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The Greedy Method and    
Text Compression
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The Greedy Method 
Technique

The greedy method is a general algorithm 
design paradigm, built on the following 
elements:
 configurations: different choices, collections, or 

values to find
 objective function: a score assigned to 

configurations, which we want to either maximize or 
minimize

It works best when applied to problems with the 
greedy-choice property: 
 a globally-optimal solution can always be found by a 

series of local improvements from a starting 
configuration.
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Text Compression

Given a string X, efficiently encode X into a 
smaller string Y
 Saves memory and/or bandwidth

A good approach: Huffman encoding
 Compute frequency f(c) for each character c.
 Encode high-frequency characters with short code 

words
 No code word is a prefix for another code
 Use an optimal encoding tree to determine the 

code words
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Encoding Tree Example
A code is a mapping of each character of an alphabet to a binary 
code-word
A prefix code is a binary code such that no code-word is the 
prefix of another code-word
An encoding tree represents a prefix code
 Each external node stores a character
 The code word of a character is given by the path from the root to 

the external node storing the character (0 for a left child and 1 for a 
right child)
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Encoding Tree Optimization
Given a text string X, we want to find a prefix code for the characters 
of X that yields a small encoding for X
 Frequent characters should have long code-words
 Rare characters should have short code-words

Example
 X = abracadabra
 T1 encodes X into 29 bits
 T2 encodes X into 24 bits
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Huffman’s Algorithm
Given a string X, 
Huffman’s algorithm 
construct a prefix 
code the minimizes 
the size of the 
encoding of X
It runs in time
O(n + d log d), where 
n is the size of X
and d is the number 
of distinct characters 
of X
A heap-based 
priority queue is 
used as an auxiliary 
structure

Algorithm HuffmanEncoding(X)
Input string X of size n
Output optimal encoding trie for X
C ← distinctCharacters(X)
computeFrequencies(C, X)
Q ← new empty heap 
for all c ∈ C

T ← new single-node tree storing c
Q.insert(getFrequency(c), T)

while Q.size() > 1
f1 ← Q.minKey()
T1 ← Q.removeMin()
f2 ← Q.minKey()
T2 ← Q.removeMin()
T ← join(T1, T2)
Q.insert(f1 + f2, T)

return Q.removeMin()



© 2004 Goodrich, Tamassia Greedy Method and Compression 7

Example

a b c d r
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X = abracadabra
Frequencies
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Extended Huffman Tree Example
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The Fractional Knapsack
Problem (not in book)

Given: A set S of n items, with each item i having
 bi - a positive benefit
 wi - a positive weight

Goal: Choose items with maximum total benefit but with 
weight at most W.
If we are allowed to take fractional amounts, then this is 
the fractional knapsack problem.
 In this case, we let xi denote the amount we take of item i

 Objective: maximize

 Constraint:

∑
∈Si
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∑
∈
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Example
Given: A set S of n items, with each item i having
 bi - a positive benefit
 wi - a positive weight

Goal: Choose items with maximum total benefit but with 
weight at most W.

Weight:
Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value: 3
($ per ml)

4 20 5 50
10 ml

Solution:
• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2

“knapsack”
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The Fractional Knapsack 
Algorithm

Greedy choice: Keep taking 
item with highest value
(benefit to weight ratio)
 Since 
 Run time: O(n log n). Why?

Correctness: Suppose there 
is a better solution
 there is an item i with higher 

value than a chosen item j, 
but xi<wi, xj>0 and vi<vj

 If we substitute some i with j, 
we get a better solution

 How much of i: min{wi-xi, xj}
 Thus, there is no better 

solution than the greedy one

Algorithm fractionalKnapsack(S, W)
Input: set S of items w/ benefit bi

and weight wi; max. weight W
Output: amount xi of each item i 

to maximize benefit w/ weight 
at most W

for each item i in S
xi ← 0
vi ← bi  / wi {value}

w ← 0 {total weight}
while w < W 

remove item i w/ highest vi
xi ← min{wi , W - w}
w ← w + min{wi , W - w}

∑∑
∈∈

=
Si

iii
Si

iii xwbwxb )/()/(
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Task Scheduling 
(not in book)

Given: a set T of n tasks, each having:
 A start time, si

 A finish time, fi (where si < fi)
Goal: Perform all the tasks using a minimum number of 
“machines.”

1 98765432

Machine 1

Machine 3

Machine 2
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Task Scheduling Algorithm
Greedy choice: consider tasks 
by their start time and use as 
few machines as possible with 
this order.
 Run time: O(n log n). Why?

Correctness: Suppose there is a 
better schedule.
 We can use k-1 machines
 The algorithm uses k
 Let i be first task scheduled 

on machine k
 Machine i must conflict with 

k-1 other tasks
 But that means there is no 

non-conflicting schedule 
using k-1 machines

Algorithm taskSchedule(T)
Input: set T of tasks w/ start time si
and finish time fi
Output: non-conflicting schedule 
with minimum number of machines
m ← 0 {no. of machines}
while T is not empty

remove task i w/ smallest si
if there’s a machine j for i then

schedule i on machine j
else

m ← m + 1
schedule i on machine m
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Example
Given: a set T of n tasks, each having:
 A start time, si

 A finish time, fi (where si < fi)
 [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

Goal: Perform all tasks on min. number of machines

1 98765432

Machine 1

Machine 3

Machine 2
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