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Recall Priority Queue ADT

 A priority queue stores a 
collection of entries

 Typically, an entry is a pair
(key, value), where the key 
indicates the priority

 Main methods of the Priority 
Queue ADT
 insert(e) inserts an entry e 
 removeMin()

removes the entry with 
smallest key

 Additional methods
 min()

returns, but does not 
remove, an entry with 
smallest key

 size(), empty()

 Applications:
 Standby flyers
 Auctions
 Stock market
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Recall PQ Sorting
 We use a priority queue

 Insert the elements with a 
series of insert operations

 Remove the elements in 
sorted order with a series 
of removeMin operations

 The running time depends 
on the priority queue 
implementation:
 Unsorted sequence gives 

selection-sort: O(n2) time
 Sorted sequence gives 

insertion-sort: O(n2) time

 Can we do better?

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted  in 
increasing order according to C
P ← priority queue with 

comparator C
while ¬S.empty ()

e ← S.front(); S.eraseFront()
P.insert (e, ∅)

while ¬P.empty()
e ← P.removeMin()
S.insertBack(e)
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Heaps
 A heap is a binary tree storing 

keys at its nodes and satisfying 
the following properties:

 Heap-Order: for every internal 
node v other than the root,
key(v) ≥ key(parent(v))

 Complete Binary Tree: let h be 
the height of the heap
 for i = 0, … , h − 1, there are 2i

nodes of depth i
 at depth h − 1, the internal nodes 

are to the left of the external 
nodes
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 The last node of a heap 
is the rightmost node of 
maximum depth

last node
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Height of a Heap
 Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)
 Let h be the height of a heap storing n keys
 Since there are 2i keys at depth i = 0, … , h − 1 and at least one key 

at depth h, we have n ≥ 1 + 2 + 4 + … + 2h−1 + 1
 Thus, n ≥ 2h , i.e., h ≤ log n
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Heaps and Priority Queues
 We can use a heap to implement a priority queue
 We store a (key, element) item at each internal node
 We keep track of the position of the last node

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)
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Insertion into a 
Heap
 Method insertItem of the 

priority queue ADT 
corresponds to the 
insertion of a key k to 
the heap

 The insertion algorithm 
consists of three steps
 Find the insertion node z

(the new last node)
 Store k at z
 Restore the heap-order 

property (discussed next)
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Upheap
 After the insertion of a new key k, the heap-order property may be 

violated
 Algorithm upheap restores the heap-order property by swapping k

along an upward path from the insertion node
 Upheap terminates when the key k reaches the root or a node 

whose parent has a key smaller than or equal to k
 Since a heap has height O(log n), upheap runs in O(log n) time
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Removal from a Heap (§ 7.3.3)
 Method removeMin of 

the priority queue ADT 
corresponds to the 
removal of the root key 
from the heap

 The removal algorithm 
consists of three steps
 Replace the root key with 

the key of the last node w
 Remove w
 Restore the heap-order 

property (discussed next)
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Downheap
 After replacing the root key with the key k of the last node, the 

heap-order property may be violated
 Algorithm downheap restores the heap-order property by 

swapping key k along a downward path from the root
 Upheap terminates when key k reaches a leaf or a node whose 

children have keys greater than or equal to k
 Since a heap has height O(log n), downheap runs in O(log n) time
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Updating the Last Node
 The insertion node can be found by traversing a path of O(log n) 

nodes
 Go up until a left child or the root is reached
 If a left child is reached, go to the right child
 Go down left until a leaf is reached

 Similar algorithm for updating the last node after a removal
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Heap-Sort
 Consider a priority 

queue with n items 
implemented by means 
of a heap
 the space used is O(n)
 methods insert and 

removeMin take O(log n) 
time

 methods size, empty, 
and min take time O(1) 
time

 Using a heap-based 
priority queue, we can 
sort a sequence of n
elements in O(n log n) 
time

 The resulting algorithm is 
called heap-sort

 Heap-sort is much faster 
than quadratic sorting 
algorithms, such as 
insertion-sort and 
selection-sort
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Vector-based Heap 
Implementation
 We can represent a heap with n

keys by means of a vector of 
length n + 1

 For the node at rank i
 the left child is at rank 2i
 the right child is at rank 2i + 1

 Links between nodes are not 
explicitly stored

 The cell of at rank 0 is not used
 Operation insert corresponds to 

inserting at rank n + 1
 Operation removeMin corresponds 

to removing at rank n
 Yields in-place heap-sort
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Merging Two Heaps
 We are given two two 

heaps and a key k
 We create a new heap 

with the root node 
storing k and with the 
two heaps as subtrees

 We perform downheap 
to restore the heap-
order property 
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 We can construct a heap 
storing n given keys in 
using a bottom-up 
construction with log n
phases

 In phase i, pairs of 
heaps with 2i −1 keys are 
merged into heaps with 
2i+1−1 keys

Bottom-up Heap Construction

2i −1 2i −1

2i+1−1
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Example
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Example (contd.)
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Example (contd.)
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Example (end)
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Analysis
 We visualize the worst-case time of a downheap with a proxy path 

that goes first right and then repeatedly goes left until the bottom 
of the heap (this path may differ from the actual downheap path)

 Since each node is traversed by at most two proxy paths, the total 
number of nodes of the proxy paths is O(n)

 Thus, bottom-up heap construction runs in O(n) time 
 Bottom-up heap construction is faster than n successive insertions 

and speeds up the first phase of heap-sort
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