
Trees 1

Trees

Make Money Fast!

Stock
Fraud

Ponzi
Scheme

Bank
Robbery

© 2010 Goodrich, Tamassia



Trees 2

What is a Tree
 In computer science, a 

tree is an abstract model 
of a hierarchical 
structure

 A tree consists of nodes 
with a parent-child 
relation

 Applications:
 Organization charts
 File systems
 Programming 

environments

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

© 2010 Goodrich, Tamassia



Trees 3

subtree

Tree Terminology
 Root: node without parent (A)
 Internal node: node with at least 

one child (A, B, C, F)
 External node (a.k.a. leaf ): node 

without children (E, I, J, K, G, H, D)
 Ancestors of a node: parent, 

grandparent, grand-grandparent, 
etc.

 Depth of a node: number of 
ancestors

 Height of a tree: maximum depth 
of any node (3)

 Descendant of a node: child, 
grandchild, grand-grandchild, etc.

A

B DC

G HE F

I J K

 Subtree: tree consisting of 
a node and its 
descendants

© 2010 Goodrich, Tamassia



Trees 4

Tree ADT
 We use positions to abstract 

nodes
 Generic methods:

 integer size()
 boolean empty()

 Accessor methods:
 position root()
 list<position> positions()

 Position-based methods:
 position p.parent()
 list<position> p.children()

Query methods:
 boolean p.isRoot()
 boolean p.isExternal()

Additional update methods 
may be defined by data 
structures implementing the 
Tree ADT

© 2010 Goodrich, Tamassia



Trees 5

Preorder Traversal
 A traversal visits the nodes of a 

tree in a systematic manner
 In a preorder traversal, a node is 

visited before its descendants 
 Application: print a structured 

document

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity 2.3 Bank

Robbery

1

2

3

5

4 6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child w of v

preorder (w)

© 2010 Goodrich, Tamassia



Trees 6

Postorder Traversal
 In a postorder traversal, a 

node is visited after its 
descendants

 Application: compute space 
used by files in a directory and 
its subdirectories

Algorithm postOrder(v)
for each child w of v

postOrder (w)
visit(v)

cs16/

homeworks/ todo.txt
1Kprograms/

DDR.cpp
10K

Stocks.cpp
25K

h1c.doc
3K

h1nc.doc
2K

Robot.cpp
20K

9

3

1

7

2 4 5 6

8

© 2010 Goodrich, Tamassia



Trees 7

Binary Trees
 A binary tree is a tree with the 

following properties:
 Each internal node has at most two 

children (exactly two for proper
binary trees)

 The children of a node are an 
ordered pair

 We call the children of an internal 
node left child and right child

 Alternative recursive definition: a 
binary tree is either
 a tree consisting of a single node, or
 a tree whose root has an ordered 

pair of children, each of which is a 
binary tree

 Applications:
 arithmetic expressions
 decision processes
 searching

A

B C

F GD E

H I

© 2010 Goodrich, Tamassia



Trees 8

Arithmetic Expression Tree
 Binary tree associated with an arithmetic expression

 internal nodes: operators
 external nodes: operands

 Example: arithmetic expression tree for the 
expression (2 × (a − 1) + (3 × b))

+

××

−2

a 1

3 b

© 2010 Goodrich, Tamassia



Trees 9

Decision Tree
 Binary tree associated with a decision process

 internal nodes: questions with yes/no answer
 external nodes: decisions

 Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No

© 2010 Goodrich, Tamassia



Trees 10

Properties of Proper Binary Trees
 Notation

n number of nodes
e number of 

external nodes
i number of internal 

nodes
h height

Properties:
 e = i + 1
 n = 2e − 1
 h ≤ i
 h ≤ (n − 1)/2
 e ≤ 2h

 h ≥ log2 e
 h ≥ log2 (n + 1) − 1

© 2010 Goodrich, Tamassia



Trees 11

BinaryTree ADT

 The BinaryTree ADT 
extends the Tree 
ADT, i.e., it inherits 
all the methods of 
the Tree ADT

