two names are out of order.
(b) At least two names are out of order.
(c) Exactly one name is out of order.

14. What is the probability that a card drawn at random from a 52-card deck will be a heart
or an even-numbered card?

Cross Product Sample Spaces 491

15. Suppose A and B are events in a sample space such that P(A) = 1/4, P(B) = 5/8,
and P(A U B) = 3/4. What is P(A n B)?

16. In a certain group of people, 50% are right-handed and wear glasses, 5% are left-
handed and wear glasses, and 1% are ambidextrous and wear glasses. What is the
probability that a person selected at random from this group wears glasses? Assume
that ambidextrous means neither right-handed nor left-handed but, rather, some mix-
ture of both. In particular, the ambidextrous people are not included in the set of right-
handed people or in the set of left-handed people.

17. Four cards are dealt at random from a deck. What is the probability that at least one
of them is an Ace? The answer may be given in terms of the combinatorial notation
C(a, b).

18. In a fierce battle, not less than 70% of the soldiers lost one eye, not less than 75% lost
one ear, not less than 80% lost one hand, and not less than 85% lost one leg. What is the
smallest percentage who could have lost simultaneously one ear, one eye, one hand,
and one leg? This problem comes from Tangled Tales by Lewis Carroll, the author of
Alice in Wonderland.

19. The waiting room of a dentist's office contains a stack of 10 old magazines. During
the course of a morning, four patients, who are waiting during non-overlapping times,
select a magazine at random to read. Calculate in two ways the probability that two or
more patients select the same magazine.

20. What is the probability that in a group of 10 people, at least 2 have the same birth-
day? Assume that nobody was born on February 29th. Use a calculator to get a good,
approximate answer.

21. Suppose El, E2 ... , En are events (not necessarily disjoint) in a sample space Q2
endowed with a probability density p. Find an expression for P(U1 <i<n Ei), and prove
that your expression is valid. (Hint: Make an analogy to the Principle of Inclusion-
Exclusion of Section 1.5, but add up probabilities instead of elements.)

22. Recall that by definition, a discrete sample space may contain a countably infinite
number of outcomes. This exercise gives an example of such a countably infinite
sample space. Suppose we flip a fair coin until it comes up heads. Of course, there is
no way to know in advance how many flips will be required. Design a sample space
and a probability density to model this situation. Prove that the probability density you
define is legitimate.

W Cross Product Sample Spaces

Many probabilistic situations involve repeating an experiment over and over or combin-
ing the results of several unrelated experiments. Repeated coin flipping and the Birthday
Problem are two examples of such situations. In both cases, it is appropriate to choose a
sample space of n-tuples; the ith component, where i ranges from 1 to n, represents the
outcome of the ith flip-or the birthday of the ith person. These are both examples of
cross product sample spaces, the subject of this section. If the coin is fair, and if the days
of the year are equally likely, then we assign a uniform probability density. In many situa-
tions, however, it does not make sense to do this (the coin might be biased, for example).
This section explains how to assign reasonable probabilities in such situations. We study in

492 CHAPTER 8 Discrete Probability

detail situations like repeated coin flipping, and we explain how to view events in separate
experiments as events in a single experiment.

8.3.1 A Multiplication Principle

Suppose that a printer is out of order (down) 8% of the time and a photocopier is out of
order 10% of the time. Checking whether these machines are up or down can be regarded
as an experiment with sample space Q2 = {(0, 0), (1, 0), (0, 1), (1, 1)}, where the first and
second positions describe the state of the printer and the copier, respectively, and 0 and 1
denote down and up, respectively. Surely, (1, 1) and (0, 0) are not equally likely outcomes.
Hence, we seek another method for assigning a probability density.

We might reason about this situation as follows: The status of the photocopier and the
status of the printer have nothing to do with one another (assuming power failures or high
office temperatures did not put them both out-of-order at the same time). Therefore, the
photocopier could be down 10% of the time that the printer happens to be down and also
10% of the time that the printer happens to be up. Since the printer is down 8% of the time,
and 10% of the 8% that the copier is also down, it seems to be intuitively clear that 0.8% of
the time, both machines are down. The following example further illustrates this intuitive
reasoning. Later, we will prove this method assigns numbers that satisfy the definition of a
probability density function.

Example 1. Suppose that you share a telephone with the other members of your house-
hold and that 30% of the time during the day, one of the others is using the telephone.

Suppose further that you wish to reach a certain service number. You know that 40% of
the time an incoming call to this service number is answered immediately, 35% of the time
the call is placed on hold in a queue, and 25% of the time you must call again, because the
queue is full and the number is busy. Based on intuitive reasoning, what is your estimate
of the probability that you can reach the service number from your home telephone with
no delay?

Solution. Imagine two experiments X 1 and X 2 . Experiment X 1 consists of checking the
status of the telephone. We choose a sample space Q 1 with two outcomes, 0 and 1 for busy
and free, respectively, and we assign a probability density of Pl (0) = 0.3 and pl (1) = 0.7.
(The p is subscripted with a 1 to indicate that outcomes of Q21 are being considered.)
Experiment X2 consists of checking the status of the service number. Here, we choose
Q 2 = {0, 1, 2} where 0 and I denote busy and answered immediately, respectively, and 2
denotes hold. We assign P2(0) = 0.25, p2(0) = 0.40, and p2(

2
) = 0.35. Define the sam-

ple space Q2 = Q I X02:

Q = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}

Here, we have enumerated all possible pairs of outcomes, one from Q21 and one from Q22.

The outcome from Q21 is written as the first element of the pair, and the outcome from
Q22 is written as the second element. This product is just the product of sets defined in
Section 1.3.4.

If the home telephone is free 70% of the time and the status of the service number
is not related to the status of the home telephone, then we estimate that 40% of the time
that the home phone is free, the service number is answered immediately. Hence, p(1, 1)

Cross Product Sample Spaces 493

should be (0.7) (0.4) = 0.28. Continuing in this way, we assign to each ordered pair of out-
comes the product of the corresponding probability densities. The tree diagram in Figure
8.1 enumerates the outcomes and computes their probabilities.

o) p(O)

.25 busy (.3) (.25) =.075

busy free (.3) (.40) = .120

Shold (.3) (.35) = .105

0.7 .25 busy (.7) (.25) =.175
free free. (.7) (.40) = .280

hold (.7) (.35) = .245

1.000
Home Service
telephone number
status status

Figure 8.1 Tree diagram.

We have assigned probabilities based on an intuitive line of reasoning. Have we suc-
ceeded in defining a legitimate probability density function? The reader can check that we
have. 0

In the previous example, we multiplied the probabilities of outcomes from two unre-
lated experiments to obtain a probability for their combined outcome. This is an application
of what we call the Probability Multiplication Principle.

Probability Multiplication Principle

Multiplying together the probabilities of outcomes of unrelated experiments assigns
reasonable probabilities to the various combinations of outcomes.

In the Birthday Problem, the assignment of the uniform probability density func-
tion to the sample space consisting of 365' n-tuples can be viewed as a special case
of the Probability Multiplication Principle. On the one hand, we can reason as before:
Each n-tuple seems to be equally likely, so each should have probability

1
1/I 365n365n

494 CHAPTER 8 Discrete Probability

On the other hand, we can reason as follows: The probability that a person has a particular
birthday is 1/365, and if the birthdays of different people are unrelated, then according to
the Probability Multiplication Principle, the probability of any given sequence of n birth-
days is (1/ 3 6 5)n. The two lines of reasoning assign the same probability density function.

In practice, the Probability Multiplication Principle provides good estimates for the
frequencies of combined outcomes of unrelated experiments, so naturally, we want to use
it to assign probability densities. Before we do, however, we must first check that the
probability densities so obtained actually satisfy the two defining properties of a probability
density. This check is carried out in Theorem 1.

The Product of Sums Principle is a simple observation about algebra that will make
the proof of the theorem easier to follow. It is such a useful observation that it is worth
receiving special attention.

Product of Sums Principle

The product of k sums is the same as the sum of all possible products of k terms, with
each term of a product taken from a different sum.

For example, consider the following product of k = 2 sums:

(2 + 3 + 5)(4 + 9) = (2.4 + 2 -9 + 3 -4 + 3 .9 + 5 4 + 5 9)

The right-hand side is the sum of all possible products of pairs of terms, one from (2 +
3 + 5) and one from (4 + 9). Similarly,

Yai)(bj = ai . bj

i=1 =1 l<i<n l<j<m

The expression on the left-hand side is written in a factored form, whereas the expression
on the right-hand side is written in a "multiplied out" form. Both expressions represent the
same quantity.

Theorem 1. (Probability Density on a Cross Product Sample Space) Let 21 and ý22
be sample spaces with probability density functions p1 and P2, respectively. Let

Q = {(W01, U2) : W1 E Q, and 0)2 E Q2)

For each co = (w01,0)2) C Q2, let

p(w) = PI (0I) " P2((02)

Then, p is a probability density function on Q2.

Proof. Certainly, p((O)w, U)2)) > 0 for each (0)1, 0)2) E Q2, because it is the product of
non-negative numbers. Therefore, it remains only to verify that

Y, P(O))
weQ2

Cross Product Sample Spaces 495

where w ranges over the outcomes (W0, w2) in 92. By definition of p, the left-hand side is

YE (pl((0l)'p2((02))

(W1l402) GO

This expression represents the sum of all possible products Pi (l0) • p2 (o02). The product
of F., p1(wo) with ZY-Ž2 P2(w), however, is the same quantity as the sum of all possible
products p I(w) • P2(w) by the Product of Sums Principle. Also, P1 and P2 are probability
densities on Q2 , and 922, respectively, so

Y pl(w)= P2((02) 1
wIEl

2
1 W2EQ2

Hence,

Pw•• Ip (Ogl) - P2 (62)) = llpl (oil)) ,• P2((092))

-1.1

This completes the proof. U

8.3.2 The Cross Product of Sample Spaces

The sample space Q2 of Theorem 1, which is endowed with the probability density func-
tion p given by that theorem, is called a cross product sample space. This notation was
introduced in Section 1.3.4, but we recall it for convenience here. Such a sample space 92
is usually denoted 921 X 022 to indicate that it is based on the two sample spaces Q1 and
Q22. In fact, we can form a cross product sample space from any number n > 2 of sam-
ple spaces. This construction involves taking a cross product of sets, as defined below in
Definition 1, and then endowing this new set with a certain probability density, as given in
Definition 2.

Definition 1. The cross product of n sets

S 1 ,S 2 . an

is the set of all n-tuples

(s1, S2. S)

where Si E Si for I <i <n.

Notation. The cross product of n sets is denoted as S1 x S2 x ... x Sn. When the sets
are all copies of the same set S, then the cross product is denoted Sn.

The cross product of a countably infinite ordered list of sets

S1,$2

is the set of all sequences

(sl,s2)

496 CHAPTER 8 Discrete Probability

where si E Si for i > 1. Note that the size of a cross product of finitely many finite sets is

I S1 X S2 X '' ..X S, I= I S1I -I'I 21 .'.IS.1

Definition 2. Let Ž 21, Q2, ..- , Q, be sample spaces endowed with probability den-
sity functions P1, P2 ... Pn, respectively. Then, the cross product sample space of
Q 1, f22,..., Q, is the cross product

Q1 X Q2 X ... X , = I{(0)1,(02,' (,On) : 0)i E 2i for < i < n}

endowed with the probability density function p defined by

P (0)1, (02. (-On) = P1 (CO)O P2 ((02)." P. ((On).

Theorem 1 proves that p is a legitimate probability density when n = 2. The fact that
p is a legitimate probability density function for n > 2 sample spaces can be proved by
induction on n. All the ideas needed for the proof are contained in the proof of Theorem 1.

Example 2. In the communication network shown in Figure 8.2, each link may be up
or down. Assuming that the nodes connecting the links are always functioning and that
failures of the links are not related, what is the probability that a functioning set of links is
connecting node A to node C?

iLink functions
withprobability B Lik fcthpob
0.9 witha probability

Link functions
with probability
0.5

Figure 8.2 Communication network.

Solution. This situation can be modeled by a cross product sample space. Let Q2 , = {0,
1) represent the status of link AB, where 0 means down and 1 means up. Similarly, let
Q22 and Q23 be sample spaces representing the status of link BC and the status of link AC,
respectively. Define the probability density functions on these sample spaces as shown in
Table 8.1.

The cross product sample space Q21 x Q22 X Q23 consists of eight 3-tuples of O's and
I's. These 3-tuples represent all possible combinations of the link conditions. For example,

Cross Product Sample Spaces 497

Table 8.1 Link Status Sample Spaces

Sample Space Link Probability Density Function

021 AB pl(0) = 0.1, pi(I) = 0.9
022 BC P2(0) = 0.2 , P2() = 0.8

023 AC p3(0) = 0.5, p3() = 0.5

the outcome (0, 1, 1) means that AB is down, BC is up, and AC is up. This outcome is
assigned the probability

p(A, 1, 1) = Pl(0) • P2() • p3(1)

= (0.1)(0.8)(0.5)

= 0.04

Figure 8.3 shows an enumeration of the entire sample space QŽ1 x ý22 x Q3 and gives

the values of the cross product probability density function p.

0.5 up (1, 1, 1) (.9)(.8)(.5) = .36

0.80.5 down (1, 1, 0) (.9)(.8)(.5) =.36

0.5 up (1, 0, 1) (.9)(.2)(.5) =.09

0.5 down (1, 0, 0) (.9)(.2)(.5) =.09

0.5 up (0, 1, 1) (.1)(.8)(.05) = .04

0.5 down (0, 1, 0) (.1)(.8)(.5) =.04

0.5 up (0,0, 1) (.1)(.2)(.5) = .01
0.2 down

0.5 d (0, 0, 0) (.1)(.2)(.5) = .01

AB BC AC 1.00

Figure 8.3 Tree diagram for the communication network.

The event "A is connected to C" occurs when AB and BC are both up; it also occurs
when AC is up. The set E representing this event is

E = {(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (0,0, 1))

498 CHAPTER 8 Discrete Probability

The probability P(E) of E is

P(E) = p(to)
WEE

= (0.9)(0.8)(0.5) + (0.9)(0.8)(0.5) + (0.9)(0.2)(0.5) + (0.1)(0.8)(0.5)

+(0.1)(0.2)(0.5)

= 0.36 + 0.36 + 0.09 + 0.04 + 0.01

=0.86 M

8.3.3 Bernoulli Trial Processes

An important special case of a cross product sample space occurs when an experiment with
just two outcomes is repeated numerous times. Typically, the number n of repetitions can
be controlled, and we want to predict what happens as a function of n.

Definition 3. A Bernoulli trial process (abbreviated Bernoulli process) is a sequence of

repetitions, called trials, of an experiment with a two-element sample space. It is assumed
that the trials have no influence on one another. The two possible outcomes of a trial need
not be equally likely.

Bernoulli processes arise in many contexts. Flipping a coin over and over can be re-
garded as a Bernoulli process. Another example is the sending of binary digits, or bits,
over a communication line.

Often, the two elements of the sample space Q2 of a Bernoulli trial are labeled success
and failure. For example, when we flip a coin, we can label the outcome heads a success
and the outcome tails a failure. Similarly, if a bit remains unchanged during transmission
over a communication line, we say that a success has occurred; if the bit changes, we say
that a failure has occurred.

In the context of a Bernoulli process, it is common to denote the probability of the
success outcome with the letter p and the probability of the failure outcome with the letter
q. Since the sample space of a Bernoulli trial has only two elements, p = 1 - q where
0< p, q < 1.

Notation. Since the probability density function on an arbitrary sample space is often
denoted by the letter p, keep in mind that the letter p can have two usages. For example,
suppose that Q2 = {Wl, (021 is a two-element sample space where w~l means success and (02

means failure. If we say that the probability of success is p and the probability of failure
is q, then we are really defining a probability density p on Q given by p(w0l) = p and

p(oJ2) = q.
A Bernoulli process can be modeled by a cross product sample space as follows. Sup-

pose the trials of the process have outcomes in the two-element sample space Q. To regard
a sequence of n trials as just one experiment, we form the cross product sample space
consisting of n terms:

Qn X • ... X Q2

The probability density function associated with the cross product (see Definition 2) mod-
els the assumption that the trials do not influence one another.

Cross Product Sample Spaces 499

Example 3. Consider an n-trial Bernoulli process where each trial has a probability of
success p and a probability of failure q = 1 - p. What is the probability of obtaining
exactly k successes in a run of n trials?

Solution. A sample space for the entire process can be obtained by taking the cross prod-
uct of n copies of the sample space for a single trial. In other words, the sample space
consists of the 2' possible sequences of successes and failures. Each outcome in the event
"exactly k successes" consists of a sequence of k successes and n - k failures arranged in
some order (see Figure 8.4).

(0,0,0,0,0) (0,1,0,0,0) (1,0,0,0,0) (1,1,0,0,0)
(0,0,0,0,1) (0,1,0,0,1) (1,0,0,0,1) *(1,1,0,0,1)
(0,0,0,1,0) (0,1,0,1,0) (1,0,0,1,0) *(1,1,0,1,0)
(0,0,0, 1, 1) *(0,1,0,1,1) *(1,0,0,1,1) (1, 1,0, 1,1)

(0,0,1,0,0) (0,1,1,0,0) (1,0,1,0,0) *(1,1,1,0,0)
(0,0,1,0,1) *(0,1,1,0,1) *(1,0,1,0,1) (1,1,1,0,1)
(0,0,1,1,0) *(0,1,1,1,0) *(1,0,1,1,0) (1,1,1,1,0)
(0,0,1,1,1) (0,1,1,1,1) (1,0,1,1,1) (1,1,1,1,1)

Figure 8.4 Bernoulli trial process for n = 5.

The outcomes in the event "exactly three successes in five trials" are indicated by
an asterisk in Figure 8.4. The probability of any single such outcome, regardless of the
ordering of successes and failures, is pkqn-k. There are C(n, k) orderings, because choos-
ing the positions for the k successes determines the positions for the failures. Hence, the
probability of the event "exactly k successes" is C(n, k) • pkqn-k. 0

Notation. In an n-trial Bernoulli process with probability p of success on each trial, the
probability of exactly k successes is denoted b(n; k, p).

Probability of k Successes in a Bernoulli Process

The probability of exactly k successes in an n-trial Bernoulli process with probability
p of success on each trial is

b(n; k, p) = C(n, k) pkqn-k

where0<p< I and q= 1-p.

Suppose that in an n-trial Bernoulli process we are interested exclusively in events of
the form "exactly k successes" for various values of k. Then, there is an alternative to the
cross product sample space-namely, a sample space with outcomes that correspond to the
occurrence of exactly k successes: Q2 = {[oC, W1, • • •, (On} where outcome (Ok means "ex-
actly k successes" for 0 < k < n. Since the probability of the event "exactly k successes" in
the cross product sample space is b(n; k, p), it seems to be reasonable to define a probabil-
ity density function on the alternative sample space Q2 by setting P(wok) = b(n; k, p). The
following theorem verifies that this is, indeed, a legitimate probability density function.

500 CHAPTER 8 Discrete Probability

Theorem 2. (Probability of k Successes in a Bernoulli Process) The function

p(wk) = b(n; k, p) defines a probability density function on

0 ={[W0,W01, 02.W-- -(0

Proof Clearly, b(n; k, p) > 0 for 0 < k < n. To prove that

L b(n;k,p)=I

O<k<n

substitute in the values of b(n; k, p):

1 b(n; k, p) = C(n, 0) p qn + C(n, 1) p'qn-1 + + C(n, n) pnq0

0<k<n

By the Binomial Theorem (see Section 7.9.1), the right side is (p + q)n. Since p + q = 1,

the result follows.

8.3.4 Events of Cross Product Form

We now leave the special case of Bernoulli processes and return to cross product sample
spaces in general.

Many events in cross product sample spaces are cross products of events in the individ-
ual sample spaces. Suppose we roll a die and pick a card from a shuffled deck, associating
with these experiments the sample spaces

f21={1,2,3,4,5,61 and QŽ2={1,2,3 ... , 51,52}

with uniform probability densities. The combined experiment has an associated sample
space Q2 1 x Q22. Let El C QŽ1 be the event "an odd number shows on the die," and let
E2 _ Q2 be the event "a red card is drawn." Then, E1 x E 2 _ 2 1 x 02 is the event "an
odd number on the die and a red card." (In the context of cross product events such as this,
we will use Ei to denote an event in "i.)

In the die-and-card example, the roll of the first die has no connection to the selection
of the card, so it seems to be reasonable that P(El x E2) should be P(E 1) • P(E 2). How-
ever, we are not at liberty to assign probabilities to events. Once probabilities have been
assigned to the individual outcomes in a sample space, the probability of an event, by def-
inition, must be computed by summing the probabilities of the outcomes in the event. The
next theorem shows that the probabilities of events having a cross product form do, indeed,
obey a multiplication rule, just as we have speculated for this die-and-card situation.

Theorem 3. (Probability of Events of Cross Product Form) In a cross product sam-
ple space QŽ I X22 x ... x Q, any event of the form E1 x E2 x ... x En has probability

PE x E2 X ... x En,) P(EiP(E1x x.~n= P(Ei)

where Ei is an event in Qi for I < i < n.

Proof The proof is by induction on n. Define

T = {n E N: P(El x E2 x ... x En) =HP(Ei)}

(Base step) The statement is trivially true for n = 1, so 1 e T.

Cross Product Sample Spaces 501

(Inductive step) Suppose that the statement is true for n = k. Now, prove that it is true for
n = k + 1. Let p denote the usual probability density function on Q21 X Q22 X ... X Qn

(see Definition 2 in Section 8.3.2). Then,

P(Ex E2 x ... x Ek+l) -p (l, 02," ",ok+l)

- P (WO) P2((02) ... Pk+1 (O~k+1)

where the sums are taken over all combinations of choices of the coi from the Ei.
Rearranging terms so that all terms with the same choice for Wk+a from Ek+l are

grouped together yields

P(E x E2 X ... x Ek+0i A (I P1(Wk+1))(ZP1 ((W0)P2 (W2 ...Pk((Dk))
(Ok+lEEk+l,

where the second sum on the right-hand side is over all combinations of choices of the wi
from the Ei for 1 < i < k.

The second sum represents the probability of the event E1 x E2 x ... x Ek in
the sample space Q21 X 0i22 X ... X £Ž,k. By the inductive hypothesis, it is equal to
P(Ea)P(E2) ... P(Ek). Thus, summing over the outcomes Wk+l in Ek+1 gives

P(E1 x E 2 x ... x Ek+l) = E Pk+l(Wk+l) • P(E1) • P(E2)" P(Ek)

(Ok+l EEk+I

= P(EI) • P(E2)"". P (Ek) Y, Pk+lI((ok+l1)

(Ok+IEEk+1

= P(E 1) • P(E 2) ... P(Ek). P(Ek+1)

Therefore, n + 1 E T, and the result follows by the Principle of Mathematical In-
duction. 0

Example 4. At the beginning of this section, we formulated the situation "an odd number
on the die and a red card" as an event E1 x E 2 _ Q I X22 where E1 was the event "an odd
number on the die" in 0 1 = {1, 2, 3, 4, 5, 6} and E 2 was the event "a red card" in 022 =
{1, 2,..., 52). Verify the conclusion of Theorem 3 in this case by computing P(E 1 x E2)
directly and comparing the result to P(E 1) • P(E 2).

Solution. Define E 1 x E 2 to be the event of f01 x Q22 defined as

El x E2 = {(W1, (02) : wo1 is an odd number in 01 and w2 is a red card in Q22}

Each outcome (&)I, w2) in E 1 x E 2 has probability

p(Owl, O2) = pl(Ol) . p2(o2) = (-) (-)

Hence,

P(E 1 X E2) - (E1 x E 2 1-- ((3)(26) =

502 CHAPTER 8 Discrete Probability

On the other hand,

P (E1) = Ell (3)=

and

P(E 2) (Di E 21 = (26) =

Hence,
1

P(EI) • P(E 2) - = P(E 1 x E2) D
4

Example 5. Suppose we flip a coin once and roll a die twice. Formulate the event

E = "heads on the coin and an even number on the second roll"

as a cross product of sets in a cross product sample space. Calculate the probability of the
event.

Solution. We choose sample spaces

Q21 ={H,TJ and 2 = 023 = {1, 2, 3, 4,5, 61

and assign each a uniform probability density. Flipping the coin and rolling the die
twice is modeled by the sample space QŽ1 x Q2 X 03. Let E1 = {H}, E2 = Q22, and
E3 = 12, 4, 6). Since the outcome of the first roll is not specified, all possibilities must
be taken into account. Hence,

E = E1 x Q22 x E 3

and

P(E) = P(E 1) • P(Q 2) - P(E 3) = (1) =

8.3.5 Two Ways of Viewing Events

Let

S= 1 X ... X×

be the cross product of sample spaces 2 1, Q2 . .2n,. This section looks at the relation-
ship between events in Q2i and events in Q.

Suppose we want to specify an event in the cross product sample space QŽ just by
specifying what happens in one of its component sample spaces £Ži (we do not care what
happens in the other component sample spaces). We can reformulate a nonempty event
Ei in Qi as a corresponding event E* in Q1 X 22 X ... x ,2 by setting E* equal to all
n-tuples in which the ith component belongs to Ei.

For example, suppose we flip a penny and roll a die. Then, n = 2, 21 = {H, T}, and
02 = {1, 2, 3, 4, 5, 6}. Getting an even number on the die is the event E 2 = {2, 4, 61 C Q2.

Cross Product Sample Spaces 503

However, this event E2 is part of a larger context in which a coin is flipped. In the grand
experiment 2 1 x Q2, getting an even number on the die corresponds to the event

{H, T} x {2, 4, 6} = {(H, 2), (H, 4), (H, 6), (T, 2), (T, 4), (T, 6)}

because either H or T could have turned up on the coin flip. In other words, the nonempty
event Ei in Q2i corresponds to the event

E* = Q21 X Q2 X ... X Q'i-1 x Ei x K'2i4_1 X ... X Q'n

in ý2 = Q1 X 02 X ... x Q,. The following corollary of Theorem 3 shows that this re-
formulation to a corresponding event preserves the probability computed for the original
event.

Corollary 1 to Theorem 3. P (E7) = P (Ei) where

E*ý = Q1 x ... x Qi-1 x Ei x Qi+I x ... x 0,2

is an event in cross product sample space Q1 X 02 X ... X Qn.

Proof. According to Theorem 3,

P(E7) = P(Q21) • P(Q 2) ... P(A2i- 1) • P(Ei) . P(Qi+I) ... P(Q2n)

Each "j has P(Qj) = 1, so P(E7) = P(Ei). U

Example 6. An experiment involves flipping a fair coin and rolling a fair die. Let Q =

{H, T} x {1, 2, 3, 4, 5, 61 be a cross product sample space for the experiment. Compute
the probability of rolling a 3 or a 5 as an event in 0 using Corollary 1 to Theorem 3.

Solution. Define sample spaces Q1I = {H, T} and Q22 = {1, 2, 3, 4, 5, 6} so that Q =

01 x Q2. The event of interest in Q2 is E= {(H, 3), (T, 3), (H, 5), (T, 5)1. The event of
interest in "22 is E2 = {3, 51, which has probability 2/6 = 1/3. Since iJQI = 12, P(E*) =

4/12 = 1/3. According to Corollary 1 to Theorem 3, compute P(E*) = P(E 2), which is,

indeed, the case in this example. M

We can also specify events in a cross product sample space by specifying what takes

place in some collection of individual sample spaces. Suppose we single out k sample
spaces 2 il, I"Oi2, • -I "ik from the n sample spaces Q"1, •2•2 ... 2n where k < n, and then
specify an event Eij C £jj, in each of these k selected sample spaces. The events Eij cor-
respond to events EV in the cross product Q21 x ... X On- Specifying that all the eventsIi

El Eik are to occur in the individual sample spaces is the same thing as specify-
ing that the event E. n •... n E* is to occur in the cross product sample space. The next

corollary of Theorem 3 says that the probability of this event can be computed by a multi-
plication rule.
Corollary 2 to Theorem 3. P(E• nEýn ... NEa) = P(Ei,). P(Ei2) ... P(Eik),

where

Ef = ia x ... x Eij x ... x Q,

for I _< j _< k is an event in cross product sample space Q,1 X Q2 x .. X • Qn.

504 CHAPTER 8 Discrete Probability

Proof. The event E* n E* n ... n E* of the cross product sample space consists of all
tl i2 1k

n-tuples in Q1 x ... x Q,2 with entries in positions i1, i2 . ik that belong to the events
Eil ... , Eik Of Qil,.. I Qik, respectively.

We first define some terms to make it easier to express this set of n-tuples in the form

E1 x E 2 X ... x E.

Let X = {il, i2 ik} and In = [1,2 ... , n}. Then for 1 < i < n, let

=Q2 fori E I, - X
Ei = IEim for i = im for some im E X

Since P(Ej) = 1 whenever Ej = "2j, the result follows from Theorem 3. U

We see the use of this corollary in the next example.

Example 7. Consider rolling a die three times, and choose a sample space 0 = Q1 x
Q2 X Q3 where Q1= = = Q3 = {1, 2, 3, 4, 5, 6}. What is the probability of getting an
odd number on the first roll and an even number on the third roll?

