
© 2004 Goodrich, Tamassia Campus Tour 1

Campus Tour



© 2004 Goodrich, Tamassia Campus Tour 2

Graph Assignment
Goals
 Learn and implement the adjacency matrix structure an 

Kruskal’s minimum spanning tree algorithm
 Understand and use  the decorator pattern and various JDSL 

classes and interfaces

Your task
 Implement the adjacency matrix structure for representing a 

graph
 Implement Kruskal’s MST algorithm

Frontend
 Computation and visualization of an approximate traveling 

salesperson tour



© 2004 Goodrich, Tamassia Campus Tour 3

Adjacency Matrix Structure
Edge list structure
Augmented vertex 
objects
 Integer key (index) 

associated with 
vertex

2D-array adjacency 
array
 Reference to edge 

object for adjacent 
vertices

 Null for non 
nonadjacent 
vertices

u

v

w
a b

0 1 2

0 ∅ ∅

1 ∅

2 ∅ ∅a

u v w0 1 2

b



© 2004 Goodrich, Tamassia Campus Tour 4

Kruskal’s Algorithm
The vertices are 
partitioned into clouds
 We start with one cloud 

per vertex
 Clouds are merged during 

the execution of the 
algorithm

Partition ADT:
 makeSet(o): create set {o} 

and return a locator for 
object o

 find(l): return the set of 
the object with locator l

 union(A,B): merge sets A 
and B

Algorithm KruskalMSF(G)
Input weighted graph G
Output labeling of the edges of a

minimum spanning forest of G
Q ← new heap-based priority queue
for all v ∈ G.vertices() do

l ← makeSet(v) { elementary cloud }
v.setLocator(l)

for all e ∈ G.edges() do
Q.insert(e.weight(), e)

while ¬Q.empty()
e ← Q.removeMin()
[u,v] ← e.endVertices()
A ← find(u.getLocator())
B ← find(v.getLocator())
if A ≠ B

setMSFedge(e)
{ merge clouds }
union(A, B)



© 2004 Goodrich, Tamassia Campus Tour 5

Example

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9



© 2004 Goodrich, Tamassia Campus Tour 6

Example (contd.)

four steps

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9



© 2004 Goodrich, Tamassia Campus Tour 7

Partition Implementation
Partition implementation
 A set is represented the 

sequence of its elements
 A position stores a reference 

back to the sequence itself (for 
operation find)

 The position of an element in 
the sequence serves as locator 
for the element in the set

 In operation union, we move 
the elements of the smaller 
sequence into to the larger 
sequence

Worst-case running times
 makeSet, find: O(1)
 union: O(min(nA, nB))

Amortized analysis
 Consider a series of k Partiton 

ADT operations that includes 
n makeSet operations 

 Each time we move an 
element into a new sequence, 
the size of its set at least 
doubles

 An element is moved at most 
log2 n times

 Moving an element takes O(1) 
time

 The total time for the series 
of operations is O(k + n log n)



© 2004 Goodrich, Tamassia Campus Tour 8

Analysis of Kruskal’s Algorithm
Graph operations
 Methods vertices and edges are called once
 Method endVertices is called m times

Priority queue operations
 We perform m insert operations and m removeMin operations

Partition operations
 We perform n makeSet operations, 2m find operations and no 

more than n − 1 union operations 

Label operations
 We set vertex labels n times and get them 2m times 

Kruskal’s algorithm runs in time O((n + m) log n) time 
provided the graph has no parallel edges and is 
represented by the adjacency list structure



© 2004 Goodrich, Tamassia Campus Tour 9

Decorator Pattern
Labels are commonly used in 
graph algorithms
 Auxiliary data
 Output

Examples
 DFS: unexplored/visited 

label for vertices and 
unexplored/ forward/back 
labels for edges

 Dijkstra and Prim-Jarnik: 
distance, locator, and 
parent labels for vertices

 Kruskal: locator label for 
vertices and MSF label for 
edges

The decorator pattern extends 
the methods of the Position 
ADT to support the handling 
of attributes (labels)
 has(a): tests whether the 

position has attribute a
 get(a): returns the value of 

attribute a
 set(a, x): sets to x the value of 

attribute a
 destroy(a): removes attribute 

a and its associated value (for 
cleanup purposes) 

The decorator pattern can be 
implemented by storing a 
dictionary of (attribute, value) 
items at each position



© 2004 Goodrich, Tamassia Campus Tour 10

Traveling Salesperson Problem
A tour of a graph is a spanning cycle 
(e.g., a cycle that goes through all 
the vertices)
A traveling salesperson tour of a 
weighted graph is a tour that is 
simple (i.e., no repeated vertices or 
edges) and has has minimum weight
No polynomial-time algorithms are 
known for computing traveling 
salesperson tours
The traveling salesperson problem 
(TSP) is a major open problem in 
computer science
 Find a polynomial-time algorithm  

computing a traveling salesperson 
tour or prove that none exists

B
D

C

A

F

E

7
4

2
8

5

3

2

6

1

Example of traveling
salesperson tour
(with weight 17)



© 2004 Goodrich, Tamassia Campus Tour 11

TSP Approximation
We can approximate a TSP tour 
with a tour of at most twice the 
weight for the case of Euclidean 
graphs
 Vertices are points in the plane
 Every pair of vertices is connected 

by an edge
 The weight of an edge is the 

length of the segment joining the 
points

Approximation algorithm
 Compute a minimum spanning tree
 Form an Eulerian circuit around the 

MST
 Transform the circuit into a tour


	Campus Tour
	Graph Assignment
	Adjacency Matrix Structure
	Kruskal’s Algorithm
	Example
	Example (contd.)
	Partition Implementation
	Analysis of Kruskal’s Algorithm
	Decorator Pattern
	Traveling Salesperson Problem
	TSP Approximation

