
Binary Search Trees 1

Binary Search Trees

6

92

41 8

<

>

=

© 2010 Goodrich, Tamassia



Binary Search Trees 2

Ordered Maps

Keys come from a total order
New operations:
 Each returns an iterator to an entry:
 firstEntry(): smallest key in the map
 lastEntry(): largest key in the map
 floorEntry(k): largest key ≤ k
 ceilingEntry(k): smallest key ≥ k
 All return end if the map is empty

© 2010 Goodrich, Tamassia



Binary Search Trees 3

Binary Search
Binary search can perform operations get, floorEntry and 
ceilingEntry on an ordered map implemented by means of an 
array-based sequence, sorted by key
 similar to the high-low game
 at each step, the number of candidate items is halved
 terminates after O(log n) steps

Example: find(7)
1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h
© 2010 Goodrich, Tamassia



Binary Search Trees 4

Search Tables
A search table is an ordered map implemented by means of a 
sorted sequence
 We store the items in an array-based sequence, sorted by key
 We use an external comparator for the keys

Performance:
 get, floorEntry and ceilingEntry take O(log n) time, using binary 

search
 get takes O(n) time since in the worst case we have to shift n/2

items to make room for the new item
 erase take O(n) time since in the worst case we have to shift n/2

items to compact the items after the removal
The lookup table is effective only for dictionaries of small size or 
for dictionaries on which searches are the most common 
operations, while insertions and removals are rarely performed 
(e.g., credit card authorizations)

© 2010 Goodrich, Tamassia



Binary Search Trees 5

Binary Search Trees
A binary search tree is a 
binary tree storing keys 
(or key-value entries) at 
its internal nodes and 
satisfying the following 
property:
 Let u, v, and w be three 

nodes such that u is in 
the left subtree of v and 
w is in the right subtree 
of v. We have 
key(u) ≤ key(v) ≤ key(w)

External nodes do not 
store items

An inorder traversal of a 
binary search trees 
visits the keys in 
increasing order

6

92

41 8

© 2010 Goodrich, Tamassia



Binary Search Trees 6

Search
To search for a key k, we 
trace a downward path 
starting at the root
The next node visited 
depends on the comparison 
of k with the key of the 
current node
If we reach a leaf, the key 
is not found
Example: get(4):
 Call TreeSearch(4,root)

The algorithms for 
floorEntry and ceilingEntry 
are similar

Algorithm TreeSearch(k, v)
if v.isExternal ()

return v
if k < v.key()

return TreeSearch(k, v.left())
else if k = v.key()

return v
else { k > v.key() }

return TreeSearch(k, v.right())

6

92

41 8

<

>

=

© 2010 Goodrich, Tamassia



Binary Search Trees 7

Insertion
To perform operation 
put(k, o), we search for key 
k (using TreeSearch)
Assume k is not already in 
the tree, and let w be the 
leaf reached by the search
We insert k at node w and 
expand w into an internal 
node
Example: insert 5

6

92

41 8

6

92

41 8

5

<

>

>

w

w

© 2010 Goodrich, Tamassia



Binary Search Trees 8

Deletion
To perform operation 
erase(k), we search for key 
k
Assume key k is in the tree, 
and let let v be the node 
storing k
If node v has a leaf child w, 
we remove v and w from the 
tree with operation 
removeExternal(w), which 
removes w and its parent
Example: remove 4

6

92

41 8

5

v
w

6

92

51 8

<

>

© 2010 Goodrich, Tamassia



Binary Search Trees 9

Deletion (cont.)
We consider the case where 
the key k to be removed is 
stored at a node v whose 
children are both internal
 we find the internal node w 

that follows v in an inorder 
traversal

 we copy key(w) into node v
 we remove node w and its 

left child z (which must be a 
leaf) by means of operation 
removeExternal(z)

Example: remove 3

3

1

8

6 9

5

v

w

z

2

5

1

8

6 9

v

2

© 2010 Goodrich, Tamassia



Binary Search Trees 10

Performance
Consider an ordered 
map with n items 
implemented by means 
of a binary search tree 
of height h
 the space used is O(n)
 methods get, floorEntry, 

ceilingEntry, put and 
erase take O(h) time

The height h is O(n) in 
the worst case and 
O(log n) in the best case

© 2010 Goodrich, Tamassia


	Binary Search Trees
	Ordered Maps
	Binary Search
	Search Tables
	Binary Search Trees
	Search
	Insertion
	Deletion
	Deletion (cont.)
	Performance

