
Maps 1

Maps

© 2010 Goodrich, Tamassia

Maps 2

Maps
 A map models a searchable collection of

key-value entries
 The main operations of a map are for

searching, inserting, and deleting items
 Multiple entries with the same key are

not allowed
 Applications:

 address book
 student-record database

© 2010 Goodrich, Tamassia

Entry ADT
 An entry stores a key-value pair (k,v)
 Methods:

 key(): return the associated key
 value(): return the associated value
 setKey(k): set the key to k
 setValue(v): set the value to v

© 2010 Goodrich, Tamassia Maps 3

Maps 4

The Map ADT
 find(k): if the map M has an entry with key k, return and

iterator to it; else, return special iterator end
 put(k, v): if there is no entry with key k, insert entry

(k, v), and otherwise set its value to v. Return an iterator
to the new/modified entry

 erase(k): if the map M has an entry with key k, remove it
from M

 size(), empty()
 begin(), end(): return iterators to beginning and end of M

© 2010 Goodrich, Tamassia

Maps 5

Example
Operation Output Map
empty() true Ø
put(5,A) [(5,A)] (5,A)
put(7,B) [(7,B)] (5,A),(7,B)
put(2,C) [(2,C)] (5,A),(7,B),(2,C)
put(8,D) [(8,D)] (5,A),(7,B),(2,C),(8,D)
put(2,E) [(2,E)] (5,A),(7,B),(2,E),(8,D)
find(7) [(7,B)] (5,A),(7,B),(2,E),(8,D)
find(4) end (5,A),(7,B),(2,E),(8,D)
find(2) [(2,E)] (5,A),(7,B),(2,E),(8,D)
size() 4 (5,A),(7,B),(2,E),(8,D)
erase(5) — (7,B),(2,E),(8,D)
erase(2) — (7,B),(8,D)
find(2) end (7,B),(8,D)
empty() false (7,B),(8,D)

© 2010 Goodrich, Tamassia

Maps 6

A Simple List-Based Map
 We can efficiently implement a map using an

unsorted list
 We store the items of the map in a list S (based

on a doubly-linked list), in arbitrary order

trailerheader nodes/positions

entries

9 c 6 c 5 c 8 c

© 2010 Goodrich, Tamassia

Maps 7

The find Algorithm

Algorithm find(k):
for each p in [S.begin(), S.end()) do

if p→key() = k then
return p

return S.end() {there is no entry with key equal to k}

© 2010 Goodrich, Tamassia

We use p→key() as a
shortcut for (*p).key()

Maps 8

The put Algorithm
Algorithm put(k,v):

for each p in [S.begin(), S.end()) do
if p→key() = k then

p→setValue(v)
return p

p = S.insertBack((k,v)) {there is no entry with key k}
n = n + 1 {increment number of entries}
return p

© 2010 Goodrich, Tamassia

Maps 9

The erase Algorithm

Algorithm erase(k):
for each p in [S.begin(), S.end()) do

if p.key() = k then
S.erase(p)
n = n – 1 {decrement number of entries}

© 2010 Goodrich, Tamassia

Maps 10

Performance of a List-Based Map

 Performance:
 put takes O(n) time since we need to determine whether it is

already in the sequence
 find and erase take O(n) time since in the worst case (the

item is not found) we traverse the entire sequence to look
for an item with the given key

 The unsorted list implementation is effective only for
maps of small size or for maps in which puts are the
most common operations, while searches and
removals are rarely performed (e.g., historical record
of logins to a workstation)

© 2010 Goodrich, Tamassia

	Maps
	Maps
	Entry ADT
	The Map ADT
	Example
	A Simple List-Based Map
	The find Algorithm
	The put Algorithm
	The erase Algorithm
	Performance of a List-Based Map

