Pattern Matching

a a alb
1
a a b
A 3 2
b alb

N

© 2004 Goodrich, Tamassia Pattern Matching

L - -
N e o -

. 5 oS e
Strings R
% el
A string is a sequence of # Let P be a string of size m
characters = A substring PJi .. j] of P is the
@ Examples of strings: subsequence of P consisting of

the characters with ranks
between i and |

m A prefix of P is a substring of

m C++program
= HTML document

m DNA sequence the type P[O .. i]
= Digitized image = A suffix of P is a substring of
An alphabet 2'is the set of the type P[i .m — 1]
possible characters for a # Given strings T (text) and P
family of strings (pattern), the pattern matching
Example of alphabets: problem consists of finding a
. ASCII substring of T equal to P
= Unicode @ Applications:
{0, 1} = Text editors
= {AC, G, T} = Search engines

= Biological research
© 2004 Goodrich, Tamassia Pattern Matching 2

Brute-Force Pattern Matching

N

L/
The brute-force pattern
matching algorithm compares
the pattern P with the text T
for each possible shift of P
relative to T, until either

s a match is found, or

= all placements of the pattern
have been tried

Brute-force pattern matching
runs in time O(nm)

Example of worst case:

m T=aaa...ah

s P =aaah

= Mmay occur in images and
DNA sequences

= unlikely in English text

@

© 2004 Goodrich, Tamassia

Algorithm BruteForceMatch(T, P)

Input text T of size n and pattern
P of sizem

Output starting index of a
substring of T equal to P or -1
If no such substring exists

for i< 0Oton-m
{ test shift i of the pattern }

j<«0
while j <m A T[i +]] = P[j]
jJ«—]+1
if j=m
return i {match at i}
else

break while loop {mismatch}
return -1 {no match anywhere}

Pattern Matching 3

Boyer-Moore Heuristics

g
\
The Boyer-Moore’s pattern matching algorithm is based on two
heuristics
Looking-glass heuristic: Compare P with a subsequence of T
moving backwards
Character-jump heuristic: When a mismatch occurs at T[i] =c
= |f P contains c, shift P to align the last occurrence of c in P with T[i]
m Else, shift P to align P[0] with TTi + 1]
Example
al |plalt|t]je]|r|n mialtjc|h|i|n]|g all|glo|r|i|t|lh{m
1 3 5 1110 9 8 7
ryijt{h|m rii|t{h{m rii|tihim rii|t{h|m
N , A '\ .4 '\ s X
ryift|ihim ryift|him riift|h{m
© 2004 Goodrich, Tamassia Pattern Matching 4

Last-Occurrence Function

N

Boyer-Moore’s algorithm preprocesses the pattern P and the
alphabet X' to build the last-occurrence function L mapping 2'to
Integers, where L(c) is defined as

m the largest index i such that P[i] =c or
s —1if no such index exists

Example:
. T={abc d} C a b C d
= P =abacab L(c) 4 5 3 -1

The last-occurrence function can be represented by an array
Indexed by the numeric codes of the characters

The last-occurrence function can be computed in time O(m +),
where m is the size of P and s Is the size of X

© 2004 Goodrich, Tamassia Pattern Matching

The Boyer-Moore Algorithm

N

© 2004 Goodrich, Tamassia

Algorithm BoyerMooreMatch(T, P, 2)

L « lastOccurenceFunction(P, 2')
< m-1
jJem-1
repeat
if T[i] = P[j]
if j=0
return i { matchati}
else
l«—i1-1
J«]-1
else
{ character-jump }
| < L[TT[i]]
l<—1+m-min(j, 1+ 1)
jJem=1
until i>n-1
return —1 { no match }

Case 1. j<1+]|

QD

—| T

Case 2: 1+1<]

Pattern Matching

&
alblalc a ald|clalbla|c]|a
1
alblalc b
4 3 13 12 11 10 9
albla a alblalc|a
L 5 7
alb C b alblalclalb
Q4 6 ¥
a a alb