Solution. Consider E1 = {1, 3, 5} C g21 and E3 = {2, 4, 61 cE Qi3 . In Q2, getting an odd
number on the first roll is the event E* = E1 X Q22 X Q23; getting an even number on the
third roll is the event E* = Q, x ×2 x E3. Having both these events occur is the event
E* A E*. By Corollary 2 of Theorem 3,

P(E* n E*) = P(E 1) • P(E 3) = (3)(3) =

Alternatively, observe that EA * E* consists of 3 • 6 • 3 = 54 ordered triples in a sample
space of size 63 with a uniform probability density function and so has probability 54.
6-3 = 1/4. N

We began the study of cross product sample spaces by stating the Probability Multi-
plication Principle, which Theorem 3 justified mathematically. Corollary 2 to Theorem 3
can be viewed as justifying the extension of the Multiplication Principle from outcomes to
events. We now summarize the major results about Cross Product Events.

Probability of Cross Product Events

"* The probability of an event in cross product form E1 x ... x En is the product of
the event probabilities

P(El x ... x E,) = P(EI)'". P (E,)

"* The simultaneous occurrence of k events E i,...., Ei in some k of the n sample
spaces composing a cross product can be regarded as a single event

Eýq n . .. n Ei* _C 0f1 x ... x i2n

"* The probability of this single event in Q1 x 22 x ... x Q, is the product of the
event probabilities P (Ei,) ... P(Eik).

Exercises 505

W Exercises

1. Suppose S is a set with k elements. How many elements are in S', the cross product
Sx S x ... x S of n copies of S?

2. Suppose that F'=l ai = ' bj = I where 0 < ai, bj < 1. Use the Product of

Sums Principle to prove that '__l F_'-= ai - bj = 1. Does the result hold if some
of the ai and bj can be less than zero and greater than one?

3. Suppose -n I ai = 2, E-'jI bj = 3, and E/=I ck = 5. Evaluate

n m l

-ai (l bj Ck)

___ =1k=1

4. Consider the Birthday Problem, ignoring leap years. Determine the probability that
two people in your class have the same birthday under each of the following circum-
stances:

(a) There are 20 people in your class.
(b) There are 30 people in your class.

You may wish to use a calculator.
5. Suppose that people are equally likely to be born on each of the seven days of the

week. In a group of n people, determine the probability that:

(a) Two or more of them were born on Saturday.
(b) Exactly two of them were born on Saturday.
(c) Two or more of them were born on the same day of the week.

6. For the network described in Example 2 in Section 8.3.2, determine the probability of
each of the following events:

(a) Each node can communicate with the other two.
(b) At least two links are down.
(c) A is directly connected to B.

7. A coin is tossed, a die is rolled, and a card is drawn at random from a deck. Assume
that the toss, roll, and draw are fair.

(a) Describe this experiment as a cross product sample space.
(b) With the aid of a tree diagram, define a probability density on the cross product.
(c) Verify by direct computation that the probability density found in part (b) is legit-

imate.
(d) Does it matter in what order the coin, the die, and the card are considered?

8. Two dice are rolled. One is fair, but the other is loaded: It shows the face with six spots
half the time and the remaining five faces with equal frequencies.

(a) Describe the experiment in terms of a cross product sample space.
(b) Define a probability density on the cross product space.
(c) Verify by direct computation that the probability density found in part (b) is legit-

imate.
(d) Does it matter in what order the dice are considered? Explain your answer.

506 CHAPTER 8 Discrete Probability

9. A coin that is twice as likely to show heads than it is tails is tossed three times.

(a) Describe this experiment as a Bernoulli process.
(b) Use a tree diagram to assign a probability density.

10. Suppose the coin in Exercise 9 is tossed n times where n is some arbitrary positive
integer.

(a) Sketch a tree diagram for this experiment.
(b) Give a formula for the number of outcomes in which heads occur exactly k times.
(c) Give a formula for the value of the probability density function on each of the

outcomes described in part (b).
(d) What would be the formula for the value of the probability density function on

each of the outcomes in part (b) if the coin were fair?

11. A coin that is twice as likely to show heads than it is tails is tossed three times. Suppose
we are only interested in the number of heads.

(a) Formulate this experiment in terms of a sample space with outcomes that give the
number of heads.

(b) Assign a probability density function to this sample space.
(c) Describe the event "at least two heads" as a set of outcomes in this sample space.
(d) What is the probability of the event in part (c)?

12. Consider the events described in Exercise 6 regarding Example 2. Which (if any) of
these events can be expressed in cross product form? Give the cross product expression
if one exists.

13. For the cross product sample space found in Exercise 8(a), give the cross product
formulation, and calculate the probability of each of the following events:

(a) An even number of spots shows on each of the die.
(b) The loaded die shows six spots.
(c) The fair die shows either five or six spots, and the loaded die shows six spots.

14. For the coin, die, and card experiment of Exercise 7, let the coin have sample space
Q = IH, T), the die have sample space Q22 = {1, 2, 3, 4, 5, 6}, and the card deck
have sample space Q23 = {1, 2,..., 51, 52}.

(a) What event E* in , X Q22 X Qi3 corresponds to the event E1 = "heads on the
coin"?

(b) What event E* in Q2, X Q2 X Q23 corresponds to the event E 2 = "4 or higher on
the die?"

(c) Formulate "getting a head on the coin and a 4 or higher on the die" as an event
in Q1 X Q2 X 23 by indicating the outcomes in the event. Then, formulate this in
terms of E* and E*.

(d) Calculate the probability of the event "heads on the coin and a 4 or higher on the
die" in two ways by using each of the formulations of part (c).

(e) Formulate the event "either a head on the coin or a 4 or better on the die" in terms
of E* and E*. What is the probability of this event?

15. Give two ways you could label the outcomes of an experiment that consists of flipping
a dime three times. Determine a probability density function for each of the two ways.

16. What is the probability of flipping k heads out of m tosses (0 < k < m)? What are the
numerical results for five heads out of eight tosses?

Independent Events and Conditional Probability 507

17. Suppose the sex of a newborn child is viewed as an experiment with two equally
likely outcomes. Assuming that each child represents an independent trial, what is the
probability of a family with four children having two, three, or four girls? Suppose the
probability of the child being a girl is 0.52; now what is the probability of two, three,
or four boys?

18. Find the probability of getting a five exactly twice in seven rolls of a fair die.

rnIndependent Events and Conditional Probability

Knowing that a fair coin came up heads on the first toss of a two-toss experiment does
not cause us to believe that the chance of getting heads on the second toss is other than
50%. After all, the two tosses are physically unrelated. On the other hand, we now know
that the chance of getting tails on both tosses is zero. Naturally, we anticipate that phys-
ically unrelated events resulting from, say, separate tosses of a fair coin do not affect
one another. Sometimes, events arising from a single physical experiment also behave as
though they are unrelated: Information about the occurrence of one does not shed any
light on the occurrence of the others. This phenomenon is modeled by the concept of
independence.

The subject of conditional probability tells how to revise probabilities in light of new
information. Typical examples include how to revise the probability that one of two coins
being flipped will come up heads once you know that the first coin did not. Quite a different
use of conditional probability is to determine the likelihood that the result of a medical test
result is a false-negative (that is, a positive) result. The result is a false negative (positive)
if the true result is positive (negative) but if the test gives a negative (positive) result.

First, we give the mathematical definition of what it means for two events in the same
sample space to be independent. This definition is intended to capture the notion, described
above, that some two events do not seem to influence one another. Next, we propose a way
to change the probability of an event A given that an event B in the same sample space
has occurred. This is called the conditional probability of A given B. After defining in-
dependence and conditional probability, we argue that two events in the same sample
space are independent precisely when no change is made to the probability of one event
(according to the definition of the conditional probability) if we learn that the other event
has occurred. In this way, these two mathematical definitions work together to model-and
to make precise-the notion that some pairs of events do not seem to give any informa-
tion about each other. Later, we will explore the properties and applications of conditional
probabilities.

8.5.1 Independent Events

Now we give the mathematical definition intended to capture the notion that two events in
the same sample space do not influence one another. Later, we will see why this definition
does the job.

Definition 1. A pair of events A and B belonging to the same sample space are said to
be independent provided that P (A n B) = P (A) • P (B).

CHAPTER 8 Discrete Probability

By Corollaries 1 and 2 of Theorem 3 in Section 8.3.4, pairs of events of the form
E* and E* for i A j in the sample space 0 = Q, X 02 x ... x Qn for some n E N are
examples of independent pairs of events in a cross product sample space. It is also possible
for events that do not have this form to be independent.

Example 1. Consider one roll of a fair die with Q2 = {1, 2, 3, 4, 5, 61. Let A be the event
that an even number is rolled. Let B be the event that the number rolled is at most two. Let
C be the event that the number rolled is a prime. Which pairs of events are independent?

Solution. A = t2, 4, 61, B = {1, 2), and C = {2, 3, 51. Events A and B are independent:

1
P(A n B) = P({2j) = -6

and

P(A). P(B) = (-)•) - 6

On the other hand, A and C are not independent:

1
P(A n C) = P({2}) = -6

but

P(A) . P(C) = () ()
2 2 4

It is important not to confuse the concept of independence with the concept of disjoint-
ness. In fact, disjoint events that have positive probabilities are never independent. As we
have seen, physically unrelated experiments give rise to a cross product sample space in
which nonempty events Ei on the various sample spaces Qi can be regarded as events E*
in a common sample space

"1 X 02 X ... X Qn

Furthermore, as we pointed out following Definition 1, these events are, mathematically
speaking, independent. However, they are not disjoint:

E* n Ej* = 21 x... x Ei x... x Ej x... x Qn

The next definition extends the concept of independence from pairs to sets of more
than two events belonging to the same sample space.

Definition 2. Let A1, A2 ... Ak be subsets of the same sample space. The set of events
{A1 , A2 ... , Akd is called an independent set of events provided that

P(A1l n A2 n . .. fn Ak) = H P(Ai)

The definition will be used in Section 8.9.2.

Example 2. A fair die is rolled one time. Let A denote the event (1, 2, 31, B the event {1,
4, 5), and C the event {1, 2, 3, 4}. Are A, B, and C an independent set of events? Are A
and C independent? Are B and C independent?

Independent Events and Conditional Probability 509

Solution. The sample space is Ž = {l, 2, 3, 4, 5, 61. P(A) = P(B) =1/2, but P(C) =

2/3. Events A, B, and C are independent, because
1

P(A n Bn C) = P({1})=- 6

and

P(A). P(B). P(C)= (1)(1)(2)

Events A and C are not independent, because
1

P(A n C) = P({1, 2,31) = -
2

but
P(A). P(C)= ()(2)

2 33

Events B and C are independent, because
1

P(B n C) = P({1,4}) 3

and

P(B). P(C) = (=)(2)
2 33

We now list several important points to remember about independence of events. (The
reader is asked to prove some of these in Section 8.6.)

Independence

"* Disjointness and independence are different concepts. In fact, disjoint events that
have positive probabilities are never independent.

"* Events in the individual sample spaces of unrelated experiments give rise to inde-
pendent events in the cross product of the individual sample spaces.

"* Independence is a property of a collection of two or more events, not a property of
just one event.

"* A collection of pairwise independent events does not always constitute an indepen-
dent set of events.

"* In an independent set of events, not all the pairs need be independent. (See Exam-
ple 2).

8.5.2 Introduction to Conditional Probability

In Example 2 of Section 8.5.1, it was found that for the sample space Q2 = {1, 2, 3, 4, 5, 6}
the events B = {1, 4, 5} and C = {1, 2, 3, 41 were, mathematically speaking, independent
even though they arise from the same experiment. Events B and C have nothing to do with

510 CHAPTER 8 Discrete Probability

one another in the following sense. Imagine that we can buy a chance on winning a prize

if the die is rolled and C occurs-that is, if a 1, 2, 3, or 4 is rolled. We are hesitating about
buying a chance when we learn that the die has just been rolled and that B occurred (a 1,
4, or 5 turned up). We are offered a last minute opportunity to buy a chance on C-that is,
to bet that C also occurred when the die was rolled. Are we more tempted than before to
buy a chance on C?

Here is a possible line of reasoning: We have new information, so we can revise the
sample space from E2 = {1, 2, 3, 4, 5, 6) to 021 = {1, 4, 5) = B to takeinto account the fact
that B has occurred. Initially, we assumed that all outcomes in B were equally likely. Since
we have no reason to believe otherwise now, we persist in this assumption. This means that
our probability distribution on Q I is uniform, with p1(1) = pl(4) = pl(5) = 1/3. Now,
for C to have occurred, it must be that B n C = { 1, 4} occurred. The revised probability is

2
PI(B Cnc) = pi(1) + pi(4) = -3

This, however, is exactly the same as our initial assessment of C (before we knew that B
occurred): The original probability P(C) was also 2/3. Therefore, the information that B
occurred does not cause us to revise our predictions about C. In this sense, B and C are
unrelated events.

On the other hand, if we had an opportunity to buy a last-minute chance on A
11, 2, 3), we would be less tempted: A occurred only if A n B occurred. The revised prob-
ability of this is

1
PI(A n B) = P1 ({1}) = pi(l) = -

3

The initial probability of A was P (A) = 1/2.
The reasoning we just used is widely accepted and forms the basis for a standard

technique to revise probabilities in light of new information. If events A and B are
independent-that is, if they are events in the same sample space such that P(A fl B) =
P (A) • P (B)-then knowledge that one of these events occurred or did not occur does not
enable us to revise the probability for the occurrence of the other. To explain this, we must
first say what we mean by the revised probability of an event because of the occurrence of
another event. Then, we will note that the revised probability is equal to the initial prob-
ability precisely when the two events are independent. The formula we will develop for
revised probability is also useful in its own right.

To devise a formula for what we mean by the probability of an event B C 02, given
that an event A has occurred where A C Q2 and P(A) > 0, we reason as follows: Since A
has occurred, the sample space E2 with probability density function p can be revised to a
new sample space 21 = A, for surely A includes all the outcomes that are possible. Next,
we devise a probability density function pl for the outcomes in i21 = A. Of course, the
sum of the pl (w)'s for to E A must be one, and pI (co) must be greater than zero if pI is to
be a density function. Also, we want the ratios of probability densities for outcomes in A
to be the same for the new density as for the old. For example, if 0i and wOj are outcomes in
A such that p(wi) = 2 p(Woj), then pl (wi) should be twice pl (w j). We want this property,
since we have no grounds for believing that the frequencies of outcomes have changed
relative to one another just because A occurred. To obtain a legitimate probability density
for the new sample space Q I = A that preserves the original ratios of probabilities, we can

Independent Events and Conditional Probability 511

simply divide the original densities for outcomes in A by P (A). (Checking that this works
is left as an exercise for the reader).

For an event A with P (A) > 0, how should we define "the probability of B given that
A has occurred"? Obviously, no element of B outside A has occurred, so what we really
seek is the probability of B n A given that A has occurred. We will define this to be the
sum of the revised probability density over the elements of B n A. In other words, we
take P1 (B n A) as the new, revised probability for B. The probability P1 (B n A) can be

rewritten as

PI(B n A) - PI(w)

coEBflA

= P(A) p(o)

PB (lA)
I - ýp (Wo)

P(A)
P(B n A)

P (A)

This discussion motivates the following definition.

Definition 3. The conditional probability P (B I A) of B given that A has occurred is
defined by

P(B fl A)
P(B I A)- P(A)

P (A)

where P (A) > 0.

Example 3. Define an experiment of rolling two fair dice and recording the total number
of pips on the top faces. Find the probability that the total number of pips is nine given that
the first die shows five pips on its top face.

Solution. P(total 9lfirst die 5) = P(total 9 and first die 5)/P(first die 5). Assume the
uniform probability density on the 36 pairs of possible outcomes for the two fair dice.
Define A = {(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)} and B = {(3, 6), (4, 5), (5, 4), (6, 3)1.
Then, we can write the probability as

P(BIA) = P(B n A)/P(A) = P({(5, 4)})/P(A)=(1) / (6) = 1/6. U

To relate the notion of conditional probability with the notion of independence from
Section 8.5.1, let us see what happens to the conditional probability of B given the occur-
rence of A if A and B are independent events:

P(B I A) =P(B n A)

P(A)

P(A) . P(B)

P(A)

- P(B)

512 CHAPTER 8 Discrete Probability

In other words, the probability of B is not affected by the fact that A has occurred. In
fact, the satisfaction of the condition P(A I B) = P(A) can be regarded as an alternate
definition for the independence of a pair of non-empty events A and B.

To further our understanding of the connections between conditional probability and
the independence of events, let us revisit the notion of nonempty disjoint events. Con-
sider two such events A and B on the same sample space 02. We known P (A) > 0 and
P(B) > 0. It follows immediately from the definition of independence that A and B are
not independent, because

0 = P(A n B) # P(A) . P(B) > 0

We can look at this a second way. Learning that event B, say, occurred tells us a lot about
A-namely, that A definitely did not occur (the events are disjoint after all). This phe-
nomenon can be expressed as

P(A nB)
P(AIB) = P(B)

8.5.3 Exploring Conditional Probability

Note that the expression in Definition 3 for conditional probability can be rearranged to the
form

P(B n A) = P(A) . P(B I A)

In this subsection, we take advantage of this observation to obtain two further results, called
Bayes' Rule and the Theorem of Total Probability. These two results, which are often used
together, provide powerful tools for computing probabilities, as we shall see.

Let us begin with the Theorem of Total Probability, which is perhaps the easier result
to understand.

Theorem 1. (Total Probability) Let sample space 0 be the disjoint union of events
E E with positive probabilities, and let A C Q2. Then,

n

P(A)=E P(A I Ei) .P(E)
i=1

Proof. Event A can be expressed as a union of disjoint events as follows:

A=(A n E1)U ... U (A n E,)

Hence,
n

P(A) - E P(A n Ei)
i=1

From the definition of conditional probability,

P(A n Ei) = P(A I Ei) " P(Ei)

Substituting the right side of this expression for P(A n Ei) in the expression for P(A)
gives the result. 0

Independent Events and Conditional Probability 513

Example 4. There are three kinds of vending machines in canteens at the university:
candy dispensers, hot-drink dispensers, and soda dispensers. Of the vending machines,
25% sell candy, 35% dispense hot drinks, and 40% dispense sodas. Suppose that servic-
ing is needed by 1/2 the candy machines, 1/5 the hot drink machines, and 1/3 the soda
machines. What is the probability that a machine chosen at random needs servicing?

Solution. Let Q consist of all the machines, and endow 02 with a uniform probability
density to model choosing a machine at random. Let El, E2 , and E3 denote the candy, hot-
drink, and soda machines, respectively. Then, Q2 is the disjoint union of these events where
P(E1) = 0.25, P(E2) = 0.35, and P(E 3) = 0.40. Let A denote the set of nonfunctioning
machines. Event A is the disjoint union of the nonfunctioning candy, hot-drink, and soda
machines, and

1 1 1
P(A I E)=- P(A I E 2)=- P(A I E3)=-

2 5 3

By the Total Probability Theorem,

3

P(A) =E P(A I Ei) . P(Ei)
i=1

().25)+ (.35 ()(0.40)

0.328 U

Now, we give the other result, Bayes' Rule, that can be obtained by playing with the
expression in the definition of conditional probability. We began by noticing that

P(B n A) = P(A) . P(B I A)

To warm up for Bayes' Rule, notice that interchanging the roles of A and B gives another
expression for P (B n A)-namely,

P(A n B) = P(B) • P(A [B)

Theorem 2. (Bayes' Rule) Let A and B be events in the same sample space. If neither
P(A) nor P(B) is zero, then

P(B I A) = P(A I B)-(B)

PABP (A)

Proof. By the definition of conditional probability,
P(A nl B) P(I)P(A nB)

P(A I B) (A- B and P (B I A)= (A- B
P(B) P(A)

Consequently,

P(A n B) = P(A) . P(B I A) = P(B) . P(A I B)

so

P(B I A) = P(A I B) P(B) MP((A)

514 CHAPTER 8 Discrete Probability

One key feature of Bayes' Rule is that it can be used in situations where the underlying
probability distribution of the sample space is not known but estimates of the probabilities
for some of the events are available. The next example illustrates this. The designers of
computer systems that aid in medical diagnosis and other similar problems must deal with
uncertain information of this kind.

Example 5. Suppose it is estimated that 10% of a population has a certain disease. Tests
for this disease are being developed but are not yet perfect. In fact, an individual who has
the disease may test negative. Suppose experience with a particular test shows that 5%
of the results are actually false negatives-that is, the individual actually does have the
disease. Also, suppose that 8% of the tests done so far have been positive. What is the
probability that a sick person will receive a false-negative test result?

Solution. Let Qi consist of the population, A denote the subset of people who would test
positive if they took the test, and B denote the subset of people who have the disease.
Which people actually make up these subsets is not known: Not everybody may take the
test, and only time will tell which people actually have the disease. Nevertheless, we can
estimate that P(A) = 0.08, P(B) = 0.10, and P(B[LA) = 0.05. We are interested in the
probability that a person who is ill tests negative. Hence, we must compute P(AIB). By
Bayes' Rule,

- P(A) (0.05)(0.92)
P(AIB) = P(BIA)P (B) - (0.10) 0.46 M

Because of the wide applicability of Bayes' Rule, we highlight it here.

Using Bayes' Rule

In many applications, the answer being sought can be expressed in the form of a con-
ditional probability P(BIA), and the other probabilities P(A I B), P(A), and P(B)
that are needed to apply Bayes' Rule can be estimated by experiment or experience:

P(A I B) . P(B)
P(BLA) P(AP (A)

8.5.4 Using Bayes' Rule with the Theorem of Total Probability

We devote this subsection to examples illustrating the power of using Bayes' Rule together
with the Theorem of Total Probability.

Example 6. (Communication Channel Reliability) Consider a noisy communication
channel over which a 0 or a 1 is to be sent. Suppose that the probability the bit to be sent
is a 0 is 0.4 and the probability that it is a 1 is 0.6. Also, suppose that due to noise, the
probability that a 0 is changed to a 1 during transmission is 0.2 and the probability that a
I is changed to a 0 is 0.1 (see Figure 8.5). Suppose a 1 is received. What is the probability
that a 1 was sent?

Independent Events and Conditional Probability 515

Send 0 with 0.8
probability 0.4 o Receive 0

0.2 0.1

Send 1 with -09 l Receive 1
probability 0.6

Figure 8.5 Communication channel reliability.

Solution. Let B denote the event that a 1 was sent, and let A denote the event that a I
was received. The probability we seek is P(B IA), which according to Bayes' Rule is

P(BI A) - P(A I B) . P(B) _ (0.9)(0.6)

P(A) P(A)

What is P(A), the probability that a 1 was received? We are not given this information

directly, but we can compute it using the Theorem of Total Probability.
To apply the Theorem of Total Probability, we should check that we know what sample

space 02 we are using. We can take Q2 to be all 2-tuples of 0's and 1's where the first element
gives the transmitted bit and the second element gives the received bit. Note that Q2 is not

a cross product sample space, because the probability of receiving a 1, say, depends on the

bit that is transmitted.
Sample space Q2 can be regarded as the disjoint union of events with positive proba-

bilities as follows: Let E 1 be the event that a 1 was sent, and let E 2 be the event that a 0

was sent. Hence, 02 = El U E 2 . By the Theorem of Total Probability, the probability that
a 1 was received is

P(A) = P(A I El) " P(Et) + P(A I E 2). P(E 2)

= (0.9)(0.6) + (0.2)(0.4)

= 0.62

Now, we can complete the computation of P (B I A), the event that a 1 was sent given

that a 1 was received:

(0.9)(0.6) (0.9)(0.6)
P(B I A) - P-_ 0.87 UP(A) 0.62

The communication channel reliability situation of Example 6 can be conceptualized
as a two-stage process. First, a bit is selected for transmission. The bit is either transmitted

correctly or incorrectly. This is not the same as flipping two coins, however, where the
result of one flip has no influence on the result of the other. Here, the probability that a

bit is transmitted without error depends on whether the bit is a 0 or a 1. As suggested in

Example 6, we can choose Q2 = (0, 0), (0, 1), (1,0), (1, 1)} where the first component of
each ordered pair gives the bit transmitted and the second component gives the bit received.
What probability density should we assign to this Q2? The next example shows that only
one choice is consistent with the data in Figure 8.5.

Example 7. (Communication Channel Reliability Continued) Suppose that the

communication channel reliability situation is modeled by the sample space 02 just sug-

gested. Determine a probability density on 02 that is consistent with the given data.

516 CHAPTER 8 Discrete Probability

Solution. Each outcome (o = (i, j) c Q can be regarded as an event {o0} g 2, and the
Theorem of Total Probability can be used. The sample space Q2 is the disjoint union of two
events of positive probability-namely, the event E, = {(1, 0), (1, 1)1 of sending a 1 and
the event E 2 = {(0, 0), (0, 1)1 of sending a 0. According to the data, P(E1) = 0.6, and
P(E2) = 0.4. Hence, the event {(0, 0)) has probability

P({(0, 0)}) = P({(0, 0)} 1 E) . P(E1) + P({(0, 0)} I E2). P(E2)

= (0)(0.6) + (0.8)(0.4)

= 0.32

Event {(l, 0)) has probability

P({(1, 0)1)) P({(1, 0)) 1 EI) • P(E 1) + P({(1, 0)}] E2)D P(E 2)

= (0.1)(0.6) + (0)(0.4)

= 0.06

Similarly,

P({(0, 1)1) = (0)(0.6) + (0.2)(0.4) = 0.08

and

P({(1, 1)1) = (0.9)(0.6) + (0)(0.4) = 0.54

The probabilities of these singleton events must agree with the probability density p as-
signed to Q2, so there is only one choice for p consistent with the data. U

Situations that consist of stages depending on the results of preceding stages, such
as the channel reliability examples, are called dependent trial processes. In designing
sample spaces and probability distributions, it is important to consider whether trials are
independent or dependent. Sometimes, the dependency of one trial on a preceding trial is
not immediately obvious (see Exercise 9 in Section 8.6).

We conclude this section with one more application of Bayes' Rule and the Theorem
of Total Probability.

Example 8. (Identifying the Source of a Bad Apple) Suppose apples are shipped to
a grocery store by three different orchards O1, 02, and 03. Suppose the percentages of
each shipment that are bad are 10%, 8%, and 3%, respectively. Suppose further that the
percentages of the apple supply from these orchards are 20%, 30%, and 50%, respectively.
Now, suppose a customer selects an apple at random and finds that it is bad. What is the
probability the apple came from orchard 02?

Solution. Let Ai denote the event that an apple (good or bad) selected at random comes
from orchard Oi for i = 1, 2, and 3. Hence,

P(A 1) = 0.2 P(A 2) = 0.3 P(A 3) = 0.5

Let B denote the event that an apple selected at random is bad. We are to determine
P (A2 I B). We are given the conditional probabilities

P(B IA1) = O.1 P(B IA2) = 0.08 P(B IA3) = 0.03

Exercises 517

Hence, from Bayes' Theorem and the Theorem of Total Probability,

P(A2 I B) = P(B IAD) P(A)
P(B)

P(B I A2). P(A2)

P(B I Al). P(A1) + P(B I A2). P(A2) + P(B I A3) . P(A3)
(0.08)(0.3)

(0.1)(0.2) + (0.08)(0.3) + (0.03)(0.5)
ONU

W Exercises

1. A sample space 02 = {Wl,09........ (06} has the following probability density:

P(0o9) = 2/5 P(094) = 1/10
P(092) = 1/10 P(095) = 1/10
P((03) = 1/5 P(0)6) = 1/10

Which of the following pairs A, B of events are independent? Explain your answer.

(a) A = {w01 , oa2) and B = {oa3, W5}
(b) A = {091, W061 and B = {f02, (061

(c) A = 0 and B = {o93, (04, 0o5}
(d) A = {091 , 03} and B = {W 3,604 , a)5}

2. Under which of the following circumstances is the pair A, B of events in sample space
Q an independent pair? Explain your answer.

(a) A and B are disjoint, P(A) > 0, and P(B) > 0
(b) P(A)= 0 and P(B) > 0
(c) P(A) = P(B) = 0

3. Suppose A and B are disjoint events in a sample space 02. Is it possible that A and B
could be independent? Explain your answer.

4. A fair die is rolled, and a fair coin is tossed. The sample space is taken to be Q? =
S21 x S22 where 0Ž1 is the six-element sample space for the die and Q?2 is the two-
element sample space for the coin. Let A c Q 1 be the event "a 5 is rolled." Let B C_ Q2
be the event "heads." Let C C f2 be the event "at most two spots on the top face of
the die (with heads or tails on the coin) or at least five spots on the top face of the
die together with heads on the coin." Let D be the event "at least a 5 on the die (with
heads or tails on the coin)." Which of the following sets of events are independent
sets? Explain your answer.

(a) {A, B}
(b) IA, B, C}
(c) {B, C}
(d) {B, C, D}

518 CHAPTER 8 Discrete Probability

5. Suppose that E 1, E2 ... , Ek are events in the same sample space and that some pair
Ei, Ej of these events are disjoint.

(a) If all the events have positive probability, can the set {El, E2, ... , Ekd be an in-
dependent set of events? Explain your answer.

(b) If one or more of the events has 0 probability, can the set {E1 , E2. Ek be an
independent set of events?

6. A fair penny and a fair nickel are tossed. Let A be the event "heads on the penny." Let
B be the event "tails on the nickel." Let C be the event "the coins land the same way."

(a) Choose a sample space Q2, and represent A, B, and C in terms of Ž2.

(b) Which pairs of events chosen from A, B, and C are independent pairs?
(c) Is the set of events {A, B, C} an independent set?

7. Suppose that QŽ is a sample space with a probability density function p, and suppose
that A C Q2. Let P(A) denote the probability of A. Assume that P(A) > 0. Define a
function pI on A as follows: Forf) E A, PI0(w) = p(w))/P(A).

