NI

Priority Queues > W
Q" ¥
I‘ \ %

I

© 2010 Goodrich, Tamassia Priority Queues

N

o A priority queue stores a
collection of entries

o Typically, an entry is a pair
(key, value), where the key
indicates the priority

o Main methods of the Priority
Queue ADT

= insert(e)
inserts an entry e
removeMin()
removes the entry with
smallest key

Priority Queue ADT

o Additional methods

= min()
returns, but does not
remove, an entry with
smallest key

n Size(), empty()
o Applications:

s Standby flyers

= Auctions

= Stock market

© 2010 Goodrich, Tamassia Priority Queues

Total Order Relations

N

o Keys in a priority o Mathematical concept
queue can be of total order relation <
arbitrary objects = Reflexive property:

on which an order ey
Is defined . . _
- n Antlsymmetrlc property.
a Two distinct KLV AY- R ==Y
entries in a

. | . = Transitive property:
Oriority queue can X<YAY<Z=X<Z
nave the same

Key

© 2010 Goodrich, Tamassia Priority Queues

Comparator ADT

N

o Implements the Two ways to compare 2D points:
boolean function

isLess(p,q), which tests | ¢85S LeftRight {

public:
<
Whether_ P 9 bool operator()(const Point2D& p,
o Can derive other const Point2D& q) const
relations from this: { return p.getX() < qg.getX(); }

= (p == q) is equivalent to | I’
= (lisLess(p,) && class BottomTop {

lisLess(q, p)) public:
] . bool operator()(const Point2D& p,
o Can |mplem_ent In C++ const Point2D& q) const
by overloading “()” { return p.getY() < q.getY(); }
};

© 2010 Goodrich, Tamassia Priority Queues

Priority Queue Sorting

g
\
a We can use a priority Algorithm PQ-Sort(S, C)
queue to sort a set of Input sequence S, comparator C for
comparable elements the elements of S |
1. Insert the elements one Output sequence S sorted in
by one with a series of Increasing order according to C
insert operations P < priority queue with
2. Remove the elements in comparator C
sorted order with a series while —S.empty ()
o The running time of this P.insert (e, @)
sorting method depends on while —P.empty()
e e premoveling
P S.insertBack(e)

© 2010 Goodrich, Tamassia Priority Queues 5

Sequence-based Priority Queue

g
\
o Implementation with an o Implementation with a
unsorted list sorted list
@—6E®—0—0C0 O—20—0B—06B0
o Performance: o Performance:
= Insert takes O(1) time = Insert takes O(n) time
since we can insert the since we have to find the
item at the beginning or place where to insert the
end of the sequence item
= removeMin and min take = removeMin and min take
O(n) time since we have O(1) time, since the
to traverse the entire smallest key is at the
sequence to find the beginning
smallest key

© 2010 Goodrich, Tamassia Priority Queues

Selection-Sort

N

o Selection-sort is the variation of PQ-sort where the
priority queue Is implemented with an unsorted
sequence

o Running time of Selection-sort:

1. Inserting the elements into the priority queue with n insert
operations takes O(n) time

2. Removing the elements in sorted order from the priority
gueue with n removeMin operations takes time
proportional to

1+2+...+n
a Selection-sort runs in O(n?) time

© 2010 Goodrich, Tamassia Priority Queues

Selection-Sort Example

N

L

Input:

Phase 1
(a)
(b)

(9)

Phase 2
(a)
(b)
()
(d)
(e)
(f)
(9)

© 2010 Goodrich, Tamassia

Sequence S
(7,4,8,2,5,3,9)

(4,8,2,5,3,9)
(8,2,5,3,9)

0

(2)

(2,3)

(2,3,4)
(2,3,4,5)
(2,3,4,5,7)
(2,3,4,5,7,8)
(2,3,4,5,7,8,9)

Priority Queues

Priority Queue P
0

(7)
(7.4)

(7,4,8,2,5,3,9)

(7,4,8,5,3,9)
(7,4,8,5,9)
(7,8,5,9)
(7,8,9)

(8,9)

(9)

0

Insertion-Sort

N

o Insertion-sort is the variation of PQ-sort where the
priority queue Is implemented with a sorted
sequence

o Running time of Insertion-sort:

1. Inserting the elements into the priority queue with n
Insert operations takes time proportional to

1+2+...4n

2. Removing the elements in sorted order from the priority
gueue with a series of n removeMin operations takes
O(n) time

a Insertion-sort runs in O(n?) time

© 2010 Goodrich, Tamassia Priority Queues

Insertion-Sort Example

N

L

Input:

Phase 1
(@)
(b)
(c)
(d)
(e)
(f)
(9)

Phase 2
(@)
(b)

(9)

© 2010 Goodrich, Tamassia

Sequence S
(7,4,8,2,5,3,9)

(4,8,2,5,3,9)
(8,2,5,3,9)
(2,5,3,9)
(5,3,9)

(3,9)

9)

0

(2)
(2,3)

(2,3,4,5,7,8,9)

Priority Queues

Priority queue P

0

(7)

(4,7)

(4,7,8)
(2,4,7,8)
(2,4,5,7,8)
(2,3,4,5,7,8)
(2,3,4,5,7,8,9)

(3,4,5,7,8,9)
(4,5,7,8,9)

0

10

In-place Insertion-Sort

®

®

sequence itself serves as

j
\
o Instead of using an @ @ @ @
external data structure,
we can implement @ 20—3
selection-sort and
Insertion-sort in-place D—G6E)—Q2) @
o A portion of the input

®

the priority queue
a For in-place insertion-sort

®
@%
®

@

®

%

m We keep sorted the initial
portion of the sequence

©

= We can use swaps
instead of modifying the
sequence

@

® ©®

©

© 2010 Goodrich, Tamassia Priority Queues

©® © ¢

® & @

@

11

	Priority Queues
	Priority Queue ADT
	Total Order Relations
	Comparator ADT
	Priority Queue Sorting
	Sequence-based Priority Queue
	Selection-Sort
	Selection-Sort Example
	Insertion-Sort
	Insertion-Sort Example
	In-place Insertion-Sort

