
© 2006 Goodrich, Tamassia Linked Lists 1

Linked Lists



© 2006 Goodrich, Tamassia Linked Lists 2

Singly Linked List (§ 3.2)
A singly linked list is a 
concrete data structure 
consisting of a sequence 
of nodes
Each node stores
 element
 link to the next node

next

elem node

A B C D

∅



© 2006 Goodrich, Tamassia Linked Lists 3

Inserting at the Head
1. Allocate a new 

node
2. Insert new element
3. Have new node 

point to old head
4. Update head to 

point to new node



© 2006 Goodrich, Tamassia Linked Lists 4

Removing at the Head

1. Update head to 
point to next node 
in the list

2. Allow garbage 
collector to reclaim 
the former first 
node



© 2006 Goodrich, Tamassia Linked Lists 5

Inserting at the Tail
1. Allocate a new 

node
2. Insert new element
3. Have new node 

point to null
4. Have old last node 

point to new node
5. Update tail to point 

to new node



© 2006 Goodrich, Tamassia Linked Lists 6

Removing at the Tail

Removing at the tail 
of a singly linked list 
is not efficient!
There is no 
constant-time way 
to update the tail to 
point to the previous 
node



© 2006 Goodrich, Tamassia Linked Lists 7

Stack as a Linked List (§ 5.1.3)
We can implement a stack with a singly linked list
The top element is stored at the first node of the list
The space used is O(n) and each operation of the 
Stack ADT takes O(1) time 

∅t

nodes

elements



© 2006 Goodrich, Tamassia Linked Lists 8

Queue as a Linked List
We can implement a queue with a singly linked list
 The front element is stored at the first node
 The rear element is stored at the last node

The space used is O(n) and each operation of the 
Queue ADT takes O(1) time

f

r

∅

nodes

elements


	Linked Lists
	Singly Linked List (§ 3.2)
	Inserting at the Head
	Removing at the Head
	Inserting at the Tail
	Removing at the Tail
	Stack as a Linked List (§ 5.1.3)
	Queue as a Linked List