(a) Show that if w, 0)2 E A and p(wl), P((02) # 0, then

P(0I) Pl(0w))

P(a)2) Pl (a)2)

(b) Show that if B and C are nonempty subsets of A with elements that have positive
probabilities, then

P(B) _ P1 (B)
P(C) Pi(C)

(c) Show that PI is a probability density function on 2 1 = A.

8. Suppose we have two coins. One is fair, but the other one has two heads. We choose
one of them at random and flip it. It comes up heads.

(a) What is the probability the coin is fair?
(b) Suppose we flip the same coin a second time. What is the probability that it comes

up heads?
(c) Suppose the coin comes up heads when flipped the second time. What is the prob-

ability the coin is fair?

9. A television show features the following weekly game: A sports car is hidden behind
one door, and a goat is hidden behind each of two other doors. The moderator of the
show invites the contestant to pick a door at random. Then, by tradition, the moderator

is obligated to open one of the two doors not chosen to reveal a goat (there are two
goats, so there is always such a door to open). At this point, the contestant is given the

opportunity to stand pat (do nothing) or to choose the remaining door. Suppose you are
the contestant, and suppose you prefer the sports car over a goat as your prize. What

do you do? (Hint: It may help to model this as a two-stage dependent trials process,
but it may not be obvious how to do this).

Exercises 519

(a) Suppose you decide to stand with your original choice. What are your chances of
winning the car?

(b) Suppose you decide to switch to the remaining door. What are your chances of
winning the car?

(c) Suppose you decide to flip a fair coin. If it comes up heads, you change your
choice; otherwise, you stand pat. What are your chances of winning the car?

10. Suppose our manufacturing company purchases a certain part from three different sup-
pliers S1, S2 , and S3 . Supplier S1 provides 40% of our parts, and suppliers S2 and S3

provide 35% and 25%, respectively. Furthermore, 20% of the parts shipped by S are
defective, 10% of the parts shipped by S2 are defective, and 5% of the parts from S3

are defective. Now, suppose an employee at our company chooses a part at random.

(a) What is the probability that the part is good?

(b) If the part is good, what is the probability that it was shipped by SI?
(c) If the part is defective, what is the probability that it was shipped by Si?

11. (a) Give an example that shows three pairwise independent events need not be an
independent set of events.

(b) Give an example that shows three events can be independent without having the
corresponding pairs of events be independent.

12. Two manufacturing companies M1 and M2 produce a certain unit that is used in an
assembly plant. Company M1 is larger than M 2, and it supplies the plant with twice as
many units per day as M2 does. MI also produces more defects than M2 . Because of
past experience with these suppliers, it is felt that 10% of MI's units have some defect,
whereas only 5% of M2 's units are defective. Now, suppose that a unit is selected at
random from a bin in the assembly plant.

(a) What is the probability that the unit was supplied by company M1 ?
(b) What is the probability that the unit is defective?
(c) What is the probability that the unit was supplied by M1 if the unit is defective?

13. When a roulette wheel is spun once, there are 38 possible outcomes: 18 red, 18 black,
and 2 green (if the outcome is green the house wins all bets). If a wheel is spun twice,

all 38 • 38 outcomes are equally likely. If you are told that in two spins at least one
resulted in a green outcome, what is the probability that both outcomes were green?

14. A computer salesperson makes either one or two sales contacts each day between 1

and 2 PM. If only one contact is made, the probability is 0.2 that a sale will result and
0.8 that no sale will result. If two contacts are made, the two customers make their
decisions independently of each other, each purchasing with probability 0.2 and not
purchasing with probability 0.8. What is the probability that the salesperson has made
two sales this hour?

15. Only 1 in 1000 adults is afflicted with a particular rare disease for which a diagnostic
test has been developed. The test is such that when an individual actually has the
disease, a positive result will occur 99% of the time, and an individual without the
disease will show a positive test result only 2% of the time. If a randomly selected
individual is tested and the result is positive, what is the probability that the individual
has the disease? Draw a tree diagram for the problem.

16. Suppose three fair coins are tossed. What is the probability that precisely two coins
land heads up if the first coin lands heads up and the second coin lands tails up?

520 CHAPTER 8 Discrete Probability

U Discrete Random Variables

Many probabilistic experiments have outcomes that are associated with real numbers. For
example, a gambling game may involve spinning a wheel that is divided into segments
that offer various payoffs or penalties (see Figure 8.6). The outcomes (wheel segments)
of the experiment have real numbers (cash values) associated with them. In the case of
flipping a coin n times, each outcome (n-tuple of heads and tails) can be associated with
the total number of heads in that outcome. Of course, we are accustomed to using numbers,
typically integers, as labels. For example, we use 1 to mean heads and 6 to mean a die that
shows six spots. However, our interest in this section is to study the situation in which
outcomes are associated with numerical values that are not used simply as labels for the
outcome.

$500 $1

Figure 8.6 Payoffs associated with outcomes.

8.7.1 Distributions of a Random Variable

A typical question involving numerical values is how much one should be willing to pay
to gamble on a game that offers various payoffs with various probabilities. The following
definition explains what it means to associate real numbers with outcomes.

Definition 1. A discrete random variable X is a real-valued function with a domain

that is a discrete (finite or countably infinite) sample space 02 endowed with a probability
density function. In other words, X (a)) c R for each 0) E Q2.

Example 1. A game consists of rolling a fair die. You win $3 times the value on the top
face after the roll if the top face is 2 or 5. The game pays $1 if the top face after the roll is
1, 3, 4, or 6. Define the random variable associated with this game.

Solution. Let X be the random variable defined as X(l) = 1, X(2) = 6, X(3) = 1,
X(4) = 1, X(5) = 15, and X(6) = I where 1, 2,..., 6 represent the value on the top face
after rolling a fair die. The probability density for the roll of the die is the uniform proba-
bility density on {1, 2, 3, 4, 5, 6}. 0

Discrete Random Variables 521

The term random variable is unfortunate, because X is not a variable in the mathe-
matical sense and also is not random. Each co E 2 is sent by X to a uniquely defined real
number X (w). In other words, X is a function. Nevertheless, we shall use the term random
variable, because it is standard terminology.

Because the domain of X is a sample space endowed with a probability density func-
tion, the range of X-namely,

{x : Xt(w) = x for some w e Q2}

which is a subset of]R-can easily be made into a sample space QX and endowed with its
own probability density. To see this, note that the preimage of any element x in the range
of X is the event

{o e 2Q: X(wo) = x} C Q*

Notation. The event [0 e 2 : X((o) = X} g2 will be denoted by (X = x). The proba-
bility of this event,

P({o I X(co) = x})

will be denoted by P(X = x).

The next theorem shows that the assignment of the probability P(X = x) to each x
defines a probability density function on the range of X.

Theorem 1. (Probability Density Defined by a Random Variable) Let £Žx be the
range of a random variable X defined on a sample space Q2 endowed with probabil-
ity density function p. Then, px(x) = P(X = x) defines a probability density function
on Q2x.

Proof. Since each px(x) is the probability of an event in Q, we have 0 < px(x) < 1. To
see that E px (x) = 1, we observe that the sets

{[o E Q : X(wo) = x}

where x ranges over i2x form a partition of Q2. Hence, by the Additive Principle of Disjoint
Events, the probabilities of these events sum to 1. 0

Definition 2. The probability density function defined on the range of random variable
X by px (x) = P(X = x) is called the distribution of X.

Example 2. Let the random variable X be defined on the value of the top face after the
roll of a fair die as follows: X(1) = 1, X(2) = 2, X(3) = 2, X(4) = 3, X(5) = 2, and
X (6) = 3. Determine the distribution of X.

Solution. The range of the random variable X is {1, 2,31. Probability px(1) =
P(X = 1) = P({1}) = 1/6; px(2) = P(X = 2) = P({2, 3, 5}) = 1/2; px(3) = P(X =
3) = p({4, 6}) = 1/3. 0

522 CHAPTER 8 Discrete Probability

8.7.2 The Binomial Distribution

A distribution is simply a density that arises in a special way-that is, from a random
variable. Several distributions occur so frequently in applications that they have been given
special names. Let us look at a few examples.

Suppose a coin is flipped n times where the probability of heads is p and the prob-
ability of tails is q = 1 - p. We consider the usual sample space 02 consisting of the 2n

possible sequences of heads and tails. Suppose a random variable X is defined on Q by set-
ting X (co) equal to the number k of times heads occurs in the n-tuple (0 where 1 < k < n.
Then, the range f2x of X is {0, 1 ... n}, and the distribution px of X is given by

px(k) = C(n, k) - pk. (I - p)n-k for k = 0, 1 ... , n

This distribution is called the binomial distribution, and X is said to be binomially dis-
tributed.

Notice that the value of the binomial distribution for a particular k depends on n and
p as well as on k.

Definition 3. The binomial distribution is the probability density function defined on
{0, 1. n} by assigning to k = 0, 1 n the value

b(k; n, p) = C(n, k) . pk . (I -- p)n-k

The binomial distribution gets its name from the fact that the Binomial Theorem can
be used to prove it is a valid density function. (The reader should try this.) The binomial
distribution is generally thought of as arising from a random variable X that counts suc-
cesses (or failures) for n independent repetitions of a two-outcome experiment. Certainly,
however, nothing is wrong with assigning a density p(k) = b(k; n, p) to the sample space
{0, 1, . . . , n} without thinking of a random variable. Use of the term distribution instead of
probability density simply indicates that we have a random variable in mind.

The value b(k; n, p) of the binomial distribution has another interpretation: It is the
probability of getting exactly k red balls if we draw a ball n times from an urn in which the
proportion of red balls is p and we replace the ball after each draw.

8.7.3 The Hypergeometric Distribution

A second important distribution can be motivated by the process of drawing balls from an
urn repeatedly without replacing a ball after it is drawn. Suppose an urn contains m balls,
of which r are red and the rest are black. Thus, there are m - r black balls. We will draw
n balls where n < m, without replacing them. If we do not replace the ball each time, then
the probability of getting a red ball on a particular draw depends on what happened on
previous draws. To calculate the probability that we will draw exactly k red balls (and,
hence, exactly n - k black balls), imagine that we pick a handful of n balls from the urn all
at once where each such handful is equally likely. We choose the sample space 0? to be the
set of all possible handfuls of n balls, so each element of 0Ž is actually a set of n balls. We
put a uniform density on 02 that consists of C(m, n) outcomes. Now, let a random variable
X be defined on 2 as follows:

X (co) = the number of red balls in wo

Discrete Random Variables 523

Hence, X is a function from 02 to {0, 1, 2. n}. The probability in Q? of the event (X = k)
is computed as follows: The number of handfuls that contain k red balls (and n - k black
balls) is C(r, k) • C(m - r, n - k), because there are C(r, k) ways to choose k red balls
from the total number r of red balls and C(m - r, n - k) ways to choose n - k black balls
from the total number m - r of black balls. Since i has size C(m, n), the probability of
each handful is 1/C(m, n). Hence, the probability P(X = k) of obtaining exactly k red
balls, which is the summation of po(w) over all (o containing exactly k red balls, is

P(X = k) C(r,k).C(m - r, n - k)

C(m, n)

Since P(X = k) depends on n, r, and m as well as on k, we will denote P(X = k) by
h(k; n, r, m).

Definition 4. For integer parameters k, n, r, and m satisfying 0 < k < n < m and
k < r, the hypergeometric distribution is the probability density function defined on
{0, 1, 2 ... , m} by assigning to k = 0, 1, 2 ... , m the value

C(r, k) • C(m - r, n - k)h(k; n, r, m) -
C (m, n)

The following example will help clarify this discussion.

Example 3. Suppose that 25 of 1000 parts in a bin are defective. What is the probability
that a randomly chosen set of 10 parts contains at least one defective part? (The parts are
chosen without replacement.)

Solution. The probability can be obtained by subtracting from 1 the probability that none
of the 10 parts is defective. This latter probability can be expressed in terms of the hyper-
geometric distribution. We have m = 1000 parts (or balls in an urn), of which r = 25 are
defective (red). We draw a handful of n = 10 and ask for the probability that k = 0 are
defective. Hence,

P(0 defects) = h(0; 10, 25, 1000) = C(25,0).C(975, 10)
C(1000, 10)

This can be rewritten as

975.974... 966 10! 975 974 966

1. 10! 1000.999... 991 1000 999 991
S0.7754

The probability of at least one defective part in a handful of 10 chosen at random is
therefore

P(at least 1 defect) = 1 - P(0 defects) = 1 - 0.7754 = 0.2246

When m, r, and m - r are large compared to n, the binomial density b(k; n, rim)
can be used to approximate h(k; n, r, in). This approximation is based on the fact that
the proportion of red balls changes very little as we make the first few draws. For the last
example, the binomial approximation to

h(k; n, r, m) = h(0; 10, 25, 1000)

524 CHAPTER 8 Discrete Probability

is given by

b(0; 10, 25/1000) = C(10, 0) • (25/1000)0 . (1 - 25/1000)1°
= (975/1000)'°

S0.7763

Being able to approximate one distribution with another can be useful, especially if the
approximating distribution is easier to compute.

8.7.4 Expectation of a Random Variable

Suppose we choose a card from a shuffled deck. If we draw a spade, we must pay a $10
penalty, but if we draw a card from any other suit, we receive $5. How do we estimate our
winnings in playing the game a large number n of times? If we believe that a spade will be
drawn approximately n/4 times, then we estimate our winnings as

($)3)+ (_$10)(n) = ($1.25)n(4
and we estimate our average winning per draw to be $1.25.

In mathematical terms, the dollar amount associated with each card defines a real-
valued random variable X on the sample space Q2 of cards, each of which is assigned
a probability of 1/52. The range of X consists of just two values: $5, with probability
3/4 of occurring, and -$10, with probability 1/4 of occurring. The sum of these payoffs,
weighted by their probabilities, is

($5)(~ + (-$10) (1) = $1.25

This quantity is called the expectation of X. When we interpret probabilities as estimates
of the frequency of occurrence of real-world events, then the expectation of X estimates
the average value of X when the underlying experiment is repeated many times. In general,
the expectation of X does not tell us what we expect to happen on any particular trial of the
experiment. Only under very special circumstances, such as the ones described in the Law
of Averages given at the end of Section 8.9, does the expectation tell us what to expect.

Definition 5. The expectation (also called mean or expected value) E(X) of a random
variable X is defined by

E(X) = E x • px(x)

where the sum is taken over all x in the range Q x of X and px(x) = P(X = x), the
probability that x occurs.

Notation. When only one random variable is under discussion, the value E(X) is often
denoted by it.

Example 4. A loaded die pays $1 for an even number of spots occurring on the top face
after a roll, and charges $1, $3, or $5 for showing one, three, or five spots after a roll,
respectively. Suppose the probability p(w) of getting

(0 = 1, 2, 3, 4, 5,6

Discrete Random Variables 525

spots is, respectively,

1 1 1 1 1 1

6' 2' 12' 12' 12' 12

These probabilities define a random variable X with domain

0 = {1, 2, 3, 4, 5, 6}

and range

O2x = ($1,-$1, -$3, -$51

Calculate the distribution pk induced by X on its range Q2 j, and then determine E(X).

Solution. The outcomes in Q that have a $1 payoff are 2, 4, and 6, so
1 1 1 2

px($1) = p(2) + p(4) + p(6) = I + I - 2

Similarly,

1
px(-$1) = p(M) = -6

and
1

px(-$ 3) = px(-$5) = p(3) = p(5)= 12

Now that we know px, we can compute E(X):

E(X) = ($1) • px($1) + (-$1) • px(-$1) + (-$3) - px(-$ 3) + (-$5) • px(-$5)

= ($ + ($1) + (-$3)(1) + (-$5) =1

Note that the expectation of a random variable does not tell us what to "expect" the
value of X to be. In the above example, we can never owe -$1/6 as a result of rolling the
die once. We can only get one of the four values in QX. A more extreme case would be to
flip a fair coin that pays $100 for heads and charges $100 for tails. The expected value of
the payoff is zero, which is far from either of the two actual payoffs.

Since the probability px (x) assigned to an element x E £x is the probability of the
event (X = x) in ý2, we can also compute the expectation of X by returning to the original
sample space Q, as the next theorem shows.

Theorem 2. (Basic Property of Expectation) The expectation E(X) of a random vari-
able X defined on a sample space Q2 satisfies

E(X) --- X-(0)p()

Proof. By definition,

E(X) X -x •(X px(x)
xFE2x

526 CHAPTER 8 Discrete Probability

Substituting px(x) = 2 p(w), where the summation is over all a) E ? in the event (X =

x), gives

E(X)= L' (X IS"P6)
XEQX 0c-(X=x)

= S (S: X.-P(W))
XEQX aOE(X=x)

= S S x~o) .p(w)
XCQx we(X=x)

Suppose that Qx = (xx.. x, }. Then, the double sum above can be written out as the
following sum of sums:

E X(o).p(w)±..+ + + ý X).p((w).
(tE(X=xj) We(X=x,)

Since the events (X = xl). (X = x,) partition S2, each a) • ? is contributing exactly
X ((o) p ((o) to this sum of sums. Hence,

E(X) = 5: X(CO) • p().
weQ

Example 5. Compute the expectation of the random variable X in Example 4 by using
Theorem 2.

Solution. Instead of computing the probability distribution px induced by X on Q2x, we
work directly with the original sample space 02.

E(X) = 5 p(0v)X(av)

= (-$l)p(l) + ($l)p(2) + (-$ 3)p(3) + ($1)p(4) + (-$5)p(5) + ($l)p(6)

1 1 1 1 1 1
= (-$)- + (1)- + (-$3)- + ($1- + (-$5)- + ($)-

6 2 12 12 12 12
1

6
which agrees with our previous answer. U

8.7.5 The Sum of Random Variables

Suppose that X1 . . X, are random variables defined on some sample space S?. We can
use these to define new random variables on Q in various ways. For example, we can define
a random variable SUM by setting

SUM(cv) = XI (cO) + "" + Xn (a))

for each (0 E Q?.

Example 6. Suppose we toss three fair coins. We associate with this experiment a sample
space E2 of eight triples each having probability 1/8. The first, second, and third compo-
nents of each triple is 1 or 0 depending on whether the first, the second, or the third coin

Discrete Random Variables 527

lands heads or tails, respectively. For a triple w E 2, let X1 (w) be 1 if the first coin lands
heads up and 0 if otherwise. Define X2 (a) and X 3 ((0) in similar fashion for the second and
the third coins, respectively. If the first coin lands heads and the other two land tails, what
is the value of SUM on that outcome?

Solution. Since o = (1, 0, 0), we have X, ((o) = l and X2(6o) = X 3 (o9) = 0. Hence,

SUM(wO) = 1+0+0= 1 0

Example 7. What is the expectation of SUM in the preceding example?

Solution. The range Q2x of X is the number of heads that can show, so QŽx = 10, 1, 2, 3}.
The probability distribution induced by X on Q2x is

1

Px(O) = p({(0, 0, 0))) = -

8
3

Px(1) = p({(1, 0, 0), (0, 1, 0), (0, 0, 1)}) =
8

px(2) = p({(1, 1, 0), (1, 0, 1), (0, 1, 1)}) = 8
1

px(3) = p({(1, 1, 1)1) = -
8

Hence,

E(SUM) = x. Px(x)

1 3 3 1

8 8 8 8
3

2

We now establish notation for some common random variables that are defined in
terms of one or more others. The symbols for the new random variables will indicate how
they are computed from the old ones rather than simply being single letters like X. When
we are given several random variables X1. X, we will assume they are all defined on
the same sample space QŽ.

The sum of random variables. The random variable that sends ca to

Xt(c) + .. + Xn(CO)

is denoted by

(Xi +.. + X")

Its expectation is denoted by E(X1 + •.. -+- Xv). Hence, the random variable SUM in the
preceding example would be denoted (X1 + X 2 + X 3). The value of

(XI +- X2 +• +' ' Xn)

at a particular co is denoted by

(X1 + X2 .+ Xn)(cO)

528 CHAPTER 8 Discrete Probability

The scaling of a random variable. Given random variable X and a real number k, the
random variable that sends w to kX (w) is denoted by (kX), and its expectation is denoted
by E(kX). When k A 0, we can define a random variable (X/k) with expectation E(X/k)
in similar fashion.

The square of the deviation from a fixed value. Given random variable X and a real
number k, the random variable that sends w to (X (w) - k) 2 is denoted by (X - k)2 . When
k = 0, we simply write X2 .

Constant random variables. Given a real number k, the random variable that sends co
to k is denoted by k and is called a constant random variable.

When it is clear which set is being summed over in a summation y-, we will often omit
the subscript on the summation E. Similarly, we will often omit subscripts on products fH.

The next theorem relates the expectation of the sum and the scaling of random vari-
ables to the expectations of the original random variables.

Theorem 3. (Linearity of Expectation) Let X1, X2..... X, and X be random vari-
ables defined on the same sample space Q2, and let k be a real number. Then:

n

(a) E(XI +... + Xn)= E(Xi).
i=~1

(b) E(kX) = kE(X), and where k A 0, E(X/k) = E(X)
k(c) E X + '+ xn = 1 n

(c) E E(Xi).

Proof. (a) We prove part (a) for n = 2 and leave the proof (by induction) for n > 2 as
an exercise. (All unsubscripted sums Y will be taken over) E• 2.) From the formula for
expectation given in Theorem 2, we have

E(X) + X 2) (((X 1 ± X 2)((0)) • p()

= X1 (0) + X 2 ((0)) • p(0)

= Z(XI(w)" (p(W) + X2 (0))" p(a))

= 13 Xl (o)p(w) + E X 2 ((o)p(0)

= E(X1) + E(X 2)

(b) Since division by k : 0 can be regarded as multiplication by I/k, the second half of
part (b) follows from the first half, which can be established as follows:

E(kX) = ((kx)(o)) • p(w)

= Ek. X(ao) • p(w)

= k X(w) • p(a)

= kE(X)

Exercises 529

(c) From part (b), with

X =(XI + X2 + + X.)

and k = n, we have that

E(X1 + X2-+Xn) E(X + X 2 + ' + X.)
n' n

so by part (a), this is G)n
E E(Xi) 0
i=1

W Exercises

1. Consider a game based on the days of a 31-day month. A day is chosen at random-
say, by spinning a spinner. The prize is a number of dollars equal to the sum of the
digits in the date of the chosen day. For example, choosing the 31 st of the month pays
$3 + $1 = $4, as does choosing the fourth day of the month.

(a) Set up the underlying sample space ý2 and its probability density, the value of
which at (o gives the reward associated with w.

(b) Define a random variable X(o) on Q2 with a value at (o that gives the reward

associated with wo.
(c) Set up a sample space Q2x consisting of the elements in the range of X, and give

the probability distribution px on Q2x arising from X.
(d) Determine P(X = 6).
(e) Determine P(2 < X < 4) = P(co : 2 < X(wo) < 4).
(f) Determine P(X > 10) = P(a) : X(wo) > 10).

2. Consider the following darts game: The target consists of a bull's-eye, which is a circle
of radius 1, surrounded by a middle ring of outer radius 3 and inner radius 1; this region
is in turn surrounded by another ring of outer radius 5 and inner radius 3. If you hit the
bull's-eye, you win $10 plus the opportunity to throw again. If you hit the middle ring,
you lose $2, and if you hit the outer ring, you lose $5. You must stop throwing as soon
as you make a losing toss or hit three bull's-eyes. Suppose the probability that you hit
a region is proportional to its area.

(a) Set up an underlying sample space Q2 and its probability density p.
(b) Define a random variable X on Q2.
(c) Define a sample space Q2 x and a probability distribution px on Q2 x.

3. Suppose we flip a fair coin four times. We are interested in counting the number of
times the coin turns up heads.

(a) Define a sample space Q2 and a probability density p on Q2.
(b) Define a random variable X on Q2 to count the number of heads.
(c) Describe the event (X = 3) as a subset of QŽ.
(d) Set up a sample space Q2x and a probability distribution px based on X. You may

express your answer in terms of the binomial distribution.
(e) Which number (or numbers) of heads is most likely to occur?

530 CHAPTER 8 Discrete Probability

4. Repeat Exercise 3 for a coin that comes up heads a third of the time.
5. What is the relationship between b(k; n, p) and b(n - k; n, p) when p = 1/2? Does

this relationship hold if p # 1/2?
6. Suppose we make draws from an urn containing two red balls and three black ones,

replacing the chosen ball after each draw. How many draws should we make (we have
to decide this number in advance) to have probability 0.5 or greater of selecting at least
two red balls?

7. Suppose we draw three balls from an urn containing two red balls and three black
balls. We do not replace the balls after we draw them. In terms of the hypergeometric
distribution, what is the probability of getting two red balls? Compute this probability.

8. Compute the expectation E(X) of the random variable X that counts the number of
heads in four flips of a fair coin. (See Exercise 3.)

9. Compute the expectation E(X) of the random variable X that counts the number of
heads in four flips of a coin that lands heads with frequency 1/3.

10. Suppose we make three draws from an urn containing two red balls and three black
ones. Determine the expected value of the number of red balls drawn in the following
situations.

(a) The chosen ball is replaced after each draw.
(b) The chosen ball is not replaced after each draw.

11. We have seen two ways to compute the expected value E (X) of a random variable X.
One way is to use the definition of expected value, summing px (x) over the range QŽx
of X. The other way is to use Theorem 2, summing X (w) • p(w) over the domain Q2
of X. If you have not already done so, do Exercise 10, and then compute E (X) using
the method you did not use the first time. In general, which method do you think will
be easier to carry out, and why?

12. Game A has you roll a fair die once and receive the number of dollars that is equal to
the value on the top face. Game B has you roll a fair die twice and receive the number
of dollars that is the maximum of the two values that show on the top face. It costs $3
to play game A and $4 to play game B. Which game would you choose?

13. Wagga Wagga University has 15,000 students. Let X be the number of courses for
which a randomly chosen student is registered. No student is registered for more than
seven courses, and each student is registered for at least one course. The number of
students registered for i courses where 1 < i < 7 is 150, 450, 1950, 3750, 5850, 2550,
and 300, respectively. Compute the expected value of the random variable X.

W Variance, Standard Deviation, and the Law of Averages

The actual value X (a)) of a random variable X can differ drastically from its expected
value E(X). To measure how well the values of X tend to cluster around its expectation
E(X), we define in this section the notions of variance and standard deviation of a random
variable.

Suppose we repeatedly run an experiment, and suppose each time we compute the
average of a certain set of random variables. We do not anticipate that we will get the same
number for the average each time, but we do wonder how this number will behave. Will
we see wild fluctuations in the number from one run of the experiment to the next? This
section studies this issue, and it concludes with a technical version of a theorem known

Variance, Standard Deviation, and the Law of Averages 531

informally as the Law of Averages. The theorem says that under the right circumstances,
the values of the average of random variables computed from one run of an experiment
to another will cluster around the same number; the expected value of their average. The
circumstances under which the Law of Averages holds involve the notion of independent
random variables, which are also introduced in this section.

8.9.1 Variance and Standard Deviation
To measure how much the actual values of a random variable cluster around its expectation,
we define the variance and the standard deviation of a random variable. These measure-
ments of clustering are very important in practice.

Definition 1. Let X be a random variable defined on the sample space 0Ž. The variance
Var(X) of a random variable X is defined as

Var(X) = E (X(()- _)2).p(,)

where it = E (X).

Definition 2. The standard deviation or of a random variable X is defined as

r= Var(X)

Example 1. Suppose we flip two fair coins and list a pair (i, j) for each possible outcome
where i = I if the coin ends up heads and i = 0 if it ends up tails. Define j similarly
for the second coin. The four ordered pairs determine a sample space S2. Use the uniform
probability density function on 02. Define a random variable X on 02 that counts the number
of l's in an element of 02. Determine the variance and the standard deviation of X.

Solution. First, compute px for each value of X: px(O) = 1/4, px(I) = 1/2, and
px(2) = 1/4. Therefore, E(X) = 1. Now,

11

4 2

with standard deviation 1/ /2. 0

Theorem 1. (Properties of Variance) Let X be a random variable defined on sample
space S2 endowed with a probability density p, and let i = E(X). Then:

(a) Var(X) = E((X - g) 2) = E(X 2) _/_2.

(b) Var(kX) = k2 Var(X) for real numbers k.

Warning. In general, E(Y2) : E2 (y), and Var(Xi + X 2) A Var(XI) + Var(X 2).

Proof.

(a) Computing the expectation of the random variable (X - A) 2 gives

E((X -_ I)2) = Z[(X _-)
2

(f.o) . p(fto)] = L(X(0)) _- /)2). p(o)

which by definition is Var(X).

532 CHAPTER 8 Discrete Probability

Regarding the random variable (X - /L)2 as the sum of the random variable X
2

,

the random variable -2fiX, and the constant random variable [L2 allows us to apply
Theorem 3(a) (Linearity of Expectation) from Section 8.7.5:

E((X -_)2) - E(X 2 - 2/jX + A2)

= E(X 2) + E(-2AX) + E(/t 2)

= E(X 2) - 2/ZE(X) +/A2

= E(X2) -_42

since E(X) =/Z.
(b) From Theorem 3(b) in Section 8.7.5, we have E(kX) = kit. Applying part (a) of the

theorem, we are now proving the random variable (kX) gives

Var(kX) = E((kX) 2) - (k/t)2 = E(k2 X 2) - kZ2

By Theorem 3(b) of the previous section, E(k2 X 2) = k2 E(X 2), so

Var(kX) = k2 E(X 2) - k2/t2 = k2 (E(X 2) - /2) = k2 Var(X) 0

Now that we have shown how expectation is calculated for various operations, we see
how to use these results.

