
© 2004 Goodrich, Tamassia Greedy Method and Compression 1

The Greedy Method and
Text Compression

© 2004 Goodrich, Tamassia Greedy Method and Compression 2

The Greedy Method
Technique

The greedy method is a general algorithm
design paradigm, built on the following
elements:
 configurations: different choices, collections, or

values to find
 objective function: a score assigned to

configurations, which we want to either maximize or
minimize

It works best when applied to problems with the
greedy-choice property:
 a globally-optimal solution can always be found by a

series of local improvements from a starting
configuration.

© 2004 Goodrich, Tamassia Greedy Method and Compression 3

Text Compression

Given a string X, efficiently encode X into a
smaller string Y
 Saves memory and/or bandwidth

A good approach: Huffman encoding
 Compute frequency f(c) for each character c.
 Encode high-frequency characters with short code

words
 No code word is a prefix for another code
 Use an optimal encoding tree to determine the

code words

© 2004 Goodrich, Tamassia Greedy Method and Compression 4

Encoding Tree Example
A code is a mapping of each character of an alphabet to a binary
code-word
A prefix code is a binary code such that no code-word is the
prefix of another code-word
An encoding tree represents a prefix code
 Each external node stores a character
 The code word of a character is given by the path from the root to

the external node storing the character (0 for a left child and 1 for a
right child)

a

b c

d e

00 010 011 10 11

a b c d e

© 2004 Goodrich, Tamassia Greedy Method and Compression 5

Encoding Tree Optimization
Given a text string X, we want to find a prefix code for the characters
of X that yields a small encoding for X
 Frequent characters should have long code-words
 Rare characters should have short code-words

Example
 X = abracadabra
 T1 encodes X into 29 bits
 T2 encodes X into 24 bits

c

a r

d b a

c d

b r

T1 T2

© 2004 Goodrich, Tamassia Greedy Method and Compression 6

Huffman’s Algorithm
Given a string X,
Huffman’s algorithm
construct a prefix
code the minimizes
the size of the
encoding of X
It runs in time
O(n + d log d), where
n is the size of X
and d is the number
of distinct characters
of X
A heap-based
priority queue is
used as an auxiliary
structure

Algorithm HuffmanEncoding(X)
Input string X of size n
Output optimal encoding trie for X
C ← distinctCharacters(X)
computeFrequencies(C, X)
Q ← new empty heap
for all c ∈ C

T ← new single-node tree storing c
Q.insert(getFrequency(c), T)

while Q.size() > 1
f1 ← Q.minKey()
T1 ← Q.removeMin()
f2 ← Q.minKey()
T2 ← Q.removeMin()
T ← join(T1, T2)
Q.insert(f1 + f2, T)

return Q.removeMin()

© 2004 Goodrich, Tamassia Greedy Method and Compression 7

Example

a b c d r
5 2 1 1 2

X = abracadabra
Frequencies

ca rdb
5 2 1 1 2

ca rdb

2

5 2 2
ca bd r

2

5

4

ca bd r

2

5

4

6

c

a

bd r

2 4

6

11

© 2004 Goodrich, Tamassia Greedy Method and Compression 8

Extended Huffman Tree Example

© 2004 Goodrich, Tamassia Greedy Method and Compression 9

The Fractional Knapsack
Problem (not in book)

Given: A set S of n items, with each item i having
 bi - a positive benefit
 wi - a positive weight

Goal: Choose items with maximum total benefit but with
weight at most W.
If we are allowed to take fractional amounts, then this is
the fractional knapsack problem.
 In this case, we let xi denote the amount we take of item i

 Objective: maximize

 Constraint:

∑
∈Si

iii wxb)/(

∑
∈

≤
Si

i Wx

© 2004 Goodrich, Tamassia Greedy Method and Compression 10

Example
Given: A set S of n items, with each item i having
 bi - a positive benefit
 wi - a positive weight

Goal: Choose items with maximum total benefit but with
weight at most W.

Weight:
Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value: 3
($ per ml)

4 20 5 50
10 ml

Solution:
• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2

“knapsack”

© 2004 Goodrich, Tamassia Greedy Method and Compression 11

The Fractional Knapsack
Algorithm

Greedy choice: Keep taking
item with highest value
(benefit to weight ratio)
 Since
 Run time: O(n log n). Why?

Correctness: Suppose there
is a better solution
 there is an item i with higher

value than a chosen item j,
but xi<wi, xj>0 and vi<vj

 If we substitute some i with j,
we get a better solution

 How much of i: min{wi-xi, xj}
 Thus, there is no better

solution than the greedy one

Algorithm fractionalKnapsack(S, W)
Input: set S of items w/ benefit bi

and weight wi; max. weight W
Output: amount xi of each item i

to maximize benefit w/ weight
at most W

for each item i in S
xi ← 0
vi ← bi / wi {value}

w ← 0 {total weight}
while w < W

remove item i w/ highest vi
xi ← min{wi , W - w}
w ← w + min{wi , W - w}

∑∑
∈∈

=
Si

iii
Si

iii xwbwxb)/()/(

© 2004 Goodrich, Tamassia Greedy Method and Compression 12

Task Scheduling
(not in book)

Given: a set T of n tasks, each having:
 A start time, si

 A finish time, fi (where si < fi)
Goal: Perform all the tasks using a minimum number of
“machines.”

1 98765432

Machine 1

Machine 3

Machine 2

© 2004 Goodrich, Tamassia Greedy Method and Compression 13

Task Scheduling Algorithm
Greedy choice: consider tasks
by their start time and use as
few machines as possible with
this order.
 Run time: O(n log n). Why?

Correctness: Suppose there is a
better schedule.
 We can use k-1 machines
 The algorithm uses k
 Let i be first task scheduled

on machine k
 Machine i must conflict with

k-1 other tasks
 But that means there is no

non-conflicting schedule
using k-1 machines

Algorithm taskSchedule(T)
Input: set T of tasks w/ start time si
and finish time fi
Output: non-conflicting schedule
with minimum number of machines
m ← 0 {no. of machines}
while T is not empty

remove task i w/ smallest si
if there’s a machine j for i then

schedule i on machine j
else

m ← m + 1
schedule i on machine m

© 2004 Goodrich, Tamassia Greedy Method and Compression 14

Example
Given: a set T of n tasks, each having:
 A start time, si

 A finish time, fi (where si < fi)
 [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

Goal: Perform all tasks on min. number of machines

1 98765432

Machine 1

Machine 3

Machine 2

	The Greedy Method and Text Compression
	The Greedy Method Technique
	Text Compression
	Encoding Tree Example
	Encoding Tree Optimization
	Huffman’s Algorithm
	Example
	Extended Huffman Tree Example
	The Fractional Knapsack�Problem (not in book)
	Example
	The Fractional Knapsack �Algorithm
	Task Scheduling (not in book)
	Task Scheduling Algorithm
	Example

