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Text Classification

* Problem: Suppose you are given a random news article. What algorithm would you use to
make a computer categorize it into (a) Politics (b) Religion (¢) Society or (d) None?

- &heNew Nork Times

WEDNESDAY, JULY 11,

A plurality of voters think Barack
Obama is the worst president since
World War Il, a new poll says.
Obama’s predecessor, former
President George W. Bush, came in at
second-worst with 28 percent, and
Richard Nixon was in third place with
13 percent of the vote. After Jimmy
Carter, who 8 percent of voters said
was the worst president in the time
period, no other president received

more than 3 percent.
< _ %
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Text Classification

* Hint: How would humans categorize?

‘— &he New Pork Times

WEDNESDAY, JULY 11,

A plurality of voters think Barack
Obama is the worst president since
World War Il, a new poll says.
Obama’s predecessor, former
President George W. Bush, came in at
second-worst with 28 percent, and
Richard Nixon was in third place with
13 percent of the vote. After Jimmy
Carter, who 8 percent of voters said
was the worst president in the time
period, no other president received

@ more than 3 percent.
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Text Classification

Hint: How would humans categorize?

‘ @he New York Eimes

D

WEDNESDAY, JULY 11,

A plurality of voters think Barack
Obama is the worst president since
World War Il, a new poll says.
Obama’s predecessor, former
President George W. Bush, came in
at second-worst with 28 percent, and
Richard Nixon was in third place with
13 percent of the vote. After Jimmy
Carter, who 8 percent of voters said
was the worst president in the time
period, no other president received
more than 3 percent.

/
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Text Classification

* Key idea: Certain words/phrases in the document tend to relate to a category/class
more than others. Henge the document is likely to belong to that class/category

* Pipeline:

Attribute/feature representation Prior knowledge of which
of the data/document attributes/features correlate

with which class. Learning a

] classifier model

Class(d) = “politics”

Arjun Mukherjee (UH)




* Loan application data [Example due to Liu, 2008]

Classification

Class/Category:
o Here Binary (Y/N)
Features of Table 3.1. A loan application data set /
the data —> 1D Age Has_job | Own_house | Credit_rating || Class
1 young false false fair No
An

. | ) young false false good No
instance/ Sample/ 3 young true false good Yes
data-point 4 young true true fair Yes
5 young false false fair No
6 middle false false fair No
7 middle false false good No
8 middle true true good Yes
9 middle false true excellent Yes
10 middle false true excellent Yes
11 old false true excellent Yes
12 old false true good Yes
13 old true false good Yes
14 old true false excellent Yes
15 old false false fair No

* Q: What is the learning goal? Arjun Mukherjee (UH)




Classification

* Upon learning, the goal 1s to classify new unseen data (a test case).

* Q: What is the class of this instance? Whether to give loan or not?

Age Has Job Own_house Credit-Rating  Class
young  false false good ?




Classification

* Pipeline of Learning process:

. Learning . Number of correct classifications
Training | 'thD - Accuracy = ,
data a’goriim Total number of test cases
Step 1: Training Step 2: Testing

Fig. 3.1. The basic learning process: training and testing

* Traimning data: Data/instances (features class labels) which are seen during model building.

* Test data: Data/instances whose labels are unknown. Goal is to use the learned model (1.¢.,
feed the features of the test data t the model) and classify/predict the labels of the test data

* Training and Testing datasets are disjoint.

* (Can often use part of the seen/training data as held-out/development set to tune additional
model parameters

Arjun Mukherjee (UH) 8



Classification
Q: Why/How does it work?

Fundamental assumption of learning: Distribution of training and test data are the same.
What do we mean by distribution here? Distribution of the feature space.

Consider our data has 3 continuous/real features and 2 classes (red/black)

L] .Y.
L ] ...

L

Arjun Mukherjee (UH) 9



Classification

Q: Are the training and Test data distributions similar? Why?

Q:What does the classification model learn? How does that help in prediction?