Example 2. Suppose we toss a fair coin, associating 1 with heads and - 1 with tails. Thus,

we have a sample space Q2 = {heads, tails), with p(heads) = p(tails) = 1/2 and a random
variable X defined on Q. The range of X is 2x = {-1, 11, with px(-1) = px(1) 1/2.
What is Var(X)?

Solution. First, we need a value for /,, so we compute

E(X) = (-1) + (1) = 0=

Hence,

Var(X) = E((X -)2) = E(X2)

However, E(X 2) is not E 2 (X) = 0. In fact,

E(X 2)= E(X((o)) 2 . p(o() ()(1)2+ (1)2=1

Hence, Var(X) = 1. U

The next theorem shows that when the variance of a random variable is small, this can
be interpreted as meaning that its values tend to cluster around its expected value (mean).

Theorem 2. (Bound on the Probability of Deviation from the Expected Value) Let

X be a random variable on sample space 0Ž, and let A and a 2 denote the mean and variance
of X respectively. For E > 0, let P(IX - Al > E) denote the probability of the event that
X (w) differs from A by e or more. Then, for all E > 0,

-
2

Variance, Standard Deviation, and the Law of Averages 533

Proof. By definition,

or-2 = T-•(x(o) _- t)." P(CO)

Since the summands are all non-negative, the value of the sum certainly cannot increase if
we leave out some of its terms. In particular, let

A = {wo : IX(co) - Al > E}

and just sum over 60 E A. This gives

0,2 > X(w)- /)
2 _ p(w,)

wEA

>- E2P(ft))

(OEA

-= e 2 P(A)
= •2P(0 X - Al >_ E)

Hence,

O-
2

Next, we will use Theorem 2 to prove an important result-the Law of Averages.

8.9.2 Independent Random Variables

Suppose we run an experiment described by a sample space Q2, with random variables X 1

and X 2 defined on Q2. After the experiment produces some outcome (0 E Q, someone tells
us the value x1 = X 1 (w) without telling us the outcome wo. Does this help us to guess the
value x2 = X 2(co)? The answer depends on what the random variables are. Knowing the
value of one may determine the value of the other for some outcomes in Q2. On the other
hand, knowing the value of one sometimes gives no information about the other. Of course,

the outcomes that give rise to the values xi for i = 1, 2 form events

{1 " Xi (w0) = xJi

in QŽ, so we are really asking whether those events are independent.
As usual, we denote events of the form

{fa : Xi(a)) = xi}

by (Xi = xi) where xi is some value in the range of Xi. We denote the event

{(0): Xl()) = X1. Xk(Wo) = Xk}

by (X1 = X.. Xk = Xk).

Definition 3. Let X 1, X 2 ,..., X, be random variables defined on a sample space Q2 en-
dowed with probability density p. Then, X 1, X2 , X, are said to be independent ran-
dom variables if and only if for every choice of XI, x2. x, such that xi is contained in
the range of Xi for i = i, 2 n, the events

(XI = Xl), (X 2 = X2). (Xn = Xn)

534 CHAPTER 8 Discrete Probability

form an independent set. In other words (recall Definition 2 of Section 8.5.1:

P(X 1 = X1, X2 X2- X = X) = H P(Xi = xi)

Example 3. Suppose we toss a fair penny and a fair nickel. The associated sample space
Qa consists of four ordered pairs, each having probability 1/4. Let us define random vari-
ables X 1 and X 2 on Qa by

X (0)= 1 if the coins agree

I -1 otherwise

X 2 ((w) the number of heads in outcome a)

Are X 1 and X2 independent?

Solution. First, we compute the probability distributions induced on x= {1-1, 11 and

fax 2 = {0, 1, 2):

1

PX1) = px 1 (-1) =

1
px2 (O) = -

1
Px 2 (1) =

1Px2 (2) =

There are 2 . 3 = 6 ways to choose xj E fax 1 and x2 E• fx 2 . If XI and X2 were indepen-
dent, we would have to prove it by verifying that for each of the six combinations of xI
and X2 the events (XI = xj) and (X 2 = x2) are independent. However, X1 and X2 are not
independent. To prove this requires only that we find one case for which the formula in
Definition 2 of Section 8.5.1 does not hold. Consider xj = 1 and x2 = 2. The event

(X1 = 1, X2 = 2) = {(heads, heads))

has probability 1/4. On the other hand,

1 1
P(Xi = 1)=px,(l)= - and P(X2 =2)=Px2(2)-

2 4
Hence, the random variables X1 and X 2 are not independent:

1 1
P(X 1 = 1, X 2 = 2) = A # P(XI = 1). P(X 2 = 2)

48

Definition 4. Let X 1, X 2 ... , Xn be random variables defined on the same sample space

Qa. Then X 1, X 2 ... , Xn are said to be independent, identically distributed (i.i.d.) ran-

dom variables if and only if

(a) X 1, X 2 ... , X, are independent.

(b) X 1, X 2 ,..., X, have the same range axj QX,, denoted fQx.
(c) X 1, X 2 ,. X, induce on £2x the same distribution PXl px,, denoted px.

Variance, Standard Deviation, and the Law of Averages 535

Properties (b) and (c) imply that i.i.d. random variables share the same expectation,
variance, and standard deviation. As the next example shows, Bernoulli trials give rise to
i.i.d. random variables.

Example 4. Consider a Bernoulli trials experiment in which a fair coin is tossed n times.
The sample space QŽ consists of 2n n-tuples o), each having probability (1/2)n. Define
random variables Xi on 02 by

Xi (9) I if the coin lands heads on the ith toss
0) otherwise

Each Xi has range {(0,} and induces px(0) = px(1) = 1/2. Is this set of random variables
independent?

Solution. Observe that the Xi's are different as functions. For example, if n = 2
and to = (heads, tails), then X1 (09) = 1 whereas X2(0)) = 0. Now, choose X1, X2. X,
where each xi = 0 or 1, and determine the probability of the event:

(XI =x 1 ,X 2 = x 2 Xn =X.)

Since there is exactly one 0o that corresponds to any particular choice,

1P(X1 = Xl, X2 = X2, '',Xn Xn) = --
2n

On the other hand,

P(Xi = xi) = pXi(xi) = 1/2

Hence,

P(XI = X1, X2 = X2. Xn = Xn) = H P(Xi = xi)

so the Xi are independent. U

Sets of independent random variables have certain properties not shared by all sets of
random variables. Sets of i.i.d. random variables have even more such properties. In the
following discussion, do not assume that a set of random variables is independent, or i.i.d.,
unless this is explicitly stated. For example, an independent set of random variables is not
necessarily an i.i.d. set.

Theorem 3. (Expectation of the Product of Independent Random Variables) Let
X1 and X2 be independent random variables defined on a sample space QŽ with probability
density p. Then, E(X 1 • X 2) = E(XI) • E(X 2).

Warning. If X1 and X2 are not independent, this relation does not necessarily hold.

Proof. By definition,

E(X1 - X2) x • lX2XSxPXI.X2 (x)

XEQX1 .X2

where pxl.x 2 (x) is the probability of the event

(XI " X2 = x) = {[C E Q2IXI(cv) - X2 ((O) = x) C Q2

536 CHAPTER 8 Discrete Probability

Since there may be several pairs of values x1 e Qx 1, and x2 E Qx 2 such that x1 • X2 = X,

we write this event as the disjoint union of other events in Q2. We do this as follows: For
each choice of Xl E Q2x, and X2 E nŽx 2 such that x1 • X2 = x, we put (XI = Xl, X 2 =

X2) C Q2 into the union:

(X1 "X 2 =x)= U (XI =X 1 , X 2 =x 2)

X1 X2=X

where the union is taken over all pairs x1 E n2X1 and x2 E Qx 2 such that x1 • x2 = x. Since
the events in the union are disjoint,

pxx2(x) = P(X1=x1,X 2 =x 2)
X1 *X2=X

where the sum is taken over all pairs Xl E ý2xl and x2 E Q
2x 2 such that x12 = x. Be-

cause X 1 and X2 are independent random variables, we can replace P(X1 = x1, X2 = x2)

by px, (xl) • Px 2 (x2) in this equation, giving

PXI'X 2(X)= Y PXI (Xl)"PX2(X2)
X1 "X2X

Then, substitute for Px1 .x 2 (x) in the expression for E(XI • X 2) to get

E(X. -X2) = x px1 (xl)"px2 (X2)
XEQX 1 .X2 X1 "X2 =X

Y E X1X2"Px(X!)PX 2 (X2)

XEtX 1 .X2 Xl "X2=X

This double sum consists of exactly one summand

Xl " X2 Px 1 (Xl) " pX 2 (X2)

for each choice of a pair x E Qix, and x2 E ý2x 2 since writing out the double sum arranges
the summands so that the ones for which xi • x2 has some particular value x are grouped
together. Now, consider the expression

(: X1 PxI (Xi)) (E X2 'PX2 (X2)) = E (XI) -E(X2)
XiJEXl X2EQŽX 2

When multiplied out, the expression on the left gives exactly the same set of summands.

Hence,

E(X1 • X2) = E(X 1) • E(X 2) U

Now, we use this theorem to derive another important property of independent random
variables.

Theorem 4. (Variance of the Sum of Independent Random Variables) Let

X 1, X2. X, be independent random variables on a sample space QŽ. Then,

Var(Xi + X 2 +... -+- Xn)= I: Var(Xi)

Proof. We prove the statement for n = 2 and leave the proof by induction for n > 2 as an

exercise. Let A, = E(XI) and A2 = E(X 2). By Theorem 3(a) (Linearity of Expectation)

Variance, Standard Deviation, and the Law of Averages 537

from Section 8.7.5, E(XI + X 2) = A1 + A2. Applying Theorem l(a) of this section with
i = Al + A2 gives

Var(XI + X2) = E((X1 + X 2)
2

) - (A, + A2)2

Regarding (X1 + X2) 2 as the sum of the three random variables X2, 2X1X2, and X2 allows

us to apply Theorem 3(a) from Section 8.7.5 again:

E((X1 + X2)2) = E(X2 + 2X 1 X2 + X2)

= E(X2) + 2E(X1 X 2) + E(X 2)

Because X1 and X 2 are independent, Theorem 3 implies that the term 2E(X1 X2) can be
rewritten as

2E(X1 X 2) = 2E(X1) - E(X 2) = 21t2

Replacing E((XI + X2)2) by E(X2) + 2 h1h2 + E(X2) in the expression for Var(X 1 +
X2) and simplifying gives

Var(Xi + X 2) = E((X1 + X 2) 2) - (hi + A2)2

= E(X2) + 2/11/2 + E(X2) - (/1 + A2)2

= (X2) + 2tt1A2 + E (X2) _ (A2 + 2g1A2 + /_2)

2 2 2 2
= E(X2) + 2ttlA2 + E(X 2) _ _12 - 2_2#1I2 _ A2

= E (X2) _-t + E (X2) _-t

= Var(X1) + Var(X 2).

Suppose X1 , X2 X, are i.i.d. random variables with common expectation
E(Xi) = f and common variance Var(Xi) = o 2 . Consider the random variable

Y (X i + "' - + X n)

n

which represents their average. By Theorem 3(c) of Section 8.7.5, we know that

SE(XI +.. + X,) I1
E(Y) = = -... , E(Xi)

n n
i=1

Since the Xi's all have the same mean it, the expectation of their average is

E(Y) = _; = /1
n

i=1

As for the variance of Y, we know from Theorem 1(b) that

Var(Y)=Var((XI+X2 +'+ Xn)) Var(XI+X21+ + Xn)

Since the Xi's are i.i.d. random variables,

Var(XI +... + Xn) Var(X)

538 CHAPTER 8 Discrete Probability

by Theorem 1. Hence,
1 --n or2

Var(Y) = L Var(Xi) =

i=1

Because of their importance, we highlight these results about the mean and the vari-
ance of i.i.d. random variables.

The Mean and Variance of the Average

The average of n i.i.d. random variables with mean /c and variance a2 is a random
variable that also has mean g but variance o"2/n.

We pointed out that the actual value X (w) of a random variable X can differ drastically
from the mean A of X. Theorem 2 gave an upper bound for the probability that X differs
from [t by E or more. If we choose a small value for E-say, E < r-then the bound just
tells us that this probability is at most some number greater than or equal to one, which we
know anyway. The next theorem makes a stronger statement in the case that the random
variable X happens to be the average of i.i.d. random variables X1, X2 Xn.

Theorem 5. (Law of Averages, or The Weak Law of Large Numbers) Let n E N.
Let X 1, X2 Xn be i.i.d. random variables on a sample space 0Ž, and let it and 02

denote their common mean E(Xi) and variance Var(Xi). Then, for 6 > 0,

p (I X1 -'+-X2 -'+ " Xn -/ <E U.2<

n -- - n.*c2

Proof. From the discussion following Theorem 4, we know that /tk is also the expectation
of the random variable

Y (XI Jr"X2 "- "• J"Xn)

n

and that 0.2 /n is the variance of Y. Applying Theorem 2 to Y to get a bound on

P(IY - E(Y)J > e)

gives
p (X + X2 +'"+Xnn </ _) (.2/n)_ -

n 6-2

n E
2

The Law of Averages is particularly interesting if X1 , X2 Xn arise in a Bernoulli
trials process where each Xi is associated with the outcome of some experiment that is
repeated n times. The Xi are i.i.d., there is no restriction on their common distribution,
and we can choose how many times n to repeat the experiment. Furthermore, the expected
value t of the average

y X1 + X2 +... + Xn

n

Exercises 539

does not depend on n. Suppose we choose some small positive value for C. No matter what
we choose, we can make the bound

U
2

n , E2

in Theorem 5 as small as we like by making n sufficiently large. Hence, according to the
theorem, the probability is small that Y = (XI + X2 + -- + Xn)/n will differ by E or
more from its expected value E(Y) = g provided that we run a large enough number n of
trials. Therefore, in this special case, the expected value of the random variable Y does tell
us what to expect the value of the variable to be. Repeating an experiment a large number
of times increases the accuracy of estimating the average. We highlight this important
interpretation below.

Interpretation of the Law of Averages

If we interpret probability as an estimate for frequency of occurrence, then the Law
of Averages says that only rarely will

Y X1 + X2 + "..+ X,Y=xx+..x

n

differ greatly from the expected value of Y, so the actual values of Y do cluster around
the expected value of Y (provided that n is large).

Exercises

1. Compute the variance Var(X) of the random variable X that counts the number of
heads in four flips of a fair coin.

2. Compute the variance Var(X) of the random variable X that counts the number of
heads in four flips of a coin that lands heads with a frequency of 1/3.

3. Define a random variable X on the sample space QŽ by setting X (w) = 3 for all w0 E 2.
What is E(X)? Var(X)?

4. Suppose we flip a fair coin 100 times. Define a random variable X on the underlying
sample space 02 that counts the number of heads that turn up.

(a) What are the mean it and the variance o-2 of X?
(b) Use Theorem 2 to give an upper bound for the probability that X differs from [t

by 10 or more.

5. Suppose we flip a fair coin n times. Let Q2 consist of n-tuples to of H's and T's. Let
Xi (w) = 1 if the ith component of o is an H; otherwise, let Xi (O) = 0.

(a) Do the Xi form an i.i.d. set of random variables?
(b) Let Y = (Xl + - • - + Xn)/n. What is the mean and the variance of Y?
(c) Suppose n = 100. Use Theorem 5 to give an upper bound for the probability that

Y differs from its mean by 0.1 or more.

540 CHAPTER 8 Discrete Probability

6. Continuation of Exercise 5. Record the average number of heads obtained for each
run of 100 flips of a fair coin. Run the experiment many times. What proportion
of these experiments produce an average number of heads that differ from the ex-
pected value for the average by 0.1 or more? Compare with the results of the Exer-
cise 5.

7. Let a random variable X have probability density function

x 1 2 6 8

p(X = x) 0.4 0.1 0.3 0.2

Compute the variance and standard deviation of X with [L = 4.
8. The probability density function for the random variable X defined to be the number

of cars owned by a randomly selected family in Millinocket is given as

x 0 1 2 3 4
p(X = x) 0.08 0.15 0.45 0.27 0.05

Compute the variance and standard deviation of X.

Chapter Review

This chapter introduced the notion of a probability density function p defined on the out-
comes (o of a sample space Q2. The challenge of elementary probability theory is to set up a
suitable sample space and density function so that the situation of interest can be expressed
in terms of events E C QŽ. This takes practice.

First, we showed that using set theory to express sets in terms of other sets and us-
ing counting techniques to determine the size of sets play a crucial role in calculating
probabilities. As the Birthday Problem illustrated, it sometimes is extremely convenient to
compute the probability of an event by determining the probability of its complement and
then subtracting that from one.

The discussion of cross product sample spaces explained how to set up a sample
space and compute probabilities for situations that involve repeated trials of an experi-
ment, such as flipping a coin over and over, or combining several unrelated experiments,
such as checking the status of various communication links. We proved that when k events
Eil, Ei2 Eik occur simultaneously in k different sample spaces Qil, Ii2 I ,

then the probability of such a combined simultaneous event is the product P(Efi).
P (Ei 2) ... P (Ei).

The material on conditional probability showed how to revise probabilities in light
of new information. If events are independent, then no revision is necessary. Otherwise,
Bayes' Rule, which often is used with the Theorem of Total Probability, provides a power-
ful tool for computing conditional probabilities.

Finally, we introduced the idea of a random variable and its expected value. Since
a random variable may have a value that is very different from its expected value, we
introduced the notion of variance and standard deviation of a random variable. It was shown
that expectation is linear. For example, the expectation of a sum of random variables is just

Chapter Review 541

the sum of their expectations. We concluded by discussing how likely it is that the average
of a set of random variables, computed for a particular trial of an experiment, differs greatly
from the expected value of their average. To obtain the Law of Averages, we introduced
the notion of sets of i.i.d. random variables.

8.11.1 Terms and Theorems

8.1-8.2 Summary

TERMS

chance pips
countably infinite sample space probability
discrete sample space probability density
disjoint union probability density function
element probability of the outcome
event sample space
experiment spots
fair subset
frequency interpretation uniform probability density function
occur value
outcome

THEOREMS

Elementary Probability Facts
Probability of the Complement

8.3 Summary

TERMS

Bernoulli process Probability Multiplication Principle
Bernoulli trial process Probability of Cross Product Events
b(n; k, p) Product of Sums Principle
cross product success
cross product sample space trials
failure

THEOREMS

Probability Density on a Cross Product
Sample Space Probability of Events of Cross Product

Probability of k Successes in a Bernoulli Form
Process

8.5 Summary

TERMS

conditional probability dependent trial independent
communication channel disjoint events independent set of events

reliability independence

542 CHAPTER 8 Discrete Probability

THEOREMS

Bayes' Rule
Total Probability

8.7 Summary

TERMS

binomial distribution function
binomially distributed hypergeometric distribution
constant random variable h(k; n, r, m)
discrete random variable mean
distribution AI
expectation random variable
expected value

THEOREMS

Basic Property of Expectation Probability Density Defined by a Random
Linearity of Expectation Variable

8.9 Summary

TERMS

independent random variables or
independent, identically distributed standard deviation

(i.i.d.) random variables variance

THEOREMS

Bound on the Probability of Deviation Properties of Variance
from the Expected Value Variance of the Sum of Independent

Expectation of the Product of Independent Random Variables
Random Variables

Law of Averages, or the Weak Law of
Large Numbers

8.11.2 Starting to Review

1. What is a sample space? An outcome? An event?
2. What conditions must a function on a sample space satisfy to be a probability den-

sity function? What is the difference between the probability of an outcome and the
probability of an event?

3. What condition on a probability density function p on the sample space QŽ makes p
a uniform probability density function? Define a uniform probability density function
on the possible results of rolling a fair die. Compute the probability that the top face
after the roll of a fair die shows more than four spots, an even number of spots, and
either one or five spots.

4. List the probability of each outcome in the cross product sample space formed from
the sample space for flipping a fair coin and the sample space for choosing a number
from the set {1, 2, 3, 4). For each sample space, use a uniform probability density
function.

Chapter Review 543

5. Flip a fair coin eight times. What is the probability of getting five heads? If the coin is
biased and comes up heads only 40% of the time, what is the probability of five heads
out of eight flips? of six heads out of eight flips?

6. What does it mean that two events are disjoint? What does it mean that two events are
independent? Are disjoint events independent? Consider two events based on rolling a
fair die one time: The first event is getting an odd number of pips on the top face, and
the second event is rolling either a 3 or a 6. Are these two events an independent pair
of events?

7. State Bayes' Rule. Compute the probability for rolling a fair die twice and getting
three pips both times, knowing that the first roll does result in three pips. What does
your intuition suggest as an answer? Use Bayes' Rule to verify your intuition.

8. Define a random variable on the sample space that gives the sum of the values on the
top faces after rolling two fair die. Suppose the sample space of 36 pairs has a uniform
probability density defined on it. Determine P (X = x) for each value x of X.

9. Define a random variable X that counts the number of tails that result from flipping
a fair coin three times. Let the sample space for flipping the coin have a uniform
probability density function. Compute the expectation or mean of X.

10. Choose a random number from the sample space {1, 2, 3, 4, 5}, and flip a fair coin,
resulting in either heads or tails appearing on the top face. Let both sample spaces
have a uniform probability density function defined on them. Let the random variable
X have value twice the number drawn if heads is flipped and just the value of the
number drawn if tails is flipped. The mean of the random variable is 4.5. Compute the
variance and the standard deviation of X.

8.11.3 Review Questions

1. Let 2 = {1, 2, 3, 4, 5, 6}, A = {1, 2, 3}, B = {3, 5, 6}, and C ={2, 4, 6. Describe the
following events:

(a) At least one of the events A or B occurs.
(b) Exactly one of the events A or B occurs.
(c) At least one of the events A, B, or C occurs.
(d) Exactly one of the events A, B, or C occurs.
(e) All three of the events A, B, and C occur.
(f) Exactly two of the events A, B, or C occur.
(g) At least two of the events A, B, or C occur.
(h) None of the events A, B, and C occurs.
(i) No more than one of the events A, B, or C occurs.
(j) No more than two of the events A, B, or C occur.
(k) A occurs, but neither B nor C occurs.

2. An electronic system of n components is said to be a series system if failure of at least
one component causes a system failure. It is called a parallel system if the system fails
only when all components fail. Suppose that 15 components are connected in a parallel
system and that each component has probability 1/20 of working properly. What can
be said about the probability of a system failure?

3. What is the probability that a randomly chosen integer is a member of the set of num-
bers divisible by 3? Not divisible by 5? Divisible by either 4 or 6?

544 CHAPTER 8 Discrete Probability

4. Find the probability that at a deal of a hand of bridge, at least one of the four players
will have 13 cards of the same suit.

5. Assign a probability density function to the possible outcomes of adding the sum of
the top faces after the roll of a pair of fair dice. What is the probability that both top
faces have the same value?

6. It is known that 10% of certain articles manufactured are defective. What is the prob-
ability that in a random sample of 12 such articles, at least 9 are defective?

7. A chain of home entertainment stores sells three different brands of DVD players.
Fifty percent of its sales are brand 1, 30% are brand 2, and 20% are brand 3. Each
manufacturer offers a one-year warranty on parts and labor. It is known that 25%
of brand l's DVD players require warranty repair work, whereas the corresponding
percentages for brands 2 and 3 are 20% and 10%, respectively.

(a) What is the probability that a randomly selected purchaser has bought a brand 1
DVD player that will need repair under warranty?

(b) What is the probability that a randomly selected purchaser has a DVD player that
will need repair while under warranty?

(c) If a customer returns to the store with a DVD player that needs warranty repair
work, what is the probability that it is a brand 1 DVD player? A brand 2 DVD
player? A brand 3 DVD player?

8. Four individuals have responded to a request by a blood bank for donations. None
of the four has donated before, so each person's blood type is unknown. Suppose that
only type A positive is desired and that only one of the four actually has this type. If the
potential donors are selected in random order for blood typing, what is the probability
that at least three individuals must be typed to find a donor of type A positive?

9. Show that the three following events based on the toss of two fair coins are indepen-
dent: E1 is the event "even on the first die." E2 is the event "even on the second die."
E3 is the event "even sum."

10. Three automatic machines produce similar automobile parts. Machine A produces
40% of the total, machine B 25%, and machine C 35%. On average, 10% of the parts
turned out by machine A do not conform to specifications, and for machines B and C,
the corresponding percentages are 5% and 1%, respectively. If one part is selected at
random from the combined output and does not conform to the specifications, what is
the probability that it was produced by machine A?

11. Let K2 = (Wl, .2 ... ,7} be a sample space that represents parcels of a large lot di-
vided into sublots for sale. The percentage of the total area for each lot and the price

for each lot is as follows:

% Area Cost

o91 5 800
(02 10 900

w3 10 1000
(04 10 1200
o05 15 800
a06 20 900
o07 30 800

Chapter Review 545

Define the random variable X to be the price of the lot for 601, 02. (07. Find the
expected value of X.

12. Let a random variable X have probability density function as follows:

x 3 4 5

p(X = x) 0.3 0.4 0.3

Compute the variance and standard deviation of X.
13. A computer store has purchased three computers of a certain type at $500 apiece. The

computers then are sold for $1000 each. The manufacturer has agreed to repurchase
any computers that remain unsold after one month for $200 each. Let X be the ran-
dom variable that denotes the number of computers sold. Suppose the probabilities
for selling i computers for i = 0, 1, 2, 3 are p(O) = 0.1; p(l) = 0.2; p(2) = 0.3; and

p(3) = 0.4. Let h(x) denote the profit from selling X units. Find the expected value
of h as well as the standard deviation and the variance.

14. Student workers find that 75% of all help desk inquiries involve programs with syntax
errors. Let X be the random variable that counts the number of programs with syntax
errors in 10 randomly chosen consultations. Find the expected value, the variance, and
the standard deviation of this random variable.

8.11.4 Using Discrete Mathematics in Computer Science

1. Consider sending a job through the series-parallel system of processors as shown:

The system consists of four stages connected in sequence. Each stage i consists of
identical processors connected in parallel. Each processor at stage i has probability pi
of being up. A job makes it through the system if and only if at least one processor at
each stage is up. We want to determine the probability that a job makes it through the
system.

(a) Model this situation with a cross product sample space Q = Q1 X Q2 X 23 X
Q24. Describe in detail the component sample spaces £i, their probability density
functions fi, and the cross product probability density f. (Hint: It may be useful
to assign labels to the individual processors.)

(b) Let Ai C "i be the event "at least one of the processors at stage i is up." List the
elements of Q2i belonging to Ai. What is P(Ai)?

(c) Let Bi C Qi be the event "none of the processors at stage i is up." List the elements
of Bi. What is P(Bi)?

(d) Describe the event A. c £i that corresponds to Ai g Qi. What is P(A*)?
(e) Describe the event Bi C £2 that corresponds to Bi c Q2. What is P(B7)?

546 CHAPTER 8 Discrete Probability

(f) Describe in detail the event E C Q2 that at least one processor at each stage is up,
and write an expression for its probability. (You may use complements of events.)

2. Suppose we double the numbers of processors at each stage of the series-parallel sys-
tem in Exercise 1. Compare the probability that a job makes it through the new system
with the probability that a job makes it through the old system.

3. Suppose one of the processors of stage 4 in Exercise 1 is removed and put in parallel
with the processor at stage 3. Now, stage 3 has two parallel processors, one of which
has probability P3 of being up and the other of which has probability P4 of being up,
and stage 4 has two parallel processors, each with probability P4 of being up. Answer
parts (a) through (f) of Exercise 1 for this new system.

4. The probabilities of an event often can be evaluated by determining the probability
density function and then summing it over the outcomes in the event. However, the
theory developed in Section 8.5 often leads to simpler computations. This exercise
illustrates the two approaches.

Consider the nonseries-parallel system as shown:

nl n2

S < >t

n3 n4

The system works correctly provided at least one of the directed paths from s to t has
all its intermediate nodes working. For i = 1, 2, 3, and 4 let pi denote the probability
that node ni is working, and assume that the nodes function independently of one
another. Let W denote the event "the system works correctly." You will be asked to
describe the situation in terms of a cross product sample space

S= 0 1 X '22 X QiŽ3 X 24

As usual, if Ei C Qi is an event in Qi, then E7 C Q2 denotes the corresponding event
in QŽ. Make sure to explain your answers.

(a) Let fj for i = 1, 2, 3, and 4 be the probability density function on Qi. Describe
the situation in terms of a cross product sample space:

Q = 1 X Q2 X Q3 X 24

Specify a legitimate probability density p on Q2 in terms of probability densities
fi on Qi. (Recall that pi is the probability that node ni works.)

(b) Describe the event "the system works correctly" as a subset W C 2, and give an
expression for P (W) by summing the probability density p you defined in part a
on the outcomes in W. This will be a little tedious, which is part of the point this
exercise illustrates.

(c) Let E* C Q_ denote the event that node ni works. How many outcomes of Q2 be-
long to Ei*?

(d) Compute P(E*) by using the theory of cross product sample spaces rather than
by summing p(a)) over (o c E7.

Chapter Review 547

(e) Note that QŽ is the disjoint union of the events E* and E*. Use this observation
and the Theorem of Total Probability to give an expression for P(W).

(f) Give an expression in terms of P2 and P4 for the probability that nodes n2 and n4
both fail. Justify your answer.

(g) Note that if n, works, then the system works unless n2 and n4 both fail. Use this
observation and the result of part (f) to give an expression for P(W I E*).

(h) Note that if n I fails, then the system can be thought of as a new, simpler sys-
tem consisting of n3 followed by the parallel pair n2, n4. This new system works
provided n3 and at least one of n2, n4 work (compare with Exercise 1). Use this
observation to give an expression for P(WI E*).

