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Matrix Chain-Products
~(not In book)

e Dynamic Programming is a general \
algorithm design paradigm.

= Rather than give the general structure, let us f
first give a motivating example: X
s Matrix Chain-Products B
# Review: Matrix Multiplication.
s C=A*B e 4
m AisdxeandBisexf
e-1
C[i, j1= D> Ali,k]* Bk, j] e \
k=0 ' N\
| A C
- O(def)time o< (MM | Wi
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" Matrix Chain-Product:
s Compute A=A,*A*..*A 1
= Ai IS di X di+1
= Problem: How to parenthesize?
# Example
m Bis3 x 100
m Cis100 x5
m Dis5 x5
s (B*C)*D takes 1500 + 75 = 1575 ops
s B*(C*D) takes 1500 + 2500 = 4000 ops

N
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An Enumeration Approach

" Matrix Chain-Product Alg.:

= Try all possible ways to parenthesize
A=ATALT. A

= Calculate number of ops for each one

= Pick the one that is best

# Running time:

= The number of paranethesizations is equal
to the number of binary trees with n nodes

= This is exponentiall!

m It is called the Catalan number, and it is
almost 4",

= This is a terrible algorithm!

N
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# ldea #1: repeatedly select the product that
uses (up) the most operations.

# Counter-example:
m AiIs10 x5
m Bis5x10
m Cisl10 x5
m Dis5x%x 10

ms Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops

s A*((B*C)*D) takes 500+250+250 = 1000 ops

A Greedy Approach

N
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;

Another Greedy Approach 8

# |ldea #2: repeatedly select the product that uses
the fewest operations.

# Counter-example:
= Ais 101 x 11
m Bisl1ll x9
= Cis 9 x 100
= Dis 100 x 99

= Greedy idea #2 gives A*((B*C)*D)), which takes
109989+9900+108900=228789 ops

= (A*B)*(C*D) takes 9999+89991+89100=189090 0ops

# The greedy approach is not giving us the optimal
value.

N
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A “Recursive” Approach

# Define subproblems:
= Find the best parenthesization of A7*A;, ;*...*A,.

= Let N;; denote the number of operations done by this
subproblem

= The optimal solution for the whole problem is N, ;.

# Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems
m There has to be a final multiplication (root of the expression
tree) for the optimal solution.
= Say, the final multiply is at index i1 (Ay*...*A)* (A ™. %A 1)-
= Then the optimal solution N, Is the sum of two optimal
subproblems, Ny ; and N, ., plus the time for the last multiply.

= If the global optimum did not have these optimal
subproblems, we could define an even better “optimal”
solution.
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A Characterizing
Equation

# The global optimal has to be defined in terms of
optimal subproblems, depending on where the final
multiply is at.

# Let us consider all possible places for that final multiply:
= Recall that A, is a d; x di,; dimensional matrix.
= S0, a characterizing equation for N;; is the following:

N

N; ;= MIKN; + Ny, 5 +did,dia}

SR PO

# Note that subproblems are not independent--the
subproblems overlap.
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A Dynamic Programming

Algorithm

N

&

Since subproblems
overlap, we don'’t
use recursion.

Instead, we
construct optimal
subproblems
“bottom-up.”

N;;'s are easy, SO
start with them
Then do length

2,3,... subproblems,
and so on.

The running time is
O(n3)

© 2004 Goodrich, Tamassia

Algorithm matrixChain(S):
Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal
paranethization of S

fori < 1ton-1do
Nij-<0

forb<« 1ton-1do
for i <~ 0 ton-b-1 do

j « 14D
N;; <= +infinity
for k < i1toj-1do
Nij <= min{N;;, Njj +Ny,q; +didyiy sy}
Dynamic Programming 9




A Dynamic Programming
Algorithm Visualization

g

p
\ .
# The bottom-up N; ; = irPkLr}{Ni,k + Ny + didk+1dj+1} -
construction fillsinthe N|o 1 2 j o ML
N array by diagonals 0 . —
@ N,;; gets values from 1
pervious entries in i-th
row and j-th column | L]

# Filling in each entry in
the N table takes O(n)
time.

# Total run time: O(n3)

# Getting actual n-1
parenthesization can be
done by remembering
“K” for each N entry
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The General Dynamic
Programming Technique

# Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

s Simple subproblems: the subproblems can be
defined in terms of a few variables, such as |, k, |,
m, and so on.

s Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

s Subproblem overlap: the subproblems are not
Independent, but instead they overlap (hence,
should be constructed bottom-up).

N
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Subsequences

®A subsequence of a character string
Xk ks X iS-a-stringrof-the-form
X Xi,... X, Where lj < lj+1.

#Not the same as substring!

#Example String: ABCDEFGHIJK
s Subsequence: ACEGJIK
= Subsequence: DFGHK
= Not subsequence: DAGH

N
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The Longest Common
Subsequence (LCS) Problem

# Given two strings X and Y, the longest
common subsequence (LCS) problem is
to find a longest subsequence common
to both X and Y

#Has applications to DNA similarity
testing (alphabet is {A,C,G,T})

#Example: ABCDEFG and XZACKDFWGH
have ACDFG as a longest common
subsequence

N
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A Poor Approach to the
LCS Problem

# A Brute-force solution:
= Enumerate all subsequences of X
= Test which ones are also subsequences of Y
= Pick the longest one.

# Analysis:

s If X is of length n, then it has 2"
subsequences

= This Is an exponential-time algorithm!

N
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A Dynamic-Programming
Approach to the LCS Problem

T # Define L[i,j] to be the length of the longest common
subsequence of X[O0..i] and Y[O..j].

# Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to
Indicate that the null part of X or Y has no match with the
other.

# Then we can define L[i,j] in the general case as follows:

1. If xi=yj, then L[i,j] = L[i-1,j)-1] + 1 (we can add this match)
2. If xi#yj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no
match here)

Case 1: Case 2:
0123456789 1011 012345678910
Y=CGATAATTGAGA Y=CGATAATTGAG L[9.9]=6
Ls10ks SN\ / NS
X=GTTCCTAATA X=GTTCCTAATA
0123456789 0123456789
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“An LCS Algorithm

Algorithm LCS(X,Y ):

Input: Strings X and Y with n and m elements, respectively

Output: Fori=0,...,n-1, j = 0,...,m-1, the length L[i, j] of a longest string
that is a subsequence of both the string X[O0..i] = XyX;X,...X; and the
string Y [0.. J1 = YoY1Y2-Y;

fori=1ton-1do

L[i,-1] =0
for j =0 to m-1 do
L[-1,j]] =0

fori=0ton-1do
for j =0 to m-1 do
If x; =y; then
L[i, j] = L[i-1, j-1] + 1
else
L[, J] = max{L[I-1, J], L[I, J-1]}
return array L
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the LCS Algorithm

Visualizing
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Analysis of LCS Algorithm

N

#\We have two nested loops
s The outer one iterates n times
s The inner one Iiterates m times

s A constant amount of work is done inside
each iteration of the inner loop

= Thus, the total running time is O(/1m)

# Answer is contained in L[n,m] (and the
subsequence can be recovered from the
L table).
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