Feature space of
Training Data

Feature space of
Test Data

Arjun Mukherjee (UH)
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Classification

* Q: Are the Training and Test data distributions similar? Why or why not?
* Q:What does the classification model learn? Would it do a good job in prediction?

Y

Test Data
Arjun Mukherjee (UH) 11
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Feature space of { Feature space of




Decision Tree

A tree based classification model.

Very efficient and offers competitive classification accuracy

A decision tree (with decision and leaf) nodes for the loan dataset

Table 3.1. A loan application data set

ID Age Has job | Own_house | Credit rating | Class
1 young false false fair No
2 young false false good No
3 young true false good Yes
4 young true true fair Yes
5 young false false fair No
6 middle false false fair No
7 middle false false good No f____f“““g
8 middle true true good Yes Has_job?
9 middle false true excellent Yes /N
10 middle false true excellent Yes /mm fﬂ]si
11 old false true excellent Yes Yes No
12 old false true good Yes (2/2) (3/3)
13 old true false good Yes
14 old true false excellent Yes
15 old false false fair No

Age?

_-/‘T“"“'--._

middle
I

Own_house?

N
true false
4 S
Yes No
(3/3) (2/2)

old

No
(1/1)
same meaning. Each leaf node giveg a class value (Yes or No). (x/y) below

each class means that x out of y training examples that reach this leaf node
have the class of the leaf. For instance, the class of the left most leaf node

"'-..____'_‘

Example 2: Figure 3.2 shows a possible decision tree learnt from the data
in Table 3.1. The tree has two types of nodes, decision nodes (which are
internal nodes) and leaf nodes. A decision node specifies some test (i.e.,
asks a question) on a single attribute. A leaf node indicates a class.

Credit_rating?

P

fair good excellent

-~ |

Yes
(2/2)

T

Yes
(2/2)

is Yes. Two training examples (examples 3 and 4 in Table 3.1) reach here
and both of them are of class Yes. =

Arjun Mukherjee (UH)
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Decision Tree

Q:How do we classify a new test instance using this tree?

Age Has Job Own_house Credit-Rating  Class

young  false false good ?No
Age?
/______..--'"T“-\.._____
Young middle old
—_— I ——
Has_job? Own_house? Credit_rating?
VaN AN AT
true false true false fair good excellent
/s ~ 4 ™~ ~ [ ~
Yes No Yes No No Yes Yes
(2/2) (3/3) (3/3) (2/2)  (1/1) (2/2) (2/2)

Arjun Mukherjee (UH)
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Decision Tree
*  Q:Which out of two possible roots are better? Why?

Age? Own_house?
e N VAN
Young muddle old true false
- | T~ ' ™
No: 3 No: 2 No: 1 No: 0 No: 6
Yes: 2 Yes: 3 Yes: 4 Yes: 6 Yes: 3
(A) (B)

* Fig (B) is better. Why?

* A: as it makes fewer mistakes using majority classification.

* Q:What is majority classification?

* A: Assigning majority class label seen in training for every test instance having that
attribute.

Arjun Mukherjee (UH)



Decision Tree: Entropy

* Entropy: An information theoretic measure of impurity or disorder

€]

entropy(D) = —Z Pr(c;)log, Pr(c;)
j=1

€]

> Pr(c;) =1,

j=1

* Pr(c)) 1s the probability of class ¢;1in data set D

Arjun Mukherjee (UH)



Decision Trees: Entropy

Q: How does entropy relate to class distribution and (1im)purity in the data?

Example 6: Assume we have a data set D with only two classes, positive
and negative. Let us see the entropy values for three different compositions
of positive and negative examples:

1. The data set D has 50% positive examples (Pr(positive) = 0.5) and 50%
negative examples (Pr(negative) = 0.5).

entropy(D) =-0.5xlog, 0.5-0.5xlog, 0.5 =1.

2. The data set D has 20% positive examples (Pr(positive) = 0.2) and 80%
negative examples (Pr(negative) = 0.8).

entropy(D) =-0.2xlog, 0.2-0.8xlog, 0.8 =0.722.

