
© 2006 Goodrich, Tamassia Linked Lists 1

Linked Lists



© 2006 Goodrich, Tamassia Linked Lists 2

Singly Linked List (§ 3.2)
A singly linked list is a 
concrete data structure 
consisting of a sequence 
of nodes
Each node stores
 element
 link to the next node

next

elem node

A B C D

∅



© 2006 Goodrich, Tamassia Linked Lists 3

Inserting at the Head
1. Allocate a new 

node
2. Insert new element
3. Have new node 

point to old head
4. Update head to 

point to new node



© 2006 Goodrich, Tamassia Linked Lists 4

Removing at the Head

1. Update head to 
point to next node 
in the list

2. Allow garbage 
collector to reclaim 
the former first 
node



© 2006 Goodrich, Tamassia Linked Lists 5

Inserting at the Tail
1. Allocate a new 

node
2. Insert new element
3. Have new node 

point to null
4. Have old last node 

point to new node
5. Update tail to point 

to new node



© 2006 Goodrich, Tamassia Linked Lists 6

Removing at the Tail

Removing at the tail 
of a singly linked list 
is not efficient!
There is no 
constant-time way 
to update the tail to 
point to the previous 
node



© 2006 Goodrich, Tamassia Linked Lists 7

Stack as a Linked List (§ 5.1.3)
We can implement a stack with a singly linked list
The top element is stored at the first node of the list
The space used is O(n) and each operation of the 
Stack ADT takes O(1) time 

∅t

nodes

elements



© 2006 Goodrich, Tamassia Linked Lists 8

Queue as a Linked List
We can implement a queue with a singly linked list
 The front element is stored at the first node
 The rear element is stored at the last node

The space used is O(n) and each operation of the 
Queue ADT takes O(1) time

f

r

∅

nodes

elements


	Linked Lists
	Singly Linked List (§ 3.2)
	Inserting at the Head
	Removing at the Head
	Inserting at the Tail
	Removing at the Tail
	Stack as a Linked List (§ 5.1.3)
	Queue as a Linked List

