Union-Find Partition Structures
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Partitions with Union-Find
Operations

N

# makeSet(x): Create a singleton set containing
the element x and return the position storing X
In this set

4 union(A,B ): Return the set A U B, destroying
the old A and B

# find(p): Return the set containing the element
at position p
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List-based Implementation

# Each set is stored in a sequence represented
with a linked-list

# Each node should store an object containing
the element and a reference to the set name
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Analysis of List-based
Representation

N

#\When doing a union, always move
elements from the smaller set to the
larger set

= Each time an element Is moved it goes to a
set of size at least double its old set

s Thus, an element can be moved at most
O(log n) times
#Total time needed to do n unions and
finds is O(n log n).
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Tree-based Implementation

L/
# Each element is stored in a node, which contains a
pointer to a set name

# A node v whose set pointer points back to v is also a
set name

# Each set is a tree, rooted at a node with a self-
referencing set pointer

# For example: The sets “1”, “2”, and “5”:
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Union-Find Operation
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# To do a union, simply
make the root of one tree
point to the root of the
other

# To do a find, follow set-
name pointers from the
starting node until
reaching a node whose
set-name pointer refers
back to itself
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Union-Find Heuristic 1

# Union by size:

= When performing a union,
make the root of smaller tree
point to the root of the larger

# Implies O(n log n) time for
performing n union-find
operations:

= Each time we follow a pointer,
we are going to a subtree of
size at least double the size of
the previous subtree

s Thus, we will follow at most
O(log n) pointers for any find.

N
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Union-Find Heuristic 2

" @ Path compression:

m After performing a find, compress all the pointers on the path
just traversed so that they all point to the root

N

# Implies O(n log™ n) time for performing n union-find
operations:
s Proof is somewhat involved... (and not in the book)
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Proof of log* n Amortized Time

N

# For each node v that is a root
m define n(v) to be the size of the subtree rooted at v
(including v)
= identified a set with the root of its associated tree.

# We update the size field of v each time a set is
unioned into v. Thus, if v is not a root, then n(v) is
the largest the subtree rooted at v can be, which
occurs just before we union v into some other node
whose size is at least as large as v ’s.

# For any node v, then, define the rank of v, which we
denote as r (v), as r (v) = [log n(v)]:

# Thus, n(v) = 2'M,

# Also, since there are at most n nodes in the tree of v,
r (v) = [log n], for each node v.
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Proof of log* n Amortized Time (2)

N

# For each node v with parent w:
s r(v)>r(w)
# Claim: There are at most n/ 2% nodes of rank s.

# Proof:

s Sincer (v) <r (w), for any node v with parent w, ranks are
monotonically increasing as we follow parent pointers up
any tree.

s Thus, if r (v) =r (w) for two nodes v and w, then the nodes
counted in n(v) must be separate and distinct from the
nodes counted in n(w).

= If a node v is of rank s, then n(v) = 2s.

m Therefore, since there are at most n nodes total, there can
be at most n/ 2% that are of rank s.
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Proof of log* n Amortized Time (3)

N

# Definition: Tower of two’s function:
s t(i) = 210D

#Nodes v and u are in the same rank
group g If
= g = log*(r(v)) = log™(r(u)):

#Since the largest rank is log n, the
largest rank group Is
= log*(log n) = (log* n) - 1
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Proof of log* n Amortized Time (4)

N

# Charge 1 cyber-dollar per pointer hop during
a find:

s If wis the root or if w is in a different rank group

than v, then charge the find operation one cyber-
dollar.

= Otherwise (w is not a root and v and w are in the
same rank group), charge the node v one cyber-

dollar.
# Since there are most (log* n)-1 rank groups,
this rule guarantees that any find operation is
charged at most log* n cyber-dollars.

© 2004 Goodrich, Tamassia Union-Find 12




Proof of log* n Amortized Time (5)

# After we charge a node v then v will get a new
parent, which is a node higher up in v'’s tree.

# The rank of v’s new parent will be greater than the
rank of v ’'s old parent w.

# Thus, any node v can be charged at most the
number of different ranks that are in v 's rank group.

# If v is in rank group g > 0, then v can be charged at
most t(g)-t(g-1) times before v has a parent in a
higher rank group (and from that point on, v will
never be charged again). In other words, the total
number, C, of cyber-dollars that can ever be charged
to nodes can be bounded by

log*n-1
C< > n(g)-(t(g)-t(g-D)
—1
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Proof of log* n Amortized Time (end)

N
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# Returning to C:
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