
Adaptable Priority Queues 1

Adaptable Priority 
Queues
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Entry and Priority Queue ADTs
 A priority queue stores 

a collection of entries
 Typically, an entry is a 

pair (key, value), where 
the key indicates the 
priority

 The priority queue is 
associated with a 
comparator C, that 
compares two entries

 Priority Queue ADT:
 insert(e)

inserts entry e
 removeMin()

removes the entry 
with smallest key

 min()
returns, but does not 
remove, an entry 
with smallest key

 size(), empty()
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Example
 Online trading system where orders to purchase and 

sell a stock are stored in two priority queues (one for 
sell orders and one for buy orders) as (p,s) entries:
 The key, p, of an order is the price
 The value, s, for an entry is the number of shares
 A buy order (p,s) is executed when a sell order (p’,s’) with 

price p’<p is added (the execution is complete if s’>s)
 A sell order (p,s) is executed when a buy order (p’,s’) with 

price p’>p is added (the execution is complete if s’>s)

 What if someone wishes to cancel their order before 
it executes?

 What if someone wishes to update the price or 
number of shares for their order?
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Methods of the Adaptable Priority 
Queue ADT

 insert(e): Insert the entry e into P and 
return a position referring to this entry

 remove(p): Remove from P the entry 
referenced by position p

 replace(p, e): Replace with e the 
element associated with the entry 
referenced by p and return the position 
of the altered entry
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Example
Operation Output P
insert(5,A) p1 (5,A)
insert(3,B) p2 (3,B), (5,A)
insert(7,C) p3 (3,B), (5,A), (7,C)
min() p2 (3,B), (5,A), (7,C)
p2.key() 3 (3,B), (5,A), (7,C)
remove(p1) – (3,B), (7,C)
replace(p2,(9,D)) p4 (7,C), (9,D)
replace(p3,(7,E)) p5 (7,E), (9,D)
remove(p4) – (7,D)
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Locating Entries
 In order to implement the operations 

remove(p) and replace(p), and we need 
fast ways of locating an entry p in a 
priority queue
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Location-Aware Entries
 A locator-aware entry identifies and tracks 

the location of its (key, value) object within a 
data structure

 Intuitive notion:
 Coat claim check
 Valet claim ticket
 Reservation number

 Main idea:
 Since entries are created and returned from the 

data structure itself, it can return location-aware 
entries, thereby making future updates easier
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List Implementation
 A location-aware list entry is an object storing

 key
 value
 position (or rank) of the item in the list

 In turn, the position (or array cell) stores the entry
 Back pointers (or ranks) are updated during swaps

trailerheader nodes/positions

entries
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Heap Implementation
 A location-aware heap 

entry is an object 
storing
 key
 value
 position of the entry in 

the underlying heap

 In turn, each heap 
position stores an 
entry

 Back pointers are 
updated during entry 
swaps
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Performance
 Improved times thanks to location-aware 

entries are highlighted in red
Method Unsorted List Sorted List Heap
size, empty O(1) O(1) O(1)
insert O(1) O(n) O(log n)
min O(n) O(1) O(1)
removeMin O(n) O(1) O(log n)
remove O(1) O(1) O(log n)
replace O(1) O(n) O(log n)
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