(i) Refine the expression for P(W) found in part (e), writing it in terms of the pi.

5. Let pi denote the probability that any particular code symbol is erroneously transmit-
ted through a communication system. Assume that on different symbols, errors occur
independently of one another. Suppose also that with probability P2, an erroneous
symbol is corrected on receipt. Let X denote the number of correct symbols in a mes-
sage block consisting of n symbols (count after the correction process has been carried
out). What is the probability distribution of X?

6. A computer disk storage device has 10 concentric tracks (numbered 1, 2, ... , 10 from
outermost to innermost) and a single access arm. Let p, be the probability that any
particular request for data will take the arm to track i where 1 < i < 10. Assume that
the tracks accessed in successive seeks form an independent process. Let X be the
number of tracks over which the access arm passes during two successive requests.
Here, if the next track is different from the current track, X counts all the intermediate
tracks plus the new track. For example, going from track 3 to track 7, the arm passes
over tracks 4, 5, and 6 and then lands at track 7, so this gives X = 4. If two succes-
sive requests are for the same track, then X = 0. Hence, the possible values of X are
0, 1..., 9. Compute the probability density function of X. (Hint: P(the arm is now
on track i and X = j) = P(X = j arm now on i) • pi. After writing the conditional
probability in terms of pl, P2,..., pl0 using the Law of Total Probability, the desired
probability is obtained by summing over i).

7. An electronic system consisting of n components in series fails if at least one compo-
nent of the system fails. An electronic system consisting of n components in parallel
fails only if all n components fail. Two parallel systems of three elements each are in
series as shown:

System System2

Let Aij be the event that component i in system j fails, where 1 < i < 3 and 1 < j <
2. Write the event that the system fails using the terms Aij.

548 CHAPTER 8 Discrete Probability

8. A system has four components numbered 1, 2, 3, and 4 as shown:

The system performs if either component 1 or component 2 performs or if both com-
ponents 3 and 4 perform. Each component has probability 0.9 of performing, and all
the components are independent. What is the probability the system performs?

9. Recall the 3-satisfiability problem: We are given a set of m clauses, each of which
contains three boolean variables connected together by OR's; the clauses are then con-
nected together by AND's. For example, we might want to assign truth values to the
variables X1 , X2 X5 so that the expression

(X1 OR X 3 OR -X 5) AND (X1 OR -X 2 OR X4)

is true. Here, there are only m = 2 clauses and n = 5 variables. In general, for n vari-
ables (not counting their complements separately), we might have to try as many as 2n
truth assignments to the variables to determine whether the clauses can all be simulta-
neously satisfied. We can assume that no variable appears more than once in the same
clause (whether complemented or not). If X appears with -X in the same clause, then
the clause is automatically satisfied. If X appears more than once in the same clause,
that is redundant, so the clause does not truly contain three variables. (As an example
of how probability theory can help to solve a problem that otherwise would seem to re-
quire examining an exponentially large number of cases, consider the following idea:
For each variable, toss a fair coin. If the coin comes up heads, then set the variable
to TRUE and its complement to FALSE. If it comes up tails, then make the opposite
assignment). What is the expectation of the number of clauses that will be satisfied?

Recurrence Relations

The analysis of algorithms is an area of interest in computer science, because it directly
benefits the wise programmer. Program design and analysis involves making decisions
about how tasks should be accomplished in a program. When a task such as sorting or
searching can be accomplished in several ways, the programmer should be aware of the
performance characteristics of the various alternatives. The analysis of algorithms often
uses the theory of recurrence relations to make meaningful comparisons among various
methods for accomplishing the same task. The chapter begins by discussing the Tower of
Hanoi problem and then finding and solving a recurrence relation that describes the com-
plexity of this problem. We then find a solution for all such recurrence relations. Next, we
deal with a method for solving more general recurrence relations. Finally, we give exam-
ples and an analysis of recurrence relations that arise from divide-and-conquer algorithms.

U The Tower of Hanoi Problem

The Tower of Hanoi problem has a long and colorful history. The problem has appeared
under many names and is part of the folklore of many cultures. You start with a set of
disks, each with a differents radius, stacked on a peg so that no disk is on top of another
disk with a smaller radius. The problem consists in moving the stack of disks on one peg
to another peg, with the use of a third peg as a temporary location so that no disk ever sits
on top of a disk with a smaller radius. The difficulty arises from the requirement that at
no time can a disk be placed on top of a smaller disk. It is fabled that when the problem
is solved for a stack of 64 disks, the world will come to an end. A picture of an initial
configuration for a stack of three disks is shown in Figure 9.1.

Peg I Peg 2 Peg 3

Figure 9.1 Tower of Hanoi for three disks.

549

550 CHAPTER 9 Recurrence Relations

In Figure 9.2, examples of legal and illegal moves are shown. The algorithm for solv-

ing the problem for n disks that is presented here involves solving a similar problem for
n - 1 disks twice. An implementation of this algorithm involves recursive calls to the
procedure.

Peg I Peg 2 Peg 3 Peg I Peg 2 Peg 3

(a) Legal Move

I C-L _ I _ '

Peg I Peg 2 Peg 3 Peg I Peg 2 Peg 3

(b) Illegal Move

Figure 9.2 Examples of legal and illegal moves, a. Legal move. b. Illegal move.

The Tower of Hanoi Problem 551

It is instructive to follow the steps of the procedure for an initial configuration in-
volving three disks. The steps in this recursive procedure are shown in Figure 9.3 using
a tree. The actual computation order can be found by an inorder traversal of the tree (see
Section 6.12.3).

TRANS(3,,1,23,32)

TRANS(1, 2, 1,3) T RANS(1, 1, 3, 2)

Figure 9.3 Recursion tree for Tower of Hanoi algorithm.

INPUT: Three pegs, named 1, 2, and 3, and N disks stacked by decreasing radius
on peg 1, with the biggest disk at the bottom

OUTPUT: The N disks are stacked by decreasing radius on peg 3, with the biggest
disk at the bottom

TRANS(N, 1, 3, 2) /* Move the top N disks from peg I to peg 3 */

TRANS(k, PegFrom, PegTo, PegUsing) !* The recursive procedure */

1. if (k = 1) then
move the top disk from PegFrom to PegTo

else
TRANS (k-i, PegFrom, PegUsing, PegTo)
move the top disk on PegFrom to PegTo
TRANS (k-i, PegUsing, PegTo, PegFrom)

552 CHAPTER 9 Recurrence Relations

9.1.1 Recurrence Relation for the Tower of Hanoi Problem

The complexity of an algorithm is described by a function of n that gives the time required
to execute the algorithm when n is the size of the input for the algorithm. In the case of the
Tower of Hanoi problem, the amount of time that is needed to solve the problem for n disks
depends directly on the number of disks that are moved. Therefore, define the complexity
of the algorithm given for solving the Tower of Hanoi problem to be the function T(n), the
value of which is the number of disk moves that are required to solve the problem with n
disks.

The algorithm consists of a single if... then ... else construct. The complexity of an
if... then ... else construct is found by determining the complexity of the TRUE and the
FALSE ranges separately and then taking the maximum of the two complexities as the com-
plexity of the construct (see Section 5.3.2). Since it is not known if the branch that is more
complex is ever actually executed, the estimate for the complexity of an if... then ... else
construct is usually just an upper bound for the complexity of this portion of the solution for
the problem. To analyze the complexity of the TRUE range, observe that the TRUE range
(line 1 of the Tower of Hanoi algorithm) consists of a single disk move. The complexity of
this is 1. For the complexity of the FALSE range (lines 2-4), observe that line 2 and line 4
require the solution of the problem twice for a stack of n - 1 disks. Also, line 3 requires
one additional disk move. Thus, the complexity of the FALSE range is 2T(n - 1) + 1.
Since the FALSE range of this condition is executed for n > 1, the function T(n) is exact
and not just an upper bound. The equation that gives the number of disk moves needed for
the algorithm presented is

T(n) =2T(n-1)+l fornn>ll

' 11~l for n =1I

The expression for T(n) is called a first-order recurrence relation, because the value of
T at any value n > 1 is given in terms of the value of T at a value smaller by 1-that is, by
n - 1. The value of T at 1 is called an initial value. A function of n that gives the values
of the recurrence is called a solution of the recurrence relation. In many instances, a good
start for finding the solution of a first-order recurrence relation will involve a process called
back substitution, which will be explained.

9.1.2 Solving the Tower of Hanoi Recurrence

To solve the Tower of Hanoi recurrence, begin with T(n). Replace the occurrence of
T(n - 1) on the right-hand side with its representation in terms of T(n - 2). Continue
the replacement procedure for smaller and smaller values until T (1) is the only value of T
occurring on the right-hand side. The result of this substitution process gives T (n) in terms
of n and T(1). Since T(1) = 1, this reduction process gives T(n) as a function of n alone
and not as an expression involving values of T (k) where k < n. The first three steps in this
process for the Tower of Hanoi recurrence relation are as follows:

T(n) = 2T(n - 1) + 1

= 2(2T(n - 2) + 1) + 1 substitution for T(n - 1)

= 4T(n - 2) + 2 + 1

= 4(2T(n - 3) + 1) + 2 + 1 substitution for T(n - 2)

The Tower of Hanoi Problem 553

= 8T(n - 3) + 4 + 2 + 1
2

= 23T(n - 3) + Z2'
i=0

At this point, we want to look at the results of back substitution and see if a pattern is
emerging. Seeing a pattern may suggest what will result from the remaining steps needed
to reduce T(n) to an expression involving n and T(l).

In the case when the right-hand side contains T(n - i) for i = 1, 2, and 3, observe two
things: the power of 2 in the expression that is the coefficient of T (n - i) is 2i, and the other
constants on the right-hand side of the expression that are summed are 20, 21 ... 2 i-1. If
this is the pattern that will continue, then it appears that after i steps, the representation for
T(n) would be

T(n) = 2iT(n - i) + 2i- 2 +2-2±+...+2+1

Using this pattern and continuing the back substitution for n - 2 steps, the resulting
expression is

T(n) = 2` 2 T(2) + 2 -3 + 2n-4 + ... + 2 + 1

One more back substitution step gives T(n) as a function of n and T(1):

T(n) = 2n-2(2T(1) + 1) + 2n-3 + 2n-4 + .-. + 2 + l

= 2n-lT(l) +2n-2 +2n-3 +...+2+1

Since the initial value for T (1) = 1, we replace the reference to the function T on the
right-hand side and get

T(n) =2n- +2n-2+...+2+1
n-1

i=0

We compute a closed form for this sum as explained in Section 1.7.5. The computation
with ratio 2 is

2T(n) = 2 + 4 +.••+2 2n-2 +2 2n-1 +2 2n
-T(n) = 1 +2+4+... + 2n-2 +2n-1

T(n) = 2n - 1

The back substitution has led to a function of n that we must now prove to be the
solution for the Tower of Hanoi recurrence relation, because the generalization step in
back substitution is not a proof. The generalization from the pattern for three terms to a
pattern for all the terms was only justified by the idea that the pattern would continue as
it was developing. A formal proof of a property for all values of n requires a proof by
induction.

Theorem 1. For n > 1, T (n) = 2n - 1 is a solution for the Tower of Hanoi recurrence
relation.

554 CHAPTER 9 Recurrence Relations

Proof Letn 0 =l.LetT={n eN:T(n)=2n-1}.

(Base step) First, show that the conclusion holds for n = 1. T(l) = 1 = 21 - 1 There-
fore, for n = 1, the formula gives the correct value for T(1) and 1 E T.

(Inductive step) Let n > no. Assume that T(n) = 2n - 1 is a solution, and show for
n + 1 that T(n + 1) = 2n+1 - 1 is a solution:

T(n + 1) = 2T (n) + 1 Definition of recurrence relation

= 2(2n - 1) + 1 Induction hypothesis

= 2n+1 - 1

Therefore, n + 1 E T.
By the Principle of Mathematical Induction, T(n) = 2n - 1 for n > 1. U

After analysis of this sort, a knowledgeable comparison of this algorithm with any
other algorithm that solves this problem can be made by comparing the functions that
represent the complexity of each solution method.

rnSolving First-Order Recurrence Relations

The method of solution used for the Tower of Hanoi recurrence relation can be used to solve
the general class of first-order recurrence relations. After formalizing the terms needed to
describe a general first-order recurrence relation, a solution method will be given.

Definition 1. A first-order recurrence relation is an expression of the form

T(n)= IcT(n-1)+f(n) forn >k
If (k) for n = k

defined for all natural numbers greater than or equal to some positive integer k where c is
a constant and f is a function of n for n = k, k + 1, k + 2

The recurrence relation is of the first order, because T(n) is defined as a function
involving the value T(n - 1) but no other values T(1) where 1 < n. The value of T at
n = k is called an initial value or a boundary value. The initial value can be used to
calculate values of T (n) for increasingly larger n. For example,

T(k + 1) = cT(k) + f(k + 1)

will give T(k + 1) in terms of the known values for T(k) and f(k + 1). The boundary
value will often be the value T(0) or T(1), but it can be the value of T for any natural
number. When the boundary value is not given as the value T (0) but as T (k) for k > 0,
the recurrence relation may not be defined for values less than k. The function f can be
any function of n, but it quite often is a constant or a polynomial function of n. The more
complex the function f, the more difficult it is to put the solution of the recurrence relation
in a simple form.

It is helpful to examine the Tower of Hanoi recurrence relation again and identify all
its parts in terms of the new definitions. The recurrence relation is

T(n) =2T(n-1)+1 fornn>2
11 forn = I

Solving First-Order Recurrence Relations 555

In this case, c = 2, f(n) = 1 for all n > 1, and the boundary value is given for k = 1. Since
T(n) is given as a function of T(n - 1), this is a first-order recurrence relation. Because
the function f is not the zero function, it is called nonhomogeneous.

9.2.1 Solving First-Order Recurrences Using Back Substitution

After finding a solution for the general first-order recurrence relation with constant
coefficient for T(n - 1), we will apply the result to solving some special cases.

Theorem 2. (Solution of First-Order Recurrence Relations) The solution of

T(n)= IcT(n-1)÷ f(n) forn>k

If (k) for n = k

where c is a constant and f is a nonzero function of n for n > k is

n

T(n) = cn-lf(l)

l=k

Motivation for the Proof. First, use back substitution to decide what the general form
of the solution might be, and then prove by induction that this is the solution:

T(n) = cT(n - 1) + f(n)

= c(cT(n - 2) + f(n - 1)) ± f(n)
= c 2 T(n - 2) + cf(n - 1) + f(n)

= c 2 (cT(n - 3) + f(n - 2)) + cf (n - 1) + f(n)

= c 3 T(n - 3) + c 2f(n - 2) + cf(n - 1) + f(n)

Using back substitution one more time gives

n

T(n) = c 3 [cT(n - 4) + f(n - 3)] + -- cn-lf(l)
l=n-2

n

= c 4 T(n - 4) + c 3f(n - 3) + Y cn-lf()
l=n-2

n

= c 4 T(n - 4) + - cn-f(l)

l=n-3

If back substitution is continued until the argument of T is k-that is, for n - k steps-then
the expression for T(n) becomes

nT (n) = cn-k T(n -- (n -- k)) +4 E cn-l f(l)

I=n-k+l

n

= cn-kT(k) + E cn-lf(1)
l=n-k+l

556 CHAPTER 9 Recurrence Relations

Since T(k) = f(k), replace the reference to T on the right-hand side of the equation,
getting

n

T(n) c'- -kf(k) + E cn-lf(1)

I=n-k+l

n

- L cn- 1 f(l)

l=n-k

Proof By induction, show that

n

T(n) = -cn-f(l)

l=k

Let no = k. Let T = {n E N : n > k and T(n) is a solution).

(Base step) First, show that

n

T cn-lf(1)
l=k

is a solution for n = k so that k E T.

k

Y ck-lfl) = ck-kf(k) = f(k) = T(k)
I=k

(Inductive step) Now, assume that T(n) is given by this expression for n > no, that is,
T(n) = _,-k cn-f(1). Now prove that T(n + 1) is also given by this expression: In this

case, prove that T(n + 1) = Z___+ cn-f(1).

T(n + 1) = cT(n) + f(n + 1) (Definition of recurrence relation)
n

= cY cn-f(l) + f(n + 1) (Inductive hypothesis)
l=k

n

= cn-'+'f(1) + f(n + 1)
l=k

n+1

= _cn+tl-f(1)
l=k

This proves n + 1 E T.
By the Principle of Mathematical Induction, T = In E N : n > k}. U

Corollary 1. The solution of

T(n) = JT(n-l)+f(n) forn>O

If (O) forn = O

is T(n) = y-n 1 f(k)

Solving First-Order Recurrence Relations 557

Proof In the general formula, let c = 1 and k = 0. 0

Corollary 2. The solution of

T(n)=cT(n-1)+d forn > 0
forn = 0

where c and d are real numbers and c # 1 is

Cn+- 1
T(n) = d. c--1

Proof In the general formula, let f(n) = d for n > 0 and k = 0. The sum becomes

n

T(n) = d. Z ck

k=O

Cn+
1 - 1

=d.
c--1

When c is not equal to 1 in the general formula and the function f(n) is a constant for
all n > k for some k, the solution becomes the sum of a finite geometric series.

In the case f(n) is not a constant, a wide range of functions exist for which Y n=o f(k)
is known, but the answers often entail using more complicated summing techniques than
those presented here. Examples using Theorem 2 and its corollaries will give some indica-
tion of the problems that can be solved using this result.

Example 1. Solve

T (n)=o(n - 1)+n2 forn > 1

for n =0

Solution. In the general formula, f(n) = n2 for n > 0, c = 1, and k - 0. Since T(0) =

f(0), by Corollary 1 the solution is

T(n)= I 2
-. (2n + 1). n . (n + 1)6

l=l

See Theorem 9(b) in Section 7.10 for a derivation of this formula. U

Example 2. Solve

T(n) •3T(n-1)+4 forn > 1

1f~4 for n = 0

Solution. In the general formula, f(n) = 4 for n > 0, c = 3, and k = 0. By Corollary 2,
the solution is

3nl+1 - 1
T(n) = 4 3n-1 -- 2 .(3n+1 - 1)

3- 1

558 CHAPTER 9 Recurrence Relations

rn Exercises

1. Solve T(n) = T(n- 1) +n forn > I with T(0) = 2.
2. Solve T(n) = T(n - 1) + n for n > I with T(0) = 7.
3. Solve T(n) = T(n - 1) + 2n + I for n > I with T(0) = 1.
4. Solve T(n) = T(n - 1) + 5 for n > I with T(0) = 1.
5. Solve T(n) = T(n - 1) + 2 for n > I with T(O) = 2.
6. Solve 2T(n + 1) - T(n) = 3 for n > I with T(0) =3.

7. Solve T(n + 1) =-- -T(n) + I for n > I with T(0)= 1.
8. Solve T(n) = T(n - 1) + I forn > I with T(0) = 1.
9. Solve T(n) = T(n - 1) + n for n > 2 with T(1) = 1.

10. Solve T(n) = T(n - 1) + n for n > 2 with T(1) = 0.
11. Solve T(n) = T(n - 1) +-n 3 forn > I with T(0) = 0.
12. Solve T(n) = T(n - 1) - n + 3 for n > I with T(0) = 2.
13. Solve T(n) = T(n - 1) + 2 for n > I with T(0) = 1.
14. Consider n coplanar straight lines, no two of which are parallel and no three of which

pass through a common point. Find and solve the recurrence relation that describes the
number of disjoint areas into which the lines divide the plane.

15. Find and solve the recurrence relation for the number of ways to arrange n distinct
objects in a row.

16. Find and solve the recurrence relation that describes the number of regions created
by mutually overlapping circles on a piece of paper provided no three circles have a
common intersection point and each pair of circles intersects in exactly two points.
Begin by drawing a picture for such a configuration when n = 1, 2, 3, and 4.

17. How many strings of length n formed using the alphabet {0,1,2,3} have an even number
of zeros?

18. A very old puzzle book (dated 1917) contained the following problem: A man had a
basket containing n potatoes. He asked his child to place these potatoes on the ground
in a straight line. The distance between the first and second potatoes was to be one
yard, between the second and third potatoes three yards, between the third and fourth
potatoes five yards, and so on. After placing all the potatoes as required, how far would
the child walk, starting at the first potato, to pick up all n potatoes? How many potatoes
would the child pick up in the first mile of walking?

19. The population of a fruit fly colony doubles every day. If a colony of fruit flies has 100
members at the start of an experiment, how many fruit flies will be present after n days?
If the population triples every day, how many fruit flies will be present after n days?

20. The value of a dollar investment after n years of compounding at an interest rate of
i percent per year is the future value of the investment and is denoted FV(n). Find

and solve a recurrence relation that gives FV(n) in terms of FV(n - 1). Assume that
interest is calculated at the end of each year. What will be the future value of $1000

after 3, 4, 5, and 10 years? Compare this to Exercise 33 in Section 1.9.
21. Find the general solution for a first-order homogeneous recurrence relation with con-

stant coefficients. Is the restriction that the coefficients be constant necessary?
22. Two versions of the bubble sort are given below. Determine the complexity of each

procedure. For the recursive version of the code, find and solve the recurrence relation

Exercises 559

that describes the complexity of the procedure by counting the number of comparisons
made between pairs of elements.

INPUT: An array A containing N integers

OUTPUT: The integers sorted in nondecreasing order

for J = 1 to N - 1 do
for I= IltoN -lIdo

if (A[I] > A[I + 1]) then swap their values

INPUT: An array A containing N integers
OUTPUT: The integers are sorted in nondecreasing order

RecursiveBubble (N) /* The initial call */

RecursiveBubble (k) /* The recursive procedure *!
if (k = 1) then

return
else

for I = 2 tok do
if A[I] < A[I - 1] then

swap their values
RecursiveBubble(k - 1)

23. Let A be an array with N elements for some positive integer N. SelectionSort
sorts the elements of A in decreasing order by swapping the largest element in
A[1], A[21, A[31]..., A[S - 1] with A[S] where S ranges from N down to 1. Find
and solve a recurrence relation that describes the complexity of SelectionSort. Let
comparison of two elements be the key operation. Assume that the minimum opera-
tion on a set of size M requires M - 1 comparisons for any M E N.

560 CHAPTER 9 Recurrence Relations

Algortm Seeto Sor

INPUT: A list of distinct values List[] . List[N]
OUTPUT: List[l],.... List[N] with values in increasing order

SelectionSort(List, N) /* Initial call *!

SelectionSort (List, M) /* Recursive procedure *!
if (M = 1) then

return
else

S = index of maximum element of List[1 .. M]
Temp = List[S]
List[S] = List[M]
List[M] = Temp
SelectionSort(A, M - 1)

24. For 2 x 2 matrices, the complexity of matrix multiplication can be determined us-
ing the algorithm described below where the number of arithmetic operations (ad-
ditions, subtractions, and multiplications) are one measure of complexity. Let A =

all a12) and B = (bill b12) Calculatea21 a22 b 2

mI = (all a22)(biI +-b22)

m5 = (a 2 1 + a22)bl1

M = (all - a22)(b21 + b22)
M6= all(b12 - b22)

m3 = (all - a21)(bll + b12)

M7= a22(b21 - biI)
m4 = (all +al 2)bll

Now, letC= (Cli C12 " where
(C21 C22/

Cll = ml + m 2 - m 4 + m 7

C12 = m4 + m6

C21 = m5 + m7

C22 = ml - m3 - m 5 + m6

Fibonacci Recurrence Relation 561

(a) Use the algorithm described to find the matrix product for

() (;2)
(b) For matrices of size 2 r x 2r, partition them into 2 r-1 x 2 r-1 submatrices, and

use the procedure shown for 2 x 2 matrices to compute the product. Carry out this
process for the following matrices:(352 2\ 27 3

487 5I 9 946
4 69 9I 3 5 981
(3697/ (5s321)

(c) Show that matrix multiplication using this algorithm satisfies the recurrence
relation

fr = 7fr-1 + 18.2r- 2 for r > 1

Solve this recurrence. How does this result compare with the classical method of
multiplying matrices?

25. Write a procedure to solve the general n-disk Tower of Hanoi problem using the fol-
lowing idea: Number the disks from smallest to largest, starting at 1. Consider the
towers as being in a triangular formation with the pegs numbered counterclockwise.
Describe the disk moved and the direction it should be moved where XC means move
the top disk on peg X in a clockwise direction to the next peg and XA means to move
the top disk on peg X in a counterclockwise direction. For example, the following
moves solve the problem for n = 3:

IC 2A 1C 3C IC 2A IC

Draw pictures of the three towers and how the disks are positioned for each of the
moves indicated.

Fibonacci Recurrence Relation

The Fibonacci sequence is the sequence of numbers 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.
This sequence is defined by a recurrence relation that gives the nth Fibonacci number as a
function of the (n - 1)-st and (n - 2)-nd Fibonacci numbers. The recurrence relation that
defines the terms of this sequence is

Fn Fn-1 + Fn-2 for n > 2

F =I

F0 = I

The recurrence relation has order two, since F, is given in terms of the two preceding
values of the recurrence relation. (For a fuller description of the background of the recur-
rence relation, see Section 1.8.3). To calculate Fn, begin by calculating all the preceding

562 CHAPTER 9 Recurrence Relations

values one at a time, starting with F2. As an example, F5 may be calculated using this
procedure as follows:

F 2 = FI + F0 = I + I = 2
F3 = F2 + Fl =2+ = 3

F 4 = F 3 + F 2 = 3+ 2 = 5

F5 = F4 + F3 = 5+ 3=8

Although it is always possible to determine any value of a recurrence relation by building
up values of the recurrence relation from the initial values, finding a function of n that can
be evaluated to calculate directly the value of the recurrence at n is more interesting.

9.4.1 Second Order-Recurrence Relations

The definition of such notions as solution and initial values given for first-order recurrence
relations generalize naturally to second-order recurrence relations. The method for solv-
ing second-order recurrence relations that is presented here generalizes to higher-order
recurrence relations, but we will not deal with the general theory for nth-order recurrence
relations. The recurrence relations to be solved are of the form

an = klan-I + k2an-2 for n > 2

where kl and k2 are arbitrary constants with k2 0 0 and ai is shorthand for a (i) for i =

0,1,2 This recurrence relation is second order, because the recurrence relation is
defined in terms of the two preceding terms and no other terms. By writing the recurrence as

an - klan-1 - k2an-2 = 0

we see that the function on the right-hand side is the zero function. Consequently, the
recurrence relation is homogeneous. A second-order recurrence relation will require two
boundary values or initial values to evaluate the terms needed to determine a value for an.

By examining a class of first-order recurrence relations, it is possible to gain an in-
sight regarding the form of a function that will be a solution to a second-order recurrence
relation. Consider the first-order recurrence relation

a ban-I forn> 1
an = for n = 0

Using back substitution, we find the solution to be the function an = bn. The feature to
focus on in this case is that the solution for each n is of the form bn, a constant raised to the
nth power. In the case of a second-order recurrence relation, it would be nice if the solution
were some combination of two different such functions, since this would be a natural gen-
eralization of the result for first-order recurrence relations. At this point, however, we have
no reason to expect that this will be the case. Proceeding on the basis that the solution is of
this form may lead to a contradiction. On the other hand, if we proceed on the assumption
that the solution is of this form and no contradiction is found, then an insight regarding
how such recurrence relations can be solved may be found.

As an example, let us suppose a solution for the Fibonacci recurrence is a function
of the form a, = c' for some c and then see what this implies. By substituting the values
of an for n, n - 1, and n - 2 into the Fibonacci recurrence, more information about this

Fibonacci Recurrence Relation 563

possibility can be determined. For example, it may be possible to determine whether such
a function can even be a solution:

a. - an-1 - an-2 = 0

Cn -2Cn-1 -2Cn-2 = o

cn-2 (C -- C -- 1) = 0

Since the product of two real numbers-namely, C0- 2 and c 2
- c - 1-is zero, either

Cn-2 =0 or c2 -c- 1 =0. If Cn-2 =0, then c=Oand an =Ofor alln > 0. This so-
lution, called the zero function, is the trivial solution of the recurrence relation. For a
homogeneous recurrence relation, the zero function is always a solution. Since the primary
interest is in nontrivial solutions, suppose c A 0, which implies that c 2

- c - 1 = 0. This
equation is called the characteristic equation of the recurrence relation. The roots of this
equation are

C --

2 2

This discussion began by asking if the nontrivial solutions of a second-order ho-
mogeneous recurrence relation have a form similar to the nontrivial solution of a first-
order homogeneous recurrence relation. By trying such a function, we found that if a
second-order homogeneous recurrence relation had such a nontrivial solution, then the
two possible constants that had the property were the solutions to the characteristic equa-
tion of the recurrence relation. Now, we prove that not only these two functions but also
any linear combination of two such functions are solutions of the recurrence relation. Much
like the previous discussion of back substitution, a conjecture about the form of a solution
has been found, and we must now prove that such functions really are solutions. It is be-
yond the scope of this text to prove the fundamental result that no other nontrivial solutions
of a second-order homogeneous recurrence relation exist. We will therefore just state the
result.

Theorem 1. Let a, = klan-1 ± k2an-2 for n > 2. Suppose the characteristic equa-
tion of this recurrence relation has distinct roots cl and c2. Any function of the form
H(n) = Acln + Bc 2 n, where A and B are arbitrary constants, is a solution of this re-
currence relation.