3. The data set D has 100% positive examples (Pr(positive) = 1) and no
negative examples, (Pr(negative) = 0).

entropy(D)=—-1xlog,1-0xlog, 0=0.

We can see a trend: When the data becomes purer and purer, the entropy
value becomes smaller and smaller. In fact, it can be shown that for this
binary case (two classes), when Pr(positive) = 0.5 and Pr(negative) = 0.5
the entropy has the maximum value, i.e., 1 bit. When all the data in D be-
long to one class the entropy has the minimum value, 0 bit. o

As data get purer, entropy lowers.

Key 1dea employed 1n decision tree. Arjun Mukheries (UH)



Decision Trees: Information Gain

* [f we make attribute 4., with v values, the root of the current tree, this will partition D
into v subsets D,, D, ..., D, . The expected entropy 1f 4. 1s used as the current root:

entropy , (D) = Z /| x entropy(D )

| D
* Information gained by selecting attribute 4, to branch or to partition the data 1s
gain(D, A.) = entropy(D) —entropy , (D)

* We choose the attribute with the highest gain to branch/split the current tree.

Arjun Mukherjee (UH)



Decision Trees: Building using Info. Gain

Arjun Mukherjee (UH)

* Using the definition of gain(D, 4,), we have: enropy, (D)= Z ~ x entropy(D, )
6 6 9 9 )= —
entropy(D) = ——-xlog, — ——-xlog, — = 0.971 gain(D, 4,) entropy(D) entropy , (D)
15 15 15 15 .
Table 3.1. A loan application data set
ID Age Has_job | Own_house | Credit_rating | Class
_ i _ 2 1 young false false fair No
entropy o nouse (D) = > x entropy(D,) 3 x entropy(D,) > youns e el e Ne
6 9 3 young true false good Yes
=— x0+—x0918 4 young true true fa%r Yes
15 15 5 young false false fair No
6 middle false false fair No
=0.551 7 middle false false good No
8 middle true true good Yes
5 5 5 9 middle false true excellent Yes
entropy 4, (D) = BT x entropy(D,) — 5 x entropy(D,) — 5 x entropy(D;) i? mﬁgle Ei:: 2‘: zzzﬂzzz ::
5 5 5 12 old false true good Yes
=X 0.9714-=x0.971+-=x0.722 4 ol T me | ne ecter | ves
15 15 [5 15 old false false fair No
gain(D, Age) = 0.971 — 0.888 = 0.083
gain(D, Own_house) = 0.971 — 0.551 = 0.420
gain(D, Has_job) = 0.971 — 0.647 = 0.324
gain(D, Credit_rating) = 0.971 — 0.608 = 0.363.




Decision Trees: Building using Info. Gain

. D
* Q:Which node 1s the best root? entropy , (D) = Z D x entropy(D))
* A: Node having least gain. Own house. -
6 6 9 9 gain(D, 4;) = entropy(D) — entropy , (D)

entropy(D) =—-—xlog, — ——xlo =0.971
py(D) 75 }108, o e xlog

Table 3.1. A loan application data set

6 9 ID Age Has_job | Own_house | Credit_rating | Class
false false fair No
entro D) =——xentropy(D,)——xentropy(D I | young
pyOwn_house( ) 15 py( 1) 15 py( 2) ) young false false good No
6 9 3 young true false good Yes
=—x0+—=—x0918 4 young true true fair Yes
15 15 5 young false false fair No
—0.551 6 middle false false fair No
o 7 middle false false good No
8 middle true true good Yes
5 5 5 9 middle false true excellent Yes
10 middle false true excellent Yes
=——X ——X ——X
entrop Y Age (D) 15 entrop Y (Dl) 15 entrop Y (Dz) 15 entrop Y (D3) 11 old false true excellent Yes
12 old false true good Yes
5 5 5 13 old true false good Yes
= E x0.971+ E x0.971+ E x0.722 14 old true false excellent Yes
15 old false false fair No

gain(D, Age) = 0.971 — 0.888 = 0.083

gain(D, Own_house) = 0.971 — 0.551 = 0.420
gain(D, Has_job) = 0.971 — 0.647 = 0.324
gain(D, Credit_rating) = 0.971 — 0.608 = 0.363.
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Decision Tree

* Adding successive nodes: After selecting the root node, we can again use I1G on the
partitioned data recursively.

