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Subgraphs
 A subgraph S of a graph 

G is a graph such that 
 The vertices of S are a 

subset of the vertices of G
 The edges of S are a 

subset of the edges of G

 A spanning subgraph of G 
is a subgraph that 
contains all the vertices 
of G

Subgraph

Spanning subgraph



© 2010 Goodrich, Tamassia Depth-First Search 3

Connectivity

 A graph is 
connected if there is 
a path between 
every pair of 
vertices

 A connected 
component of a 
graph G is a 
maximal connected 
subgraph of G

Connected graph

Non connected graph with two 
connected components
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Trees and Forests
 A (free) tree is an 

undirected graph T such 
that
 T is connected
 T has no cycles
This definition of tree is 

different from the one of 
a rooted tree

 A forest is an undirected 
graph without cycles

 The connected 
components of a forest 
are trees

Tree

Forest
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Spanning Trees and Forests
 A spanning tree of a 

connected graph is a 
spanning subgraph that is 
a tree

 A spanning tree is not 
unique unless the graph is 
a tree

 Spanning trees have 
applications to the design 
of communication 
networks

 A spanning forest of a 
graph is a spanning 
subgraph that is a forest

Graph

Spanning tree
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Depth-First Search
 Depth-first search (DFS) 

is a general technique 
for traversing a graph

 A DFS traversal of a 
graph G 
 Visits all the vertices and 

edges of G
 Determines whether G is 

connected
 Computes the connected 

components of G
 Computes a spanning 

forest of G

 DFS on a graph with n
vertices and m edges 
takes O(n + m ) time

 DFS can be further 
extended to solve other 
graph problems
 Find and report a path 

between two given 
vertices

 Find a cycle in the graph
 Depth-first search is to 

graphs what Euler tour 
is to binary trees
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DFS Algorithm
 The algorithm uses a mechanism 

for setting and getting “labels” of 
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

v.setLabel(VISITED)
for all e ∈ G.incidentEdges(v)

if e.getLabel() = UNEXPLORED
w ← e.opposite(v)
if w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)
DFS(G, w)

else
e.setLabel(BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u ∈ G.vertices()
u.setLabel(UNEXPLORED)

for all e ∈ G.edges()
e.setLabel(UNEXPLORED)

for all v ∈ G.vertices()
if v.getLabel() = UNEXPLORED

DFS(G, v)
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Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge



© 2010 Goodrich, Tamassia Depth-First Search 9

Example (cont.)
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DFS and Maze Traversal 
 The DFS algorithm is 

similar to a classic 
strategy for exploring 
a maze
 We mark each 

intersection, corner 
and dead end (vertex) 
visited

 We mark each corridor 
(edge ) traversed

 We keep track of the 
path back to the 
entrance (start vertex) 
by means of a rope 
(recursion stack)
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Properties of DFS
Property 1

DFS(G, v) visits all the 
vertices and edges in 
the connected 
component of v

Property 2
The discovery edges 
labeled by DFS(G, v) 
form a spanning tree of 
the connected 
component of v
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Analysis of DFS
 Setting/getting a vertex/edge label takes O(1) time
 Each vertex is labeled twice 

 once as UNEXPLORED
 once as VISITED

 Each edge is labeled twice
 once as UNEXPLORED
 once as DISCOVERY or BACK

 Method incidentEdges is called once for each vertex
 DFS runs in O(n + m) time provided the graph is 

represented by the adjacency list structure
 Recall that Σv deg(v) = 2m
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Path Finding
 We can specialize the DFS 

algorithm to find a path 
between two given 
vertices u and z using the 
template method pattern

 We call DFS(G, u) with u
as the start vertex

 We use a stack S to keep 
track of the path between 
the start vertex and the 
current vertex

 As soon as destination 
vertex z is encountered, 
we return the path as the 
contents of the stack 

Algorithm pathDFS(G, v, z)
v.setLabel(VISITED)
S.push(v)
if  v = z

return S.elements()
for all e ∈ v.incidentEdges()

if e.getLabel() = UNEXPLORED
w ← e.opposite(v)
if w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
e.setLabel(BACK)

S.pop(v)
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Cycle Finding
 We can specialize the 

DFS algorithm to find a 
simple cycle using the 
template method pattern

 We use a stack S to 
keep track of the path 
between the start vertex 
and the current vertex

 As soon as a back edge 
(v, w) is encountered, 
we return the cycle as 
the portion of the stack 
from the top to vertex w

Algorithm cycleDFS(G, v, z)
v.setLabel(VISITED)
S.push(v)
for all e ∈ v.incidentEdges()

if e.getLabel() = UNEXPLORED
w ← e.opposite(v)
S.push(e)
if w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)
pathDFS(G, w, z)
S.pop(e)

else
T ← new empty stack
repeat

o ← S.pop()
T.push(o)

until o = w
return T.elements()

S.pop(v)


	Depth-First Search
	Subgraphs
	Connectivity
	Trees and Forests
	Spanning Trees and Forests
	Depth-First Search
	DFS Algorithm
	Example
	Example (cont.)
	DFS and Maze Traversal 
	Properties of DFS
	Analysis of DFS
	Path Finding
	Cycle Finding

