
Priority Queues 1

Priority Queues

© 2010 Goodrich, Tamassia

Priority Queues 2

Priority Queue ADT

 A priority queue stores a
collection of entries

 Typically, an entry is a pair
(key, value), where the key
indicates the priority

 Main methods of the Priority
Queue ADT
 insert(e)

inserts an entry e
removeMin()
removes the entry with
smallest key

 Additional methods
 min()

returns, but does not
remove, an entry with
smallest key

 size(), empty()

 Applications:
 Standby flyers
 Auctions
 Stock market

© 2010 Goodrich, Tamassia

Priority Queues 3

Total Order Relations

 Keys in a priority
queue can be
arbitrary objects
on which an order
is defined

 Two distinct
entries in a
priority queue can
have the same
key

 Mathematical concept
of total order relation ≤
 Reflexive property:

x ≤ x
 Antisymmetric property:

x ≤ y ∧ y ≤ x ⇒ x = y
 Transitive property:

x ≤ y ∧ y ≤ z ⇒ x ≤ z

© 2010 Goodrich, Tamassia

Priority Queues 4

Comparator ADT
 Implements the

boolean function
isLess(p,q), which tests
whether p < q

 Can derive other
relations from this:
 (p == q) is equivalent to
 (!isLess(p, q) &&

!isLess(q, p))

 Can implement in C++
by overloading “()”

Two ways to compare 2D points:

class LeftRight { // left-right comparator
public:

bool operator()(const Point2D& p,
const Point2D& q) const

{ return p.getX() < q.getX(); }
};
class BottomTop { // bottom-top
public:

bool operator()(const Point2D& p,
const Point2D& q) const
{ return p.getY() < q.getY(); }

};

© 2010 Goodrich, Tamassia

Priority Queues 5

Priority Queue Sorting
 We can use a priority

queue to sort a set of
comparable elements
1. Insert the elements one

by one with a series of
insert operations

2. Remove the elements in
sorted order with a series
of removeMin operations

 The running time of this
sorting method depends on
the priority queue
implementation

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C for
the elements of S
Output sequence S sorted in
increasing order according to C
P ← priority queue with

comparator C
while ¬S.empty ()

e ← S.front(); S.eraseFront()
P.insert (e, ∅)

while ¬P.empty()
e ← P.removeMin()
S.insertBack(e)

© 2010 Goodrich, Tamassia

Priority Queues 6

Sequence-based Priority Queue
 Implementation with an

unsorted list

 Performance:
 insert takes O(1) time

since we can insert the
item at the beginning or
end of the sequence

 removeMin and min take
O(n) time since we have
to traverse the entire
sequence to find the
smallest key

 Implementation with a
sorted list

 Performance:
 insert takes O(n) time

since we have to find the
place where to insert the
item

 removeMin and min take
O(1) time, since the
smallest key is at the
beginning

4 5 2 3 1 1 2 3 4 5

© 2010 Goodrich, Tamassia

Priority Queues 7

Selection-Sort

 Selection-sort is the variation of PQ-sort where the
priority queue is implemented with an unsorted
sequence

 Running time of Selection-sort:
1. Inserting the elements into the priority queue with n insert

operations takes O(n) time
2. Removing the elements in sorted order from the priority

queue with n removeMin operations takes time
proportional to

1 + 2 + …+ n
 Selection-sort runs in O(n2) time

© 2010 Goodrich, Tamassia

Priority Queues 8

Selection-Sort Example
Sequence S Priority Queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (7,4)
..
(g) () (7,4,8,2,5,3,9)

Phase 2
(a) (2) (7,4,8,5,3,9)
(b) (2,3) (7,4,8,5,9)
(c) (2,3,4) (7,8,5,9)
(d) (2,3,4,5) (7,8,9)
(e) (2,3,4,5,7) (8,9)
(f) (2,3,4,5,7,8) (9)
(g) (2,3,4,5,7,8,9) ()

© 2010 Goodrich, Tamassia

Priority Queues 9

Insertion-Sort
 Insertion-sort is the variation of PQ-sort where the

priority queue is implemented with a sorted
sequence

 Running time of Insertion-sort:
1. Inserting the elements into the priority queue with n

insert operations takes time proportional to

1 + 2 + …+ n
2. Removing the elements in sorted order from the priority

queue with a series of n removeMin operations takes
O(n) time

 Insertion-sort runs in O(n2) time

© 2010 Goodrich, Tamassia

Priority Queues 10

Insertion-Sort Example
Sequence S Priority queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (4,7)
(c) (2,5,3,9) (4,7,8)
(d) (5,3,9) (2,4,7,8)
(e) (3,9) (2,4,5,7,8)
(f) (9) (2,3,4,5,7,8)
(g) () (2,3,4,5,7,8,9)

Phase 2
(a) (2) (3,4,5,7,8,9)
(b) (2,3) (4,5,7,8,9)
..
(g) (2,3,4,5,7,8,9) ()

© 2010 Goodrich, Tamassia

Priority Queues 11

In-place Insertion-Sort
 Instead of using an

external data structure,
we can implement
selection-sort and
insertion-sort in-place

 A portion of the input
sequence itself serves as
the priority queue

 For in-place insertion-sort
 We keep sorted the initial

portion of the sequence
 We can use swaps

instead of modifying the
sequence

5 4 2 3 1

5 4 2 3 1

4 5 2 3 1

2 4 5 3 1

2 3 4 5 1

1 2 3 4 5

1 2 3 4 5

© 2010 Goodrich, Tamassia

	Priority Queues
	Priority Queue ADT
	Total Order Relations
	Comparator ADT
	Priority Queue Sorting
	Sequence-based Priority Queue
	Selection-Sort
	Selection-Sort Example
	Insertion-Sort
	Insertion-Sort Example
	In-place Insertion-Sort

