
Using Recursion 1

Using Recursion

© 2010 Goodrich, Tamassia



Using Recursion 2

The Recursion Pattern
 Recursion: when a method calls itself
 Classic example--the factorial function:

 n! = 1· 2· 3· ··· · (n-1)· n
 Recursive definition:

 As a C++ method:
// recursive factorial function
int  recursiveFactorial(int n) { 

if  (n  ==  0)  return  1; // basis case
else return  n  *  recursiveFactorial(n- 1); // recursive case

}





−⋅
=

=
elsenfn
n

nf
)1(

0 if1
)(

© 2010 Goodrich, Tamassia



Using Recursion 3

Linear Recursion
 Test for base cases

 Begin by testing for a set of base cases (there should be 
at least one). 

 Every possible chain of recursive calls must eventually 
reach a base case, and the handling of each base case 
should not use recursion.

 Recur once
 Perform a single recursive call
 This step may have a test that decides which of several 

possible recursive calls to make, but it should ultimately 
make just one of these calls

 Define each possible recursive call so that it makes 
progress towards a base case.

© 2010 Goodrich, Tamassia



Using Recursion 4

Example of Linear Recursion

Algorithm LinearSum(A, n):
Input: 
A integer array A and an integer 

n = 1, such that A has at least 
n elements

Output: 
The sum of the first n integers 
in A

if n = 1 then
return A[0]

else
return LinearSum(A, n - 1) + 

A[n - 1]

Example recursion trace:

LinearSum(A,5)

LinearSum(A,1)

LinearSum(A,2)

LinearSum(A,3)

LinearSum(A,4)

call

call

call

call return A[0] = 4

return 4 + A[1] = 4 + 3 = 7

return 7 + A[2] = 7 + 6 = 13

return 13 + A[3] = 13 + 2 = 15

call return 15 + A[4] = 15 + 5 = 20

© 2010 Goodrich, Tamassia



Using Recursion 5

Reversing an Array

Algorithm ReverseArray(A, i,  j):
Input: An array A and nonnegative integer 

indices i and  j
Output: The reversal of the elements in A 

starting at index i and ending at  j
if i <  j then

Swap A[i] and A[ j]
ReverseArray(A, i + 1,  j - 1)

return

© 2010 Goodrich, Tamassia



Using Recursion 6

Defining Arguments for Recursion

 In creating recursive methods, it is important 
to define the methods in ways that facilitate 
recursion.

 This sometimes requires we define additional 
paramaters that are passed to the method.

 For example, we defined the array reversal 
method as ReverseArray(A, i,  j), not 
ReverseArray(A).

© 2010 Goodrich, Tamassia



Using Recursion 7

Computing Powers

 The power function, p(x,n)=xn, can be 
defined recursively:

 This leads to an power function that runs in 
O(n) time (for we make n recursive calls).

 We can do better than this, however.





−⋅
=

=
else)1,(

0 if1
),(

nxpx
n

nxp

© 2010 Goodrich, Tamassia



Using Recursion 8

Recursive Squaring
 We can derive a more efficient linearly 

recursive algorithm by using repeated squaring:

 For example,
24=  2(4/2)2 = (24/2)2 = (22)2 = 42 = 16
25=  21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32
26= 2(6/ 2)2 = (26/2)2 = (23)2 = 82 = 64
27= 21+(6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128.









>
>

=
−⋅=

even is 0 if
odd is 0 if
0 if

)2/,(
)2/)1(,(

1
),(

2

2

x
x

x

nxp
nxpxnxp

© 2010 Goodrich, Tamassia



Using Recursion 9

Recursive Squaring Method

Algorithm Power(x, n):
Input: A number x and integer n = 0
Output: The value xn

if n = 0 then
return 1

if n is odd then
y  = Power(x, (n - 1)/ 2)
return x · y ·y

else
y = Power(x, n/ 2)
return y · y

© 2010 Goodrich, Tamassia



Using Recursion 10

Analysis

Algorithm Power(x, n):
Input: A number x and 

integer n = 0
Output: The value xn

if n = 0 then
return 1

if n is odd then
y  = Power(x, (n - 1)/ 2)
return x · y · y

else
y = Power(x, n/ 2)
return y · y

It is important that we 
use a variable twice 
here rather than calling 
the method twice.

Each time we make a 
recursive call we halve 
the value of n; hence, 
we make log n recursive 
calls. That is, this 
method runs in O(log n) 
time.

© 2010 Goodrich, Tamassia



Using Recursion 11

Tail Recursion
 Tail recursion occurs when a linearly recursive 

method makes its recursive call as its last step.
 The array reversal method is an example.
 Such methods can be easily converted to non-

recursive methods (which saves on some resources).
 Example:

Algorithm IterativeReverseArray(A, i, j ):
Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at 

index i and ending at j
while i <  j do

Swap A[i ] and A[ j ]
i  = i + 1
j  = j - 1

return

© 2010 Goodrich, Tamassia



Using Recursion 12

Binary Recursion
 Binary recursion occurs whenever there are two

recursive calls for each non-base case.
 Example: the DrawTicks method for drawing 

ticks on an English ruler.

