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• Problem: Suppose you are given a random news article. What algorithm would you use to 
make a computer categorize it into (a) Politics (b) Religion (c) Society or (d) None?
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Text Classification

Politics

Society

Religion

None

A plurality of voters think Barack 
Obama is the worst president since 
World War II, a new poll says. 
Obama’s predecessor, former 
President George W. Bush, came in at 
second-worst with 28 percent, and 
Richard Nixon was in third place with 
13 percent of the vote. After Jimmy 
Carter, who 8 percent of voters said 
was the worst president in the time 
period, no other president received 
more than 3 percent.



• Hint: How would humans categorize?
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• Key idea: Certain words/phrases in the document tend to relate to a category/class 
more than others. Hence the document is likely to belong to that class/category

• Pipeline:
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Text Classification

Attribute/feature representation 
of the data/document

Prior knowledge of which 
attributes/features correlate 
with which class. Learning a 

classifier model

Class(d) = “politics”

Apply 
learned 

classifier 
on new 

data



• Loan application data [Example due to Liu, 2008]

• Q: What is the learning goal? Arjun Mukherjee (UH) 6

Classification
Class/Category: 

Here Binary (Y/N)

An 
instance/sample/

data-point

Features of 
the data



• Upon learning, the goal is to classify new unseen data (a test case).

• Q: What is the class of this instance? Whether to give loan or not?

Classification



• Pipeline of Learning process:

• Training data: Data/instances (features class labels) which are seen during model building.
• Test data: Data/instances whose labels are unknown. Goal is to use the learned model (i.e., 

feed the features of the test data t the model) and classify/predict the labels of the test data
• Training and Testing datasets are disjoint.
• Can often use part of the seen/training data as held-out/development set to tune additional 

model parameters
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Classification

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
=Accuracy



• Q: Why/How does it work?

• Fundamental assumption of learning: Distribution of training and test data are the same.

• What do we mean by distribution here? Distribution of the feature space.

• Consider our data has 3 continuous/real features and 2 classes (red/black)
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Classification
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Classification
• Q: Are the training and Test data distributions similar? Why?
• Q:What does the classification model learn? How does that help in prediction?

Feature space of 
Training Data

Feature space of 
Test Data



• Q: Are the Training and Test data distributions similar? Why or why not?
• Q:What does the classification model learn? Would it do a good job in prediction?
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Classification

Feature space of 
Training Data

Feature space of 
Test Data



• A tree based classification model.
• Very efficient and offers competitive classification accuracy
• A decision tree (with decision and leaf) nodes for the loan dataset
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Decision Tree



• Q:How do we classify a new test instance using this tree?
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Decision Tree

No



Decision Tree
• Q:Which out of two possible roots are better? Why?

• Fig (B) is better. Why?
• A: as it makes fewer mistakes using majority classification.
• Q:What is majority classification?
• A: Assigning majority class label seen in training for every test instance having that 

attribute.
Arjun Mukherjee (UH)



Decision Tree: Entropy
• Entropy: An information theoretic measure of impurity or disorder

• Pr(cj) is the probability of class cj in data set D
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Decision Trees: Entropy
• Q: How does entropy relate to class distribution and (im)purity in the data?

• As data get purer, entropy lowers. 
• Key idea employed in decision tree. Arjun Mukherjee (UH)



Decision Trees: Information Gain
• If we make attribute Ai, with v values, the root of the current tree, this will partition D

into v subsets D1, D2 …, Dv . The expected entropy if Ai is used as the current root:

• Information gained by selecting attribute Ai to branch or to partition the data is 

• We choose the attribute with the highest gain to branch/split the current tree. 
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• Using the definition of gain(D, Ai), we have: ∑
=

×=
v

j
j

j
A Dentropy

D
D

Dentropy
i

1

)(
||
||

)(

)()(),( DentropyDentropyADgain
iAi −=971.0

15
9log

15
9

15
6log

15
6)( 22 =×−×−=Dentropy

551.0                               

918.0
15
90

15
6                               

)(
15
9)(

15
6)( 21_

=

×+×=

×−×−= DentropyDentropyDentropy houseOwn

888.0                       

722.0
15
5971.0

15
5971.0

15
5                       

)(
15
5)(

15
5)(

15
5)( 321

=

×+×+×=

×−×−×−= DentropyDentropyDentropyDentropyAge

Age Yes No entropy(Di)
young 2 3 0.971
middle 3 2 0.971
old 4 1 0.722

Decision Trees: Building using Info. Gain
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• Q:Which node is the best root? 
• A: Node having least gain. Own_house.
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Decision Tree
• Adding successive nodes: After selecting the root node, we can again use IG on the 

partitioned data recursively.

