
© 2010 Goodrich, Tamassia Breadth-First Search 1

Breadth-First Search

CB

A

E

D

L0

L1

F
L2

© 2010 Goodrich, Tamassia Breadth-First Search 2

Breadth-First Search
 Breadth-first search

(BFS) is a general
technique for traversing
a graph

 A BFS traversal of a
graph G
 Visits all the vertices and

edges of G
 Determines whether G is

connected
 Computes the connected

components of G
 Computes a spanning

forest of G

 BFS on a graph with n
vertices and m edges
takes O(n + m) time

 BFS can be further
extended to solve other
graph problems
 Find and report a path

with the minimum
number of edges
between two given
vertices

 Find a simple cycle, if
there is one

© 2010 Goodrich, Tamassia Breadth-First Search 3

BFS Algorithm
 The algorithm uses a

mechanism for setting and
getting “labels” of vertices
and edges

Algorithm BFS(G, s)
L0 ← new empty sequence
L0.insertBack(s)
s.setLabel(VISITED)
i ← 0
while ¬Li.empty()

Li +1 ← new empty sequence
for all v ∈ Li.elements()

for all e ∈ v.incidentEdges()
if e.getLabel() = UNEXPLORED

w ← e.opposite(v)
if w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)
w.setLabel(VISITED)
Li +1.insertBack(w)

else
e.setLabel(CROSS)

i ← i +1

Algorithm BFS(G)
Input graph G
Output labeling of the edges

and partition of the
vertices of G

for all u ∈ G.vertices()
u.setLabel(UNEXPLORED)

for all e ∈ G.edges()
e.setLabel(UNEXPLORED)

for all v ∈ G.vertices()
if v.getLabel() = UNEXPLORED

BFS(G, v)

© 2010 Goodrich, Tamassia Breadth-First Search 4

Example

CB

A

E

D

discovery edge
cross edge

A visited vertex
A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

© 2010 Goodrich, Tamassia Breadth-First Search 5

Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

© 2010 Goodrich, Tamassia Breadth-First Search 6

Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

© 2010 Goodrich, Tamassia Breadth-First Search 7

Properties
Notation

Gs: connected component of s
Property 1

BFS(G, s) visits all the vertices and
edges of Gs

Property 2
The discovery edges labeled by
BFS(G, s) form a spanning tree Ts
of Gs

Property 3
For each vertex v in Li
 The path of Ts from s to v has i

edges
 Every path from s to v in Gs has at

least i edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

© 2010 Goodrich, Tamassia Breadth-First Search 8

Analysis
 Setting/getting a vertex/edge label takes O(1) time
 Each vertex is labeled twice

 once as UNEXPLORED
 once as VISITED

 Each edge is labeled twice
 once as UNEXPLORED
 once as DISCOVERY or CROSS

 Each vertex is inserted once into a sequence Li
 Method incidentEdges is called once for each vertex
 BFS runs in O(n + m) time provided the graph is

represented by the adjacency list structure
 Recall that Σv deg(v) = 2m

© 2010 Goodrich, Tamassia Breadth-First Search 9

Applications
 Using the template method pattern, we can

specialize the BFS traversal of a graph G to
solve the following problems in O(n + m) time
 Compute the connected components of G
 Compute a spanning forest of G
 Find a simple cycle in G, or report that G is a

forest
 Given two vertices of G, find a path in G between

them with the minimum number of edges, or
report that no such path exists

© 2010 Goodrich, Tamassia Breadth-First Search 10

DFS vs. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Applications DFS BFS
Spanning forest, connected
components, paths, cycles

√ √

Shortest paths √

Biconnected components √

© 2010 Goodrich, Tamassia Breadth-First Search 11

DFS vs. BFS (cont.)
Back edge (v,w)

 w is an ancestor of v in
the tree of discovery
edges

Cross edge (v,w)
 w is in the same level as

v or in the next level

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

	Breadth-First Search
	Breadth-First Search
	BFS Algorithm
	Example
	Example (cont.)
	Example (cont.)
	Properties
	Analysis
	Applications
	DFS vs. BFS
	DFS vs. BFS (cont.)