Table 3.1. A loan application data set

ID Age Has_job | Own_house | Credit_rating | Class
1 young false false fair No
o o [ J
* Final decision tree: Own_house? P e | fike | B e
— young true false good Yes
N\ 4 young true true fair Yes
true false 5 young false false fair No
i AN 6 middle false false fair No
. 7 middle false false good No
Ye S HaS—-] ob? 8 middle true true good Yes
{6!‘16} /\ 9 middle false true excellent Yes
true false 10 | middle false true excellent Yes
Vd A 11 old false true excellent Yes
12 old false true good Yes
YES ND 13 old true false good Yes
{31'3]' {E“EG]' 14 old true false excellent Yes
15 old false false fair No

* Stopping criteria: Remaining training data in the (upon partitioning) form a single
class or every attribute has been used along the path.

Arjun Mukherjee (UH)



Naive Bayes

Naive Bayes Classifiers

Frank Keller

kellerfcoli.uni-sb.de

Computerlinguistik
Universitiat des Saarlandes

Arjun Mukherjee (UH)


http://www2.cs.uh.edu/%7Earjun/courses/nlp/naive_bayes_keller.pdf
http://www2.cs.uh.edu/%7Earjun/courses/nlp/naive_bayes_keller.pdf

Classifier Evaluation

Consider the following partitioning of the data.

[Training/Development Set for model building GAP | Hold Out/Test set for evaluation
[DTrain] DParam [DTest]

|

Number of correct classifications
Recall that Accuracy = :

Total number of test cases

We must always ensure Dy, (1 Dioe = @ Why?

Train

Usually if the data 1s large, we can use randomly sample/shuffle the contents of our entire
data ad use 80% for [Dqy,;,] and 20%for [D -

Train

GAP = [D ] is optional for tuning additional parameters of the model.

Parma

Arjun Mukherjee (UH) 22



Classifier Evaluation

Consider the following partitioning of the data.

[Training/Development Set for model building GAP | Hold Out/Test set for evaluation
[DTrain] DParam [DTest]

|

Number of correct classifications
Recall that Accuracy = :

Total number of test cases

We must always ensure Dy, (1 Dioe = @ Why?

Train

Usually if the data 1s large, we can use randomly sample/shuffle the contents of our entire
data ad use 80% for [Dqy,;,] and 20%for [D -

Train

GAP = [D ] is optional for tuning additional parameters of the model.

Parma
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Cross Validation

A single rain-test result 1s often not reliable, we need n-fold cross validation.

Bin-2
[D,]

Bin-i
D.

1

Bin-1 cee Bin-n
[DI] [Dn]

CV 1s a model validation technique for assessing how the results of a
statistical analysis will generalize to an independent data set.
(1) Randomly shuffle/sample the dataset and partition into n disjoint subsets.
(3) Use each subset/bin as the test set and combine the rest n-1 subsets/bins as
the training set to learn a classifier.
(4) The procedure 1s run n times, which give n accuracies.
(5) The final estimated accuracy of learning is the average of the n accuracies.

10-fold and 5-fold cross-validations are commonly used.

Arjun Mukherjee (UH) 24



Cross Validation

Two 1mportant applications of cross validation.

(1) Parameter estimation: Suppose our model/classifier has some parameters (e.g.,
thresholds, # of leaves, branches, depth) we want to estimate. We can try different values
of our parameters (1.€., different decision trees for our data) and use cross validation
accuracy to find the best parameters.

(2) Comparing two classifiers/models.

Obtain classification accuracy for each model for each fold
Feed the values of two groups (Acc of C1 vs. Acc. Of C2)
to t-test for estimating statistical significance.

