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(a) What is the difference between shallow and 
deep equality tests on Arrays in Java? 

int arr1 [] =  {10, 20};

int arr2 [] = arr.clone();

System.out.println(arr1==arr2);

Shallow compare:

System.out.println(Arrays.equals(arr1, arr2));

False

arr1 and arr2 are two references to two different objects. So when we 
compare arr1 and arr2, two reference variables are compared

True



(a) What is the difference between shallow and 
deep equality tests on Arrays in Java? 

int arr1 [] =  {10, 20};

int arr2 [] = {10, 20};

Shallow compare:

System.out.println(Arrays.equals(arr1, arr2));  -> True

Arrays.equals() works fine and compares arrays contents. 

What if the arrays contain arrays inside them or some other 
references which refer to different object but have same values. 



(a) What is the difference between shallow and 
deep equality tests on Arrays in Java? 

import java.util.Arrays; 

class Test 

{ 

public static void main (String[] args)

{ 

// inarr1 and inarr2 have same values 

int inarr1[] = {1, 2, 3}; 

int inarr2[] = {1, 2, 3};

Object[] arr1 = {inarr1}; // arr1 contains only one element 

Object[] arr2 = {inarr2}; // arr2 also contains only one 
element 

if (Arrays.equals(arr1, arr2)) 

System.out.println("Same"); 

else

System.out.println("Not same"); 

} 

} 

Not Same
So Arrays.equals() is not able to do deep comparison.

import java.util.Arrays; 

class Test 

{ 

public static void main (String[] args)

{ 

// inarr1 and inarr2 have same values 

int inarr1[] = {1, 2, 3}; 

int inarr2[] = {1, 2, 3};

Object[] arr1 = {inarr1}; // arr1 contains only one element 

Object[] arr2 = {inarr2}; // arr2 also contains only one 
element 

if (Arrays.deepEquals(arr1, arr2)) 

System.out.println("Same"); 

else

System.out.println("Not same"); 

} 

} 

Same
So Arrays.deepEquals() is  able to do deep comparison.

Sample Exam question: Write a method/function that does a “deep” linked list copy. 
What is the time and space complexity for copying a linked list with n items? 
Will the complexity vary for singly/doubly linked list? Why or why not?



(b) How would you backup (copy) all elements of 
an array to a new array using a *single* Java 
statement? 

String [] arr = new String[3]; 

for (int i=0; i<3; i++) 

arr[i] ="hello";  

String [] arr2 = arr.clone();

for (int i=0; i<3; i++)  

System.out.println(arr2[i]);  

hello

hello

hello                     



(C) Provide an algorithm/pseudocode for finding the penultimate 
(second-last) node in a doubly linked list where the last node is 
indicated by a null next reference. 

Node<E> first = head; 

if (first==null || first.next==null)

return null; 

Node<E> second = fisrt.next; 

while (second.next !=null)        {

first = second; 

second = second.next;        }  

return first;              

Sample Exam question: Write a method/function that finds the middle element of a singly linked list? 
What is the time and space complexity?
How would you reverse a singly linked list in exactly one pass , O(n) – Hint: use a stack.



(d) Provide an algorithm/pseudocode to find the 
𝑘th last element of a singly linked list starting with 
only the header sentinel? 
Node<E> fast = head;

i=1;

while(fast != null && i<k)         { 

fast=fast.next; 

i+=1;         } 

if (fast==null)

return null;

else

Return fast;

Sample Exam question: Write a method/function that finds the kth smallest element in a 
singly linked list. 
What is the time and space complexity for the same? 
Will the complexity vary for singly/doubly linked list? Why or why not?



(e) Which function has the similar profile (i.e., the 
same “shape”) in the log-log scale as it is in the 
classical y/x scale? 
Y=log(x), an Increasing function



R-5.3 Draw the recursion trace for the 
computation of power(2,5), using the traditional
algorithm implemented in Code Fragment 5.8.



