Union-Find Partition Structures

AN

© 2004 Goodrich, Tamassia Union-Find 1

Partitions with Union-Find
Operations

N

makeSet(x): Create a singleton set containing
the element x and return the position storing X
In this set

4 union(A,B): Return the set A U B, destroying
the old A and B

find(p): Return the set containing the element
at position p

© 2004 Goodrich, Tamassia Union-Find 2

List-based Implementation

Each set is stored in a sequence represented
with a linked-list

Each node should store an object containing
the element and a reference to the set name

dO=0=0) R O=O=OR0)
DY DYD DYDYDE’D

N
\J

© 2004 Goodrich, Tamassia Union-Find 3

Analysis of List-based
Representation

N

#\When doing a union, always move
elements from the smaller set to the
larger set

= Each time an element Is moved it goes to a
set of size at least double its old set

s Thus, an element can be moved at most
O(log n) times
#Total time needed to do n unions and
finds is O(n log n).

© 2004 Goodrich, Tamassia Union-Find 4

Tree-based Implementation

L/
Each element is stored in a node, which contains a
pointer to a set name

A node v whose set pointer points back to v is also a
set name

Each set is a tree, rooted at a node with a self-
referencing set pointer

For example: The sets “1”, “2”, and “5”:

KSR

© 2004 Goodrich, Tamassia Union-Find

N

Union-Find Operation

oo
@ ..

N

To do a union, simply
make the root of one tree
point to the root of the
other

To do a find, follow set-
name pointers from the
starting node until
reaching a node whose
set-name pointer refers
back to itself

© 2004 Goodrich, Tamassia Union-Find 6

Union-Find Heuristic 1

Union by size:

= When performing a union,
make the root of smaller tree
point to the root of the larger

Implies O(n log n) time for
performing n union-find
operations:

= Each time we follow a pointer,
we are going to a subtree of
size at least double the size of
the previous subtree

s Thus, we will follow at most
O(log n) pointers for any find.

N

© 2004 Goodrich, Tamassia Union-Find 7

Union-Find Heuristic 2

" @ Path compression:

m After performing a find, compress all the pointers on the path
just traversed so that they all point to the root

N

Implies O(n log™ n) time for performing n union-find
operations:
s Proof is somewhat involved... (and not in the book)
© 2004 Goodrich, Tamassia Union-Find 8

Proof of log* n Amortized Time

N

For each node v that is a root
m define n(v) to be the size of the subtree rooted at v
(including v)
= identified a set with the root of its associated tree.

We update the size field of v each time a set is
unioned into v. Thus, if v is not a root, then n(v) is
the largest the subtree rooted at v can be, which
occurs just before we union v into some other node
whose size is at least as large as v ’s.

For any node v, then, define the rank of v, which we
denote as r (v), as r (v) = [log n(v)]:

Thus, n(v) = 2'M,

Also, since there are at most n nodes in the tree of v,
r (v) = [log n], for each node v.

© 2004 Goodrich, Tamassia Union-Find 9

Proof of log* n Amortized Time (2)

N

For each node v with parent w:
s r(v)>r(w)
Claim: There are at most n/ 2% nodes of rank s.

Proof:

s Sincer (v) <r (w), for any node v with parent w, ranks are
monotonically increasing as we follow parent pointers up
any tree.

s Thus, if r (v) =r (w) for two nodes v and w, then the nodes
counted in n(v) must be separate and distinct from the
nodes counted in n(w).

= If a node v is of rank s, then n(v) = 2s.

m Therefore, since there are at most n nodes total, there can
be at most n/ 2% that are of rank s.

© 2004 Goodrich, Tamassia Union-Find 10

Proof of log* n Amortized Time (3)

N

Definition: Tower of two’s function:
s t(i) = 210D

#Nodes v and u are in the same rank
group g If
= g = log*(r(v)) = log™(r(u)):

#Since the largest rank is log n, the
largest rank group Is
= log*(log n) = (log* n) - 1

© 2004 Goodrich, Tamassia Union-Find 11

Proof of log* n Amortized Time (4)

N

Charge 1 cyber-dollar per pointer hop during
a find:

s If wis the root or if w is in a different rank group

than v, then charge the find operation one cyber-
dollar.

= Otherwise (w is not a root and v and w are in the
same rank group), charge the node v one cyber-

dollar.
Since there are most (log* n)-1 rank groups,
this rule guarantees that any find operation is
charged at most log* n cyber-dollars.

© 2004 Goodrich, Tamassia Union-Find 12

Proof of log* n Amortized Time (5)

After we charge a node v then v will get a new
parent, which is a node higher up in v'’s tree.

The rank of v’s new parent will be greater than the
rank of v ’'s old parent w.

Thus, any node v can be charged at most the
number of different ranks that are in v 's rank group.

If v is in rank group g > 0, then v can be charged at
most t(g)-t(g-1) times before v has a parent in a
higher rank group (and from that point on, v will
never be charged again). In other words, the total
number, C, of cyber-dollars that can ever be charged
to nodes can be bounded by

log*n-1
C< > n(g)-(t(g)-t(g-D)
—1
© 2004 Goodrich, Tamassia ’ Union-Find 13

N

Proof of log* n Amortized Time (end)

N

L

Bounding n(9g):
t(9)

@< Y -

s=t(g-1)+1 23
n te-te-D-1q

2t(g—1)+1 o 25

n
< ot(g-1)+1 ’

i n
o 2t(g-D)

n

()

© 2004 Goodrich, Tamassia

Union-Find

Returning to C:

log*n-1

C< gz ﬁ (t(9)-t(g-1)

log*n—1

S 2 '@

:Zn

g=1
<nlog*n

14

	Union-Find Partition Structures
	Partitions with Union-Find Operations
	List-based Implementation
	Analysis of List-based Representation
	Tree-based Implementation
	Union-Find Operations
	Union-Find Heuristic 1
	Union-Find Heuristic 2
	Proof of log* n Amortized Time
	Proof of log* n Amortized Time (2)
	Proof of log* n Amortized Time (3)
	Proof of log* n Amortized Time (4)
	Proof of log* n Amortized Time (5)
	Proof of log* n Amortized Time (end)