X, _X 52 52
_ <1 2 . _ _— (71, 72
= — i % T n+n'

SX{—Xo 1 2

Can use free online tools (e.g., Graphpad, or MS Excel)!

Arjun Mukherjee (UH)



Cross Validation

* Leave-one-out cross-validation: This method 1s used when the data set 1s very small.
* [t 1s a special case of cross-validation

* Each fold of the cross validation has only a single test example and all the rest of the
data is used in training.

* If the original data has m examples, this is m-fold cross-validation

* A method rarely used in text classification/mining problems.

Arjun Mukherjee (UH) 26



Classification Measures

* Accuracy 1s only one measure (error = 1-accuracy).
* Accuracy 1s not suitable in some applications. Why?

* In text mining, we may only be interested in the documents of a particular
topic, which are only a small portion of a big document collection.

* In classification involving skewed or highly imbalanced data, e.g.,
network intrusion and financial fraud detections, we are interested only 1n
the minority class.

* High accuracy does not mean any intrusion 1s detected.
* E.g., 1% intrusion. Achieve 99% accuracy by doing nothing.

* The class of interest 1s commonly called the positive class, and the rest
negative classes.

Arjun Mukherjee (UH) 27



Precision and Recall

Precision: Fraction of discovered positive/relevant instances which are actually
positive/relevant

Recall: Fraction of relevant/positive instances that could be retrieved/discovered by the
model.

Based on the following confusion matrix, we define:

Classified positive  Classified negative

Actual positive TP FN
Actual negative FP TN

where

TP: the number of correct classifications of the positive examples (true positive)
FN: the number of incorrect classifications of positive examples (false negative)
FP: the number of incorrect classifications of negative examples (false positive)
T'N: the number of correct classifications of negative examples (true negative)

Arjun Mukherjee (UH) 28



Precision and Recall

Precision p 1s the number of correctly classified positive examples divided by the total
number of examples that are classified as positive.

Recall 7 1s the number of correctly classified positive examples divided by the total number
of actual positive examples in the test set.

Based on the following confusion matrix, we define: p= P y = P ,
IP+FN

TP+ FP’

Classified positive  Classified negative

Actual positive TP FN
Actual negative FP TN

where

TP: the number of correct classifications of the positive examples (true positive)
FN: the number of incorrect classifications of positive examples (false negative)
FP: the number of incorrect classifications of negative examples (false positive)
TN: the number of correct classifications of negative examples (true negative)

Arjun Mukherjee (UH) 29



Precision and Recall

* Precision p 1s the number of correctly classified positive examples divided by the total
number of examples that are classified as positive.

* Recall r 1s the number of correctly classified positive examples divided by the total number
of actual positive examples in the test set.

* Based on the following confusion matrix, we define: — i . p = LD ,
1P+ FN

Note: precision and recall only measure classification TP +FP
performance on the positive class. Q: Why? /

Classified positive  Classified negative

Actual positive TP FN
Actual negative FP TN

where

TP: the number of correct classifications of the positive examples (true positive)
FN: the number of incorrect classifications of positive examples (false negative)
FP: the number of incorrect classifications of negative examples (false positive)
TN: the number of correct classifications of negative examples (true negative)

Arjun Mukherjee (UH) 30



Precision and Recall

* Does 100% precision mean the classifier 1s good? Example due to [Liu, 2008]

Example 11: A test data set has 100 positive examples and 1000 negative
examples. After classification using a classifier, we have the following
confusion matrix (Table 3.3),

Table 3.3. Confusion matrix of a classifier

Classified positive  Classified negative

Actual positive 1 99
Actual negative 0 1000

This confusion matrix gives the precision p = 100% and the recall » = 1%
because we only classified one positive example correctly and classified no
negative examples wrongly. -

* Q: Whatis the accuracy here?

* Q:Can we just rely on precision or recall or accuracy? What are the extremes?

* Need combined measure

* If data 1s balanced, equal proportion of positive/negative in test set, then accuracy 1s a good
metric. Q: Why?

