nimize

mize

nimize

yAS

nimize

VA<

yAS

© 2004 Goodrich, Tamassia

Tries

N

Preprocessing Strings

Preprocessing the pattern speeds up pattern matching
gueries
m After preprocessing the pattern, KMP’s algorithm performs
pattern matching in time proportional to the text size
|If the text is large, immutable and searched for often
(e.g., works by Shakespeare), we may want to
preprocess the text instead of the pattern

A trie is a compact data structure for representing a
set of strings, such as all the words in a text

m A tries supports pattern matching queries in time
proportional to the pattern size

N

© 2004 Goodrich, Tamassia Tries 2

Standard Tries

@ The standard trie for a set of strings S is an ordered tree such that:
= Each node but the root is labeled with a character
= The children of a node are alphabetically ordered
= The paths from the external nodes to the root yield the strings of S
Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stock, stop }

N

© 2004 Goodrich, Tamassia Tries 3

Analysis of Standard Tries

L
A standard trie uses O(n) space and supports
searches, insertions and deletions in time O(dm),
where:
n total size of the strings in S
m size of the string parameter of the operation
d size of the alphabet

N

© 2004 Goodrich, Tamassia Tries

Word Matching with a Trie

N

~ & insert the words
of the text into
trie
Each leaf is
associated w/ one
particular word

|eaf stores indices
where associated
word begins
(“see” starts at
index 0 & 24, leaf
for “see” stores
those indices)

r I

6 78

© 2004 Goodrich, Tamassia

S| el e a bl el a| r| ? s| el I | s| t| o c| k| !
0 1 23 45 6 7 8 9 1011 121314151617 18 19 20 21 22 23
s| el e a bl uf | 1| ? bl ul vy s| t| o| c| k| !

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
bl i| d s| t| o| c| k| ! bl i| d s| t| o| c| k| !

A7 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

hi el a| r t| h| e bl el || I|? s| t| o| p| !

47, 58

30

36

Tries

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 8

69

S
e t
e | (o)
0, 24
| C P
84
12 ”
17, 40, 5

51, 62

N

#® A compressed trie has
internal nodes of degree at
least two

|t is obtained from standard
trie by compressing chains of
“redundant” nodes

@ ex. the “i” and “d” in “bid”
are “redundant” because
they signify the sa ord

b

© 2004 Goodrich, Tamassia

Compressed Tries

ar

Tries

ck

Compact Representation

Compact representation of a compressed trie for an array of strings:
m Stores at the nodes ranges of indices instead of substrings
s Uses O(s) space, where s is the number of strings in the array
m Serves as an auxiliary index structure

N

01234 0123 0123
S[0]= |s|ele si4]= (blull |l S[71= (hlelal|r
S[1]= |ble|alr sis]= |bluly sig1= |blell |l
sie1= |slell || s[e]= |b]1i |d S[9]= |s|t|o|p
S[3]= [s|t|o|c|k

1,2, 3 8,2,3 4,2, 3 ,2,2 0,2,2 2,2,3 3,3, 4 9,3, 3

© 2004 Goodrich, Tamassia Tries 7

Suffix Trie

The suffix trie of a string X is the compressed trie of all the
suffixes of X

N

m
0

NS

m
A

i
3
Q

O | N

~N| D

nimize

mize nimize

e

nimize

yAS

© 2004 Goodrich, Tamassia

Tries

e

/Analysis of Suffix Tries

@ Compact representation of the suffix trie for a string
X of size n from an alphabet of size d
s Uses O(n) space

= Supports arbitrary pattern matching queries in X in O(dm)
time, where m is the size of the pattern

= Can be constructed in O(n) time

=

| N
~ | D

nirm
2 3 4

|
01

4,7 2,7 6, 7 2,7 6, 7

© 2004 Goodrich, Tamassia Tries

Encoding Trie (1)

A code is a mapping of each character of an alphabet to a binary
code-word

A prefix code is a binary code such that no code-word is the prefix
of another code-word

An encoding trie represents a prefix code
m Each leaf stores a character

= The code word of a character is given by the path from the root to
the leaf storing the character (O for a left child and 1 for a right child

N

00 {010 | 011 | 10 | 11

© 2004 Goodrich, Tamassia Tries 10

Encoding Trie (2)

Given a text string X, we want to find a prefix code for the characters
of X that yields a small encoding for X

m Frequent characters should have short code-words
» Rare characters should have long code-words
Example
m X = abracadabra
= T, encodes X into 29 bits
= T, encodes X into 24 bits

T

N

d r

© 2004 Goodrich, Tamassia Tries 11

Huffman’s Algorithm

S5 Algorithm HuffmanEncoding(X)

Given a string X, Input string X of size n
Huffman’s algorithm Output optimal encoding trie for X
construct a prefix C « distinctCharacters(X)
code the minimizes computeFrequencies(C, X)
the size of the Q < new empty heap
encoding of X forallc e C

It runsin time T < new single-node tree storing ¢
O(_n +d Io_g d), where Q.insert(getFrequency(c), T)

n is the size of X while Q.size() > 1

and d is the number f, « Q.min()

of distinct characters T, < Q.removeMin()
of X f, « Q.min()

@ A heap-based T, < Q.removeMin()
priority queue is T « join(T,, T,)
used as an auxiliary Q.insert(f, + f,, T)
structure return Q.removeMin()

© 2004 Goodrich, Tamassia Tries 12

Example

/ X = abracadabra
Frequencies

N

al|b|lc|d]|Tr

5 2 1 2
a b C d r 9
5 2 1 1 2 A .
L 5

a b C d r a C d b r

5 2 2 5
© 2004 Goodrich, Tamassia Tries

	Tries
	Preprocessing Strings
	Standard Tries
	Analysis of Standard Tries
	Word Matching with a Trie
	Compressed Tries
	Compact Representation
	Suffix Trie
	Analysis of Suffix Tries
	Encoding Trie (1)
	Encoding Trie (2)
	Huffman’s Algorithm
	Example

