
© 2010 Goodrich, Tamassia Minimum Spanning Trees 1

Minimum Spanning Trees

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

© 2010 Goodrich, Tamassia Minimum Spanning Trees 2

Minimum Spanning Trees
Spanning subgraph

 Subgraph of a graph G
containing all the vertices of G

Spanning tree
 Spanning subgraph that is

itself a (free) tree

Minimum spanning tree (MST)
 Spanning tree of a weighted

graph with minimum total
edge weight

 Applications
 Communications networks
 Transportation networks

ORD

PIT

ATL

STL

DEN

DFW

DCA

10
1

9

8

6

3

25

7

4

© 2010 Goodrich, Tamassia Minimum Spanning Trees 3

Cycle Property
Cycle Property:

 Let T be a minimum
spanning tree of a
weighted graph G

 Let e be an edge of G
that is not in T and C let
be the cycle formed by e
with T

 For every edge f of C,
weight(f) ≤ weight(e)

Proof:
 By contradiction
 If weight(f) > weight(e) we

can get a spanning tree
of smaller weight by
replacing e with f

8
4

2 3
6

7

7

9

8
e

C
f

8
4

2 3
6

7

7

9

8

C

e

f

Replacing f with e yields
a better spanning tree

© 2010 Goodrich, Tamassia Minimum Spanning Trees 4

U V

Partition Property
Partition Property:

 Consider a partition of the vertices of
G into subsets U and V

 Let e be an edge of minimum weight
across the partition

 There is a minimum spanning tree of
G containing edge e

Proof:
 Let T be an MST of G
 If T does not contain e, consider the

cycle C formed by e with T and let f
be an edge of C across the partition

 By the cycle property,
weight(f) ≤ weight(e)

 Thus, weight(f) = weight(e)
 We obtain another MST by replacing

f with e

7
4

2 8
5

7

3

9

8 e

f

7
4

2 8
5

7

3

9

8 e

f

Replacing f with e yields
another MST

U V

© 2010 Goodrich, Tamassia

Kruskal’s Algorithm
 Maintain a partition of the

vertices into clusters
 Initially, single-vertex

clusters
 Keep an MST for each

cluster
 Merge “closest” clusters

and their MSTs

 A priority queue stores the
edges outside clusters
 Key: weight
 Element: edge

 At the end of the algorithm
 One cluster and one MST

Minimum Spanning Trees 5

Algorithm KruskalMST(G)
for each vertex v in G do

Create a cluster consisting of v
let Q be a priority queue.
Insert all edges into Q
T ← ∅
{T is the union of the MSTs of the clusters}
while T has fewer than n − 1 edges do
e ← Q.removeMin().getValue()

[u, v] ← G.endVertices(e)
A ← getCluster(u)
B ← getCluster(v)
if A ≠ B then

Add edge e to T
mergeClusters(A, B)

return T

© 2010 Goodrich, Tamassia Campus Tour 6

Example

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

© 2010 Goodrich, Tamassia Campus Tour 7

Example (contd.)

four steps

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

© 2010 Goodrich, Tamassia

Data Structure for Kruskal’s
Algorithm
 The algorithm maintains a forest of trees
 A priority queue extracts the edges by increasing

weight
 An edge is accepted it if connects distinct trees
 We need a data structure that maintains a

partition, i.e., a collection of disjoint sets, with
operations:
 makeSet(u): create a set consisting of u
 find(u): return the set storing u
 union(A, B): replace sets A and B with their union

Minimum Spanning Trees 8

© 2010 Goodrich, Tamassia Minimum Spanning Trees 9

Recall of List-based
Partition
 Each set is stored in a sequence
 Each element has a reference back to the set

 operation find(u) takes O(1) time, and returns the set of
which u is a member.

 in operation union(A,B), we move the elements of the
smaller set to the sequence of the larger set and update
their references

 the time for operation union(A,B) is min(|A|, |B|)

 Whenever an element is processed, it goes into a
set of size at least double, hence each element is
processed at most log n times

© 2010 Goodrich, Tamassia

Partition-Based Implementation
 Partition-based

version of
Kruskal’s
Algorithm
 Cluster merges

as unions
 Cluster locations

as finds
 Running time

O((n + m) log n)
 PQ operations

O(m log n)
 UF operations

O(n log n)

