Bucket-Sort and Radix-Sort

L rh&ﬂ@/4mHmHm]

SEINEREEEREE
01234567809

N

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort

«

Bucket-Sort

N

@ Let be S be a sequence of n Algorithm bucketSort(S, N)
(key, element) entries with Input sequence S of (key, element)
keys in the range [0, N —1] items with keys in the range

Bucket-sort uses the keys as [0, N-1]
indices into an auxiliary array B Output sequence S sorted by

increasing keys

of sequences (buckets)
B <« array of N empty sequences

Phase 1: Empty sequence S by

moving each entry (k, 0) into while —S.empty()
its bucket BJ[Kk] (k, 0) < S.front()
Phase 2: Fori=0, ..., N—-1, move S.eraseFront()
the entries of bucket BJi] to the B[k].insertBack((k, 0))
end_ o-f sequence S fori< 0toN — 1
@ Analysis: while —B[i].empty()
= Phase 1 takes O(n) time (k, 0) « B[i].front()
s Phase 2 takes O(n + N) time B[i].eraseFront()
Bucket-sort takes O(n + N) time S.insertBack((k, 0))

Example

Key range [0, 9]

7.0 {ic

N
\J

3, a 7,0

7.e]

© 2004 Goodrich, Tamassia

Bucket-Sort and Radix-Sort

Properties and Extensions

g
\
Key-type Property Extensions ‘
= The keys are used as = Integer keys in the range [a, b]
indices into an array + Put entry (k, o) into bucket
and cannot be arbitrary _B[k_ al
objects m String keys from a set D of
possible strings, where D has
= No external comparator constant size (e.g., names of
Stable Sort Property the 50 U.S. states)
Th lati d f + Sort D and compute the rank
u | 1he Iefative order O r(k) of each string k of D in
any two items with the the sorted sequence
same key Is preserved + Put entry (k, 0) into bucket
after the execution of B[r(k)]

the algorithm

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 4

Lexicographic Order

N

A d-tuple is a sequence of d keys (k;, k,, ..., ky), where
key k; Is said to be the iI-th dimension of the tuple

Example:
s The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively
defined as follows

X1y Xoy oey Xg) < (Y1r You s Ya)
e

Xp<Y1 V. X1 =Y1 A (Xgy ooes Xg) < (Y21 -+, Ya)
l.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 5

N

Let C, be the comparator
that compares two tuples by
their iI-th dimension

Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C

Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension

Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

Lexicographic-Sort

Algorithm lexicographicSort(S)

Input sequence S of d-tuples
Output sequence S sorted in
lexicographic order

for 1 « d downto 1
stableSort(S, C))

Example:

(7,4,6) (5,1,5) (2,4,6) (2,1, 4) (3, 2, 4)
(2,1,4)(3,2,4) (5,1,5) (7,4,6) (2,4,6)
(2,1,4)(5,15)(3,2,4) (7,4,6) (2,4,6)
(2,1,4)(2,4,6) (3, 2,4) (51,5) (7,4,6)

Radix-Sort

Radix-sort is a
specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm
In each dimension

Radix-sort is applicable
to tuples where the
keys in each dimension i
are integers in the
range [0, N — 1]

4 Radix-sort runs in time
O(d(n+ N))

N

© 2004 Goodrich, Tamassia

Algorithm radixSort(S, N)

Input sequence S of d-tuples such
that (O, ..., 0) <(Xy, ..., Xg) and
kg5 RghS AN+ - N— 1)
for each tuple (X4, ..., X4) IN S

Output sequence S sorted in
lexicographic order

for i < d downto 1
bucketSort(S, N)

Bucket-Sort and Radix-Sort 7

Radix-Sort for
Binary Numbers A a1

Consider a sequence of n
b-bit integers
X=Xy, .- XXg

N

We represent each element Algorithm binaryRadixSort(S)
as a b-tuple of integers in Input sequence S of b-Dit

the range [0, 1] and apply integers

di Hh N = 2 Output sequence S sorted
radix-sort wit i replace each element x

This application of the of S with the item (0, x)
radix-sort algorithm runs in fori<-Otob—1
O(bn) time replace the key k of

each item (k, x) of S
with bit x; of x

bucketSort(S, 2)

For example, we can sort a
sequence of 32-bit integers

In liInear time

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 8

Example

N

Sorting a sequence of 4-bit integers

© 2004 Goodrich, Tamassia

Bucket-Sort and Radix-Sort

N N N
o9 @Y @Y @O @
G0 =) @00 = 0 = BN = @
o G @Y @9 @
G0 @F @F @O @

	Bucket-Sort and Radix-Sort
	Bucket-Sort
	Example
	Properties and Extensions
	Lexicographic Order
	Lexicographic-Sort
	Radix-Sort
	Radix-Sort for Binary Numbers
	Example

