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Minimum Spanning Trees
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Minimum Spanning Trees
Spanning subgraph

 Subgraph of a graph G
containing all the vertices of G

Spanning tree
 Spanning subgraph that is 

itself a (free) tree

Minimum spanning tree (MST)
 Spanning tree of a weighted 

graph with minimum total 
edge weight

 Applications
 Communications networks
 Transportation networks
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Cycle Property
Cycle Property:

 Let T be a minimum 
spanning tree of a 
weighted graph G

 Let e be an edge of G
that is not in T and C let 
be the cycle formed by e
with T

 For every edge f of C,
weight(f) ≤ weight(e)

Proof:
 By contradiction
 If weight(f) > weight(e) we 

can get a spanning tree 
of smaller weight by 
replacing e with f
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U V

Partition Property
Partition Property:

 Consider a partition of the vertices of 
G into subsets U and V

 Let e be an edge of minimum weight 
across the partition

 There is a minimum spanning tree of 
G containing edge e

Proof:
 Let T be an MST of G
 If T does not contain e, consider the 

cycle C formed by e with T and let  f
be an edge of C across the partition

 By the cycle property,
weight(f) ≤ weight(e)

 Thus, weight(f) = weight(e)
 We obtain another MST by replacing 

f  with e
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Kruskal’s Algorithm
 Maintain a partition of the 

vertices into clusters
 Initially, single-vertex 

clusters
 Keep an MST for each 

cluster
 Merge “closest” clusters 

and their MSTs

 A priority queue stores the 
edges outside clusters
 Key: weight
 Element: edge

 At the end of the algorithm
 One cluster and one MST

Minimum Spanning Trees 5

Algorithm KruskalMST(G)
for each vertex v in G do

Create a cluster consisting of v
let Q be a priority queue.
Insert all edges into Q
T ← ∅
{T is the union of the MSTs of the clusters}
while T has fewer than n − 1 edges do
e ← Q.removeMin().getValue()

[u, v] ← G.endVertices(e)
A ← getCluster(u)
B ← getCluster(v) 
if A ≠ B then

Add edge e to T
mergeClusters(A, B)

return T
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Example
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Example (contd.)

four steps
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Data Structure for Kruskal’s 
Algorithm
 The algorithm maintains a forest of trees
 A priority queue extracts the edges by increasing 

weight
 An edge is accepted it if connects distinct trees
 We need a data structure that maintains a 

partition, i.e., a collection of disjoint sets, with 
operations:
 makeSet(u): create a set consisting of u
 find(u): return the set storing u
 union(A, B): replace sets A and B with their union

Minimum Spanning Trees 8
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Recall of List-based 
Partition
 Each set is stored in a sequence
 Each element has a reference back to the set

 operation find(u) takes O(1) time, and returns the set of 
which u is a member.

 in operation union(A,B), we move the elements of the 
smaller set to the sequence of the larger set and update 
their references

 the time for operation union(A,B) is min(|A|, |B|)

 Whenever an element is processed, it goes into a 
set of size at least double, hence each element is 
processed at most log n times
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Partition-Based Implementation
 Partition-based 

version of 
Kruskal’s 
Algorithm 
 Cluster merges 

as unions 
 Cluster locations 

as finds
 Running time 

O((n + m) log n)
 PQ operations 

O(m log n)
 UF operations 

O(n log n)
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Algorithm KruskalMST(G)
Initialize a partition P
for each vertex v in G do

P.makeSet(v)
let Q be a priority queue.
Insert all edges into Q
T ← ∅
{T is the union of the MSTs of the clusters}
while T has fewer than n − 1 edges do
e ← Q.removeMin().getValue()

[u, v] ← G.endVertices(e)
A ← P.find(u)
B ← P.find(v) 
if A ≠ B then

Add edge e to T
P.union(A, B)

return T
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Prim-Jarnik’s Algorithm
 Similar to Dijkstra’s algorithm
 We pick an arbitrary vertex s and we grow the MST as 

a cloud of vertices, starting from s
 We store with each vertex v label d(v) representing 

the smallest weight of an edge connecting v to a 
vertex in the cloud 

 At each step:
 We add to the cloud the vertex u outside the cloud with the 

smallest distance label
 We update the labels of the vertices adjacent to u
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Prim-Jarnik’s Algorithm (cont.)
 A heap-based adaptable 

priority queue with 
location-aware entries 
stores the vertices 
outside the cloud
 Key: distance
 Value: vertex
 Recall that method 

replaceKey(l,k) changes 
the key of entry l

 We store three labels 
with each vertex:
 Distance
 Parent edge in MST
 Entry in priority queue

Algorithm PrimJarnikMST(G)
Q ← new heap-based priority queue
s ← a vertex of G
for all v ∈ G.vertices()

if v = s
v.setDistance(0)

else
v.setDistance(∞)

v.setParent(∅)
l ← Q.insert(v.getDistance(), v)
v.setLocator(l)

while ¬Q.empty()
l ← Q.removeMin()
u ← l.getValue()
for all e ∈ u.incidentEdges()

z ← e.opposite(u)
r ← e.weight()
if r < z.getDistance()

z.setDistance(r)
z.setParent(e)
Q.replaceKey(z.getEntry(), r)
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Example
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Example (contd.)
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Analysis
 Graph operations

 Method incidentEdges is called once for each vertex
 Label operations

 We set/get the distance, parent and locator labels of vertex z O(deg(z))
times

 Setting/getting a label takes O(1) time
 Priority queue operations

 Each vertex is inserted once into and removed once from the priority 
queue, where each insertion or removal takes O(log n) time

 The key of a vertex w in the priority queue is modified at most deg(w) 
times, where each key change takes O(log n) time 

 Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the 
graph is represented by the adjacency list structure
 Recall that Σv deg(v) = 2m

 The running time is O(m log n) since the graph is connected
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Baruvka’s Algorithm (Exercise)
 Like Kruskal’s Algorithm, Baruvka’s algorithm grows many 

clusters at once and maintains a forest T
 Each iteration of the while loop halves the number of 

connected components in forest T
 The running time is O(m log n)

Algorithm BaruvkaMST(G)
T ← V {just the vertices of G}

while T has fewer than n − 1 edges do
for each connected component C in T do

Let edge e be the smallest-weight edge from C to another component in T
if e is not already in T then

Add edge e to T
return T
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Example of Baruvka’s
Algorithm (animated)

CSC 316 17
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included with permission.
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