
© 2004 Goodrich, Tamassia Greedy Method and Compression 1

The Greedy Method and
Text Compression

© 2004 Goodrich, Tamassia Greedy Method and Compression 2

The Greedy Method
Technique

The greedy method is a general algorithm
design paradigm, built on the following
elements:
 configurations: different choices, collections, or

values to find
 objective function: a score assigned to

configurations, which we want to either maximize or
minimize

It works best when applied to problems with the
greedy-choice property:
 a globally-optimal solution can always be found by a

series of local improvements from a starting
configuration.

© 2004 Goodrich, Tamassia Greedy Method and Compression 3

Text Compression

Given a string X, efficiently encode X into a
smaller string Y
 Saves memory and/or bandwidth

A good approach: Huffman encoding
 Compute frequency f(c) for each character c.
 Encode high-frequency characters with short code

words
 No code word is a prefix for another code
 Use an optimal encoding tree to determine the

code words

© 2004 Goodrich, Tamassia Greedy Method and Compression 4

Encoding Tree Example
A code is a mapping of each character of an alphabet to a binary
code-word
A prefix code is a binary code such that no code-word is the
prefix of another code-word
An encoding tree represents a prefix code
 Each external node stores a character
 The code word of a character is given by the path from the root to

the external node storing the character (0 for a left child and 1 for a
right child)

a

b c

d e

00 010 011 10 11

a b c d e

© 2004 Goodrich, Tamassia Greedy Method and Compression 5

Encoding Tree Optimization
Given a text string X, we want to find a prefix code for the characters
of X that yields a small encoding for X
 Frequent characters should have long code-words
 Rare characters should have short code-words

Example
 X = abracadabra
 T1 encodes X into 29 bits
 T2 encodes X into 24 bits

c

a r

d b a

c d

b r

T1 T2

© 2004 Goodrich, Tamassia Greedy Method and Compression 6

Huffman’s Algorithm
Given a string X,
Huffman’s algorithm
construct a prefix
code the minimizes
the size of the
encoding of X
It runs in time
O(n + d log d), where
n is the size of X
and d is the number
of distinct characters
of X
A heap-based
priority queue is
used as an auxiliary
structure

Algorithm HuffmanEncoding(X)
Input string X of size n
Output optimal encoding trie for X
C ← distinctCharacters(X)
computeFrequencies(C, X)
Q ← new empty heap
for all c ∈ C

T ← new single-node tree storing c
Q.insert(getFrequency(c), T)

while Q.size() > 1
f1 ← Q.minKey()
T1 ← Q.removeMin()
f2 ← Q.minKey()
T2 ← Q.removeMin()
T ← join(T1, T2)
Q.insert(f1 + f2, T)

return Q.removeMin()

© 2004 Goodrich, Tamassia Greedy Method and Compression 7

Example

a b c d r
5 2 1 1 2

X = abracadabra
Frequencies

ca rdb
5 2 1 1 2

ca rdb

2

5 2 2
ca bd r

2

5

4

ca bd r

2

5

4

6

c

a

bd r

2 4

6

11

© 2004 Goodrich, Tamassia Greedy Method and Compression 8

Extended Huffman Tree Example

© 2004 Goodrich, Tamassia Greedy Method and Compression 9

The Fractional Knapsack
Problem (not in book)

Given: A set S of n items, with each item i having
 bi - a positive benefit
 wi - a positive weight

Goal: Choose items with maximum total benefit but with
weight at most W.
If we are allowed to take fractional amounts, then this is
the fractional knapsack problem.
 In this case, we let xi denote the amount we take of item i

 Objective: maximize

 Constraint:

∑
∈Si

iii wxb)/(

∑
∈

≤
Si

i Wx

© 2004 Goodrich, Tamassia Greedy Method and Compression 10

Example
Given: A set S of n items, with each item i having
 bi - a positive benefit
 wi - a positive weight

Goal: Choose items with maximum total benefit but with
weight at most W.

Weight:
Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value: 3
($ per ml)

4 20 5 50
10 ml

Solution:
• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2

“knapsack”

© 2004 Goodrich, Tamassia Greedy Method and Compression 11

The Fractional Knapsack
Algorithm

Greedy choice: Keep taking
item with highest value
(benefit to weight ratio)
 Since
 Run time: O(n log n). Why?

Correctness: Suppose there
is a better solution
 there is an item i with higher

value than a chosen item j,
but xi<wi, xj>0 and vi<vj

 If we substitute some i with j,
we get a better solution

 How much of i: min{wi-xi, xj}
 Thus, there is no better

solution than the greedy one

Algorithm fractionalKnapsack(S, W)
Input: set S of items w/ benefit bi

and weight wi; max. weight W
Output: amount xi of each item i

to maximize benefit w/ weight
at most W

for each item i in S
xi ← 0
vi ← bi / wi {value}

w ← 0 {total weight}
while w < W

remove item i w/ highest vi
xi ← min{wi , W - w}
w ← w + min{wi , W - w}

∑∑
∈∈

=
Si

iii
Si

iii xwbwxb)/()/(

© 2004 Goodrich, Tamassia Greedy Method and Compression 12

Task Scheduling
(not in book)

Given: a set T of n tasks, each having:
 A start time, si

 A finish time, fi (where si < fi)
Goal: Perform all the tasks using a minimum number of
“machines.”

1 98765432

Machine 1

Machine 3

Machine 2

© 2004 Goodrich, Tamassia Greedy Method and Compression 13

Task Scheduling Algorithm
Greedy choice: consider tasks
by their start time and use as
few machines as possible with
this order.
 Run time: O(n log n). Why?

Correctness: Suppose there is a
better schedule.
 We can use k-1 machines
 The algorithm uses k
 Let i be first task scheduled

on machine k
 Machine i must conflict with

k-1 other tasks
 But that means there is no

non-conflicting schedule
using k-1 machines

Algorithm taskSchedule(T)
Input: set T of tasks w/ start time si
and finish time fi
Output: non-conflicting schedule
with minimum number of machines
m ← 0 {no. of machines}
while T is not empty

remove task i w/ smallest si
if there’s a machine j for i then

schedule i on machine j
else

m ← m + 1
schedule i on machine m

© 2004 Goodrich, Tamassia Greedy Method and Compression 14

Example
Given: a set T of n tasks, each having:
 A start time, si

 A finish time, fi (where si < fi)
 [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

Goal: Perform all tasks on min. number of machines

1 98765432

Machine 1

Machine 3

Machine 2

	The Greedy Method and Text Compression
	The Greedy Method Technique
	Text Compression
	Encoding Tree Example
	Encoding Tree Optimization
	Huffman’s Algorithm
	Example
	Extended Huffman Tree Example
	The Fractional Knapsack�Problem (not in book)
	Example
	The Fractional Knapsack �Algorithm
	Task Scheduling (not in book)
	Task Scheduling Algorithm
	Example

