
Dictionaries 1

Dictionaries

© 2010 Goodrich, Tamassia

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

Maps 2

Dictionary
 The dictionary ADT models a searchable

collection of key-element entries
 The main operations of a dictionary are

searching, inserting, and deleting items
 Multiple items with the same key are allowed
 Applications:

 word-definition pairs
 credit card authorizations
 DNS mapping of host names (e.g.,

datastructures.net) to internet IP addresses (e.g.,
128.148.34.101)

© 2010 Goodrich, Tamassia

Entry ADT
 An entry stores a key-value pair (k,v)
 Methods:

 key(): return the associated key
 value(): return the associated value
 setKey(k): set the key to k
 setValue(v): set the value to v

© 2010 Goodrich, Tamassia Maps 3

Dictionaries 4

Dictionary ADT
 Dictionary ADT methods:

 find(k): if there is an entry with key k, returns an iterator to it,
else returns the special iterator end

 findAll(k): returns iterators b and e such that all entries with
key k are in the iterator range [b, e) starting at b and ending
just prior to e

 put(k, o): inserts and returns an iterator to it
 erase(k): remove an entry with key k
 begin(), end(): return iterators to the beginning and end of

the dictionary
 size(), empty()

© 2010 Goodrich, Tamassia

Dictionaries 5

Example
Operation Output Dictionary
put(5,A) (5,A) (5,A)
put(7,B) (7,B) (5,A),(7,B)
put(2,C) (2,C) (5,A),(7,B),(2,C)
put(8,D) (8,D) (5,A),(7,B),(2,C),(8,D)
put(2,E) (2,E) (5,A),(7,B),(2,C),(8,D),(2,E)
find(7) (7,B) (5,A),(7,B),(2,C),(8,D),(2,E)
find(4) end (5,A),(7,B),(2,C),(8,D),(2,E)
find(2) (2,C) (5,A),(7,B),(2,C),(8,D),(2,E)
findAll(2) {(2,C),(2,E)} (5,A),(7,B),(2,C),(8,D),(2,E)
size() 5 (5,A),(7,B),(2,C),(8,D),(2,E)
erase(5) — (7,B),(2,C),(8,D),(2,E)
find(5) end (7,B),(2,C),(8,D),(2,E)

© 2010 Goodrich, Tamassia

Dictionaries 6

A List-Based Dictionary
 A log file or audit trail is a dictionary implemented by means of

an unsorted sequence
 We store the items of the dictionary in a sequence (based on a

doubly-linked list or array), in arbitrary order
 Performance:

 put takes O(1) time since we can insert the new item at the
beginning or at the end of the sequence

 find and erase take O(n) time since in the worst case (the item is
not found) we traverse the entire sequence to look for an item with
the given key

 The log file is effective only for dictionaries of small size or for
dictionaries on which insertions are the most common
operations, while searches and removals are rarely performed
(e.g., historical record of logins to a workstation)

© 2010 Goodrich, Tamassia

Dictionaries 7

The find, put, erase Algorithms
Algorithm find(k)
for each p in [S.begin(), S.end()) do

if p.key() = k then
return p

Algorithm put(k, v)
Create a new entry e = (k, v)
p = S.insertBack(e) {S is unordered}
return p

Algorithm erase(k):
for each p in [S.begin(), S.end()) do

if p.key() = k then
S.erase(p)

© 2010 Goodrich, Tamassia

Dictionaries 8

Hash Table Implementation
 We can also create a hash-table

dictionary implementation.
 If we use separate chaining to handle

collisions, then each operation can be
delegated to a list-based dictionary
stored at each hash table cell.

© 2010 Goodrich, Tamassia

Dictionaries 9

Search Table
 A search table is a dictionary implemented by means of a sorted

array
 We store the items of the dictionary in an array-based sequence,

sorted by key
 We use an external comparator for the keys

 Performance:
 find takes O(log n) time, using binary search
 put takes O(n) time since in the worst case we have to shift n/2

items to make room for the new item
 erase takes O(n) time since in the worst case we have to shift n/2

items to compact the items after the removal
 A search table is effective only for dictionaries of small size or

for dictionaries on which searches are the most common
operations, while insertions and removals are rarely performed
(e.g., credit card authorizations)

© 2010 Goodrich, Tamassia

Dictionaries 10

Binary Search
 Binary search performs operation find(k) on a dictionary

implemented by means of an array-based sequence, sorted by key
 similar to the high-low game
 at each step, the number of candidate items is halved
 terminates after a logarithmic number of steps

 Example: find(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h
© 2010 Goodrich, Tamassia

	Dictionaries
	Dictionary
	Entry ADT
	Dictionary ADT
	Example
	A List-Based Dictionary
	The find, put, erase Algorithms
	Hash Table Implementation
	Search Table
	Binary Search

