
© 2004 Goodrich, Tamassia Sets 1

Sets

© 2004 Goodrich, Tamassia Sets 2

Set Operations
We represent a set by the
sorted sequence of its
elements
By specializing the auxliliary
methods he generic merge
algorithm can be used to
perform basic set
operations:
 union
 intersection
 subtraction

The running time of an
operation on sets A and B
should be at most O(nA + nB)

Set union:
 aIsLess(a, S)

S.insertFront(a)
 bIsLess(b, S)

S.insertBack(b)
 bothAreEqual(a, b, S)

S. insertFront(a)
Set intersection:
 aIsLess(a, S)

{ do nothing }
 bIsLess(b, S)

{ do nothing }
 bothAreEqual(a, b, S)

S. insertBack(a)

© 2004 Goodrich, Tamassia Sets 3

Storing a Set in a List
We can implement a set with a list
Elements are stored sorted according to some
canonical ordering
The space used is O(n)

∅List

Nodes storing set elements in order

Set elements

© 2004 Goodrich, Tamassia Sets 4

Generic Merging
Generalized merge
of two sorted lists
A and B
Template method
genericMerge
Auxiliary methods
 aIsLess
 bIsLess
 bothAreEqual

Runs in O(nA +nB)
time provided the
auxiliary methods
run in O(1) time

Algorithm genericMerge(A, B)
S ← empty sequence
while ¬A.empty() ∧ ¬B.empty()

a ← A.front(); b ← B.front()
if a < b

aIsLess(a, S); A.eraseFront()
else if b < a

bIsLess(b, S); B.eraseFront()
else { b = a }

bothAreEqual(a, b, S)
A.eraseFront(); B.eraseFront()

while ¬A.empty()
aIsLess(a, S); A.eraseFront()

while ¬B.empty()
bIsLess(b, S); B.eraseFront()

return S

© 2004 Goodrich, Tamassia Sets 5

Using Generic Merge
for Set Operations

Any of the set operations can be
implemented using a generic merge
For example:
 For intersection: only copy elements that

are duplicated in both list
 For union: copy every element from both

lists except for the duplicates
All methods run in linear time

	Sets
	Set Operations
	Storing a Set in a List
	Generic Merging
	Using Generic Merge for Set Operations

