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# A string is a sequence of # Let P be a string of size m
characters = A substring PJi .. j] of P is the
@ Examples of strings: subsequence of P consisting of

the characters with ranks
between i and |

m A prefix of P is a substring of

m C++program
= HTML document

m  DNA sequence the type P[O .. i]
= Digitized image = A suffix of P is a substring of
# An alphabet 2'is the set of the type P[i .m — 1]
possible characters for a # Given strings T (text) and P
family of strings (pattern), the pattern matching
# Example of alphabets: problem consists of finding a
. ASCII substring of T equal to P
= Unicode @ Applications:
{0, 1} = Text editors
= {AC, G, T} = Search engines

= Biological research
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Brute-Force Pattern Matching

N
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# The brute-force pattern
matching algorithm compares
the pattern P with the text T
for each possible shift of P
relative to T, until either

s a match is found, or

= all placements of the pattern
have been tried

Brute-force pattern matching
runs in time O(nm)

# Example of worst case:

m T=aaa...ah

s P =aaah

= Mmay occur in images and
DNA sequences

= unlikely in English text

@
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Algorithm BruteForceMatch(T, P)

Input text T of size n and pattern
P of sizem

Output starting index of a
substring of T equal to P or -1
If no such substring exists

for i< 0Oton-m
{ test shift i of the pattern }

j<«0
while j <m A T[i +]] = P[j]
jJ«—]+1
if j=m
return i {match at i}
else

break while loop {mismatch}
return -1 {no match anywhere}
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Boyer-Moore Heuristics

g
\
# The Boyer-Moore’s pattern matching algorithm is based on two
heuristics
Looking-glass heuristic: Compare P with a subsequence of T
moving backwards
Character-jump heuristic: When a mismatch occurs at T[i] =c
= |f P contains c, shift P to align the last occurrence of c in P with T[i]
m Else, shift P to align P[0] with TTi + 1]
# Example
al |plalt|t]je]|r|n mialtjc|h|i|n]|g all|glo|r|i|t|lh{m
1 3 5 1110 9 8 7
ryijt{h|m rii|t{h{m rii|tihim rii|t{h|m
N , A '\ .4 '\ s X
ryift|ihim ryift|him riift|h{m
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Last-Occurrence Function

N

# Boyer-Moore’s algorithm preprocesses the pattern P and the
alphabet X' to build the last-occurrence function L mapping 2'to
Integers, where L(c) is defined as

m the largest index i such that P[i] =c or
s —1if no such index exists

# Example:
. T={abc d} C a b C d
= P =abacab L(c) 4 5 3 -1

# The last-occurrence function can be represented by an array
Indexed by the numeric codes of the characters

# The last-occurrence function can be computed in time O(m + ),
where m is the size of P and s Is the size of X
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The Boyer-Moore Algorithm
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Algorithm BoyerMooreMatch(T, P, 2)

L « lastOccurenceFunction(P, 2')
< m-1
jJem-1
repeat
if T[i] = P[j]
if j=0
return i { matchati}
else
l«—i1-1
J«]-1
else
{ character-jump }
| < L[TT[i]]
l<—1+m-min(j, 1+ 1)
jJem=1
until i>n-1
return —1 { no match }

Case 1. j<1+]|

QD

—| T

Case 2: 1+1<]
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Analysis

q
# Boyer-Moore’s algorithm
runs in time O(nm + s) ajajalc
# Example of worst case: 6 5 4 3 2 1
»m T=aaa...a bjaja|a|a]|a
= -P=Dhaaa | Q2 11 10 9 8 7
® The worst case may occur in blalalalala
Images and DNA sequences Y
but is unlikely in English text 18 17 16 15 14 13
# Boyer-Moore’s algorithm is bjajajajaja
significantly faster than the Ao 23 22 21 20 19
brute-force algorithm on blalalalala

English text
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The KMP Algorithm

#| Knuth-Morris-Pratt’s algorithm
compares the pattern to the

N

text in left-to-right, but shifts | .| al bl al al bl x

the pattern more intelligently
than the brute-force algorithm. I

4 When.a mismatch occurs, | al bl al al bl a
what is the most we can shift
the pattern so as to avoid
redundant comparisons?

al bl a| a| b| a

# Answer: the largest prefix of |

P[0..j] that is a suffix of P[1..]] I |
No need to] - Resume

repeat these comparing
comparisons here
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# Knuth-Morris-Pratt’s
algorithm preprocesses the
pattern to find matches of
prefixes of the pattern with
the pattern itself

KMP Faillure Function

# The failure function F(j) is

defined as the size of the
largest prefix of P[0..j] that is
also a suffix of P[1..j]

# Knuth-Morris-Pratt’s
algorithm modifies the brute-
force algorithm so that if a
mismatch occurs at P[j] # T[i]
we set j« F(j—-1)
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The KMP Algorithm

# The failure function can be
represented by an array and
can be computed in O(m) time

# At each iteration of the while-
loop, either
= iincreases by one, or

= the shift amount i —j
increases by at least one
(observe that F(j — 1) <))

# Hence, there are no more
than 2n iterations of the
while-loop

# Thus, KMP’s algorithm runs in
optimal time O(m + n)

Algorithm KMPMatch(T, P)

F « failureFunction(P)
1< 0
j<0
while i < n
if T[i] = P[j]
if j=m-1
return i—j { match }
else
l<—1+1
J«J]+1
else
if | >0
J<F-1]
else
< i1+1
return —1 { no match }
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Computing the Failure

Function

N
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# The failure function can be
represented by an array and
can be computed in O(m) time

# The construction is similar to
the KMP algorithm itself

# At each iteration of the while-
loop, either
= | increases by one, or
= the shift amount i —j
increases by at least one
(observe that F(j — 1) <))
# Hence, there are no more
than 2m iterations of the
while-loop

\og

Algorithm failureFunction(P)
F[0] « O
I« 1
j<«<0
while i <m
if P[i] = PJj]
{we have matched j + 1 chars}
Fli]« J+1
<« 1+1
jJ«]+1
else if j > 0 then
{use failure function to shift P}
< Fi-1]
else
F[i] < 0 { no match }
I« 1+1
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