Arjun Mukherjee (UH) 31



* It 1s hard to compare two classifiers using two measures. F, score combines precision

F,-Score or F; measure

and recall into one measure

Fe_?_

|
_+_
p r

F

_ 2pr

p+r

* The harmonic mean of two numbers tends to be closer to the smaller of the two.

* For F,-value to be large, both p and » much be large. Example plots [Mukherjee et al., 13]
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Figure 1: SVM 5-fold CV metrics by varying the proportion of fake reviews in the training data. For testing, natural distribution is used.

Arjun Mukherjee (UH)
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Support Vector Machine (SVM)

* Alinear classifier for very high dimensional data. Q: What does this mean?
* ¢4 Consider a set of training examples;

{(Xl:a yl): (123 y.?)ﬁ tery (xm yn)}a

where x; = (x;1, Xp2, ..., X;r) 18 a r-dimensional input vector in a real-valued

space X < #’, y; 1s its class label (output value) and y; € {1, —1}. 1 de- For text classification, x;
notes the positive class and —1 denotes the negative class. Note that we use would be documents,
slightly different notations in this section. For instance, we use y instead of represented by the feature
¢ to represent a class because y is commonly used to represent classes in vector of R dimensional

the SVM literature. Similarly, each data instance is called an input vector
and denoted by a bold face letter. In the following, we use bold face letters
for all vectors.

words/vocabulary, y are
two classes that we would
want to classify, e.g., spam
*  An SVM classifier finds a linear function of the form VS. non-spam emails.

1 if(w-x.)+b>0

) =w-x)+b yf{—l if(w-x,)+b<0

ﬂxlj X2y oeny -x}') = “}lxl+wix2 +...F WXy + b::

Arjun Mukherjee (UH) 33



Support Vector Machine (SVM)

* Alinear classifier for very high dimensional data.

* Given the training examples: {(X1, 11), (X2, 12), «o ey (X0 V) )

e An SVM classifier finds a linear function of the form
1 if(w-x,)+b2>0

S =wex+b yf{—l if(w-x,)+b<0

ﬁxlj X2y vuny I;-) - Wlxl"‘szz +...+F WXy + b::

Hence, f(x) is a real-valued function £ X< #'—> H. w=(w;, wa, ..., w,) €
" 1s called the weight vector. b € % is called the bias. (w - x) 1s the dot
product of w and x (or Euclidean inner product). Without using vector
notation, Equation (31) can be written as:

Q: What is the learning goal? Estimate w or w and b from training examples.
*  Q: How to classify new unseen/test data? Plug in the values and output class y, = f(x,) =< w.x, > + b

Arjun Mukherjee (UH) 34



Support Vector Machine (SVM)

SVM finds the hyperplane that separates the positive and negative training instances.
(w-x)+b=0
This is the decision boundary or the decision surface

In 2-D (1.e, R2) the hyperplane 1s a line, in 3-D (i.e., R3), 1t is a plane
Consider the following examples in 2-D.

=
|
rr i1 rrri

i
| | |
123 4567809
Q: What is the equation of the hyperplane? L. x;, + 1. x, —1 =10

Q: What is w, b ? What is the slope of the line? How many features does this problem has?

Arjun Mukherjee (UH)
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Support Vector Machine (SVM)

SVM finds the hyperplane that separates the positive and negative training instances.
(w-x)+b=0
This is the decision boundary or the decision surface

In 2-D (1.e, R2) the hyperplane 1s a line, in 3-D (i.e., R3), 1t is a plane
Consider the following examples in 2-D.

9\
8 ——
7 ——
6 I
xb 5 =t
4 ——
3 ——
2 ——
1 e
xa
Q: Ther any planes which can separate +/- examples. Which one to choose?

Arjun Mukherjee (UH) 36



Support Vector Machine (SVM)

* SVM finds the maximal margin hyperplane that separates the positive and negative training instances.

