Dynamic Programming

-
‘f

-
N
N,
3

4"
-

..... S Q

N

© 2004 Goodrich, Tamassia

Dynamic Programming

Matrix Chain-Products
~(not In book)

e Dynamic Programming is a general \
algorithm design paradigm.

= Rather than give the general structure, let us f
first give a motivating example: X
s Matrix Chain-Products B
Review: Matrix Multiplication.
s C=A*B e 4
m AisdxeandBisexf
e-1
C[i, j1= D> Ali,k]* Bk, j] e \
k=0 ' N\
| A C
- O(def)time o< (MM | Wi
N

© 2004 Goodrich, Tamassia Dynamic Programming

" Matrix Chain-Product:
s Compute A=A,*A*..*A 1
= Ai IS di X di+1
= Problem: How to parenthesize?
Example
m Bis3 x 100
m Cis100 x5
m Dis5 x5
s (B*C)*D takes 1500 + 75 = 1575 ops
s B*(C*D) takes 1500 + 2500 = 4000 ops

N

© 2004 Goodrich, Tamassia Dynamic Programming 3

An Enumeration Approach

" Matrix Chain-Product Alg.:

= Try all possible ways to parenthesize
A=ATALT. A

= Calculate number of ops for each one

= Pick the one that is best

Running time:

= The number of paranethesizations is equal
to the number of binary trees with n nodes

= This is exponentiall!

m It is called the Catalan number, and it is
almost 4",

= This is a terrible algorithm!

N

© 2004 Goodrich, Tamassia Dynamic Programming

N

ldea #1: repeatedly select the product that
uses (up) the most operations.

Counter-example:
m AiIs10 x5
m Bis5x10
m Cisl10 x5
m Dis5x%x 10

ms Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops

s A*((B*C)*D) takes 500+250+250 = 1000 ops

A Greedy Approach

N

© 2004 Goodrich, Tamassia Dynamic Programming 5

;

Another Greedy Approach 8

|ldea #2: repeatedly select the product that uses
the fewest operations.

Counter-example:
= Ais 101 x 11
m Bisl1ll x9
= Cis 9 x 100
= Dis 100 x 99

= Greedy idea #2 gives A*((B*C)*D)), which takes
109989+9900+108900=228789 ops

= (A*B)*(C*D) takes 9999+89991+89100=189090 0ops

The greedy approach is not giving us the optimal
value.

N

© 2004 Goodrich, Tamassia Dynamic Programming 6

A “Recursive” Approach

Define subproblems:
= Find the best parenthesization of A7*A;, ;*...*A,.

= Let N;; denote the number of operations done by this
subproblem

= The optimal solution for the whole problem is N, ;.

Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems
m There has to be a final multiplication (root of the expression
tree) for the optimal solution.
= Say, the final multiply is at index i1 (Ay*...*A)* (A ™. %A 1)-
= Then the optimal solution N, Is the sum of two optimal
subproblems, Ny ; and N, ., plus the time for the last multiply.

= If the global optimum did not have these optimal
subproblems, we could define an even better “optimal”
solution.

© 2004 Goodrich, Tamassia Dynamic Programming 7

N
\J

A Characterizing
Equation

The global optimal has to be defined in terms of
optimal subproblems, depending on where the final
multiply is at.

Let us consider all possible places for that final multiply:
= Recall that A, is a d; x di,; dimensional matrix.
= S0, a characterizing equation for N;; is the following:

N

N; ;= MIKN; + Ny, 5 +did,dia}

SR PO

Note that subproblems are not independent--the
subproblems overlap.

© 2004 Goodrich, Tamassia Dynamic Programming 8

A Dynamic Programming

Algorithm

N

&

Since subproblems
overlap, we don'’t
use recursion.

Instead, we
construct optimal
subproblems
“bottom-up.”

N;;'s are easy, SO
start with them
Then do length

2,3,... subproblems,
and so on.

The running time is
O(n3)

© 2004 Goodrich, Tamassia

Algorithm matrixChain(S):
Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal
paranethization of S

fori < 1ton-1do
Nij-<0

forb<« 1ton-1do
for i <~ 0 ton-b-1 do

j « 14D
N;; <= +infinity
for k < i1toj-1do
Nij <= min{N;;, Njj +Ny,q; +didyiy sy}
Dynamic Programming 9

A Dynamic Programming
Algorithm Visualization

g

p
\ .
The bottom-up N; ; = irPkLr}{Ni,k + Ny + didk+1dj+1} -
construction fillsinthe N|o 1 2 j o ML
N array by diagonals 0 . —
@ N,;; gets values from 1
pervious entries in i-th
row and j-th column | L]

Filling in each entry in
the N table takes O(n)
time.

