
© 2010 Goodrich, Tamassia Depth-First Search 1

Depth-First Search

DB

A

C

E

© 2010 Goodrich, Tamassia Depth-First Search 2

Subgraphs
 A subgraph S of a graph

G is a graph such that
 The vertices of S are a

subset of the vertices of G
 The edges of S are a

subset of the edges of G

 A spanning subgraph of G
is a subgraph that
contains all the vertices
of G

Subgraph

Spanning subgraph

© 2010 Goodrich, Tamassia Depth-First Search 3

Connectivity

 A graph is
connected if there is
a path between
every pair of
vertices

 A connected
component of a
graph G is a
maximal connected
subgraph of G

Connected graph

Non connected graph with two
connected components

© 2010 Goodrich, Tamassia Depth-First Search 4

Trees and Forests
 A (free) tree is an

undirected graph T such
that
 T is connected
 T has no cycles
This definition of tree is

different from the one of
a rooted tree

 A forest is an undirected
graph without cycles

 The connected
components of a forest
are trees

Tree

Forest

© 2010 Goodrich, Tamassia Depth-First Search 5

Spanning Trees and Forests
 A spanning tree of a

connected graph is a
spanning subgraph that is
a tree

 A spanning tree is not
unique unless the graph is
a tree

 Spanning trees have
applications to the design
of communication
networks

 A spanning forest of a
graph is a spanning
subgraph that is a forest

Graph

Spanning tree

© 2010 Goodrich, Tamassia Depth-First Search 6

Depth-First Search
 Depth-first search (DFS)

is a general technique
for traversing a graph

 A DFS traversal of a
graph G
 Visits all the vertices and

edges of G
 Determines whether G is

connected
 Computes the connected

components of G
 Computes a spanning

forest of G

 DFS on a graph with n
vertices and m edges
takes O(n + m) time

 DFS can be further
extended to solve other
graph problems
 Find and report a path

between two given
vertices

 Find a cycle in the graph
 Depth-first search is to

graphs what Euler tour
is to binary trees

© 2010 Goodrich, Tamassia Depth-First Search 7

DFS Algorithm
 The algorithm uses a mechanism

for setting and getting “labels” of
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

v.setLabel(VISITED)
for all e ∈ G.incidentEdges(v)

if e.getLabel() = UNEXPLORED
w ← e.opposite(v)
if w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)
DFS(G, w)

else
e.setLabel(BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u ∈ G.vertices()
u.setLabel(UNEXPLORED)

for all e ∈ G.edges()
e.setLabel(UNEXPLORED)

for all v ∈ G.vertices()
if v.getLabel() = UNEXPLORED

DFS(G, v)

© 2010 Goodrich, Tamassia Depth-First Search 8

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge

© 2010 Goodrich, Tamassia Depth-First Search 9

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

© 2010 Goodrich, Tamassia Depth-First Search 10

DFS and Maze Traversal
 The DFS algorithm is

similar to a classic
strategy for exploring
a maze
 We mark each

intersection, corner
and dead end (vertex)
visited

 We mark each corridor
(edge) traversed

 We keep track of the
path back to the
entrance (start vertex)
by means of a rope
(recursion stack)

© 2010 Goodrich, Tamassia Depth-First Search 11

Properties of DFS
Property 1

DFS(G, v) visits all the
vertices and edges in
the connected
component of v

Property 2
The discovery edges
labeled by DFS(G, v)
form a spanning tree of
the connected
component of v

DB

A

C

E

© 2010 Goodrich, Tamassia Depth-First Search 12

Analysis of DFS
 Setting/getting a vertex/edge label takes O(1) time
 Each vertex is labeled twice

 once as UNEXPLORED
 once as VISITED

 Each edge is labeled twice
 once as UNEXPLORED
 once as DISCOVERY or BACK

 Method incidentEdges is called once for each vertex
 DFS runs in O(n + m) time provided the graph is

represented by the adjacency list structure
 Recall that Σv deg(v) = 2m

© 2010 Goodrich, Tamassia Depth-First Search 13

Path Finding
 We can specialize the DFS

algorithm to find a path
between two given
vertices u and z using the
template method pattern

 We call DFS(G, u) with u
as the start vertex

 We use a stack S to keep
track of the path between
the start vertex and the
current vertex

 As soon as destination
vertex z is encountered,
we return the path as the
contents of the stack

Algorithm pathDFS(G, v, z)
v.setLabel(VISITED)
S.push(v)
if v = z

return S.elements()
for all e ∈ v.incidentEdges()

if e.getLabel() = UNEXPLORED
w ← e.opposite(v)
if w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
e.setLabel(BACK)

S.pop(v)

© 2010 Goodrich, Tamassia Depth-First Search 14

Cycle Finding
 We can specialize the

DFS algorithm to find a
simple cycle using the
template method pattern

 We use a stack S to
keep track of the path
between the start vertex
and the current vertex

 As soon as a back edge
(v, w) is encountered,
we return the cycle as
the portion of the stack
from the top to vertex w

Algorithm cycleDFS(G, v, z)
v.setLabel(VISITED)
S.push(v)
for all e ∈ v.incidentEdges()

if e.getLabel() = UNEXPLORED
w ← e.opposite(v)
S.push(e)
if w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)
pathDFS(G, w, z)
S.pop(e)

else
T ← new empty stack
repeat

o ← S.pop()
T.push(o)

until o = w
return T.elements()

S.pop(v)

	Depth-First Search
	Subgraphs
	Connectivity
	Trees and Forests
	Spanning Trees and Forests
	Depth-First Search
	DFS Algorithm
	Example
	Example (cont.)
	DFS and Maze Traversal
	Properties of DFS
	Analysis of DFS
	Path Finding
	Cycle Finding