© 2010 Goodrich, Tamassia



Using Recursion 13

A Binary Recursive Method for 
Drawing Ticks

// draw a tick with no label
public static void  drawOneTick(int  tickLength)  {  drawOneTick(tickLength,  - 1);  }

// draw one tick
public static void  drawOneTick(int  tickLength,  int  tickLabel)  {

for  (int i =  0; i <  tickLength;  i++)
System.out.print("-");

if  (tickLabel  >=  0)  System.out.print(" "  +  tickLabel);
System.out.print("\n");

}
public static void  drawTicks(int  tickLength)  {  // draw ticks of given length

if  (tickLength  >  0)  { // stop when length drops to 0
drawTicks(tickLength- 1); // recursively draw left ticks
drawOneTick(tickLength); // draw center tick
drawTicks(tickLength- 1); // recursively draw right ticks

}
}
public static void  drawRuler(int  nInches,  int  majorLength)  {  // draw ruler

drawOneTick(majorLength,  0); // draw tick 0 and its label
for  (int i =  1; i <=  nInches;  i++) {

drawTicks(majorLength- 1); // draw ticks for this inch
drawOneTick(majorLength,  i); // draw tick i and its label

}
}

Note the two 
recursive calls

© 2010 Goodrich, Tamassia



Using Recursion 14

Another Binary Recusive Method
 Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i

if n = 1 then
return A[i ]
return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2)

 Example trace:

3, 1

2, 2

0, 4

2, 11, 10, 1

0, 8

0, 2

7, 1

6, 2

4, 4

6, 15, 1

4, 2

4, 1

© 2010 Goodrich, Tamassia



Using Recursion 15

Computing Fibonacci Numbers
 Fibonacci numbers are defined recursively:

F0 =  0
F1 =  1
Fi =  Fi-1

+ Fi-2 for i > 1.

 Recursive algorithm (first attempt):
Algorithm BinaryFib(k):

Input: Nonnegative integer k
Output: The kth Fibonacci number Fk

if k = 1 then
return k

else
return BinaryFib(k - 1) + BinaryFib(k - 2)

© 2010 Goodrich, Tamassia



Using Recursion 16

Analysis
 Let nk be the number of recursive calls by BinaryFib(k)

 n0 = 1
 n1 = 1
 n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3
 n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5
 n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9
 n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15
 n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25
 n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41
 n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67.

 Note that nk at least doubles every other time
 That is, nk > 2k/2. It is exponential!

© 2010 Goodrich, Tamassia



Using Recursion 17

A Better Fibonacci Algorithm 
 Use linear recursion instead

Algorithm LinearFibonacci(k):
Input: A nonnegative integer k
Output: Pair of Fibonacci numbers (Fk , Fk−1)
if k = 1 then

return (k, 0)
else

(i,  j) = LinearFibonacci(k − 1)
return (i +j, i)

 LinearFibonacci makes k−1 recursive calls

© 2010 Goodrich, Tamassia



Using Recursion 18

Multiple Recursion

 Motivating example: 
 summation puzzles
 pot + pan = bib
 dog + cat = pig
 boy + girl = baby

 Multiple recursion: 
 makes potentially many recursive calls
 not just one or two

© 2010 Goodrich, Tamassia



Using Recursion 19

Algorithm for Multiple Recursion
Algorithm PuzzleSolve(k,S,U):
Input: Integer k, sequence S, and set U (universe of elements to 

test)
Output:  Enumeration of all k-length extensions to S using elements 

in U without repetitions
for all e  in U do

Remove e from U {e is now being used}
Add e to the end of S
if k = 1 then

Test whether S is a configuration that solves the puzzle
if S solves the puzzle then

return “Solution found: ” S
else

PuzzleSolve(k - 1, S,U)
Add e back to U {e is now unused}
Remove e from the end of S

© 2010 Goodrich, Tamassia



Example

© 2010 Stallmann 20Using Recursion

cbb + ba = abc a,b,c stand for 7,8,9; not 
necessarily in that order

[] {a,b,c}

[a] {b,c}
a=7

[b] {a,c}
b=7

[c] {a,b}
c=7

[ab] {c}
a=7,b=8
c=9

[ac] {b}
a=7,c=8
b=9

[ba] {c}
b=7,a=8
c=9

[bc] {a}
b=7,c=8
a=9

[ca] {b}
c=7,a=8
b=9

[cb] {a}
c=7,b=8
a=9

might be able to
stop sooner

Slide by Matt Stallmann 
included with permission.

799 + 98 = 997



Using Recursion 21

Visualizing PuzzleSolve

PuzzleSolve (3,(),{a,b,c})

Initial call

PuzzleSolve (2,c,{a,b})PuzzleSolve (2,b,{a,c})PuzzleSolve (2,a,{b,c})

PuzzleSolve (1,ab,{c})

PuzzleSolve (1,ac,{b}) PuzzleSolve (1,cb,{a})

PuzzleSolve (1,ca,{b})

PuzzleSolve (1,bc,{a})

PuzzleSolve (1,ba,{c})

abc

acb

bac

bca

cab

cba

© 2010 Goodrich, Tamassia


	Using Recursion
	The Recursion Pattern
	Linear Recursion
	Example of Linear Recursion
	Reversing an Array
	Defining Arguments for Recursion
	Computing Powers
	Recursive Squaring
	Recursive Squaring Method
	Analysis
	Tail Recursion
	Binary Recursion
	A Binary Recursive Method for Drawing Ticks
	Another Binary Recusive Method
	Computing Fibonacci Numbers
	Analysis
	A Better Fibonacci Algorithm 
	Multiple Recursion
	Algorithm for Multiple Recursion
	Example
	Visualizing PuzzleSolve