• Final decision tree:

• Stopping criteria: Remaining training data in the (upon partitioning) form a  single 
class or every attribute has been used along the path.
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Naïve Bayes

Arjun Mukherjee (UH)

http://www2.cs.uh.edu/%7Earjun/courses/nlp/naive_bayes_keller.pdf
http://www2.cs.uh.edu/%7Earjun/courses/nlp/naive_bayes_keller.pdf


• Consider the following partitioning of the data.

• Recall that

• We must always ensure DTrain∩Dtest = φ Why?

• Usually if the data is large, we can use randomly sample/shuffle the contents of our entire 
data ad use 80% for [DTrain] and 20%for [DTest].

• GAP ≈ [DParma] is optional for tuning additional parameters of the model.
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Classifier Evaluation

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
=Accuracy

Training/Development Set for model building         GAP      Hold Out/Test set for evaluation
[DTrain]                                        DParam [DTest]
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Classifier Evaluation
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• A single rain-test result is often not reliable, we need n-fold cross validation.

• CV is a model validation technique for assessing how the results of a 
statistical analysis will generalize to an independent data set.

• (1) Randomly shuffle/sample the dataset and partition into n disjoint subsets.
• (3) Use each subset/bin as the test set and combine the rest n-1 subsets/bins as 

the training set to learn a classifier.
• (4) The procedure is run n times, which give n accuracies.
• (5) The final estimated accuracy of learning is the average of the n accuracies.
• 10-fold and 5-fold cross-validations are commonly used.
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Cross Validation

Bin-1      Bin-2      ….         ….              ….                  Bin-i …                      …         Bin-n
[D1]          [D2]                                                                 Di [Dn]



• Two important applications of cross validation.
• (1) Parameter estimation: Suppose our model/classifier has some parameters (e.g., 

thresholds, # of leaves, branches, depth) we want to estimate. We can try different values 
of our parameters (i.e., different decision trees for our data) and use cross validation 
accuracy to find the best parameters.

• (2) Comparing two classifiers/models.
• Obtain classification accuracy for each model for each fold
• Feed the values of two groups (Acc of C1 vs. Acc. Of C2)

to t-test for estimating statistical significance.

• Can use free online tools (e.g., Graphpad, or MS Excel)!
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Cross Validation

Fold Acc.  
C1

Acc.
C2

Fold 1 87% 80%

… … …

Fold n 90% 81%

X1 X2



• Leave-one-out cross-validation: This method is used when the data set is very small. 
• It is a special case of cross-validation
• Each fold of the cross validation has only a single test example and all the rest of the 

data is used in training. 
• If the original data has m examples, this is m-fold cross-validation
• A method rarely used in text classification/mining problems.

Cross Validation
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• Accuracy is only one measure (error = 1-accuracy).
• Accuracy is not suitable in some applications. Why? 
• In text mining, we may only be interested in the documents of a particular 

topic, which are only a small portion of a big document collection.  
• In classification involving skewed or highly imbalanced data, e.g., 

network intrusion and financial fraud detections, we are interested only in 
the minority class. 
• High accuracy does not mean any intrusion is detected. 
• E.g., 1% intrusion. Achieve 99% accuracy by doing nothing. 

• The class of interest is commonly called the positive class, and the rest 
negative classes.

Classification Measures
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Precision and Recall
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• Precision: Fraction of discovered positive/relevant instances which are actually 
positive/relevant

• Recall: Fraction of relevant/positive instances that could be retrieved/discovered by the 
model.

• Based on the following confusion matrix, we define:



Precision and Recall
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• Precision p is the number of correctly classified positive examples divided by the total 
number of examples that are classified as positive.

• Recall r is the number of correctly classified positive examples divided by the total number 
of actual positive examples in the test set. 

• Based on the following confusion matrix, we define: .       .
FNTP

TP r
FPTP

TPp
+

=
+

=



Precision and Recall
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• Precision p is the number of correctly classified positive examples divided by the total 
number of examples that are classified as positive.

• Recall r is the number of correctly classified positive examples divided by the total number 
of actual positive examples in the test set. 

• Based on the following confusion matrix, we define:
Note: precision and recall only measure classification
performance on the positive class. Q: Why?

.       .
FNTP

TP r
FPTP

TPp
+

=
+

=



Precision and Recall
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• Does 100% precision mean the classifier is good? Example due to [Liu, 2008]

• Q: What is the accuracy here?
• Q:Can we just rely on precision or recall or accuracy? What are the extremes?
• Need combined measure
• If data is balanced, equal proportion of positive/negative in test set, then accuracy is a good 

metric. Q: Why?