Minimum Spanning Trees 10

Algorithm KruskalMST(G)
Initialize a partition P
for each vertex v in G do

P.makeSet(v)
let Q be a priority queue.
Insert all edges into Q
T ← ∅
{T is the union of the MSTs of the clusters}
while T has fewer than n − 1 edges do
e ← Q.removeMin().getValue()

[u, v] ← G.endVertices(e)
A ← P.find(u)
B ← P.find(v)
if A ≠ B then

Add edge e to T
P.union(A, B)

return T

© 2010 Goodrich, Tamassia Minimum Spanning Trees 11

Prim-Jarnik’s Algorithm
 Similar to Dijkstra’s algorithm
 We pick an arbitrary vertex s and we grow the MST as

a cloud of vertices, starting from s
 We store with each vertex v label d(v) representing

the smallest weight of an edge connecting v to a
vertex in the cloud

 At each step:
 We add to the cloud the vertex u outside the cloud with the

smallest distance label
 We update the labels of the vertices adjacent to u

© 2010 Goodrich, Tamassia Minimum Spanning Trees 12

Prim-Jarnik’s Algorithm (cont.)
 A heap-based adaptable

priority queue with
location-aware entries
stores the vertices
outside the cloud
 Key: distance
 Value: vertex
 Recall that method

replaceKey(l,k) changes
the key of entry l

 We store three labels
with each vertex:
 Distance
 Parent edge in MST
 Entry in priority queue

Algorithm PrimJarnikMST(G)
Q ← new heap-based priority queue
s ← a vertex of G
for all v ∈ G.vertices()

if v = s
v.setDistance(0)

else
v.setDistance(∞)

v.setParent(∅)
l ← Q.insert(v.getDistance(), v)
v.setLocator(l)

while ¬Q.empty()
l ← Q.removeMin()
u ← l.getValue()
for all e ∈ u.incidentEdges()

z ← e.opposite(u)
r ← e.weight()
if r < z.getDistance()

z.setDistance(r)
z.setParent(e)
Q.replaceKey(z.getEntry(), r)

© 2010 Goodrich, Tamassia Minimum Spanning Trees 13

Example

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

8 ∞

∞

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 ∞

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 ∞

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 4

7

© 2010 Goodrich, Tamassia Minimum Spanning Trees 14

Example (contd.)

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

© 2010 Goodrich, Tamassia Minimum Spanning Trees 15

Analysis
 Graph operations

 Method incidentEdges is called once for each vertex
 Label operations

 We set/get the distance, parent and locator labels of vertex z O(deg(z))
times

 Setting/getting a label takes O(1) time
 Priority queue operations

 Each vertex is inserted once into and removed once from the priority
queue, where each insertion or removal takes O(log n) time

 The key of a vertex w in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

 Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure
 Recall that Σv deg(v) = 2m

 The running time is O(m log n) since the graph is connected

© 2010 Goodrich, Tamassia Minimum Spanning Trees 16

Baruvka’s Algorithm (Exercise)
 Like Kruskal’s Algorithm, Baruvka’s algorithm grows many

clusters at once and maintains a forest T
 Each iteration of the while loop halves the number of

connected components in forest T
 The running time is O(m log n)

Algorithm BaruvkaMST(G)
T ← V {just the vertices of G}

while T has fewer than n − 1 edges do
for each connected component C in T do

Let edge e be the smallest-weight edge from C to another component in T
if e is not already in T then

Add edge e to T
return T

© 2010 Goodrich, Tamassia

Example of Baruvka’s
Algorithm (animated)

CSC 316 17

1

5
4

3

2

3

4

49

6

8
7

6

5
4

9

6

8

Slide by Matt Stallmann
included with permission.

1

5
4

3

2

3

4

49

6

8
7

6

5

	Minimum Spanning Trees
	Minimum Spanning Trees
	Cycle Property
	Partition Property
	Kruskal’s Algorithm
	Example
	Example (contd.)
	Data Structure for Kruskal’s Algorithm
	Recall of List-based Partition
	Partition-Based Implementation
	Prim-Jarnik’s Algorithm
	Prim-Jarnik’s Algorithm (cont.)
	Example
	Example (contd.)
	Analysis
	Baruvka’s Algorithm (Exercise)
	Example of Baruvka’s �Algorithm (animated)