Proof. To verify that a function of the form H(n) is a solution, write with all terms on the
left-side of the equal sign and then substitute H (n) for some value of n into the recurrence
relation, giving

an - klan-1 - k2an-2 =

H(n) - k1H(n - 1) - k2 H(n - 2) =
Ac B + BC k + Bc') - k 2 (Acn- 2 + Bcn- 2) =

a(c' - c - kn-2) + B(cn - kcj- 1
- kn-2) =

-1kc
2 - kzc2 2

Acn-2 (c2 -- klCl -- k2) -+- Bcn-2(c2 - klC2 - k2)

564 CHAPTER 9 Recurrence Relations

Since both cl and c2 are roots of the characteristic equation of the recurrence c2- kC -

k2 = 0 and c2 - kjc 2 - k2 0. Therefore,

ac7- 2(cj - k1cl - k 2) + Bc- 2 (c2 - kIc 2 - k 2) = 0

and the conclusion follows.
To prove the converse, that is, every solution is of the form Acn + Bce for every

n E N, let no = 0 and T = {n : any solution H has the required for H(n)}.

(Base step) Assume H(0) = A + B and H(1) = Ac, + Bc 2 for some choice of A and
B. Then, 0, 1 c T.

(Inductive step) Now choose n > 2 and assume that H(0), H(1) H(n - 1) have
the required form for every solution H. We know H(n) = kIH(n - 1) + k2 H(n - 2). By
the inductive hypothesis both H (n - 1) and H (n - 2) have the required form, so we sub-
stitute these terms and simplify the algebra:

H(n) = kl(Ac'- 1 + Bcn- 1) + k 2 (Ac7-2 + Bxn- 2)

= Acn-z(kici + k2) + Bc- 2 (kic 2 + k 2)

Since cl and C2 are solutions of the complementary equation, we have c2 - klc1 -

k2 = 0and c2 2 c2for kici+ k2 and2= 0 and c - k, C2 - k2 = 0. Substituting the values for c2 and c2
ki c 2 + k2 , we get

H(n) = n-2 c 2 + Bc 2 C2-• t1 c1 ÷~2 c2

= Ac' + Bck

as required and n E T.
By the Strong Form of Mathematical Induction we conclude that T = N. N

Theorem 2. (Solution of Second-Order Recurrence Relations) The general solu-
tion of an = klan-1 + k2an-2, where n > 2 with kj and k2 as constants and k 2 :A 0, is
an = Ac' + Bc' when the recurrence relation has distinct roots cl and C2 for its character-

istic equation. Each assignment of particular values to A and B gives rise to a particular
solution of the recurrence.

In the case discussed here, the characteristic equation has two nonequal roots. The
function H has a slightly different form when the two roots are equal.

9.4.2 Solving the Fibonacci Recurrence

Using Theorem 1, the general solution of the Fibonacci recurrence is given by

Fn = A)+B ,

where A and B are arbitrary constants and n > 0. It remains to determine values for A and
B so that Fn is given directly as a function of n. This can be done by using the two boundary
values for the recurrence relation to determine two linear equations in the unknowns A and
B. The boundary values of the Fibonacci recurrence are given for n = 0, 1. The system of
equations resulting is

Fibonacci Recurrence Relation 565

1F,/5=A -I-B-)Fo =1 =A + B (2

F, I A (±2 v) +B (1 2 5)

1I=A+tB1 A+ B

2 2
The solution of this system of equations is

A=7 --

and

Therefore, the solution of the Fibonacci recurrence relation
F= F-l + Fn-2

with initial conditions F0 = 1 and F1 = 1 is

1 / ,- \ 1 1 // nn+
l

Fn = -75I - 5 2

It is instructive to evaluate this function for some small values of n to see that this
is, indeed, the solution as well as to provide an additional check that all the arithmetic is
correct:

1 +1

1 1 12 2

2'5= + 2 2i75 + 2

=1

1 (11'5
F4 =

1 (1I + /5-+50+50O50 + 125 +25V,4
= • 32

I (1-5-5+50o-o50±15+125- 25,/5))

1 160/5-
/ 32

566 CHAPTER 9 Recurrence Relations

For small values of n, it often is much easier to use the recurrence relation directly to
calculate values of the recurrence relation than to evaluate a complex function. The point
is that a closed form of the function can be used to calculate any term of the sequence
directly. The solution also gives a tool for directly studying properties of the recurrence
relation for large n.

9.4.3 Rules for Solving Second-Order Recurrence Relations

The procedure used to solve the Fibonacci recurrence is an application of one method for
solving a large class of second-order recurrence relations. Before doing another example,
we summarize the procedure.

Solving Second-Order Homogeneous Recurrence Relations
with Constant Coefficients Using the Complementary Equation

with Distinct Real Roots
H(n) +AH(n- 1) + BH(n- 2) = 0,

H(n1) = D, and H(n 2) = E.

STEP 1: Assume f (n) = c" is a solution, and substitute for H (n), yielding the char-
acteristic equation

c2+ Ac + B =0

STEP 2: Find the roots of the characteristic equation: Cl and c2. Use the quadratic
formula if the equation does not factor. If cl 0 c2, then the general solution is

S(n) = Acn + Bc•

STEP 3: Use the initial conditions to form the system of equations

H(nl) = D = Acl1J + Bcn2

H(n 2) = E = Acn2 + Bcn2

STEP 4: Solve the system of equations found in step 3, getting A0 and B0 as the two
solutions. Form the particular solution

H(n) = AoCln + Boc 2n

Quite often, the boundary conditions will be the values of the recurrence at 0 and 1. All
that is required of the boundary values is that they be values of the recurrence relation given
for two different natural numbers. In the case where the boundary values are not given
for consecutive natural numbers, the domain of the recurrence relation must be specified
to include all the integer values greater than or equal to the smaller integer for which a
boundary value is given.

Example 1. Solve the recurrence relation an - 6an-1 - 7a,-2 = 0 for n > 5 where
a3 = 344 and a4 = 2400.

Exercises 567

Solution. Form the characteristic equation and then factor it:

c - 6c - 7 = 0

c =7, -1

Form the general solution of the recurrence relation a, = A7" + B (- 1)', and solve
the system of equations determined by the boundary values a3 = 344 and a4 = 2400 to get
the particular solution:

a3 = A7 3 + B(-1)'

a4 = A7 4 + B(--1)4

Now, substituting 344 and 2400 for a3 and a4 gives

344 = 343A - B

2400 = 2401A + B

Adding the two equations gives

2744 = 2744A

I=A

It follows that B = -1. Therefore, a,-- 7' + (-1)n+1 for n > 3 is the particular
solution. U

rnExercises
Solve Exercises 1 through 5 using the characteristic equation method.

1. an = 2an- - +3an - 2 for n > 2 where ao = 2 and a 1 = 2.
2. a, = 4a,_1 + 21a,-2 for n > 2 where ao = 3 and al = 7.
3. an + 8a- + 12a,-2 = 0 for n > 2 where ao = -2 and al = 6.
4. an - 8an-1 + 12an-2 = 0forn > 2 where a0 = 3 and al = -1.
5. a, = 2an- I+ 15an-2 for n > 2 where ao = 3 andal -= -1.
6. How many binary sequences with no two consecutive O's are there of length k where

k > 0? Exhibit all such sequences for length less than or equal to six. Determine the
number of ways a coin can be flipped n times in which no two consecutive heads
occur.

7. Let m, n e N. Using m colors, find and solve a recurrence relation that gives the num-
ber of ways to color a disk with n sectors such that no pair of neighboring sectors
receive the same color.

8. Find the number of arrangements of 1, 2, ... n such that no integer is more than one
place removed from its position in the natural order 1 - 2 -... - n.

9. For students who have been introduced to the Backus-Naur forms, how many valid
expressions can be formed using exactly k symbols from the set {0, 1, 2, 3, 4, 5, 6,
7, 8, 9, +, -, /, *}, each with whatever repetition is desired. The normal form for an
expression is

expression > :: = < expression > < digit > I < expression > < sign > < digit >

568 CHAPTER 9 Recurrence Relations

10. How many ways can an athlete run up a set of stairs if either one or two steps are taken

at a time?
11. Let f(n) be the number of strings of n symbols formed using the symbols 0, 1, and

2 such that no two consecutive 0's occur. Show that f(n) = 2f(n - 1) + 2f(n - 2).
Solve the recurrence, and enumerate all such strings of length four.

rnDivide and Conquer Paradigm

One aspect of the study of algorithms is to recognize how algorithms designed to solve
quite different problems are actually similar. One effective strategy for algorithm design,
called divide and conquer, suggests splitting a problem of size n (number of inputs or size
of input) into a number of instances of the same problem but each of a smaller size. The
strategy then proposes solving the smaller problems separately before putting the solutions
of the smaller problems together to solve the original problem. We will show how the
divide-and-conquer strategy is used to develop effective algorithms for searching, sorting,
and multiplying "large" integer values.

Suppose the solution of the original problem of size n can be found by solving a num-
ber of subproblems of size n/d for some d. There are three types of divide-and-conquer
algorithms. The first solves fewer than d subproblems of size n/d to solve the original
problem. An algorithm of this type is the binary search algorithm. The second solves d
subproblems of size n/d to solve the original problem. An algorithm of this type is the
merge sort algorithm. The third solves more than d subproblems of size n/d to solve the
original problem. An algorithm of this type is the extended precision multiplication algo-
rithm for integers. A general recurrence relation by which all these algorithms have their
complexity represented will be solved, and this solution will be interpreted in terms of the
algorithms that are presented. Finally, the complexity of each type of divide-and-conquer
algorithm will be determined.

Binary Search

When searching for an element in a set of elements from a linearly ordered set, the proce-
dure of examining each of the elements one at a time could be used. This procedure may
require that every element be examined before the search can conclude. If the application
involves repeating this search procedure many times on a large set of elements, then it
becomes very time-consuming. To reduce the time needed to search for a single element,
a divide-and-conquer approach can be used provided the set has its elements stored in
sorted order. Proceed by dividing the sorted set into two equal-or almost equal-parts.
Let one part contain all the elements less than the middle element of the set stored in or-
der; let the other part contain all the elements greater than or equal to the middle element,
also stored in order. Determine which part can possibly contain the element sought by
comparing it to the middle element of the set. The part of the set that cannot contain the
element sought is then eliminated from further consideration. The procedure is repeated
on the set of elements that can still possibly contain the element being sought. This set

Binary Search 569

of elements is about half the size of the previously examined set. The process of dividing
the set in half and then ignoring half of the elements in the next step of the algorithm is
continued until it is determined that the element is or is not in the set.

INPUT: Array A[1.. n] with n elements in increasing order and an item X
to be sought in A

OUTPUT: If X is in A, its location is given in Found;
otherwise, Found = 0

BinSrch (A, X, 1, n) /* The initial call *1

BinSrch (A, Item, Left, Right) /* The recursive procedure */
1. if (Left > Right) then

return 0
else

2. Midpoint = [(Left + Right)/2J
3. if (Item = A[Midpoint]) then
4. return Midpoint

else
5. if (Item < A[Midpoint]) then
6. BinSrch(A, Item, Left, Midpoint - 1)

else
7. BinSrch(A, Item, Midpoint + 1, Right)

This is the same algorithm as the one used previously to find a Name in a phone
directory (see Section 1.10.4).

9.7.1 Correctness

To show that BinSrch terminates and returns the correct answer, a proof by induction can be
given. The proof of the inductive step is based on the following observations. First, notice
that the values of Left and Right have the property that for any execution of BinSrch where
Left < Right, either X is found (line 3) in A (Left) A (Right), the position of X in A is
returned, and the procedure terminates, or the value of one of Right and Left is changed. For
any execution of lines 1 through 4, in which X is not found in the middle of the elements
of A being considered, either (line 3) decreases Right by one or (line 4) increases Left by
one. Therefore, if the element X is not found, the values of Left and Right will eventually
satisfy the condition Left > Right in line 1, which will cause a value of zero to be returned
and the procedure to terminate. The correctness will follow from an induction on n, the
size of the ordered set being searched.

570 CHAPTER 9 Recurrence Relations

Figure 9.4 represents the execution of BinSrch in looking for 9 in the set

{1, 2, 4, 6, 9, 13, 15, 18, 20, 21, 23, 25}

9

1 2 47 6 91 15 18 20 21 23 25

1 2 3 4 5 6 7 8 9 10 11 12

9

12 6

1 2 3 4 5

9

4 5

9

5

Figure 9.4 Using a binary search.

9.7.2 Complexity

For BinSrch, define T (n) to be the number of times that BinSrch will be executed when A
has n elements. The key operation in determining the complexity of the binary search is the

comparison of the element you are searching for with an element of the array. In the case
of BinSrch, one comparison between X and the middle element of A[Left]... A [Right] is
made to see if X is at that position. If X is not at that middle position, then the algorithm
is executed on the half of the elements of A that could still contain X. We can describe the
complexity of this procedure as

T(n) < T([n/2j) + 1 forfn >2

1 1 for n =1I

The function is an upper bound, because X can be found at some position causing the
search to terminate without making all the comparisons that would be necessary if X were
not in A. (The solution of this recurrence relation will follow as a corollary to the solution
of the recurrence relations that describe the complexity of the class of divide-and-conquer
algorithms presented later.)

Merge Sort 571

rnMerge Sort

Sorting algorithms not only are studied in a variety of computer science courses but also
are used as an important processing step in many applications. The merge sort algorithm
examined here uses a divide-and-conquer strategy. The idea is to divide the original set
of elements in half, complete the sorting process for each half of the set, and then merge
these two smaller sets, forming a sorted version of the original set. The order of worst-case
complexity of this sorting algorithm is as good as that of any sorting algorithm that only
uses comparisons between pairs of elements as a measure of complexity. After presenting
an algorithm for this process and showing that it is correct, we find a recurrence relation
that describes the complexity of the algorithm. Finally, an example will be given that shows
how the algorithm works.

INPUT: An array A with N elements
OUTPUT: The elements of A are sorted in nondecreasing order

MergeSort (A, 1, N) /* The initial call */

MergeSort (A, Left, Right) /* The recursive procedure */

if (Left < Right) then
Midway = [(Left + Right - 1)/21
MergeSort (A, Left, Midway)
MergeSort(A, Midway + 1, Right)
Merge(A, Left, Midway, Right)

9.8.1 Correctness

A proof by induction shows that this algorithm is correct. For an array with one element, the
condition Left < Right is false, so the procedure terminates. Certainly the single element
is returned in sorted order. Now, assume the procedure is correct for all arrays with fewer
than N elements, and show that the procedure is correct for an array with N elements.
Since Left < Right is true, the procedure is executed on two arrays of size less than N.
By induction, the procedure is correct on such arrays. Now, assume Merge is correct, so
the two sorted sublists will be merged to form a sorted version of the original array of N
elements. Therefore, by induction, MergeSort is correct for arrays of any size N.

572 CHAPTER 9 Recurrence Relations

9.8.2 Example
Figure 9.5 shows the algorithm applied to an array with eight elements. The recursive calls
to MergeSort are shown in the upper half of the diagram, and the calls to Merge are shown
in the lower half.

31852694

3185 2694

31 85 26 94

3 1 8 5 2 6 9 4

13 58 26 49

1358 2469

123456789

Figure 9.5 Using a merge sort.

9.8.3 Complexity
Let the complexity of MergeSort on an array with n elements be T(n). This function counts
the two kinds of commands that are executed in each call to MergeSort. To complete a call
to MergeSort with an n-element array where n is even requires that MergeSort be executed
twice for arrays of size n/2, followed by the merging of two sorted arrays of size n/2. The
complexity of merging two lists of size n/2 will be proportional to the time that is required
to make at most n comparisons. (See Exercise 7 in Section 1.12.4.) A slight modification of
this argument to handle the case of N being odd leads to the following recurrence relation:

T(n) < T (Ln/2j)+ T (Fn/21)-+tn forn >1
I forn = 1

This is an upper bound, because you may not require n comparisons to merge the two
lists. (The solution of this recurrence relation will follow as a corollary to the solution of
the recurrence relations that describe the complexity of the class of divide-and-conquer
algorithms presented later.)

Multiplication of n-Bit Numbers 573

W Multiplication of n-Bit Numbers

Because the design of a computer includes a decision about the size of the unit of storage
for holding integer values, the exact multiplication of integers with an arbitrarily large
number of digits usually cannot be done using a computer's multiplication operation. Since
exact multiplication of large numbers cannot be accomplished using the hardware structure
of a computer, a software approach is needed. In a software approach, a number is assumed
to be represented by its binary expansion consisting of n bits for n as large as needed.
The exact multiplication of n-bit numbers when n is large can be accomplished using a
divide-and-conquer strategy.

The example that follows shows how two 8-bit numbers are decomposed so that the
multiplication of these two numbers involves multiplication of only 4-bit numbers:

X = 01101100, Y = 10011001,
A = 0110, B = 1100, C = 1001, D = 1001,
X=A24 + B, Y = C24 + D,

XY = (A2 4 + B)(C24 + D)
= AC 28+ BC24 + AD24 + BD

The multiplications involve 4-bit digits even though X and Y are 8-bit digits. The multipli-
cations by 24 and 28 can be carried out simply as a shift operation and not as a multiplica-
tion. Assume, now, that X and Y are n-bit numbers with n = 2k for some k. The restriction
to the case n = 2 k will make the calculation easier to present without losing any essential
information about this method.

Let X and Y be n-bit numbers with A(C) the first n/2 bits of X(Y) and B(D) the
remaining bits. The decompositions of X and Y are as follows:

Calculation I

X = A2n/ 2 + B
Y = C2n12 + D

XY = A • C2n + (A • D + B • C)2n/ 2 + B • D

This method for calculating XY involves four multiplications using pairs of numbers of
size n/2. Repeat the divide-and-conquer strategy to calculate each of these n/2-bit products
using n/4-bit numbers. Now, let T (n) be the measure of complexity for multiplying two n-
bit numbers where the key operation measured is the multiplication of two n-digit numbers.
The complexity of this method is described by the following recurrence relation:

T(n) = 4T(n/2) + mln

where m I is a constant and n = 2k.

574 CHAPTER 9 Recurrence Relations

The term 4T (n/2) accounts for the n/2-digit multiplications while m I - n accounts for

the additions and shifting operations (multiplications by a power of 2) required. Later, it
will be proved that the order of the complexity of this method is n 2, which is the same order
of complexity as the usual method of multiplication. The usual method of multiplication is
shown for two 4-bit numbers in Figure 9.6.

1011
0111

1011
1011

1011
0000

1001 101

Figure 9.6 Usual method of multiplication.

Consider the following sequence of operations where X and Y are n-bit numbers (for
convenience, n = 2 k for some k) that are decomposed as before:

Calculation II

Decompose:

X=A.2f+B Y=C.21+D

Perform:

U <- (A + B) . (C + D)
V (-A.C
W÷-B.D

Z -- V . 2+ (U -V-W) .2+W

By expanding U - V - W, we see that Z is another way of calculating XY:

Z = V .2" + (U - V - W) .22 + W
= A . C .2n ± ((A + B) . (C ± D) - A . C - B. D) . 2- + B . D

= A.C.2n +(A. D+ B.C).2f + B. D

= XY

For the moment, assume that no carry bits are generated by the additions used in
finding U. What we observe is that this method uses more additions and subtractions to
find XY than in Calculation I but has fewer multiplications. Since multiplications are the
more complex operation, this may be an acceptable trade-off. The recurrence relation that
describes this calculation of XY is

T(n) = 3T(n/2) + m2n

Multiplication of n-Bit Numbers 575

where m2 is a constant and n = 2 k. The term m2 • n represents the additions, subtractions,
and shifting operations required in computing XY. Later, we will prove that the order of
complexity of this method is approximately n 1.59. This procedure not only gives a method
to overcome the usual representation limitations of actual computers but also allows the
computation to be done more efficiently. Although the value of n is restricted to 2 k for
some k, T(n) gives an upper bound for the complexity of T(i) for any i. It is always
possible to embed a problem of size i in a problem of size 2j, where 2j-1 < i < 2i by
adding zeros to the left of the most significant digit of n.

One last detail to handle is how to deal with the product (A + B) - (C + D) if the
additions generate an (n/2 + 1)-bit number. In case A + B and/or C + D are (n/2 + 1)-
bit numbers, proceed as follows:

Carry Calculation

A + B = A 1 2n/2 + B1 A 1 is the leading bit of A and B1 the remaining bits

C + D = C1 2n/2 + D1 C1 is the leading bit of C and D1 the remaining bits

(A + B) • (C + D) = A 1 • C 12n + (A 1 • D1 + B1 • C1)2n/ 2 ± B1 • D1

Since B1 and D1 are n/2-bit numbers, the term BI - D1 can be computed using the
recursive method. The other operations can be computed directly, since they involve 1-bit
numbers or they can be accomplished by simple shifting operations.

Figure 9.7 shows how two 4-bit numbers would be multiplied using this procedure.
The reader should try an example in which the carry digit comes into play.

1011*0110

101*11 *11
10*01 (a+b)(c+d)

Sa1 c I " bd

1*0 1*1 0*1 10*1 11*10 1*1 1*1 10*1 1*0
ac (a+b)*(c+d) ac

ac (a+b)(c+d)-ac-bd bd 10 110-10-1 1 1 10-1 0
0 1-0-0 0

0*22 1*21 0 10*22 111*2 1 1*22 1*21 0

10 1111 1101 1
10*24 1111-10-110

10*2 111*22 110

1000010

Figure 9.7 Multiplication of two 4-bit numbers.

576 CHAPTER 9 Recurrence Relations

Divide-and-Conquer Recurrence Relations

To focus attention on the kinds of recurrence relations that represent the divide-and-
conquer algorithms, we have examined three different algorithms. To avoid some of the
detailed analysis that is needed to handle problems of size n for any it, we make a simpli-
fying assumption about the form of the integers for which a divide-and-conquer recur-
rence relation is defined. The divide and conquer algorithms examined are restricted to
those that satisfy a recurrence relation of the form

T(n) ICT(')+-f(n) forn-=dk(k>0)
T f(1) for n = 1 (k = 0)

where C is a constant and k > 0. A solution for this recurrence would only give an exact or
closed-form answer for the case that n = dk for some k. This is often enough information
about the recurrence to determine the complexity for all n. In the case of the functions that
are normally encountered, it is reasonable to assume that if m lies in the interval

dk < m < dk+l

then

T(dk) <T(m) < T(dk+1)

One certainly expects that T (dk+l) is an upper bound for T (m) whenever m < dk+l, since
solving a problem for m objects normally should not be more complicated than solving the
same problem for a larger number of elements. With the aid of this assumption about n, the
computations are considerably simplified. This simplification allows removal of the floor
and ceiling functions from the recurrence used to describe the complexity of the binary
search and merge sort procedures, since [n/d] = Ln/dj = n/d when n = dk for some
k >0.

After solving the divide-and-conquer recurrence in terms of the parameters C, n, and
the function f, this solution will lead to a description of the behavior of the algorithms
examined earlier:

SBinary search C=I1, d =2, f (n)=lI

Merge sort C =2, d =2, f (n)= n

n-Bit multiplication C = 3, d = 2, f(n) = cn, c a constant

The method of solution is the same as that used with the first-order recurrence
relations-that is, use back substitution until a pattern is recognized and then a proof by
induction that this pattern leads to the solution.

Divide-and-Conquer Recurrence Relations 577

Theorem 1. (Solution of Divide-and-Conquer Recurrences) The solution of

T =CT(n/d)+f(n) forn~dk, k> 1
If(1) forn = 1

is the function T(n) = k C'f(n/dj).

Motivation for Proof.

(Base step) For k = 0,

E- C f(n/dj) = f(1) = T(1)
j=0

(Inductive step) Now, suppose that the formula holds for m > 0. That is,

m

T(m) = 5Cj f(n/dj)
j=0

Now, prove that T (m + 1) is also given by this expression. In this case, prove that

m+1

T(m + 1) = CcJ f(dm+l/dj)
j=0

Back substitutions will give

T(n) = CT(n/d) + f(n)

= C{CT(n/d 2) + f(n/d)} + f(n)

= C 2T(n/d 2) + Cf(n/d) + f(n)

= C 2{CT(n/d 3) + f (n/d 2)} + Cf(n/d) + f(n)

= C3 • T(n/d 3) + C 2 . f(n/d 2) + Cf(n/d) + f(n)

The pattern is

k

T(n) = Cif(n/dj)

j=0

Proof. Now, verify that this is the solution using induction on k where n = dk. For
k = 0,

0

ECi f(1/dj) = f(1) = T(1)
j=0

Now, suppose that the formula holds for m = k where k < 0, and show that it holds for
m = k +1:

T(dk+l) = CT(d k) + f(dk+l)
k

= C YC'.f (dk/di) + f(dk+l) (Induction hypothesis)

j=0

578 CHAPTER 9 Recurrence Relations

k Cj+I " f(dk+l/dJ+l) + f(dk+l) dk dkl)

j=0
k+I

- L C' " f(dk+l/di)

j=0

as required.

Corollary 1. The solution to the binary search recurrence relation

T(< IT(n/2)+l forn=2kk>l

I I for n = 1

is T(n) < log2 (n + 1).

Proof Let C = 1, d = 2, and f(n) = 1. The theorem gives

k

T(n) < 1 = k + 1
j=0

Since k = log2 (n), T(n) = 1 log 2 (n).
Corollary 2. The solution to the merge sort recurrence relation

T(n)< 2T(n/2)+n forn=r2k, k>1

-1 for n = 1,

is T(n) < n + n log2 (n).

Proof Let C = 2, d = 2, and f(n) = n. The theorem gives

k

T(n) < Z2j(n/2dj)
j=0

= (k + 1)n (k = log2 (n))

= n + n log2 (n)

Corollary 3. The solution to the n-bit multiplication recurrence relation

T (n) =3T (n/2) + mn for n = 2k, k> 1, m a constant
Im for n = 1

is T(n) = 3mn1°g2 3 - 2mn.

Proof Let C = 3, d = 2, and f(n) = mn. The theorem gives

k

T(n) = Y 33 j • 2J
j=O

= mn y

j=O

(3/2)k+l 1
(3/2) - 1

3k+l _2k+l

mn 2k-3-2
2

Exercises 579

mn . (3k+1 - 2 k+1) (n = 2 k)

= 3m •3k - 2m .2k

The following identity can be used to simplify this expression:

3k = (210g 2(3))k = (2k)10g 2(3) = nlog2(3)

Therefore, the solution is T(n) = 3m f n1°g2(3
) - 2mn. 0

Corollary 3 gives a solution to the recurrence for multiplying two n-bit numbers as
described earlier. Since log2 (3) = 1.59 and the term 2mn is subtracted from 3m nlIog2(3),
the complexity of this algorithm is of the order n 1.59. The recurrence for the usual multipli-
cation algorithm has a term 4T(n/2). By replacing three by four in Corollary 3, it is seen
that the order of complexity of the usual multiplication is 0(n 2).

9.10.1 Complexity of Divide-and-Conquer Recurrence Relations

Often, the more important information about an algorithm is its complexity rather than an
exact formula to describe its behavior for a particular case. For the three types of divide
and conquer algorithms with the function f(n) = k where k is a constant, Table 9.1 shows
both the solution and the complexity of the solution for each of the types.

Table 9.1 Divide and Conquer Complexity

T(n) = CT(n/d) + k T(1) = k

T(n) T(n) is O(*)

C = I legal(n) + I 1Ogd (n)

C=d (dn- 1)/(d - 1)f(1) n

C : d C 0 1 (CnlIgd(C) - 1)/(C - 1)f(1) nflogd(c)

Using Theorem 1 to determine the values in Table 9.1 is often referred to as the Master
Theorem.

Exercises

1. Show that the recurrence relation an = an-=/(1 + an-1) with ao = C has the function
S(n) = C/(1 + Cn) as a solution.

2. Find solutions for the following recurrences using back substitution, and then verify
the correctness of these solutions by induction on k where n = dk.

(a) an = an/d +e fork> O,n =dk,d :1
(e forn = 1

(b) an = Can/d+e forCyd,C0l,k>O,n=dk
be for n =1

580 CHAPTER 9 Recurrence Relations

3. Solve these recurrences using back substitution. Verify the solutions are correct by
induction.

(1a,/2+4 fork>0, n=2k

(a) an/=4 for n = 1

(5an/5+7 fork>0, n= 5 k
(b) 112 forn= I

(c= a/3+5 fork>0, n= 3k
(C) an = for n = 1

(17an/4+3 fork>0,n=4k(d) an for n = 1

4. Find two sorted lists of length five that require nine comparisons to merge into one
sorted list of size 10.

5. Write a divide-and-conquer algorithm to find the largest and smallest element in a set
with 2 k elements for some k > 0. Determine the complexity of your algorithm.

6. If n > 0, show that

(Hint: Consider the cases n odd and n even separately.)
7. Determine the difference in performance between the methods described for calculat-

ing the Fibonacci numbers:

(a) Directly implement the relation F, = Fn-j + F,- 2 .
(b) Define a recursive function that has Fn-1 and Fn-2 passed as parameters when

calculating Fn.
(c) Use the relations

F2n = (F. + 2Fn- 1) - Fn

F2n_1 = F2 + Ff2

F2n-2 = (2Fn - F,- 1) • F.-1

to generate pairs of Fibonacci numbers.

Chapter Review

A function often can be defined either recursively or iteratively. Programs also can be
written in either way. This chapter is a brief introduction to the mathematics that can be
used to compute the complexity of some recursive algorithms. Recursive algorithms can
have their complexity described by recurrence relations. The problem we deal with here is
to find a closed form for these recurrence relations. A recurrence relation with a value at n
that depends on the value of the function at n - 1 is called a first-order recurrence relation.
The method of back substitution is used to solve such recurrences. A recursive function
with a value at n that depends on the value of the function at both n - 1 and n - 2 is called
a second-order recurrence relation. The method of complementary equations is used to
solve such recurrences. Finally, divide-and-conquer recurrence relations determine the
value of the function at n in terms of the value of the function at n/d where n is normally

Chapter Review 581

a power of d. The solution of this class of recurrence relations leads to a classification of
divide-and-conquer recurrence relations.