Total run time: O(n3)

Getting actual n-1
parenthesization can be
done by remembering
“K” for each N entry

© 2004 Goodrich, Tamassia Dynamic Programming 10

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

s Simple subproblems: the subproblems can be
defined in terms of a few variables, such as |, k, |,
m, and so on.

s Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

s Subproblem overlap: the subproblems are not
Independent, but instead they overlap (hence,
should be constructed bottom-up).

N

© 2004 Goodrich, Tamassia Dynamic Programming 11

Subsequences

®A subsequence of a character string
Xk ks X iS-a-stringrof-the-form
X Xi,... X, Where lj < lj+1.

#Not the same as substring!

#Example String: ABCDEFGHIJK
s Subsequence: ACEGJIK
= Subsequence: DFGHK
= Not subsequence: DAGH

N

© 2004 Goodrich, Tamassia Dynamic Programming

12

The Longest Common
Subsequence (LCS) Problem

Given two strings X and Y, the longest
common subsequence (LCS) problem is
to find a longest subsequence common
to both X and Y

#Has applications to DNA similarity
testing (alphabet is {A,C,G,T})

#Example: ABCDEFG and XZACKDFWGH
have ACDFG as a longest common
subsequence

N

© 2004 Goodrich, Tamassia Dynamic Programming 13

A Poor Approach to the
LCS Problem

A Brute-force solution:
= Enumerate all subsequences of X
= Test which ones are also subsequences of Y
= Pick the longest one.

Analysis:

s If X is of length n, then it has 2"
subsequences

= This Is an exponential-time algorithm!

N

© 2004 Goodrich, Tamassia Dynamic Programming 14

A Dynamic-Programming
Approach to the LCS Problem

T # Define L[i,j] to be the length of the longest common
subsequence of X[O0..i] and Y[O..j].

Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to
Indicate that the null part of X or Y has no match with the
other.

Then we can define L[i,j] in the general case as follows:

1. If xi=yj, then L[i,j] = L[i-1,j)-1] + 1 (we can add this match)
2. If xi#yj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no
match here)

Case 1: Case 2:
0123456789 1011 012345678910
Y=CGATAATTGAGA Y=CGATAATTGAG L[9.9]=6
Ls10ks SN\ / NS
X=GTTCCTAATA X=GTTCCTAATA
0123456789 0123456789

© 2004 Goodrich, Tamassia Dynamic Programming 15

“An LCS Algorithm

Algorithm LCS(X,Y):

Input: Strings X and Y with n and m elements, respectively

Output: Fori=0,...,n-1, j = 0,...,m-1, the length L[i, j] of a longest string
that is a subsequence of both the string X[O0..i] = XyX;X,...X; and the
string Y [0.. J1 = YoY1Y2-Y;

fori=1ton-1do

L[i,-1] =0
for j =0 to m-1 do
L[-1,j]] =0

fori=0ton-1do
for j =0 to m-1 do
If x; =y; then
L[i, j] = L[i-1, j-1] + 1
else
L[, J] = max{L[I-1, J], L[I, J-1]}
return array L

© 2004 Goodrich, Tamassia Dynamic Programming 16

the LCS Algorithm

Visualizing

\V

11

0

2
3
3
3
4
5
6
6
6

01234567891011

Y=

X

GTTCCTAATA

0123456789

10

3
3
3

5
5
5

Dynamic Programming

212121212 (2]2]| 2
21212131333
2121213(3(3]3
21212131333

2212|3444/ 4

21314(5(6[7|819

1
1
1
1
1

21213(3(3[4|4]|5
212|13(4(4(4|14/|5

213|134 (5]8 3 5

213(414]5|5]5|6]6

1

1
|
|
1
|
1
|
1
1

0

0
0

1
1
1
1
1
1
1

-1

010[{010(0[0]0|0O[0O]0O]|0O]O

0
0
0
0

L

1

17

© 2004 Goodrich, Tamassia

Analysis of LCS Algorithm

N

#\We have two nested loops
s The outer one iterates n times
s The inner one Iiterates m times

s A constant amount of work is done inside
each iteration of the inner loop

= Thus, the total running time is O(/1m)

Answer is contained in L[n,m] (and the
subsequence can be recovered from the
L table).

© 2004 Goodrich, Tamassia Dynamic Programming 18

	Dynamic Programming
	Matrix Chain-Products (not in book)
	Matrix Chain-Products
	An Enumeration Approach
	A Greedy Approach
	Another Greedy Approach
	A “Recursive” Approach
	A Characterizing Equation
	A Dynamic Programming Algorithm
	Slide Number 10
	The General Dynamic Programming Technique
	Subsequences
	The Longest Common Subsequence (LCS) Problem
	A Poor Approach to the LCS Problem
	A Dynamic-Programming Approach to the LCS Problem
	An LCS Algorithm
	Visualizing the LCS Algorithm
	Analysis of LCS Algorithm