 Additional methods:
 position p.left()
 position p.right()

 Update methods 
may be defined by 
data structures 
implementing the 
BinaryTree ADT

 Proper binary tree: 
Each node has 
either 0 or 2 
children

© 2010 Goodrich, Tamassia



Trees 12

Inorder Traversal
 In an inorder traversal a 

node is visited after its left 
subtree and before its right 
subtree

 Application: draw a binary 
tree
 x(v) = inorder rank of v
 y(v) = depth of v

Algorithm inOrder(v)
if ¬ v.isExternal()

inOrder(v.left())
visit(v)
if ¬ v.isExternal()

inOrder(v.right())

3

1

2

5

6

7 9

8

4

© 2010 Goodrich, Tamassia



Trees 13

Print Arithmetic Expressions
 Specialization of an inorder 

traversal
 print operand or operator 

when visiting node
 print “(“ before traversing left 

subtree
 print “)“ after traversing right 

subtree

Algorithm printExpression(v)
if ¬v.isExternal()

print(“(’’)
inOrder(v.left())

print(v.element())
if ¬v.isExternal()

inOrder(v.right())
print (“)’’)

+

××

−2

a 1

3 b
((2 × (a − 1)) + (3 × b))

© 2010 Goodrich, Tamassia



Trees 14

Evaluate Arithmetic Expressions
 Specialization of a postorder 

traversal
 recursive method returning 

the value of a subtree
 when visiting an internal 

node, combine the values 
of the subtrees

Algorithm evalExpr(v)
if v.isExternal()

return v.element()
else

x ← evalExpr(v.left())
y ← evalExpr(v.right())
◊ ← operator stored at v
return x ◊ y+

××

−2

5 1

3 2

© 2010 Goodrich, Tamassia



Trees 15

Euler Tour Traversal
 Generic traversal of a binary tree
 Includes a special cases the preorder, postorder and inorder traversals
 Walk around the tree and visit each node three times:

 on the left (preorder)
 from below (inorder)
 on the right (postorder)

+

×

−2

5 1

3 2

L
B

R×

© 2010 Goodrich, Tamassia



Trees 16

∅

Linked Structure for Trees
 A node is represented by 

an object storing
 Element
 Parent node
 Sequence of children 

nodes
 Node objects implement 

the Position ADT

B

DA

C E

F

B

∅ ∅A D F

∅C ∅E

© 2010 Goodrich, Tamassia



Trees 17

Linked Structure for Binary Trees
 A node is represented 

by an object storing
 Element
 Parent node
 Left child node
 Right child node

 Node objects implement 
the Position ADT

B

DA

C E

∅ ∅

∅ ∅ ∅ ∅

B

A D

C E

∅

© 2010 Goodrich, Tamassia



Array-Based Representation of Binary 
Trees

 Nodes are stored in an array A

© 2010 Goodrich, Tamassia 18Trees

 Node v is stored at A[rank(v)]
 rank(root) = 1
 if node is the left child of parent(node), 

rank(node) = 2 ⋅ rank(parent(node))
 if node is the right child of parent(node), 

rank(node) = 2 ⋅ rank(parent(node)) + 1

1

2 3

6 74 5

10 11

A

HG

FE

D

C

B

J

A B D G H ……
1 2 3 10 110


	Trees
	What is a Tree
	Tree Terminology
	Tree ADT
	Preorder Traversal
	Postorder Traversal
	Binary Trees
	Arithmetic Expression Tree
	Decision Tree
	Properties of Proper Binary Trees
	BinaryTree ADT
	Inorder Traversal
	Print Arithmetic Expressions
	Evaluate Arithmetic Expressions
	Euler Tour Traversal
	Linked Structure for Trees
	Linked Structure for Binary Trees
	Array-Based Representation of Binary Trees