The algorithm for the Tower of Hanoi problem exemplifies first-order recurrence re-
lations. The Fibonacci sequence recurrence relation exemplifies second-order recurrence
relations. The different types of divide-and-conquer recurrence relations are exemplified
by binary search, merge sort, and n-bit multiplication.

9.12.1 Terms, Theorems, Algorithms

9.1-9.3 Summary
TERMS

back substitution matrix multiplication
boundary value nonhomogeneous
first order solution
first-order recurrence relation Tower of Hanoi

initial value

ALGORITHMS

Iterative Bubble Sort Selection Sort
Recursive Bubble Sort Tower of Hanoi

THEOREM

Solution of First-Order Recurrence Relations

9.4 Summary
TERMS

boundary values particular solution
characteristic equation second order
Fibonacci sequence second-order recurrence relation
homogeneous trivial solution
initial values

THEOREM

Solution of Second-Order Recurrence Relations

9.6-9.10 Summary

TERMS

divide and conquer multiplication of n-bit numbers

divide-and-conquer relation

ALGORITHM

Binary Search
Merge Sort

THEOREMS

Master Theorem
Solution of Divide-and-Conquer Recurrences

582 CHAPTER 9 Recurrence Relations

9.12.2 Starting to Review

1. For n = 0, 1, 2, and 3, show that Yn = 2 • 3' is a solution for yo = 2 and Yn = 3Yn-1
for n > 0.

2. For n = 0, 1, 2, and 3, show that Yn = I/n! is a solution for yo = 1 and Yn = Yn-1/ n
for n > 0.

3. Find the value of a, for n = 0, 1, 2, 3, 4, and 5 where an = 3a,_1 - 2an-2 for n > 2
where ao = 2 and al = -3.

4. For n = 2, 3, and 4, determine if Fn = 3 • 2n + 5 • 3n is a solution for Hn = 5Hn 1 -

6Hn- 2 where H0 = 8 and HI = 21.
5. Find the characteristic equation for the recurrence relation F, = Fn-1 + 3F,-2 -

6Fn-3.
6. Let x 2 - 4x - 5 = 0 be the characteristic equation for a second-order recurrence re-

lation F(n) for n e N. Find the general solution for this recurrence relation.
7. Let an = A2n ± BYn be the general solution of a recurrence relation with initial

conditions ao = 0 and a, = 1. Find the particular solution that satisfies these initial
conditions.

8. Let an = an - 1 + n where ao = 0. Solve for an.
9. Solve the Lucas recurrence relation: Ln = Ln- 1 + Ln- 2 where L0 = 2 and L1 = 1.

(A definition of Lucas numbers is given in Exercise 25 found in Section 1.9.)

10. Solve a, = a,/ 2 + 1 where aI = 1 and n = 2 k for k E N.

9.12.3 Review Questions

1. Prove that the sequence bn = C where C is a constant and n E N is a solution to the
recurrence relation an - an = 0 for n > 1 where ao = C.

2. Find the unique solution to the recurrence relation in Exercise 1 where ao = 5.
3. Prove that the sequence bn = C 1 + C 22n where C1 and C2 are constants is a solution

to the recurrence relation an - 3an- I + 2an- 2 = 0.
4. Find the unique solution to the recurrence relation in Exercise 3 where ao = 5 and

al =-6.
5. Conjecture and prove a formula for the sum of the elements of the Lucas sequence

given

L0 +- L1 +L24-'"+-Ln

where n e N.
6. Find a recurrence relation for the number of ways to arrange flags on a flagpole that is

n-feet tall using red flags two-feet high and white flags one-foot high. Suppose there

are three times as many white flags as red flags on any flagpole. Flags of the same
color may occur next to each other.

7. Solve a, = a, 1 + n (n - 1) for n > 1 where ao = 1.
8. Solve a, - 3a,_- - 4an-2 = 0 for n > 2 where a0 = al = 1.
9. Verify by induction that a function of the form a, = Al n + A2 where A 1, A2 E R is a

solution to an = da,/d + e where n = dk for k e N.
10. Solve an = 7an/3 - 5 where aI = 5 and n = 3k for k c N.
11. Find a recurrence relation for the number of ways to make a pile of n chips using

garnet, gold, red, white, and blue chips such that no two gold chips are together.

Chapter Review 53

9.12.4 Using Discrete Mathematics in Computer Science

1. Find a recurrence relation for the sum of the first n natural numbers for any n E N.
Solve the recurrence relation. (This closed form represents the complexity of selection
sort that was described in Section 1.7.1.)

2. (a) Find a recurrence relation to describe the complexity of the recursive code to com-
pute a' for any positive real number a and any natural number n:

INPUT: a E R with a > 0 and n E N
OUTPUT: an

recursivePower(a, n)
if n = 0 then

recursivePower(a, n) = 1
else

recursivePower(a, n) = a • recursivePower(a, n - 1)

(b) Find a closed form for the function found in part (a).

3. (a) Find a recurrence relation to describe the complexity of the recursive code for
computing the nth Fibonacci number:

INPUT: n E N
OUTPUT: Fn

recursiveFibonacci(n)
if n = 0 then

recursiveFibonacci(O) = 1
else

if n = 1 then
recursiveFibonacci(1) = 1

else
recursiveFibonacci(n) = recursiveFibonacci(n - 1)

+ recursiveFibonacci(n - 2)

(b) Find a closed form for the function found in part (a).

584 CHAPTER 9 Recurrence Relations

4. (a) Find a recurrence relation to describe the complexity of the recursive code for
carrying out a linear search of n elements al, a2. an:

INPUT: X E]R and sequence al1, a2, an

OUTPUT: TRUE if x is in the list and FALSE if it is not

recursiveLinearSearch(x, 1, n)

recursiveLinearSearch(x, i, n)

if x = ai then
print TRUE

else
if i = n then

return FALSE
else

recursiveLinearSearch(x, i + 1, n)

(b) Find a closed form for the function found in part (a).

5. Find and solve a recurrence relation that describes the complexity of each of the blocks
of code shown. The blocks of code evaluate a polynomial at some point. Compare your
answers to what you found for Exercise 6 in Section 5.6.4

(a)

INPUT: n E M, the coefficients of P stored in a [0.. n], and a real number x0
OUTPUT: P(xo)

Poly = ao
x=1
for/= 1 to n

X = X

Poly = ai - x + Poly
print Poly

Chapter Review 585

(b)

INPUT: n E N, the coefficients of P stored in a[0.. n], and a real number x0
OUTPUT: P(xo)

Poly = a [0]
fori =Oton

X =X0
for j = 1 to i

X = X "X0

Poly = Poly + a[i]. x
print Poly

(c) The code shown implements Homer's algorithm.

at x --

INPUT: n E N, the coefficients of P stored in a [0 .. n], and a real number x0
OUTPUT: P(xo)

Poly = xo " a[n] + a[n - 1]
/* down to means to subtract 1 each time through the loop until i <0 *0
for i = n - 2 down to 0

Poly = Poly . xo + a[i]

print Poly

586 CHAPTER 9 Recurrence Relations

6. For the two versions of the sorting routine called INSORT, determine the complexity
of the code presented:

(a) function INSORT [X, n]
if n < 1 then

return
INSORT[X, n - 1]
T = X[n]
for i = n - 1 down to I

if X[i] < T then

X[i ± 1] = X[i]
X[i] = T
T = X[i]

(b) function INSORT[X, n]
if n < 1 then

return
for j = 2 to n

T = X[j]

for i = j - 1 down to 1
X[i] > T then
X[i + 1] = X[i]
X[i] = T
T = X[i]

7. (a) Find a recurrence relation for the number of binary decision trees on a set of n
distinct numbers. (Hint: See Figure 6.42).

(b) Use the recurrence relation found in part (a) to determine the number of binary

search trees for 5, 7, 9, and 10 items.

Languages and Regular Sets

A particularly important application of finite sequences is languages. The words of a lan-
guage are finite sequences of symbols or strings from some finite set of symbols, called
an alphabet. For example, begin or wherefore or a or string or doesn't or cooperation are
words. In this context, a sequence is written in the form begin, not the form b e g i n.
The symbols in the words themselves will be underlined in this section to distinguish be-
tween talking about a word (underlined) and using a word (not underlined). The operation
of concatenation defined for two words x and y, denoted as x • y, lists the second word
immediately after the first word. Concatenation is shown by just running the sequences
together-for example, book • keeper = bookkeeper. The examples, so far, all use the
characters of the English alphabet, including apostrophes. One could just as well look at
any other alphabet, such as the Spanish alphabet, which is slightly different, or all the keys
on a computer keyboard that print characters on the screen except for space. In general, we
can define words relative to any alphabet. More generally, for any two sets of words A and
B, we let

A- B = {x - y :x E A and y E B}

Definition 1. An alphabet is a finite set.

Definition 2. Let E be an alphabet. Then, E* is the set of all finite sequences of elements
of E. The elements of V* are strings or words over E. The empty string, the string with
no symbols, is denoted A or r.

Example 1.

(a) Let E = {a} (a set with one element). Then, the set of words over E is {A, a, aa, aaa,
aaaa, aaaaa, aaaaaa, ... }.

(b) Let E = {a, b}. Then, the set of words over E is {A, a, b, aa, ab, ba, bb, aaa, aab, aba,
abb, baa, bab, bba, bbb, ... 1

Definition 3. A language over an alphabet E is a set of strings over E. Alternatively, a
language is a subset of V*.

One way to study language is to define a language to be the set of words in the latest
edition of the language's standard dictionary. So, by this definition, cooperation E English
and psymathastrygronomy 0 English. Similarly, to study a computer language, you define

587

588 APPENDIX A Languages and Regular Sets

the set of words to be the set of all legal tokens of the language where a token in a computer
language corresponds roughly to a word or a punctuation mark of a human language. For
example, the program

program Programmer (input, output);
begin

write (3 <= 4)
end.

contains the tokens

program Programmer (ut output)
beg write t 3 <= 4 1 end

The traditional compiler has a procedure called a scanner that divides the program
into tokens. Here, as noted above, the alphabet E is the set of all characters that can be
typed onto a computer screen except for space, which only divides tokens.

Another very different way to look at a language is to define it to be the set of gram-
matically correct sentences. Now, the alphabet is the set of words of the language plus
the set of punctuation marks, and the strings are called sentences. Words are separated by
spaces. Punctuation marks also may need to be separated by spaces, depending on context.
So, the following string contains five tokens:

Wherefore art thou Romeo ?

with the last token being the question mark. Grammatical correctness is determined by the
grammar, or syntax, of the language.

Similarly, a computer language can be defined to be the set of syntactically correct
programs in the language. The alphabet is the set of (grammatical categories of) tokens.
The program Programmer is a string of 10 (categories of) tokens. The traditional compiler
has a procedure called a parser that does most of the grammatical checking.

We have described two very different ways of looking at a language, neither of which
has mentioned meaning! English could also be defined to be the set of grammatically cor-
rect and meaningful sentences of English. For example, Chomsky's example Colorless
green ideas sleep furiously is in the set of grammatically correct sentences but is not in the
set of meaningful sentences.

As an illustration of a mathematical formalism, we return to the question of how you
describe the words in a language. Identifying an approximation to the words of English
is relatively easy: Just specify English as the set of all words listed in the Oxford English
Dictionary. For a computer language, this identification becomes harder. A computer pro-
gram called a compiler must read a program in one language and translate it into another
(a machine language). A part of the compiler divides a computer program into tokens. The
rules for what is a token must be clear. In theory, the set of possible tokens in most com-
puter languages is infinite. Although the number of actual tokens allowed by almost any
actual compiler is finite (for example, variable names of 5 million characters usually are
not acceptable), having a dictionary of all possible tokens and looking up candidate to-
kens in the dictionary would be prohibitively expensive. Fortunately, there is a theoretical
concept-that of a regular set-that elegantly describes the tokens of many languages.

Definition 4. Let x be a string over a finite alphabet E. For, n G N, define x0 = A and
Xn+i = X . Xn.

APPENDIX A Languages and Regular Sets 589

Definition 5. Let A and B be two sets of words:

(a) AB={x.y:xEAandy iB}
(b) A0 = {A}, andforalln E N,A'+' = A .A'
(c) A* =A 0 U A1 U A2 U .. U An U ...
(d) A+ =A'1UA2 U... UAn U...

A • B consists of all words formed by concatenating a word from A and a word from
B. So, A' consists of all words formed by concatenating n words from A together (possibly
all the same word, possibly all different). A* consists of all words formed by concatenating
any number (possibly 0) of words from A together. (The * notation is called the Kleene
star, after the mathematician Stephen Kleene [1909-1994, b. United States].) A+ consists
of all words formed by concatenating one or more words from A together. For any set A,
A+ = AA* (why?), so the operator + is used only to make definitions simpler.

Example 2. Let A ={aa, b}, and let B = {bb, cc, A). Then:
A • B = {aabb, aacc aa, bbb, bcc, b)
A3 = {aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
A* contains the following strings and infinitely many others:

A(the string in A0),
aa, b (the strings in A 1)
aaaa aab, baa, bb (the strings in A2)
aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb (the strings in A3)

Since the number of tokens that can be generated using Definition 4 is infinite, a pro-
gram must have some way to recognize correctly formed tokens. For this reason, the set
of possible identifiers in most computer languages is required to be a regular set. This
gives the programmer broad latitude in choosing names while still making the scanning
algorithm relatively straightforward. Like the definition of the Fibonacci numbers, the def-
inition of the term regular set is recursive. The pattern is like a proof by induction, with a
Base case replacing the Base step and a Closure rule replacing the Inductive step. (See
Section 2.1.1 for a similar notion with formulas.)

Definition 6. Let E be an alphabet.

(Base case) Any finite subset (including 0) of E* is a regular set.

(Closure rule) If A and B are regular sets, so are A U B, A • B, and A*.

Example 3. An identifier such as a program name or a variable name in a computer
language consists of a letter followed by a string of letters and digits, such as x or ab-
cadabral23testing0. The set of identifiers is a regular set.

Let

Letter = {A, R, C Z, a, b, c ... , z)
Digit = {0, ,,1 4, 5, ,7, 8, 9

Letter and Digit are both finite and, hence, regular. So, Letter U Digit is also regular; it
is the union of two regular sets. So, (Letter U Digit)* is regular, since it is the Kleenestar
of a regular set. (Letter U Digit)* consists of all finite strings of letters and digits. Finally,
Letter((Letter U Digit)*) is also regular, consisting of all strings formed from a single letter
followed by a finite string of letters and digits-that is, all identifiers.

590 APPENDIX A Languages and Regular Sets

Definition 6 allows identifiers to be of any finite length. Although a compiler will
normally have a maximum allowable length, this part of the theory works out much more
nicely if no maximum is assumed. Actually, a few strings of letters are not legal identifiers
because of their restricted use in a language. These words are called reserved words, and
they may only be used as intended, not as identifiers. The definition above can be modified
to show that the actual set of identifiers is a regular set.

Example 4.

(a) An integer constant consists of a sequence of one or more digits, possibly preceded by
a + or - sign, such as 3 or +9876543210. The set of integer constants is also regular.
Let

UnsignedInteger = (Digit) +

which is regular, since Digit is regular. Then,

Integer = {±, =, A } (UnsignedInteger+)

Since {+, _, A} is finite, and, thus, regular, Integer is regular.
(b) One way to write a real number constant uses an optional sign (± or -), followed by

one or more digits, followed by a decimal point, followed by one or more digits, such as
in -3.1415926535. The set of strings of one or more digits was called UnsignedInteger
above, and the set of real number constants of this form is

SimpleReal = Integer._Unsignedlnteger

which is regular.
(c) There are two other ways to write a real constant, both of which use scientific notation.

The number 6.02 x 1023 would be expressed as 6.02E23, with the E preceding the
power of 10. It could also be written as 6.02E+23. This form has what was called a
SimpleReal followed by E, followed by an integer. So, the set of all constants of this
form is SimpleRealEInteger, which is regular. The set of strings of the third form is
IntegerEInteger, which is also regular. Finally, the set of reals is

(SimpleReal) U (SimpleRealEInteger) U (IntegerEInteger)

which is also regular.

How is all this used in compiling a computer program? The language designer for
each type of token in the language must define what its (regular) set of possible values are,
often using something called regular set notation. The first phase of a compiler is called a
scanner or lexical analyzer. It scans the input program for tokens. At each step, it takes the
longest string of symbols that is in any of those regular sets. Suppose it has come to a line
in the program Jones <= Smith: J, Jo, Jon, and Jones are all legal variable names, and no
token may include a blank. So, the scanner identifies Jones as a variable name-actually, it
identifies Jones as an identifier. Another part of the compiler decides whether this identifier
names a variable, a subprogram, or whatever else. The symbols <= and < are both legal
comparison operations, so it chooses <=, the longer, as its next token. Finally, Smith is a
legal token, but Smith, is not. So, it chooses Smith and ý as its final tokens.

Finite Automata

A fundamental problem in computer science is to decide whether a word is in a language.

For the case of regular sets or regular languages, the problem is solved using a very special
sort of computer, called a finite automaton.

Definition 1. A finite automaton consists of five elements:

(a) An alphabet E. Our input strings will be elements in E
(b) A finite set Q, the elements of which are called states.
(c) A designated start state in Q called qo.
(d) Some subset of Q is designated as the set of accepting states.
(e) A transition function 8, which indicates what state should be entered as a result of

processing the next letter in the input word. By convention 6(xw, q) = 8(w, 8(x, q))
for any word t and any element x E E. A word a) E E* is accepted or is in the
language if (wo, q0) is in the set of accepting states.

Example 1. Let E = {0, 1} and Q = {q0, ql, q21. q0 is the start state, and {q2} is the set

of accepting states. The function 8 is defined as

8(0, qo) = q2 8(0, ql) = q2 8(0, q2) = qo
3(1, qo) = ql 8(1, ql) = ql 8(1, q2) = ql

The word 11001 is not in the language. The word 10010 is in the language.

Solution. We must compute 8(11001, qo):

8(11001, qo) = 8(1001, 8(1, qo)) = 8(1001, ql)

8(1001, ql) = 3(001, 3(1, ql)) = 3(001, ql)

8 (001, qa) = 8(0, (0, q1)) = 8(01, q2)

8(01, q2) = 8(1, 8 (0, q2)) = 8 (1, qo)

8(1, qo) = qj

Since 11001 does not lead to an accepting state, this word is not in the language.
We must now compute 8(10010, qo):

6(10010, qo) = 8(0010, 8(1, qo)) = 6(0010, qj)

3(0010, qj) = 8(010, 6(0, ql)) = 3(010, q2)

591

592 APPENDIX B Finite Automata

8(010, q2) = 3(10, B(0, q2)) = 6(10, qo)

8(10, q2) = 8(0, 8(1, qo)) = 8(0, qj)

8(0, ql) = q2

Since 10010 leads to an accepting state, this word is in the language. U

Definition 2. The language accepted by a finite automaton or automata is the set of
strings in E * accepted by the finite automaton.

Example 2. The finite automaton shown in Figure B.1 accepts the language of binary
words that represent positive odd integers. States with double-circle boundaries are accept
states. The symbol on a directed edge indicates what the next state is for that symbol. The
figure is called a state diagram for the finite automaton.

1 0

Figure B.1 Automaton to accept odd integers.

Example 3. The finite automaton shown in Figure B.2 accepts the language of binary
words that represent even positive integers.

1 0

Figure B.2 Automaton to accept even integers.

rn Exercises

1. Let E = {0, 11 and Q = {qo, ql, q2}. qo is the start state, and {qlI is the set of accept-
ing states. The function 8 is defined as

8 qo qj q2

0 ql ql q2
1 q2 ql qo

Exercises 593

Draw the state diagram for the automata. Determine which of the following words are
in the language:

(a) 0011011
(b) 110 110 1
(c) 1111000011110

2. Let E = {0, 11 and Q = {qo, ql, q2}. qo is the start state, and {qj} is the set of accept-
ing states. The function 8 is defined as

8 qo ql q2

0 ql ql q2

1 q2 q2 qo

Draw the state diagram for the automata. Determine which of the following words are
in the language:

(a) 0011011
(b) 1 101101
(c) 1111000011110

3. Let Z = {a, b, c) and Q = {qo, qI, q2, q3}. qo is the start state, and {ql} is the set of
accepting states. The function 8 is defined as

8 qo qj q2 q3

a ql q2 q3 qo
b q2 q3 qo qj
c ql qo q3 q2

Draw the state diagram for the automata. Determine which of the following words are
in the language:

(a) acbaccabb
(b) babacacbcca
(c) cbaccbbababc

4. Let E = {a, b, c} and Q = {qo, ql, q2, q3}. qo is the start state, and {qj, q2} is the set
of accepting states. The function 8 is defined as

8 qo qj q2 q3

a qj q2 q2 q0
b q2 ql qo q'

c ql qo q3 q3

Draw the state diagram for the automata. Determine which of the following words are
in the language:

(a) acbacbbcabb
(b) cbababcacabcca
(c) bbbcbaccbbababc

5. In the transmission of a string of binary digits, three consecutive l's being received is
an indication of an error in the transmission. Define an automata that will detect this
error condition. Draw the state diagram for the automata you define.

594 APPENDIX B Finite Automata

6. The standard way to describe the individual tokens ("words") of a computer language
is with regular expressions orfinite state automata. We gave examples in Appendix A;
here, we just consider a simple example. The regular expression (a lbb)* means that
a string may be built up by any number of occurrences of a's or bb's-for example,
abbaaabb consists of one a, followed by one bb, followed by three a's, followed
by one bb. The symbol I means exclusive or; the symbol * (called the Kleene star)
means any number of occurrences-including 0. The language denoted by the regular
expression is the set of all strings that can be built that way:

{A,a,aa,bb,aaa,abb,bba,aaaa,aabb,abba,bbaa,bbbb

where the symbol A just names the empty string-the string consisting of 0 symbols.

(a) Previously, we listed all strings of length less than or equal to four in the language
denoted by (a Ibb)*. Assume there are four strings of length four in the language.
Find, and solve a recurrence relation for the number of strings of length n in the
language for arbitrary non-negative integer n.

(b) Find and solve a recurrence relation for the number of strings of length n in the
language denoted by (a I bbIc)*.

(c) Find and solve a recurrence relation for the number of strings of length n in the
language denoted by (a I bbIcc)*.

(d) How many strings of length n are there in the language denoted by
(albblc)*J(albblcc)*? Why?

Index

G c O(F), 285 Ordering Three Values 1, 301 binary predicate, 135
P(n, r), 436 Ordering Three Values II, 302 binary function, 223
R*, 175 Ordering Three Values III, 303 binary relation, 159, 222
R+, 175 Perfect Squares, 58 composition, 165
k to 1, 254 Selection Sort, 314 binary search, 81, 87, 568
n-tuples, 495 Square Root I, 59 binary search tree, 382
i.i.d., 534 Square Root II, 61 binary tree, 381
1-1 correspondence, 234 TSP, 422 binomial
3-satisfiability problem, 129 UNION-FIND, 188 coefficients, 459

algorithm, 56, 283, 317, 484, 579 distribution, 522
A-V-L trees, 384 extends, 320 Binomial Theorem, 459
above, 197 polynomial time, 309 bipartite
absorption law, 19 halts, 283 graph, 335
Absorption Law for Join, 29 stops, 283 bipartite graph
Absorption Law for Meet, 29 terminates, 283 directed, 393
accepted, 591, 592 alphabet, 587, 591 bipartition, 335
accepting state, 591 alphabetic variant, 120 Birthday Problem, 487
acyclic graph, 341 alphabetical ordering, 194 bit, 514
Addition Principle, 426, 427 ancestor, 379 bit operations
additive principle of disjoint events, antisymmetric, 170 COMP, 22

485 intersection, 17 DIFF, 22
adjacency list, 347 arrangements, 437 INTER, 22
adjacency matrix, 346 associative law, 108 UNION, 22
adjacent, 334, 393 union, 16 bits, 498
adjacent edges, 334 Associative Law for Join, 29 boolean
algebraic number, 272 Associative Law for Meet, 29 algebra, 30
algebraic proof, 457 asymptotically dominates, 285, 288 function, 227
Algorithm atomic formula, 135 boundary value, 554, 562

Binary Search, 78, 569 attribute, 203 breadth first search, 358
Bubble Sort 1, 305 attribute values, 203 tree, 358
Bubble Sort II, 307 autark, 420 bridge, 544
Compute Powers, 73 axiom of choice, 266
computing a' recursively, 583 C(n, r), 440
computing Fn, 88, 583 back substitution, 552, 555 Cantor's Second Diagonal Argument,
Detecting Order for Three Values, base case, 94, 589 271

300 Base step, 48 cardinality, 34, 265
Factor Positive Integer, 76 Bayes' Rule, 514 Cartesian product, 28
Finding a Minimal Element, 198 below, 197 ceiling function, 220, 240
Join Two Relations, 210 Bernoulli certificate, 310
Largest Odd Divisor, 75 process, 498 chance, 475
linear search, 584 trial process, 498 characteristic equation, 563
merge sort, 571 biconditional, 91 child, 379
NegSelfRef, 319 bijective, 234 Church's thesis, 316

595

596 Index

circuit, 341 congruent, 181 difference, 20
directed, 394 conjunction, 91 relative, 20

circular permutations, 439 conjuncts, 91 digraph, 393
clause, 125 connected, 353 directed
cliques, 335 component, 353 bipartite graph, 393
closed form, 55, 69, 224 constant predicate, 135 circuit, 394
closure constructing permutations, 446 cycle, 394

rule, 589 contained, 2 edge, 393
reflexive, 173, 175 continuum, 273 Eulerian circuit, 405
reflexive and transitive, 175 hypothesis, 272 graph, 393
symmetric, 173, 175 contradiction, 106, 108 path, 394
transitive, 175 contrapositive, 25, 108 subgraph, 393

code control structures, 301, 509 trail, 394
comment, 57 converse, 25 Diricblet drawer principle, 255

code conventions, 57 countable, 266 discrete, 478
comment, 57 countably infinite, 266 random variable, 520
condition, 57 countably infinite sample space, 491 sample space, 478
loop, 57 counting, 482 disjoint, 18
recursion, 73 complement, 443 events, 485, 508
while loop, 57 methods, 482 union, 483

codomain, 221, 222 decomposition into subproblems, disjunction, 91
collision resolution strategy, 236 444 disjuncts, 91
combination, 440 Counting Principles, 423 distance

with repetitions, 455 Addition Principle, 426 graphs, 392
combinatorial Multiplication Principle, 424 distribution, 521

circuit, 98 counting problems binomial, 522
identities, 457 counting the complement, 429 hypergeometric, 522
network, 98 cross product, 495 distributive law, 17, 108
proof, 457 event, 500 Distributive Law for Join, 29

combinatorics, 483 sample space, 495, 496 Distributive Law for Meet, 29
communication channel reliability, size, 496 divide and conquer, 568

514 cross product event solving, 576
commutative law, 108 probability, 504 divides, 192, 217
Commutative Law for Join, 29 cubic graph, 335 divisible by, 181
Commutative Law for Meet, 29 cycle, 341 divisor, 4, 39
comparable, 196 directed, 394 domain, 221, 222
complement, 21, 488 double negative, 108

graph, 336 dags, 400
complete, 131, 151 database, 202 edge, 334

bipartite graph, 335 database Cartesian product, 208 directed, 393
graph K., 335 deadlock state, 396 ends, 334

complexity decidable, 318 head, 393
average time, 312 decimal expansion of rational, 257 incident, 393
complexity decision algorithm, 318 tail, 393

if ... then ... else, 552 decision problem, 309 element, 2
repetition, 306 decision tree, 387 empty relation, 161
selection, 303 decreasing, 238 empty string, 587
sequence, 302 decryption, 236 encryption, 236
space, 312 degree, 291, 334 equal cardinality, 265
time, 308 DeMorgan's Law equally likely events, 491

component intersection, 23 equijoin, 208
strongly connected, 402, 403 union, 23 equivalence class, 184, 403

composition, 165, 243 density, 479 equivalence proposition, 91
composition of functions, 243 dependent trials, 516, 518 equivalent, 110
computer representation depth first search, 354 Eulerian

sets, 22 tree, 355 circuit, 362
conclusion, 7, 91 derangement, 445,469 directed circuit, 405
condition, 57 descendant, 191, 379 trail, 362, 366
conditional, 91 diagonal argument even integer, 75
conditional probability, 507 Cantor's first, 270 even vertex, 334

Bayes' Rule, 514 Cantor's second, 271 event, 478
frequency interpretation, 510 dictionary order, 194, 446 cross product

Index 597

probability, 504 injection, 234 Inclusion-Exclusion, 491
cross product form, 500 injective, 234, 434 inclusive or, 15, 38
equally likely, 491 inverse, 245 increasing, 238

events invertible, 247 strictly, 238
disjoint, 508, 509 logarithmic, 293 indegree, 393
independent, 507, 509 onto, 232 independence
independent, alternate definition, partial, 229, 230 alternate definition for, 512