(w-x)+b=0
*  Machine learning theory shows that this hyperplane minimizes the classification errors. (Intuitive isn’t 1t?)
 Let(x™, 1)and (x7, -1) be the closest point to the (ideal) hyperplane

margin

— H:(w-x)+b=1
C H:{w-x)+b=-1

* Q: How to express the margin as a function of w? Recall our goal is to find the plane (i.e., estimate w,

b) that maximizes the separation margin
Arjun Mukherjee (UH) 37



Support Vector Machine (SVM)

Linear Algebra recap. _ a

-

S L
Ql

A vector, x with head (b), tail (Zl), 1s expressed as x=b—a (head vector — tail vector). b

' - —a+ su+t 1) eR.
A plane can be specified by its normal vector. P=a-tsuf iy (s,t) €R

Vector from origin to a point in the plane L
Two non-parallel directions in the plane

In our case, the hyperplane <w.x>+b =0 has w

as its normal vector. Alternatively, it can be specified as:
ugn (p—a) n=0&p-n=a-n

Unit vector in the direction of the normal vector: P v Normal vector 7
u = “&4” where ||W|| — \/(Zwlz) a' (we will call this w)

; . Only need to specify this dot product,
Scaling/scalar multiplication of plane: z gy | @ scalar (we wil callthis the of fset. ©)
A plane moves parallel to itself as long as i
the normal vector remain parallel to itself. / ’ 3

T Plane normal picture courtesy of D.Sontag’s ML course Arjun Mukherj éé (UH) 38



* For ease of learning, we set the scale by requiring that.

w-x;) +h=>1
(w-x;) +b<-1

e  The corresponding parallel hyperplanes passing through x* and x-

Support Vector Machine (SVM)

ify,=1
ifyj:_
H. (w-x)+b=1

H. (w-xX)+b=-

*  Consider the point x® at d, distance on the hyperplane <w.x>+5=0.

e The vector xt - x8

=d. ()

«  We also know that H+
and H pass through x*
and x*

wx +b=1
w.x*+b=0

Subtract

w.(x" -x%) =1

WidJF(%)) =1 Plug in x* - x*

d+= 1
Il

Thus, d, = “

Hence margin = d.

margin

Similarly, one can show, d_ = 1

A= w2y

Maximizing the margin is same as
minimizing ||w||?

—Hi(w-x) +h=]

H:{w-x)+b=-1
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Support Vector Machine (SVM)

* Linear SVM.: separable case
* Given a set of linearly separable training examples,

D = {(x1, 1), (X3, V), -0y (Xp Y1)}

* Learning 1s to solve the following constrained minimization problem,
(W - W)

2

Subjectto: y.((w-x,)+b)=21, i=1,2,...,r

* Notice that y,(w-x,)+b2>1, i=1,2,...,r

summarizes

(wexp)y+b2>1 fory =1

(w-x)+b<-1 fory =-1

Solving this uses Quadratic programming (which is beyond the scope of this course). We can treat this
as a black box!

Minimize:

Arjun Mukherjee (UH)
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Support Vector Machine (SVM)

* What if the data 1s not linearly separable?

e Can we insist that V,({w-x)+b) =21, i=1,2,..,7r?
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Support Vector Machine (SVM)

* Linear separable case is the 1deal situation.

* Real-life data may have noise or errors.
= (lass label incorrect or randomness in the application domain.

* Recall 1n the separable case, the problem was

(W-w)

Minimize:

Subjectto: y,(w-x,)+b)21, i=1,2,..,r

* With noisy data, the constraints may not be satisfied.
* It 1s possible to have no solution!

* Because no plane actually demarcates all positive and negative instances

Arjun Mukherjee (UH)

42



Support Vector Machine (SVM)

* We need to relax the constraints

* Allow errors by relaxing the margin constraints

* Introducing slack variables, & (= 0) as follows:
w-x)+b=>21-¢ fory =1
(w-x)+b<-1+¢& fory =-1.

 The new constraints:
Subjectto: y((w-x)+b)=>21-C¢,i=1,...,7
&20,i=1,2,..,r

/ The non-separable case: x,and x; are error data points

* Example: Two error data points x, and x;, (circled) in wrong regions
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Support Vector Machine (SVM)

 Q:How to address the situation?
* Need to penalize the errors in the objective function.