R-5.4 Draw the recursion trace for the 
computation of power(2,18), using the repeated
squaring algorithm, as implemented in Code 
Fragment 5.9.



R-5.9 Develop a nonrecursive implementation of 
the version of the power method from
Code Fragment 5.9 that uses repeated squaring.

<<:
Left shift
multiplying the number with 
some power of two.
1<<2 -> 4
1<<5 -> 32





3, 8, 2,1,6, 7,4, 9



public void Remove(Stack S)

{        

if (S.isEmpty())  

return;

S.pop(); 

Remove(S);     }



• 5, 3, 2, 8, 9, 1, 7, 6



• No, It is not possible for the postorder and preorder traversal of a tree 
with more than one node to visit the same order.

• Yes, for example: pre-order: ab   post-order: ba

a

b





(k) When do collisions occur? 
(l) What are two good collision handling shcmes? 

Sol: When two keys have same hash values.

Sol: Seperate Chaning

Drawbacks:

• It requires the use of an auxiliary data structure to hold entries with 
colliding keys

Unordered List



(k) When do collisions occur? 
(l) What are two good collision handling shcmes? 
When two keys have same hash values.

• Open Addressing

It requires that the load factor is always at most 1 and that entries are 
stored directly in the cells of the bucket array itself.



(k) When do collisions occur? 
(l) What are two good collision handling shcmes? 
When two keys have same hash values.

• Open Addressing (Linear Probing)

(k,v)  j=h(k)

If A[j] is empty → insert (v) in A[j]

Else try  ->  insert (v) in A[(j+1) mod N]

If occupied try -> insert (v) in A[(j+2) mod N]



Draw the 11-entry hash table that results from 
using the hash function, h(i) = (4i+7) mod 11, to 
hash the keys 12, 44, 13, 88, 23, 94, 11, 39, 20, 16, 
and 5, assuming collisions are handled by 
chaining. 

h(12) = (4 * 12 +7) mod 11 = 0

H(44) = (4 * 44 + 7) mod 11 = 7

0 1 2 3 4 5 6 7 8 9 10

12 44



Priority Queue

A collection of prioritized elements that allows arbitrary element insertion,
allows the removal of the element that has first priority. 
When an element is added to a priority queue, 
the user designates its priority by providing an associated
key. 
The element with the minimal 
key will be the next to be removed 
from
the queue



Priority Queue- Unsorted list

• Doubly Link list is used to store <k,v> in PQ.

• Insert -> at the end of the list

• removeMin -> search for all items in list to find the minimum key



Priority Queue- Sorted list

• Doubly Link list is used to store <k,v> in PQ.

• Items are sorted in the list in non-decreasing order

• The first item has maximum priority

• Insert -> start from end, scan backward

• removeMin -> remove first item

<1,C>,<2,A>,<4,B>



Priority Queue
Order : We need to retrieve the event with the smallest time stamp
Time stamp can be consider as the key and flight no as value 





Priority Queue: Selection Sort

• Selection Sort: at each step we select the next minimum.

• Similar to Priority Queue – Unsorted list

• Phase I : Insert all items from S to PQ

• Phase II: removeMin from PQ and

add to the end of S.



Priority Queue: Insertion Sort

• Insertion Sort: at each step we Insert the item in its appropriate place.

• (keep the sub list sorted)

• Similar to Priority Queue –sorted list 



Input sequence is in decreasing order
44, 30, 22, 15,  12, 10, 3
44
30,44
22,30,44
15,22,30,44
10,15,22,30,44
3, 10,15,22,30,44
For each Item we start from end, moves backward and Insert at the 
beginning
O(n^2)



Heap

• Heap-Order Property: In a heap T, for every position p other than the 
root, the key stored at p is greater than or equal to the key stored at 
p’s parent.

• Complete Binary Tree Property: A heap T with height h is a complete 
binary tree if levels 0,1,2, . . . ,h−1 of T have the maximal number of 
nodes possible (namely, level i has 2i nodes, for 0 ≤ i ≤ h−1) and the 
remaining nodes at level h reside in the leftmost possible positions at 
that level.



