
Adaptable Priority Queues 1

Adaptable Priority 
Queues

3 a

5 g 4 e

© 2010 Goodrich, Tamassia



Adaptable Priority Queues 2

Entry and Priority Queue ADTs
 A priority queue stores 

a collection of entries
 Typically, an entry is a 

pair (key, value), where 
the key indicates the 
priority

 The priority queue is 
associated with a 
comparator C, that 
compares two entries

 Priority Queue ADT:
 insert(e)

inserts entry e
 removeMin()

removes the entry 
with smallest key

 min()
returns, but does not 
remove, an entry 
with smallest key

 size(), empty()

© 2010 Goodrich, Tamassia



Adaptable Priority Queues 3

Example
 Online trading system where orders to purchase and 

sell a stock are stored in two priority queues (one for 
sell orders and one for buy orders) as (p,s) entries:
 The key, p, of an order is the price
 The value, s, for an entry is the number of shares
 A buy order (p,s) is executed when a sell order (p’,s’) with 

price p’<p is added (the execution is complete if s’>s)
 A sell order (p,s) is executed when a buy order (p’,s’) with 

price p’>p is added (the execution is complete if s’>s)

 What if someone wishes to cancel their order before 
it executes?

 What if someone wishes to update the price or 
number of shares for their order?

© 2010 Goodrich, Tamassia



Adaptable Priority Queues 4

Methods of the Adaptable Priority 
Queue ADT

 insert(e): Insert the entry e into P and 
return a position referring to this entry

 remove(p): Remove from P the entry 
referenced by position p

 replace(p, e): Replace with e the 
element associated with the entry 
referenced by p and return the position 
of the altered entry

© 2010 Goodrich, Tamassia



Adaptable Priority Queues 5

Example
Operation Output P
insert(5,A) p1 (5,A)
insert(3,B) p2 (3,B), (5,A)
insert(7,C) p3 (3,B), (5,A), (7,C)
min() p2 (3,B), (5,A), (7,C)
p2.key() 3 (3,B), (5,A), (7,C)
remove(p1) – (3,B), (7,C)
replace(p2,(9,D)) p4 (7,C), (9,D)
replace(p3,(7,E)) p5 (7,E), (9,D)
remove(p4) – (7,D)

© 2010 Goodrich, Tamassia



Adaptable Priority Queues 6

Locating Entries
 In order to implement the operations 

remove(p) and replace(p), and we need 
fast ways of locating an entry p in a 
priority queue

© 2010 Goodrich, Tamassia



Adaptable Priority Queues 7

Location-Aware Entries
 A locator-aware entry identifies and tracks 

the location of its (key, value) object within a 
data structure

 Intuitive notion:
 Coat claim check
 Valet claim ticket
 Reservation number

 Main idea:
 Since entries are created and returned from the 

data structure itself, it can return location-aware 
entries, thereby making future updates easier

© 2010 Goodrich, Tamassia



Adaptable Priority Queues 8

List Implementation
 A location-aware list entry is an object storing

 key
 value
 position (or rank) of the item in the list

 In turn, the position (or array cell) stores the entry
 Back pointers (or ranks) are updated during swaps

trailerheader nodes/positions

entries

2 c 4 c 5 c 8 c

© 2010 Goodrich, Tamassia



Adaptable Priority Queues 9

Heap Implementation
 A location-aware heap 

entry is an object 
storing
 key
 value
 position of the entry in 

the underlying heap

 In turn, each heap 
position stores an 
entry

 Back pointers are 
updated during entry 
swaps

4 a

2 d

6 b

8 g 5 e 9 c

© 2010 Goodrich, Tamassia



Adaptable Priority Queues 10

Performance
 Improved times thanks to location-aware 

entries are highlighted in red
Method Unsorted List Sorted List Heap
size, empty O(1) O(1) O(1)
insert O(1) O(n) O(log n)
min O(n) O(1) O(1)
removeMin O(n) O(1) O(log n)
remove O(1) O(1) O(log n)
replace O(1) O(n) O(log n)

© 2010 Goodrich, Tamassia


	Adaptable Priority Queues
	Entry and Priority Queue ADTs
	Example
	Methods of the Adaptable Priority Queue ADT
	Example
	Locating Entries
	Location-Aware Entries
	List Implementation
	Heap Implementation
	Performance

