
Heaps 1

Heaps

2

65

79

© 2010 Goodrich, Tamassia

Heaps 2

Recall Priority Queue ADT

 A priority queue stores a
collection of entries

 Typically, an entry is a pair
(key, value), where the key
indicates the priority

 Main methods of the Priority
Queue ADT
 insert(e) inserts an entry e
 removeMin()

removes the entry with
smallest key

 Additional methods
 min()

returns, but does not
remove, an entry with
smallest key

 size(), empty()

 Applications:
 Standby flyers
 Auctions
 Stock market

© 2010 Goodrich, Tamassia

Heaps 3

Recall PQ Sorting
 We use a priority queue

 Insert the elements with a
series of insert operations

 Remove the elements in
sorted order with a series
of removeMin operations

 The running time depends
on the priority queue
implementation:
 Unsorted sequence gives

selection-sort: O(n2) time
 Sorted sequence gives

insertion-sort: O(n2) time

 Can we do better?

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted in
increasing order according to C
P ← priority queue with

comparator C
while ¬S.empty ()

e ← S.front(); S.eraseFront()
P.insert (e, ∅)

while ¬P.empty()
e ← P.removeMin()
S.insertBack(e)

© 2010 Goodrich, Tamassia

Heaps 4

Heaps
 A heap is a binary tree storing

keys at its nodes and satisfying
the following properties:

 Heap-Order: for every internal
node v other than the root,
key(v) ≥ key(parent(v))

 Complete Binary Tree: let h be
the height of the heap
 for i = 0, … , h − 1, there are 2i

nodes of depth i
 at depth h − 1, the internal nodes

are to the left of the external
nodes

2

65

79

 The last node of a heap
is the rightmost node of
maximum depth

last node

© 2010 Goodrich, Tamassia

Heaps 5

Height of a Heap
 Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)
 Let h be the height of a heap storing n keys
 Since there are 2i keys at depth i = 0, … , h − 1 and at least one key

at depth h, we have n ≥ 1 + 2 + 4 + … + 2h−1 + 1
 Thus, n ≥ 2h , i.e., h ≤ log n

1

2

2h−1

1

keys
0

1

h−1

h

depth

© 2010 Goodrich, Tamassia

Heaps 6

Heaps and Priority Queues
 We can use a heap to implement a priority queue
 We store a (key, element) item at each internal node
 We keep track of the position of the last node

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)

© 2010 Goodrich, Tamassia

Heaps 7

Insertion into a
Heap
 Method insertItem of the

priority queue ADT
corresponds to the
insertion of a key k to
the heap

 The insertion algorithm
consists of three steps
 Find the insertion node z

(the new last node)
 Store k at z
 Restore the heap-order

property (discussed next)

2

65

79

insertion node

2

65

79 1

z

z

© 2010 Goodrich, Tamassia

Heaps 8

Upheap
 After the insertion of a new key k, the heap-order property may be

violated
 Algorithm upheap restores the heap-order property by swapping k

along an upward path from the insertion node
 Upheap terminates when the key k reaches the root or a node

whose parent has a key smaller than or equal to k
 Since a heap has height O(log n), upheap runs in O(log n) time

2

15

79 6z

1

25

79 6z

© 2010 Goodrich, Tamassia

Heaps 9

Removal from a Heap (§ 7.3.3)
 Method removeMin of

the priority queue ADT
corresponds to the
removal of the root key
from the heap

 The removal algorithm
consists of three steps
 Replace the root key with

the key of the last node w
 Remove w
 Restore the heap-order

property (discussed next)

2

65

79

last node

w

7

65

9
w

new last node

© 2010 Goodrich, Tamassia

Heaps 10

Downheap
 After replacing the root key with the key k of the last node, the

heap-order property may be violated
 Algorithm downheap restores the heap-order property by

swapping key k along a downward path from the root
 Upheap terminates when key k reaches a leaf or a node whose

children have keys greater than or equal to k
 Since a heap has height O(log n), downheap runs in O(log n) time

7

65

9
w

5

67

9
w

© 2010 Goodrich, Tamassia

Heaps 11

Updating the Last Node
 The insertion node can be found by traversing a path of O(log n)

nodes
 Go up until a left child or the root is reached
 If a left child is reached, go to the right child
 Go down left until a leaf is reached

 Similar algorithm for updating the last node after a removal

© 2010 Goodrich, Tamassia

Heaps 12

Heap-Sort
 Consider a priority

queue with n items
implemented by means
of a heap
 the space used is O(n)
 methods insert and

removeMin take O(log n)
time

 methods size, empty,
and min take time O(1)
time

 Using a heap-based
priority queue, we can
sort a sequence of n
elements in O(n log n)
time

 The resulting algorithm is
called heap-sort

 Heap-sort is much faster
than quadratic sorting
algorithms, such as
insertion-sort and
selection-sort

© 2010 Goodrich, Tamassia

Heaps 13

Vector-based Heap
Implementation
 We can represent a heap with n

keys by means of a vector of
length n + 1

 For the node at rank i
 the left child is at rank 2i
 the right child is at rank 2i + 1

 Links between nodes are not
explicitly stored

 The cell of at rank 0 is not used
 Operation insert corresponds to

inserting at rank n + 1
 Operation removeMin corresponds

to removing at rank n
 Yields in-place heap-sort

2

65

79

2 5 6 9 7
1 2 3 4 50

© 2010 Goodrich, Tamassia

Heaps 14

Merging Two Heaps
 We are given two two

heaps and a key k
 We create a new heap

with the root node
storing k and with the
two heaps as subtrees

 We perform downheap
to restore the heap-
order property

7

3

58

2

64

3

58

2

64

2

3

58

4

67

© 2010 Goodrich, Tamassia

Heaps 15

 We can construct a heap
storing n given keys in
using a bottom-up
construction with log n
phases

 In phase i, pairs of
heaps with 2i −1 keys are
merged into heaps with
2i+1−1 keys

Bottom-up Heap Construction

2i −1 2i −1

2i+1−1

© 2010 Goodrich, Tamassia

Heaps 16

Example

1516 124 76 2023

25

1516

5

124

11

76

27

2023

© 2010 Goodrich, Tamassia

Heaps 17

Example (contd.)

25

1516

5

124

11

96

27

2023

15

2516

4

125

6

911

23

2027

© 2010 Goodrich, Tamassia

Heaps 18

Example (contd.)

7

15

2516

4

125

8

6

911

23

2027

4

15

2516

5

127

6

8

911

23

2027

© 2010 Goodrich, Tamassia

Heaps 19

Example (end)

4

15

2516

5

127

10

6

8

911

23

2027

5

15

2516

7

1210

4

6

8

911

23

2027

© 2010 Goodrich, Tamassia

Heaps 20

Analysis
 We visualize the worst-case time of a downheap with a proxy path

that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)

 Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)

 Thus, bottom-up heap construction runs in O(n) time
 Bottom-up heap construction is faster than n successive insertions

and speeds up the first phase of heap-sort

© 2010 Goodrich, Tamassia

	Heaps
	Recall Priority Queue ADT
	Recall PQ Sorting
	Heaps
	Height of a Heap
	Heaps and Priority Queues
	Insertion into a Heap
	Upheap
	Removal from a Heap (§ 7.3.3)
	Downheap
	Updating the Last Node
	Heap-Sort
	Vector-based Heap Implementation
	Merging Two Heaps
	Bottom-up Heap Construction
	Example
	Example (contd.)
	Example (contd.)
	Example (end)
	Analysis