• If the smallest is at the top of the heap, the largest key in a heap may 
be at any external node (child, leaf)



BST

• each internal position p stores a key-value pair (k,v) such that:

• Keys stored in the left subtree of p are less than k.

• Keys stored in the right subtree of p are greater than k.



1

2

3

4

5



• Merge Sort O(nlog n)

• Quick Sort O(n)

• At first we choose a pivot then rearrange the items such that :

• All item on the left side of the pivot <= pivot

• All items on the right side of the pivot >= pivot  

=>> O(n) => done!



• An input list that is already sorted 

If we reverse the input:

• Marge-sort , heap-sort -> O(n log n)

• Insertion-sort -> O(n^2)



Graph Representations

• In an edge list, we maintain an unordered list of all edges. This 
minimally suffices, but there is no efficient way to locate a particular 
edge (u,v), or the set of all edges incident to a vertex v.



Graph Representations

• In an adjacency list, we additionally maintain, for each vertex, a 
separate list containing those edges that are incident to the vertex. 
This organization allows us to more efficiently find all edges incident 
to a given vertex.



Graph Representations

• An adjacency map is similar to an adjacency list, but the secondary 
container of all edges incident to a vertex is organized as a map, 
rather than as a list, with the adjacent vertex serving as a key. This 
allows more efficient access to a specific edge (u,v), for example, in 
O(1) expected time with hashing.



Graph Representations

• An adjacency matrix provides worst-case O(1) access to a specific 
edge (u,v) by maintaining an n×n matrix, for a graph with n vertices. 
Each slot is dedicated to storing a reference to the edge (u,v) for a 
particular pair of vertices u and v; if no such edge exists, the slot will 
store null.



Graph Traversals
• Depth first search and breadth first search also work for 

arbitrary (directed or undirected) graphs
• Must mark visited vertices so you do not go into an infinite 

loop!

• Either can be used to determine connectivity:
• Is there a path between two given vertices?

• Is the graph (weakly) connected?

• Important difference:  Breadth-first search always finds 
a shortest path from the start vertex to any other (for 
unweighted graphs)
• Depth first search may not!



Depth First Search



Breadth First Search



Is  BFS the Hands Down Winner?
• Depth-first search

• Simple to implement (implicit or explict stack)

• Does not always find shortest paths

• Must be careful to “mark” visited vertices, or you could 
go into an infinite loop if there is a cycle

• Breadth-first search
• Simple to implement (queue)

• Always finds shortest paths

• Marking visited nodes can improve efficiency, but even 
without doing so search is guaranteed to terminate



Edsger Wybe Dijkstra 
(1930-2002)

• Invented concepts of structured programming, 
synchronization, weakest precondition, and "semaphores" 
for controlling computer processes. The Oxford English 
Dictionary cites his use of the words "vector" and "stack" in 
a computing context.

• Believed programming should be taught without computers

• 1972 Turing Award

• “In their capacity as a tool, computers will be but a ripple on 
the surface of our culture. In their capacity as intellectual 
challenge, they are without precedent in the cultural history 
of mankind.”



Dijkstra’s Algorithm for 
Single Source Shortest Path
• Classic algorithm for solving shortest path in weighted graphs (with 

only positive edge weights)

• Similar to breadth-first search, but uses a priority queue instead of a 
FIFO queue:
• Always select (expand) the vertex that has a lowest-cost path to the start 

vertex

• a kind of “greedy” algorithm

• Correctly handles the case where the lowest-cost (shortest) path to a 
vertex is not the one with fewest edges



Pseudocode for Dijkstra



Very Simple Example

https://www.youtube.com/watch?v=_lHSawdgXpI

https://www.youtube.com/watch?v=_lHSawdgXpI


Very Simple Example



Very Simple Example



Very Simple Example



Very Simple Example



Very Simple Example



Very Simple Example