512 restriction, 228 independent, 507
excluded middle, 108 strictly decreasing, 238 pair of events, 509
existential quantification, 135 strictly increasing, 238 set of events, 508
expectation, 524 surjection, 234 independent events, 507, 509

of a random variable, 524 surjective, 234 independent random variables, 533
expected value, 524, 532 undefined, 230 indirect proof, 25, 27
experiment, 476, 477,498 Fundamental Theorem of Arithmetic, induced
expression tree, 95 68 subgraph, 336, 393
extends, 320 inductive step, 48, 589

gates, 28, 98 infinite, 265
face card, 482 generalized intersection, 20 infinite decimal, 257
factor, 4 generalized union, 20 infinite sequence, 248
failure in a Bernoulli trial, 498 geometric series, 557 infinite sets, 5
fair, 483 graph, 168, 334 InFrontOf relation, 173

card, 483 acyclic, 341 initial value, 552, 554, 562
coin, 483 directed, 393 injection, 234

false in formula, 104 disconnected, 353 injective, 234
Fibonacci numbers, 51, 561 invariant, 346 function, 434
finite, 265 of a function, 225 inorder traversal, 386, 549
finite automaton, 591 of a relation, 168 input size, 308, 311
finite decimal, 257 regular, 335 interior vertex, 379
finite sequence, 248 same, 345 internal vertex, 379
finite sets, 5 self-complementary, 345 internet address, 435
first order, 554 underlying, 393 intersection, 17
first-order recurrence relation, 552, WAITFOR, 396 associative, 17

554 weighted, 376 commutative, 17
floor, 220 graphical, 334 invariant, 346
flush (poker), 443 greatest integer function, 220 inverse, 25
for statement, 304 greatest lower bound, 217 of a function, 245
formula, 92, 135 greedy algorithms, 374 of a relation, 164

atomic, 135 invertible, 247
frequency interpretation, 480 halting problem, 318, 319 IPv4, 435

and conditional probability, 510 NegSelfRef, 319 IPv6, 435
full house, 449 unsolvable, 319 irreflexive, 168
function, 221, 222 Handshaking Theorem, 339 isolated vertex, 334

1-1 correspondence, 234 head, 393 isomorphic, 345, 394
bijection, 234 heapsort, 87
bijective, 234 height, 379 join, 208
binary, 223 tree, 379 natural, 208
Boolean, 227 homogeneous, 562
ceiling, 255 horizontal line test, 232 key operations, 300, 311
codomain, 221 Horn clause, 153 Kruskal's algorithm, 374
composition, 243 hypercube, 337
decreasing, 238 hypergeometric distribution, 522, 523 language, 587, 591
domain, 221 hypothesis, 7, 91 lattice, 28
equality, 226 complemented, 30
exponential, 293 i.i.d. random variables, 538 distributive, 29, 30
F + G, 248 idempotence, 108 lattice points, 279
F - G, 248 identically distributed, 534 Law of
F G, 248 identity function, 220 Averages, 538, 539
FIG, 248 if and only if, 7 Large Numbers, 538
greatest integer, 220 if... then ... else, 57 law of
identity, 220 image, 223 syllogism, 108
image, 223 implication, 6, 91 trichotomy, 194, 196
increasing, 238 incident, 334, 393 leaf, 371, 379

598 Index

least upper bound, 217 occur, 478 polynomial, 291
left child, 381 odd integer, 75 function, 291
lemma, 53 odd vertex, 334 time, 309
length, 340 onto, 232 postorder traversal, 386
level, 379 operation power set, 28
lexicographical order, 194, 446 commutative, 253 predicate, 135
linear order, 191 operations on functions, 243 binary, 135
lists, 249 F + G, 248 constant, 135
logically F - G, 248 n-ary, 135

equivalent, 110 FIG, 248 preimage, 223
implies, 110 composition, 243 preorder traversal, 386
valid, 106 inverse, 245 Prim's Algorithm for MCST, 417

loop, 57 or prime, 4
command, 57 inclusive, 38 Principle

loop invariant assertions, 141 order of, 285 Inclusion-Exclusion, 491
lower bound, 217 ordered pair, 220, 477 Inclusion-Exclusion for a Finite
Lucas Numbers, 64 ordering, 194 Number of Sets, 41

dictionary, 194 Inclusion-Exclusion for Three or
mapped, 223 lexicographical, 194 More Sets, 37
Master Theorem, 579 linear, 194 Inclusion-Exclusion for Two Sets,
mathematical induction, 47 total, 194 36

Principle of Mathematical orientable, 405 Mathematical Induction, 48
Induction, 48 outcome, 477, 478 Well-Ordering, 81

Strong Form of Mathematical outdegree, 393 probability, 475
Induction, 67 density function, 479

matrix, 346 P(n; ri, r2 ... , rm), 453 conditional, 507columns, 346 P does not equal NP, 310 cross product events, 504
rows, 346 palindrome, 434 density, 479

maximal, 197 parent, 379 frequency interpretation, 510
maximum, 30, 197 parser, 588 of an outcome, 478
MCST, 377 partial function, 229, 230, 318 reliability of a communication
mean, 524, 532 codomain, 230 channel, 514
member, 2 domain, 230 total, 512
merge sort, 571 domain of definition, 230 probability density, 492minimal, 197 preimage, 230 uniform, 482, 491

minimal cost spanning tree, 377 range, 230 probability of an event, 479
minimum, 197 partial order, 191 probability principle

element, 30 particular solution, 564 multiplication, 493
modus tollen ponens, 108 partition, 183 product of sums, 494modus ~Pascalprcs
multigraph, 361 process
multigraphs, 415 identity, 458 Bernoulli, 498
multinomial coefficient, 463 triangle, 463 dependent trials, 516, 518
Multiplication Principle, 424 column sum, 463 trials, 498
multiplication principle diagonal sum, 463 product of sums principle,

probability, 493 triangle, row sum, 463 494path, 340 projection, 206

directed, 394 proof
n-ary, 135 perfect square, 58 indirect, 27
n-cube, 337 permutation, 436 proof is analogous, 16

Qn, 337 with repetitions, 452 proper subset, 6
n-cycle, 341 permutations, circular, 439 property, 163
n-regular, 335 Pierce arrow, 152 proposition, 90
natural join, 208 Pigeon-Hole Principle, 253, 255, connectives, 90
natural numbers, 4 430 constants, 90
negation, 91 Generalized, 255 letter, 90
negation normal form, 138 Weak Form, 255 propositional logic, 89
nested quantifiers, 137 pips, 476 pseudocode, 56
nondeterministic polynomial time, poker hand, 441 comment, 57

310 flush, 443 condition, 57
nonhomogeneous, 555 full house, 449 loop, 57
nonterminating decimal, 257 straight, 443 recursion, 57
normal forms, 89 straight flush, 443, 449 while loop, 57

Index 599

quantification, 135 cross product, 496 second kind, 469
existential, 135 SAT, 310 straight flush, 449
universal, 135 satisfiability, 310 streams, 249

query, 205 3-satisfiability problem, 548 strict partial orderings, 192
quotient, 181 satisfiable, 106 strictly

satisfies, 110 decreasing, 238
r-permutation, 436 scaling of a random variable, 527 increasing, 238
random variable, 520 scope of quantifier, 136 strings, 587

constant, 528 second order strongly connected component, 402,
expectation of, 524 homogeneous recurrence, 563 403
expected value of, 532 recurrence, 562 structured programming, 300
i.i.d., 534 recurrence relation subformula, 96
mean of, 532 homogeneous, 566 subgraph, 336
scaling of, 527 selection, 205 directed, 393
standard deviation of, 531 selection database (programming), induced, 336, 393
variance of, 531 301 spanning, 336, 394

random variables selection sort, 45 subsequence, 249, 250
i.i.d., 538 self-complementary, 345 subset, 6, 191, 426
independent, 533 sentences, 588 proper, 6
independent, identically distributed, sequence, 249, 301 success in a Bernoulli trial, 498

538 decreasing, 249 sum of random variables, 526
sum of, 526 finite, 248 surjection, 234

range, 223 increasing, 249 surjective, 234
reals are uncountable, 271 infinite, 248 symmetric, 169, 181
recursive definition, 51 lists, 249 difference, 24
recursively defined, 51 strictly decreasing, 249 syntax, 588
refines, 186 strictly increasing, 249
reflexive, 168, 181 subsequence, 250 tail, 393
regular sequences tautologically

graph, 335 streams, 249 equivalent, 110
set, 589 set implies, 110

relation complement, 488 tautology, 106
ancestor, 172 decomposition, 428 Taylor series, 298
binary, 222 size, 482 Template
empty, 161 sets disproving for every x E A, 27
equivalence, 181 infinite, 5 if and only if results, 13
trivial, 161 equal, 5 mathematical induction, 49
unary, 163 finite, 5 prove A C B, 10
universal, 161 Sheffer stroke, 152 prove A C B, 9
void, 161 sibling, 379 proving sets equal, 11

relational size of cross product, 496 proving sets not equal, 12
database, 203 solution, 552 Strong Form of Mathematical
algebra, 205 solving Induction, 70
database, 204 divide-and-conquer r.r., 577 terminal, 379

reliability, 514 first-order r.r., 555 terminating decimal, 257
remainder, 181 second-order r.r., 566 time complexity, 300
repeating decimal, 257 sorting total ordering, 194
repeating decimal notation, 257 bubble, 305 total probability, 512
repetition, 301 insertion, 326 Tower of Hanoi, 549

nested, 307 merge, 571 trail, 340
resolution, 129 selection, 45 directed, 394
restriction, 228 sound, 131 transcendental, 272
right child, 381 spanning subgraph, 336, 374 transition function, 591
root, 378 spots, 476 transitive, 172, 181
rooted standard deviation, 531 closure, 173

subtree, 380 start state, 591 transmitter, 416
tree, 378 statement, 25 Traveler's Problem, 421

rotation, 384 while, 57 traversal
states, 591 inorder, 386

same cardinality, 265 STCONN, 403 postorder, 386
sample space, 477, 478 Stirling numbers preorder, 386

countably infinite, 491 first kind, 468 tree, 371, 424

600 Index

trial, 498 Universal Algorithm, 320 odd, 334
dependent, 516 universal quantification, 135 terminal, 371

triangle, 341 universal set, 7, 21 vertical line test for a function, 225
trivial relation, 161 universal Turing machine, 320 vertical line test for a partial function,
trivial solution, 563 universe, 7 231
true in formula, 104 unsatisfiable, 106 void relation, 161
truth table, 91 upper bound, 217
TSP, 421 WAITFOR graph, 396
tuple, 203 vacuously true, 6 Weak Law of Large Numbers, 538

value of die, 477 weighted graph, 376
unary relation, 163 values, 203 cost of edge, 376
uncountable, 266, 270 Van Dermonde's Identity, 472 cost of graph, 376
undecidable, 318 variance, 531 well-formed formulas, 92
underlying graph, 393 Venn diagram, 7 wffs, 92
uniform probability density, verifier algorithm, 310 while, 57

482 vertex, 334, 393 words, 587
union, 15 even, 334 worst case, 484

associative, 16 interior, 371 worst-case behavior, 308
commutative, 16 isolated, 334

union-find leaf, 371 zero polynomial, 291
revisited, 188 neighbors, 334 ZF set theory, 273

Terms Meaning Section
Functions

F: X --- Y Function with dom. X and codom. Y 4.1.2
y = F(x) Image of x under F 4.1.2
F-1(y) Inverse image of y 4.1.2
F-'(Y) Inverse image of the set Y 4.1.2
FIB Restriction of function F to domain B 4.1.6
.Tx Family of functions with dom. and codom. 4.2

equal X
GoF Composition of functions F and G 4.3.1
G(F(x)) = G o F(x) Image of x under composition 4.3.1
F+G Sum of functions F and G 4.3.3
Fm/ni Ceiling function 4.1
Lm/nj Floor function 4.1
F•G Product of functions F and G 4.3.3
IFl Absolute value of function F 4.3.3
F/G Quotient of functions F and G 4.3.3
k to 1 k to 1 property of functions 4.6.1
0.d 1.d 2 . . . di-di ... d. Repeating decimal 4.6.3

Aleph nought-IN 1 4.8.1

Analysis of Algorithms

O(F) Order of F 5.1.1
e Equivalence relation on order sets 5.1.2
polynomial Function of the form ao + + anxn 5.1.3
exponential Function of the form a b 5.1.4
logarithmic Function of the form logy (x) 5.1.4

Graph Theory
G = (V, E) Graph with vertex set V and edge set E 6.1.1
deg(v) Degree of vertex v 6.1.1
di, d2, d. Degrees of the vertices of a graph 6.1.
K. Complete graph on n vertices 6.1.1
Km,n Complete bipartite graph on m 6.1.1

and n vertices
G 1 U G2 Union of graphs G 1 and G 2 6.1.2

G,1 n G2 Intersection of graphs G 1 and G2 6.1.2
G Complement of graph G 6.1.2
Qn Hypercube on n vertices 6.1.2
Tr(k) Trail of length k 6.3
Pn Path of length n 6.3
Cn Cycle with n vertices 6.3

Terms Meaning Section
Aim, ni or A(m, it) Two dimensional array notation 6.5
W(G) = ZeeE(G) w(e) Weight of graph G 6.11.3
indeg(v) Indegree of vertex v 6.14.1
outdeg(v) Outdegree of vertex v 6.14.A
TnTournament on n vetes 6.20
6 (G) Minimum degree in G 6.21.3
A(G) Maximum degree in G 6.21.3

Counting and Combinatorics

P(n, r) Number of permutations of r of n elements 7.5
C(n, r) Number of r-sets of an n-set 7.5.4
P (n; ri, r2 ... , rk) Number of yermutations with 7.8.1

repeated objects
[xIt Stirling numbers of the first kind 7.11
s(n, t) Stirling numbers of the second kind 7.11

Discrete Probability

b(n; k, p) Binomial distribution 8.7.2
E*= £1 x ... x xEi x ... x U2n Event in cross product space 8.3.5
P(X = x) P(o: P(w) = x1) 8.7.1
h(k; n, t, m) Hypergeometric distribution 8.7.3
E(X) Expectation of X 8.7.4
pA Mean 8.7.4
Var(X) Variance of X 8.9.1
a Standard deviation 8.9.1

Recurrence Relations

a. = can-I First order recurrence relation 9.2
an = Clan-1 + C2an-2 Second order recurrence relation 9.4.1

Pseudocode

if cond. then S, else S2 1.8.1
for i = a to b do S 1.8.1
/ * text * / 1.8.1
for i = n downto mS 5.6.4
for each x E X do 6.7.2

In recent years, an increasing number of computer scientists from
diverse areas have used discrete mathematical structures to explain
concepts and problems. In this accessible text, Haggard, Schlipf, and
Whitesides emphasize not only the fundamentals of discrete
mathematics and its advanced topics, but also how to express ideas in
clear mathematical language. Students will.discover the importance of
discrete mathematics in describing computer science structures and
problem solving, and will develop reasoning skills that will continue to
be useful throughout their careers.

Supplements:

" A Book Companion Website at
http://info.brookscole.com/053449501X.

" An online Instructor's Manual available on the Book Companion
Website.

" A Student Solutions Manual on CD packaged with the text.

For more information on these resources, please turn to the preface.

ISBN O-534-49501--X
90000

9 780534 495015

	Cover
	Index of Notation
	Title Page
	Copyright Page
	Contents�
	Preface
	CHAPTER 1 Sets, Proof Templates, and Induction�
	1.1 Basic Definitions�
	1.1.1 Describing Sets Mathematically�
	1.1.2 Set Membership�
	1.1.3 Equality of Sets�
	1.1.4 Finite and Infinite Sets�
	1.1.5 Relations Between Sets�
	1.1.6 Venn Diagrams�
	1.1.7 Templates�

	1.2 Exercises�
	1.3 Operations on Sets�
	1.3.1 Union and Intersection�
	1.3.2 Set Difference, Complements, and DeMorgan's Laws�
	1.3.3 New Proof Templates�
	1.3.4 Power Sets and Products�
	1.3.5 Lattices and Boolean Algebras�

	1.4 Exercises�
	1.5 The Principle of Inclusion-Exclusion�
	1.5.1 Finite Cardinality�
	1.5.2 Principle of Inclusion-Exclusion for Two Sets�
	1.5.3 Principle of Inclusion-Exclusion for Three Sets�
	1.5.4 Principle of Inclusion-Exclusion for Finitely Many Sets�

	1.6 Exercises�
	1.7 Mathematical Induction�
	1.71 A First Form of Induction�
	1.72 A Template for Constructing Proofs by Induction�
	1.73 Application: Fibonacci Numbers�
	1.74 Application: Size of a Power Set�
	1.75 Application: Geometric Series�

	1.8 Program Correctness�
	1.8.1 Pseudocode Conventions�
	1.8.2 An Algorithm to Generate Perfect Squares�
	1.8.3 Two Algorithms for Computing Square Roots�

	1.9 Exercises�
	1.10 Strong Form of Mathematical Induction�
	1.10.1 Using the Strong Form of Mathematical Induction�
	1.10.2 Application: Algorithm to Compute Powers�
	1.10.3 Application: Finding Factorizations�
	1.10.4 Application: Binary Search�

	1.11 Exercises�
	1.12 Chapter Review�
	1.12.1 Summary�
	1.12.2 Starting to Review�
	1.12.3 Review Questions�
	1.12.4 Using Discrete Mathematics in Computer Science�

	CHAPTER 2 Formal Logic�
	2.1 Introduction to Propositional Logic�
	2.1.1 Formulas�
	2.1.2 Expression Trees for Formulas�
	2.1.3 Abbreviated Notation for Formulas�
	2.1.4 Using Gates to Represent Formulas�

	2.2 Exercises�
	2.3 Truth and Logical Truth�
	2.3.1 Tautologies�
	2.3.2 Substitutions into Tautologies�
	2.3.3 Logically Valid Inferences�
	2.3.4 Combinatorial Networks�
	2.3.5 Substituting Equivalent Subformulas�
	2.3.6 Simplifying Negations�

	2.4 Exercises�
	2.5 Normal Forms�
	2.5.1 Disjunctive Normal Form�
	2.5.2 Application: DNF and Combinatorial Networks�
	2.5.3 Conjunctive Normal Form�
	2.5.4 Application: CNF and Combinatorial Networks�
	2.5.5 Testing Satisfiability and Validity�
	2.5.6 The Famous 'P Af r Conjecture�
	2.5.7 Resolution Proofs: Automating Logic�

	2.6 Exercises�
	2.7 Predicates and Quantification�
	2.71 Predicates�
	2.72 Quantification�
	2.73 Restricted Quantification�
	2.74 Nested Quantifiers�
	2.75 Negation and Quantification�
	2.76 Quantification with Conjunction and Disjunction�
	2.77 Application: Loop Invariant Assertions�

	2.8 Exercises�
	2.9 Chapter Review�
	2.9.1 Summary�
	2.9.2 Starting to Review�
	2.9.3 Review Questions�
	2.9.4 Using Discrete Mathematics in Computer Science�

	CHAPTER 3 Relations�
	3.1 Binary Relations�
	3.1.1 n-ary Relations�

	3.2 Operations on Binary Relations�
	3.2.1 Inverses�
	3.2.2 Composition�

	3.3 Exercises�
	3.4 Special Types of Relations�
	3.4.1 Reflexive and Irreflexive Relations�
	3.4.2 Symmetric and Antisymmetric Relations�
	3.4.3 Transitive Relations�
	3.4.4 Reflexive, Symmetric, and Transitive Closures�
	3.4.5 Application: Transitive Closures in Medicine and Engineering�

	3.5 Exercises�
	3.6 Equivalence Relations�
	3.6.1 Partitions�
	3.6.2 Comparing Equivalence Relations�

	3.7 Exercises�
	3.8 Ordering Relations�
	3.8.1 Partial Orderings�
	3.8.2 Linear Orderings�
	3.8.3 Comparable Elements�
	3.8.4 Optimal Elements in Orderings�
	3.8.5 Application: Finding a Minimal Element�
	3.8.6 Application: Embedding a Partial Order�

	3.9 Exercises�
	3.10 Relational Databases: An Introduction�
	3.10.1 Storing Information in Relations�
	3.10.2 Relational Algebra�

	3.11 Exercises�
	3.12 Chapter Review�
	3.12.1 Summary�
	3.12.2 Starting to Review�
	3.12.3 Review Questions�
	3.12.4 Using Discrete Mathematics in Computer Science�

	CHAPTER 4 Functions�
	4.1 Basic Definitions�
	4.1.1 Functions as Rules�
	4.1.2 Functions as Sets�
	4.1.3 Recursively Defined Functions�
	4.1.4 Graphs of Functions�
	4.1.5 Equality of Functions�
	4.1.6 Restrictions of Functions�
	4.1.7 Partial Functions�
	4.1.8 1-1 and Onto Functions�
	4.1.9 Increasing and Decreasing Functions�

	4.2 Exercises�
	4.3 Operations on Functions�
	4.3.1 Composition of Functions�
	4.3.2 Inverses of Functions�
	4.3.3 Other Operations on Functions�

	4.4 Sequences and Subsequences�
	4.5 Exercises�
	4.6 The Pigeon-Hole Principle�
	4.6.1 k to 1 Functions�
	4.6.2 Proofs of the Pigeon-Hole Principle�
	4.6.3 Application: Decimal Expansion of Rational Numbers�
	4.6.4 Application: Problems with Divisors and Schedules�
	4.6.5 Application: Two Combinatorial Results�

	4.7 Exercises�
	4.8 Countable and Uncountable Sets�
	4.8.1 Countably Infinite Sets�
	4.8.2 Cantor's First Diagonal Argument�
	4.8.3 Uncountable Sets and Cantor's Second Diagonal Argument�
	4.8.4 Cardinalities of Power Sets�

	4.9 Exercises�
	4.10 Chapter Review�
	4.10.1 Summary�
	4.10.2 Starting to Review�
	4.10.3 Review Questions�
	4.10.4 Using Discrete Mathematics in Computer Science�

	CHAPTER 5 Analysis of Algorithms�
	5.1 Comparing Growth Rates of Functions�
	5.1.1 A Measure for Comparing Growth Rates�
	5.1.2 Properties of Asymptotic Domination�
	5.1.3 Polynomial Functions�
	5.1.4 Exponential and Logarithmic Functions�

	5.2 Exercises�
	5.3 Complexity of Programs�
	5.3.1 Counting Statements�
	5.3.2 Two Algorithms Illustrating Selection�
	5.3.3 An Algorithm Illustrating Repetition�
	5.3.4 An Algorithm Illustrating Nested Repetition�
	5.3.5 Time Complexity of an Algorithm�
	5.3.6 Variants on the Definition of Complexity�

	5.4 Exercises�
	5.5 Uncomputability�
	5.5.1 The Halting Problem�

	5.6 Chapter Review�
	5.6.1 Summary�
	5.6.2 Starting to Review�
	5.6.3 Review Questions�
	5.6.4 Using Discrete Mathematics in Computer Science�

	CHAPTER 6 Graph Theory�
	6.1 Introduction to Graph Theory�
	6.1.1 Definitions�
	6.1.2 Subgraphs�

	6.2 The Handshaking Problem�
	6.3 Paths and Cycles�
	6.3.1 Hamiltonian Cycles�

	6.4 Graph Isomorphism�
	6.5 Representation of Graphs�
	6.5.1 Adjacency Matrix�
	6.5.2 Adjacency Lists�

	6.6 Exercises�
	6.7 Connected Graphs�
	6.71 The Relation CONN�
	6.7.2 Depth First Search�
	6.7.3 Complexity of Dfs�
	6.74 Breadth First Search�
	6.7.5 Finding Connected Components�

	6.8 The K6nigsberg Bridge Problem�
	6.8.1 Graph Tracing�

	6.9 Exercises�
	6.10 Trees�
	6.10.1 Definition of Trees�
	6.10.2 Characterization of Trees�

	6.11 Spanning Trees�
	6.11.1 Kruskal's Algorithm�
	6.11.2 Correctness of Kruskal's Algorithm�
	6.11.3 Kruskal's Algorithm for Weighted Graphs�
	6.11.4 Correctness of Kruskal's Weighted Graph Algorithm�

	6.12 Rooted Trees�
	6.12.1 Binary Trees�
	6.12.2 Binary Search Trees�
	6.12.3 Tree Traversals�
	6.12.4 Application: Decision Trees�

	6.13 Exercises�
	6.14 Directed Graphs�
	6.14.1 Basic Definitions�
	6.14.2 Directed Trails, Paths, Circuits, and Cycles�
	6.14.3 Directed Graph Isomorphism�

	6.15 Application: Scheduling a Meeting Facility�
	6.15.1 WAITFOR Graphs�

	6.16 Finding a Cycle in a Directed Graph�
	6.16.1 Directed Cycle Detection Algorithm�
	6.16.2 Correctness of Directed Cycle Detection�

	6.17 Priority in Scheduling�
	6.171 Algorithm for Topological Sort�
	6.172 Correctness of Topological Sort Algorithm�

	6.18 Connectivity in Directed Graphs�
	6.18.1 Strongly Connected Directed Graphs�
	6.18.2 Application: Designing One-Way Street Grids�

	6.19 Eulerian Circuits in Directed Graphs�
	6.20 Exercises�
	6.21 Chapter Review�
	6.21.1 Summary�
	6.21.2 Starting to Review�
	6.21.3 Review Questions�
	6.21.4 Using Discrete Mathematics in Computer Science�

	CHAPTER 7 Counting and Combinatorics�
	7.1 Traveling Salesperson's Problem�
	7.2 Counting Principles�
	7.2.1 The Multiplication Principle�
	7.2.2 Addition Principle�

	7.3 Set Decomposition Principle�
	7.3.1 Counting the Complement�
	7.3.2 Using the Pigeon-Hole Principle�
	7.3.3 Application: UNIX Logon Passwords�

	7.4 Exercises�
	7.5 Permutations and Combinations�
	7.5.1 Permutations�
	7.5.2 Linear Arrangements�
	7.5.3 Circular Permutations�
	7.5.4 Combinations�
	7.5.5 Poker Hands�
	7.5.6 Counting the Complement�
	7.5.7 Decomposition into Subproblems�

	7.6 Constructing the kth Permutation�
	7.7 Exercises�
	7.8 Counting with Repeated Objects�
	7.8.1 Permutations with Repetitions�
	78.2 Combinations with Repetitions�

	7.9 Combinatorial Identities�
	7.9.1 Binomial Coefficients�
	7.9.2 Multinomials�

	7.10 Pascal's Triangle�
	7.11 Exercises�
	7.12 Chapter Review�
	7.12.1 Summary�
	7.12.2 Starting to Review�
	712.3 Review Questions�
	7.12.4 Using Discrete Mathematics in Computer Science�

	CHAPTER 8 Discrete Probability�
	8.1 Ideas of Chance in Computer Science�
	8.1.1 Introductory Examples�
	8.1.2 Basic Definitions�
	8.1.3 Frequency Interpretation of Probability�
	8.1.4 Introductory Example Reconsidered�
	8.1.5 The Combinatorics of Uniform Probability Density�
	8.1.6 Set Theory and the Probability of Events�

	8.2 Exercises�
	8.3 Cross Product Sample Spaces�
	8.3.1 A Multiplication Principle�
	8.3.2 The Cross Product of Sample Spaces�
	8.3.3 Bernoulli Trial Processes�
	8.3.4 Events of Cross Product Form�
	8.3.5 Two Ways of Viewing Events�

	8.4 Exercises�
	8.5 Independent Events and Conditional Probability�
	8.5.1 Independent Events�
	8.5.2 Introduction to Conditional Probability�
	8.5.3 Exploring Conditional Probability�
	8.5.4 Using Bayes' Rule with the Theorem of Total Probability�

	8.6 Exercises�
	8.7 Discrete Random Variables�
	8.7.1 Distributions of a Random Variable�
	8.7.2 The Binomial Distribution�
	8.7.3 The Hypergeometric Distribution�
	8.7.4 Expectation of a Random Variable�
	8.7.5 The Sum of Random Variables�

	8.8 Exercises�
	8.9 Variance, Standard Deviation, and the Law of Averages�
	8.9.1 Variance and Standard Deviation�
	8.9.2 Independent Random Variables�

	8.10 Exercises�
	8.11 Chapter Review�
	8.11.1 Summary�
	8.11.2 Starting to Review�
	8.11.3 Review Questions�
	8.11.4 Using Discrete Mathematics in Computer Science�

	CHAPTER 9 Recurrence Relations�
	9.1 The Tower of Hanoi Problem�
	9.1.1 Recurrence Relation for the Tower of Hanoi Problem�
	9.1.2 Solving the Tower of Hanoi Recurrence�

	9.2 Solving First-Order Recurrence Relations�
	9.2.1 Solving First-Order Recurrences Using Back Substitution�

	9.3 Exercises�
	9.4 Fibonacci Recurrence Relation�
	9.4.1 Second Order-Recurrence Relations�
	9.4.2 Solving the Fibonacci Recurrence�
	9.4.3 Rules for Solving Second-Order Recurrence Relations�

	9.5 Exercises�
	9.6 Divide and Conquer Paradigm�
	9.7 Binary Search�
	9.71 Correctness�
	9.72 Complexity�

	9.8 Merge Sort�
	9.8.1 Correctness�
	9.8.2 Example�
	9.8.3 Complexity�

	9.9 Multiplication of n-Bit Numbers�
	9.10 Divide-and-Conquer Recurrence Relations�
	9.10.1 Complexity of Divide-and-Conquer Recurrence Relations�

	9.11 Exercises�
	9.12 Chapter Review�
	9.12.1 Summary�
	9.12.2 Starting to Review�
	9.12.3 Review Questions�
	9.12.4 Using Discrete Mathematics in Computer Science�

	APPENDIX�
	Appendix A�
	Appendix B�
	Index�
	Index of Notation (continued)
	Back Cover

