
Iterators and Sequences 1

Iterators and 
Sequences

© 2010 Goodrich, Tamassia



Iterators and Sequences 2

Containers and Iterators
 An iterator abstracts the process of scanning 

through a collection of elements
 A container is an abstract data structure that 

supports element access through iterators
 begin(): returns an iterator to the first element
 end(): return an iterator to an imaginary position just 

after the last element

 An iterator behaves like a pointer to an element
 *p: returns the element referenced by this iterator
 ++p: advances to the next element

 Extends the concept of position by adding a 
traversal capability

© 2010 Goodrich, Tamassia



Iterators and Sequences 3

Containers
 Data structures that support iterators are called 

containers
 Examples include Stack, Queue, Vector, List 
 Various notions of iterator:

 (standard) iterator: allows read-write access to elements
 const iterator: provides read-only access to elements
 bidirectional iterator: supports both ++p and –p
 random-access iterator: supports both p+i and p-i

© 2010 Goodrich, Tamassia



Iterators and Sequences 4

Iterating through a Container
 Let C be a container and p be an iterator for C

for (p = C.begin(); p != C.end(); ++p)
loop_body

 Example: (with an STL vector)
typedef vector<int>::iterator Iterator;
int sum = 0;
for (Iterator p = V.begin(); p != V.end(); ++p)
sum += *p;
return sum;

© 2010 Goodrich, Tamassia



Iterators and Sequences 5

Implementing Iterators
 Array-based

 array A of the n elements
 index i that keeps track of the cursor
 begin() = 0
 end() = n (index following the last element)

 Linked list-based
 doubly-linked list L storing the elements, with sentinels 

for header and trailer
 pointer to node containing the current element
 begin() = front node
 end() = trailer node (just after last node)

© 2010 Goodrich, Tamassia



Iterators and Sequences 6

STL Iterators in C++
 Each STL container type C supports iterators:

 C::iterator – read/write iterator type
 C::const_iterator – read-only iterator type
 C.begin(), C.end() – return start/end iterators

 This iterator-based operators and methods:
 *p: access current element
 ++p, --p: advance to next/previous element
 C.assign(p, q): replace C with contents referenced by the 

iterator range [p, q) (from p up to, but not including, q)
 insert(p, e): insert e prior to position p
 erase(p): remove element at position p
 erase(p, q): remove elements in the iterator range [p, q)

© 2010 Goodrich, Tamassia



Iterators and Sequences 7

Sequence ADT
 The Sequence ADT is the 

union of the Array List and 
Node List ADTs

 Elements accessed by
 Index, or
 Position

 Generic methods:
 size(), empty()

 ArrayList-based methods:
 at(i), set(i, o), insert(i, o), 

erase(i)

 List-based methods:
 begin(), end()
 insertFront(o),

insertBack(o) 
 eraseFront(),

eraseBack()
 insert (p, o), erase(p)

 Bridge methods:
 atIndex(i), indexOf(p)

© 2010 Goodrich, Tamassia



Iterators and Sequences 8

Applications of Sequences
 The Sequence ADT is a basic, general-

purpose, data structure for storing an ordered 
collection of elements

 Direct applications:
 Generic replacement for stack, queue, vector, or 

list
 small database (e.g., address book)

 Indirect applications:
 Building block of more complex data structures

© 2010 Goodrich, Tamassia



Iterators and Sequences 9

Linked List Implementation
 A doubly linked list provides a 

reasonable implementation of the 
Sequence ADT

 Nodes implement Position and store:
 element
 link to the previous node
 link to the next node

 Special trailer and header nodes
trailerheader nodes/positions

elements

 Position-based methods 
run in constant time

 Index-based methods 
require searching from 
header or trailer while 
keeping track of indices; 
hence, run in linear time

© 2010 Goodrich, Tamassia



Iterators and Sequences 10

Array-based Implementation
 We use a 

circular array 
storing 
positions 

 A position 
object stores:
 Element
 Index

 Indices f and l
keep track of 
first and last 
positions

0 1 2 3
positions

elements

S

lf
© 2010 Goodrich, Tamassia



Iterators and Sequences 11

Comparing Sequence 
Implementations

Operation Array List
size, empty 1 1
atIndex, indexOf, at 1 n
begin, end 1 1
set(p,e) 1 1
set(i,e) 1 n
insert(i,e), erase(i) n n
insertBack, eraseBack 1 1
insertFront, eraseFront n 1
insert(p,e), erase(p) n 1

© 2010 Goodrich, Tamassia


	Iterators and Sequences
	Containers and Iterators
	Containers
	Iterating through a Container
	Implementing Iterators
	STL Iterators in C++
	Sequence ADT
	Applications of Sequences
	Linked List Implementation
	Array-based Implementation
	Comparing Sequence Implementations

