
Priority Queues 1

Priority Queues

© 2010 Goodrich, Tamassia

Priority Queues 2

Priority Queue ADT

 A priority queue stores a
collection of entries

 Typically, an entry is a pair
(key, value), where the key
indicates the priority

 Main methods of the Priority
Queue ADT
 insert(e)

inserts an entry e
removeMin()
removes the entry with
smallest key

 Additional methods
 min()

returns, but does not
remove, an entry with
smallest key

 size(), empty()

 Applications:
 Standby flyers
 Auctions
 Stock market

© 2010 Goodrich, Tamassia

Priority Queues 3

Total Order Relations

 Keys in a priority
queue can be
arbitrary objects
on which an order
is defined

 Two distinct
entries in a
priority queue can
have the same
key

 Mathematical concept
of total order relation ≤
 Reflexive property:

x ≤ x
 Antisymmetric property:

x ≤ y ∧ y ≤ x ⇒ x = y
 Transitive property:

x ≤ y ∧ y ≤ z ⇒ x ≤ z

© 2010 Goodrich, Tamassia

Priority Queues 4

Comparator ADT
 Implements the

boolean function
isLess(p,q), which tests
whether p < q

 Can derive other
relations from this:
 (p == q) is equivalent to
 (!isLess(p, q) &&

!isLess(q, p))

 Can implement in C++
by overloading “()”

Two ways to compare 2D points:

class LeftRight { // left-right comparator
public:

bool operator()(const Point2D& p,
const Point2D& q) const

{ return p.getX() < q.getX(); }
};
class BottomTop { // bottom-top
public:

bool operator()(const Point2D& p,
const Point2D& q) const
{ return p.getY() < q.getY(); }

};

© 2010 Goodrich, Tamassia

Priority Queues 5

Priority Queue Sorting
 We can use a priority

queue to sort a set of
comparable elements
1. Insert the elements one

by one with a series of
insert operations

2. Remove the elements in
sorted order with a series
of removeMin operations

 The running time of this
sorting method depends on
the priority queue
implementation

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C for
the elements of S
Output sequence S sorted in
increasing order according to C
P ← priority queue with

comparator C
while ¬S.empty ()

e ← S.front(); S.eraseFront()
P.insert (e, ∅)

while ¬P.empty()
e ← P.removeMin()
S.insertBack(e)

© 2010 Goodrich, Tamassia

Priority Queues 6

Sequence-based Priority Queue
 Implementation with an

unsorted list

 Performance:
 insert takes O(1) time

since we can insert the
item at the beginning or
end of the sequence

 removeMin and min take
O(n) time since we have
to traverse the entire
sequence to find the
smallest key

 Implementation with a
sorted list

 Performance:
 insert takes O(n) time

since we have to find the
place where to insert the
item

 removeMin and min take
O(1) time, since the
smallest key is at the
beginning

4 5 2 3 1 1 2 3 4 5

© 2010 Goodrich, Tamassia

Priority Queues 7

Selection-Sort

 Selection-sort is the variation of PQ-sort where the
priority queue is implemented with an unsorted
sequence

 Running time of Selection-sort:
1. Inserting the elements into the priority queue with n insert

operations takes O(n) time
2. Removing the elements in sorted order from the priority

queue with n removeMin operations takes time
proportional to

1 + 2 + …+ n
 Selection-sort runs in O(n2) time

© 2010 Goodrich, Tamassia

Priority Queues 8

Selection-Sort Example
Sequence S Priority Queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (7,4)
..
(g) () (7,4,8,2,5,3,9)

Phase 2
(a) (2) (7,4,8,5,3,9)
(b) (2,3) (7,4,8,5,9)
(c) (2,3,4) (7,8,5,9)
(d) (2,3,4,5) (7,8,9)
(e) (2,3,4,5,7) (8,9)
(f) (2,3,4,5,7,8) (9)
(g) (2,3,4,5,7,8,9) ()

© 2010 Goodrich, Tamassia

Priority Queues 9

Insertion-Sort
 Insertion-sort is the variation of PQ-sort where the

priority queue is implemented with a sorted
sequence

 Running time of Insertion-sort:
1. Inserting the elements into the priority queue with n

insert operations takes time proportional to

1 + 2 + …+ n
2. Removing the elements in sorted order from the priority

queue with a series of n removeMin operations takes
O(n) time

 Insertion-sort runs in O(n2) time

© 2010 Goodrich, Tamassia

Priority Queues 10

Insertion-Sort Example
Sequence S Priority queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (4,7)
(c) (2,5,3,9) (4,7,8)
(d) (5,3,9) (2,4,7,8)
(e) (3,9) (2,4,5,7,8)
(f) (9) (2,3,4,5,7,8)
(g) () (2,3,4,5,7,8,9)

Phase 2
(a) (2) (3,4,5,7,8,9)
(b) (2,3) (4,5,7,8,9)
..
(g) (2,3,4,5,7,8,9) ()

© 2010 Goodrich, Tamassia

Priority Queues 11

In-place Insertion-Sort
 Instead of using an

external data structure,
we can implement
selection-sort and
insertion-sort in-place

 A portion of the input
sequence itself serves as
the priority queue

 For in-place insertion-sort
 We keep sorted the initial

portion of the sequence
 We can use swaps

instead of modifying the
sequence

5 4 2 3 1

5 4 2 3 1

4 5 2 3 1

2 4 5 3 1

2 3 4 5 1

1 2 3 4 5

1 2 3 4 5

© 2010 Goodrich, Tamassia

	Priority Queues
	Priority Queue ADT
	Total Order Relations
	Comparator ADT
	Priority Queue Sorting
	Sequence-based Priority Queue
	Selection-Sort
	Selection-Sort Example
	Insertion-Sort
	Insertion-Sort Example
	In-place Insertion-Sort