* Q: Why? What does it actually do?
* Finds optimal plane which has the least errors (from the training data)

* A natural way of doing it is to assign an extra cost for errors to change the objective

function to
. W-W
Minimize: < ) +C(Z%J

i=1

* k=1 1s commonly used.

* The parameter C 1s important. Must be tuned to ensure we get a good model.
Q:Why?

* Higher C tends to be strict, lower values of C tend to allow more errors in the learned
model. C > 0.

Arjun Mukherjee (UH)

44



Support Vector Machine (SVM)

* Adding the slack variable, we have the new optimization problem.

(W-W)

cY ¢,
; +,Z:1:§’

Subjectto: y,(w-x,)+b)=1-¢&, i=1,2,...,r
& 20, i=1,2,..,r

Minimize:

* This 1s often referred as soft-margin SVM

* Are we on the same page?

* Q: Given a set of training examples {(X;, y,)},
which of the variables (w,$, b, C, 1, x;,y,) are known/unknown in the above
optimization problem?
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45



Support Vector Machine (SVM)

* Q: What you should know to get going?
* The intuition, where to find software (use SVMLight)

* Vector, line, length

You Don'T Have
To Gef It Right - You Just Have
To Gef IT Going|

* Margin
* QP with linear constraints

* How to handle non-separable data (advanced!)
) Slack variables
Kernels to map to new feature space (Section 3.8.3 WDM)

* More math detail (for nerds!): Paper by C. Burges. A Tutorial on Support Vector
Machines for Pattern Recognition
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Feature Selection

In most (text) classification problems, words, n-grams serve as features.
However, not all are relevant, useful to model building. Some are also redundant.

Q: Why is this not good for model building/learning a classifier?

How to solve this?

Instead of using all features, select features which can separate the classes well, 1.¢.,
features having good discriminative strengths.

Measures of discriminative strength: Information Gain (IG), Mutual Information, Chi-
Squared Statistic (y2)
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Feature Selection

LetC= {c,,c,,..c,} and F = {f}, f,, ...1 } denote the set of classes and features
Three commonly used metrics:.

(1) Information Gain: Expected change in entropy (of data, T) from a prior state to a state

that takes some information (here, feature, a) as given.

N[ [o

c
/4
Y

IG(T,a) = H(T) — H(T}a) /=
1G(f) =3 P(c)logP(c,)+ Y. P(/)YP(c, | )log P(c, | f)
i=1 1.

i=l

Q: What does this mean? If IG(f,) > 1G(f,), what can we say about f,, f,?

Q: How do we compute the probabilities? Assume two classes c1, ¢2 and features are
words.
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Feature Selection
LetC= {c,,c,,..c,} and F = {f}, f,, ...1 } denote the set of classes and features

Three commonly used metrics:.

(2) Mutual Information: Expected measure of association of two random variables, F, C.

P(f,C) | G| Point wise
P( f) P( C) mutual

information
(PMI)

MI(f.0)= Y P 0)og

It e

MI(f) = max; {MI (f, ¢)}

<~
~ ||
N[

Compute probabilities using 2x2 contingency table.
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Feature Selection

LetC= {c,,c,,..c,} and F = {f}, f,, ...1 } denote the set of classes and features
Three commonly used metrics:.

(3) Chi-Squared (y2) Statistic: A measure for lack of independence between a feature f and

class c. NWZ - YX)?

W+ YYX +Z)W +X)Y +2)

2 (f.e)=

N=W+X+Y+Z x(h= ‘Zj.’; Pe)Z*(fc)

Compute probabilities using 2x2 contingency table. 7 =
Q: If (2 (f,) > X% (f,)), which is a better feature? f, or f,? f Y

N [[o

Usually Chi-squared statistic and Information Gain (IG) have good discriminative
strengths than MI.

Arjun Mukherjee (UH) 50



	Text Categorization
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50

