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What is a Tree
 In computer science, a 

tree is an abstract model 
of a hierarchical 
structure

 A tree consists of nodes 
with a parent-child 
relation

 Applications:
 Organization charts
 File systems
 Programming 

environments
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subtree

Tree Terminology
 Root: node without parent (A)
 Internal node: node with at least 

one child (A, B, C, F)
 External node (a.k.a. leaf ): node 

without children (E, I, J, K, G, H, D)
 Ancestors of a node: parent, 

grandparent, grand-grandparent, 
etc.

 Depth of a node: number of 
ancestors

 Height of a tree: maximum depth 
of any node (3)

 Descendant of a node: child, 
grandchild, grand-grandchild, etc.
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 Subtree: tree consisting of 
a node and its 
descendants
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Tree ADT
 We use positions to abstract 

nodes
 Generic methods:

 integer size()
 boolean empty()

 Accessor methods:
 position root()
 list<position> positions()

 Position-based methods:
 position p.parent()
 list<position> p.children()

Query methods:
 boolean p.isRoot()
 boolean p.isExternal()

Additional update methods 
may be defined by data 
structures implementing the 
Tree ADT
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Preorder Traversal
 A traversal visits the nodes of a 

tree in a systematic manner
 In a preorder traversal, a node is 

visited before its descendants 
 Application: print a structured 

document
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Algorithm preOrder(v)
visit(v)
for each child w of v

preorder (w)
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Postorder Traversal
 In a postorder traversal, a 

node is visited after its 
descendants

 Application: compute space 
used by files in a directory and 
its subdirectories

Algorithm postOrder(v)
for each child w of v

postOrder (w)
visit(v)
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Binary Trees
 A binary tree is a tree with the 

following properties:
 Each internal node has at most two 

children (exactly two for proper
binary trees)

 The children of a node are an 
ordered pair

 We call the children of an internal 
node left child and right child

 Alternative recursive definition: a 
binary tree is either
 a tree consisting of a single node, or
 a tree whose root has an ordered 

pair of children, each of which is a 
binary tree

 Applications:
 arithmetic expressions
 decision processes
 searching
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Arithmetic Expression Tree
 Binary tree associated with an arithmetic expression

 internal nodes: operators
 external nodes: operands

 Example: arithmetic expression tree for the 
expression (2 × (a − 1) + (3 × b))

+

××

−2

a 1

3 b
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Decision Tree
 Binary tree associated with a decision process

 internal nodes: questions with yes/no answer
 external nodes: decisions

 Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No
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Properties of Proper Binary Trees
 Notation

n number of nodes
e number of 

external nodes
i number of internal 

nodes
h height

Properties:
 e = i + 1
 n = 2e − 1
 h ≤ i
 h ≤ (n − 1)/2
 e ≤ 2h

 h ≥ log2 e
 h ≥ log2 (n + 1) − 1
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BinaryTree ADT

 The BinaryTree ADT 
extends the Tree 
ADT, i.e., it inherits 
all the methods of 
the Tree ADT

 Additional methods:
 position p.left()
 position p.right()

 Update methods 
may be defined by 
data structures 
implementing the 
BinaryTree ADT

 Proper binary tree: 
Each node has 
either 0 or 2 
children
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Inorder Traversal
 In an inorder traversal a 

node is visited after its left 
subtree and before its right 
subtree

 Application: draw a binary 
tree
 x(v) = inorder rank of v
 y(v) = depth of v

Algorithm inOrder(v)
if ¬ v.isExternal()

inOrder(v.left())
visit(v)
if ¬ v.isExternal()

inOrder(v.right())
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Print Arithmetic Expressions
 Specialization of an inorder 

traversal
 print operand or operator 

when visiting node
 print “(“ before traversing left 

subtree
 print “)“ after traversing right 

subtree

Algorithm printExpression(v)
if ¬v.isExternal()

print(“(’’)
inOrder(v.left())

print(v.element())
if ¬v.isExternal()

inOrder(v.right())
print (“)’’)

+

××
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a 1

3 b
((2 × (a − 1)) + (3 × b))
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Evaluate Arithmetic Expressions
 Specialization of a postorder 

traversal
 recursive method returning 

the value of a subtree
 when visiting an internal 

node, combine the values 
of the subtrees

Algorithm evalExpr(v)
if v.isExternal()

return v.element()
else

x ← evalExpr(v.left())
y ← evalExpr(v.right())
◊ ← operator stored at v
return x ◊ y+

××
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Euler Tour Traversal
 Generic traversal of a binary tree
 Includes a special cases the preorder, postorder and inorder traversals
 Walk around the tree and visit each node three times:

 on the left (preorder)
 from below (inorder)
 on the right (postorder)

+
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∅

Linked Structure for Trees
 A node is represented by 

an object storing
 Element
 Parent node
 Sequence of children 

nodes
 Node objects implement 

the Position ADT
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Linked Structure for Binary Trees
 A node is represented 

by an object storing
 Element
 Parent node
 Left child node
 Right child node

 Node objects implement 
the Position ADT
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Array-Based Representation of Binary 
Trees

 Nodes are stored in an array A

© 2010 Goodrich, Tamassia 18Trees

 Node v is stored at A[rank(v)]
 rank(root) = 1
 if node is the left child of parent(node), 

rank(node) = 2 ⋅ rank(parent(node))
 if node is the right child of parent(node), 

rank(node) = 2 ⋅ rank(parent(node)) + 1
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