© 2004 Goodrich, Tamassia

Pattern Matching

Analysis

q
Boyer-Moore’s algorithm
runs in time O(nm + s) ajajalc
Example of worst case: 6 5 4 3 2 1
»m T=aaa...a bjaja|a|a]|a
= -P=Dhaaa | Q2 11 10 9 8 7
® The worst case may occur in blalalalala
Images and DNA sequences Y
but is unlikely in English text 18 17 16 15 14 13
Boyer-Moore’s algorithm is bjajajajaja
significantly faster than the Ao 23 22 21 20 19
brute-force algorithm on blalalalala

English text

© 2004 Goodrich, Tamassia Pattern Matching 8

The KMP Algorithm

#| Knuth-Morris-Pratt’s algorithm
compares the pattern to the

N

text in left-to-right, but shifts | .| al bl al al bl x

the pattern more intelligently
than the brute-force algorithm. I

4 When.a mismatch occurs, | al bl al al bl a
what is the most we can shift
the pattern so as to avoid
redundant comparisons?

al bl a| a| b| a

Answer: the largest prefix of |

P[0..j] that is a suffix of P[1..]] I |
No need to] - Resume

repeat these comparing
comparisons here

© 2004 Goodrich, Tamassia Pattern Matching 9

N

Knuth-Morris-Pratt’s
algorithm preprocesses the
pattern to find matches of
prefixes of the pattern with
the pattern itself

KMP Faillure Function

The failure function F(j) is

defined as the size of the
largest prefix of P[0..j] that is
also a suffix of P[1..j]

Knuth-Morris-Pratt’s
algorithm modifies the brute-
force algorithm so that if a
mismatch occurs at P[j] # T[i]
we set j« F(j—-1)

© 2004 Goodrich, Tamassia

j |10 5
PlH] | a a
FG)| O 3
alblalal|b
I
alblalalb
]
I
alb
—
F(G-1)I

Pattern Matching

10

N

© 2004 Goodrich, Tamassia

The KMP Algorithm

The failure function can be
represented by an array and
can be computed in O(m) time

At each iteration of the while-
loop, either
= iincreases by one, or

= the shift amount i —j
increases by at least one
(observe that F(j — 1) <))

Hence, there are no more
than 2n iterations of the
while-loop

Thus, KMP’s algorithm runs in
optimal time O(m + n)

Algorithm KMPMatch(T, P)

F « failureFunction(P)
1< 0
j<0
while i < n
if T[i] = P[j]
if j=m-1
return i—j { match }
else
l<—1+1
J«J]+1
else
if | >0
J<F-1]
else
< i1+1
return —1 { no match }

Pattern Matching 11

Computing the Failure

Function

N

© 2004 Goodrich, Tamassia

The failure function can be
represented by an array and
can be computed in O(m) time

The construction is similar to
the KMP algorithm itself

At each iteration of the while-
loop, either
= | increases by one, or
= the shift amount i —j
increases by at least one
(observe that F(j — 1) <))
Hence, there are no more
than 2m iterations of the
while-loop

\og

Algorithm failureFunction(P)
F[0] « O
I« 1
j<«<0
while i <m
if P[i] = PJj]
{we have matched j + 1 chars}
Fli]« J+1
<« 1+1
jJ«]+1
else if j > 0 then
{use failure function to shift P}
< Fi-1]
else
F[i] < 0 { no match }
I« 1+1

Pattern Matching

© 2004 Goodrich, Tamassia

p
N
alblalc|lalalblalc|{c|lalblalclalb b
1 2 3 4 5 6
alblalclalb
"
alblalclalb
8 9 1011 12
alblalclalb
13
_ alblajclalb
j 0|12]|3]| 4|5
: 14 15 16 17 18 19
=) b b
['_]a il N alblalclal|b
F)lo|lo|1]0]|1]|2

Pattern Matching

13

	Pattern Matching
	Strings
	Brute-Force Pattern Matching
	Boyer-Moore Heuristics
	Last-Occurrence Function
	The Boyer-Moore Algorithm
	Example
	Analysis
	The KMP Algorithm
	KMP Failure Function
	The KMP Algorithm
	Computing the Failure Function
	Example

