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The Greedy Method and    
Text Compression
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The Greedy Method 
Technique

The greedy method is a general algorithm 
design paradigm, built on the following 
elements:
 configurations: different choices, collections, or 

values to find
 objective function: a score assigned to 

configurations, which we want to either maximize or 
minimize

It works best when applied to problems with the 
greedy-choice property: 
 a globally-optimal solution can always be found by a 

series of local improvements from a starting 
configuration.
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Text Compression

Given a string X, efficiently encode X into a 
smaller string Y
 Saves memory and/or bandwidth

A good approach: Huffman encoding
 Compute frequency f(c) for each character c.
 Encode high-frequency characters with short code 

words
 No code word is a prefix for another code
 Use an optimal encoding tree to determine the 

code words
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Encoding Tree Example
A code is a mapping of each character of an alphabet to a binary 
code-word
A prefix code is a binary code such that no code-word is the 
prefix of another code-word
An encoding tree represents a prefix code
 Each external node stores a character
 The code word of a character is given by the path from the root to 

the external node storing the character (0 for a left child and 1 for a 
right child)
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Encoding Tree Optimization
Given a text string X, we want to find a prefix code for the characters 
of X that yields a small encoding for X
 Frequent characters should have long code-words
 Rare characters should have short code-words

Example
 X = abracadabra
 T1 encodes X into 29 bits
 T2 encodes X into 24 bits
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Huffman’s Algorithm
Given a string X, 
Huffman’s algorithm 
construct a prefix 
code the minimizes 
the size of the 
encoding of X
It runs in time
O(n + d log d), where 
n is the size of X
and d is the number 
of distinct characters 
of X
A heap-based 
priority queue is 
used as an auxiliary 
structure

Algorithm HuffmanEncoding(X)
Input string X of size n
Output optimal encoding trie for X
C ← distinctCharacters(X)
computeFrequencies(C, X)
Q ← new empty heap 
for all c ∈ C

T ← new single-node tree storing c
Q.insert(getFrequency(c), T)

while Q.size() > 1
f1 ← Q.minKey()
T1 ← Q.removeMin()
f2 ← Q.minKey()
T2 ← Q.removeMin()
T ← join(T1, T2)
Q.insert(f1 + f2, T)

return Q.removeMin()
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Example

a b c d r
5 2 1 1 2

X = abracadabra
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Extended Huffman Tree Example
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The Fractional Knapsack
Problem (not in book)

Given: A set S of n items, with each item i having
 bi - a positive benefit
 wi - a positive weight

Goal: Choose items with maximum total benefit but with 
weight at most W.
If we are allowed to take fractional amounts, then this is 
the fractional knapsack problem.
 In this case, we let xi denote the amount we take of item i

 Objective: maximize

 Constraint:

∑
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Example
Given: A set S of n items, with each item i having
 bi - a positive benefit
 wi - a positive weight

Goal: Choose items with maximum total benefit but with 
weight at most W.

Weight:
Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value: 3
($ per ml)

4 20 5 50
10 ml

Solution:
• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2

“knapsack”
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The Fractional Knapsack 
Algorithm

Greedy choice: Keep taking 
item with highest value
(benefit to weight ratio)
 Since 
 Run time: O(n log n). Why?

Correctness: Suppose there 
is a better solution
 there is an item i with higher 

value than a chosen item j, 
but xi<wi, xj>0 and vi<vj

 If we substitute some i with j, 
we get a better solution

 How much of i: min{wi-xi, xj}
 Thus, there is no better 

solution than the greedy one

Algorithm fractionalKnapsack(S, W)
Input: set S of items w/ benefit bi

and weight wi; max. weight W
Output: amount xi of each item i 

to maximize benefit w/ weight 
at most W

for each item i in S
xi ← 0
vi ← bi  / wi {value}

w ← 0 {total weight}
while w < W 

remove item i w/ highest vi
xi ← min{wi , W - w}
w ← w + min{wi , W - w}

∑∑
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Task Scheduling 
(not in book)

Given: a set T of n tasks, each having:
 A start time, si

 A finish time, fi (where si < fi)
Goal: Perform all the tasks using a minimum number of 
“machines.”

1 98765432

Machine 1

Machine 3

Machine 2



© 2004 Goodrich, Tamassia Greedy Method and Compression 13

Task Scheduling Algorithm
Greedy choice: consider tasks 
by their start time and use as 
few machines as possible with 
this order.
 Run time: O(n log n). Why?

Correctness: Suppose there is a 
better schedule.
 We can use k-1 machines
 The algorithm uses k
 Let i be first task scheduled 

on machine k
 Machine i must conflict with 

k-1 other tasks
 But that means there is no 

non-conflicting schedule 
using k-1 machines

Algorithm taskSchedule(T)
Input: set T of tasks w/ start time si
and finish time fi
Output: non-conflicting schedule 
with minimum number of machines
m ← 0 {no. of machines}
while T is not empty

remove task i w/ smallest si
if there’s a machine j for i then

schedule i on machine j
else

m ← m + 1
schedule i on machine m
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Example
Given: a set T of n tasks, each having:
 A start time, si

 A finish time, fi (where si < fi)
 [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

Goal: Perform all tasks on min. number of machines

1 98765432

Machine 1

Machine 3

Machine 2
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