• It is hard to compare two classifiers using two measures. F1 score combines precision 
and recall into one measure

• The harmonic mean of two numbers tends to be closer to the smaller of the two. 
• For F1-value to be large, both p and r much be large. Example plots [Mukherjee et al., 13]

F1-Score or F1 measure
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• A linear classifier for very high dimensional data. Q: What does this mean?
• Consider a set of training examples:

• An SVM classifier finds a linear function of the form

33

Support Vector Machine (SVM)

For text classification, xi
would be documents,
represented by the feature
vector of R dimensional
words/vocabulary, y are
two classes that we would
want to classify, e.g., spam
vs. non-spam emails.
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• A linear classifier for very high dimensional data.

• Given the training examples:

• An SVM classifier finds a linear function of the form

• Q: What is the learning goal? Estimate 𝑤⃗𝑤 or 𝒘𝒘 and b from training examples.
• Q: How to classify new unseen/test data? Plug in the values and output class 𝑦𝑦𝑡𝑡 = 𝑓𝑓 𝒙𝒙𝒕𝒕 = < 𝒘𝒘.𝒙𝒙𝒕𝒕 > + 𝑏𝑏

34

Support Vector Machine (SVM)
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• SVM finds the hyperplane that separates the positive and negative training instances.

• This is the decision boundary or the decision surface
• In 2-D (i.e, ℝ2) the hyperplane is a line, in 3-D (i.e., ℝ3), it is a plane
• Consider the following examples in 2-D.

• Q: What is the equation of the hyperplane? 1
8.5 𝑥𝑥𝑎𝑎 + 1

9.5 𝑥𝑥𝑏𝑏 − 1 = 0
• Q: What is w, b ? What is the slope of the line? How many features does this problem has?

35

Support Vector Machine (SVM)

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

𝒙𝒙𝒃𝒃

𝒙𝒙𝒂𝒂



Arjun Mukherjee (UH)

• SVM finds the hyperplane that separates the positive and negative training instances.

• This is the decision boundary or the decision surface
• In 2-D (i.e, ℝ2) the hyperplane is a line, in 3-D (i.e., ℝ3), it is a plane
• Consider the following examples in 2-D.

• Q: There exists infinitely many planes which can separate +/- examples. Which one to choose?
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Support Vector Machine (SVM)
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• SVM finds the maximal margin hyperplane that separates the positive and negative training instances.

• Machine learning theory shows that this hyperplane minimizes the classification errors. (Intuitive isn’t it?)
• Let (x+, 1) and (x-, -1) be the closest point to the (ideal) hyperplane

• Q: How to express the margin as a function of w? Recall our goal is to find the plane (i.e., estimate w, 
b) that maximizes the separation margin
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Support Vector Machine (SVM)



• Linear Algebra recap.
• A vector, 𝑥⃗𝑥 with head (𝑏⃗𝑏), tail (𝑎⃗𝑎), is expressed as 𝑥⃗𝑥 = 𝑏⃗𝑏 − 𝑎⃗𝑎 (head vector – tail vector).

• A plane can be specified by its normal vector.

• In our case, the hyperplane <w.x> + b = 0 has w
as its normal vector.

• Unit vector in the direction of the normal vector:
• 𝒖𝒖 = 𝑤⃗𝑤

| 𝑤𝑤 | where 𝑤𝑤 = √ ∑𝑤𝑤𝑖𝑖
2

• Scaling/scalar multiplication of plane:
A plane moves parallel to itself as long as
the normal vector remain parallel to itself.
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Support Vector Machine (SVM)
𝒂⃗𝒂

𝒃⃗𝒃

𝒃⃗𝒃 - 𝒂⃗𝒂

† Plane normal picture courtesy of D.Sontag’s ML course



• For ease of learning, we set the scale by requiring that.

• The corresponding parallel hyperplanes passing through x+ and x-

• Consider the point xs at d+ distance on the hyperplane

• The vector x+  - xs

=d+ 𝑤⃗𝑤
| 𝑤𝑤 |

• We also know that H+
and H pass through x+

and xs

w.x+ + b = 1
- w.xs + b = 0
-------------------
w.(x+ - xs) = 1
w.(d+ 𝒘⃗𝒘

| 𝒘𝒘 | ) = 1
d+ = 1

| 𝑤𝑤 |
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Support Vector Machine (SVM)

xs

Subtract

Plug in x+ - xs

Thus, d+ = 1
| 𝑤𝑤 |

Similarly, one can show, d- = 1
| 𝑤𝑤 |

Hence margin = d+ + d- = 2
||𝑤𝑤 ||

Maximizing the margin is same as 
minimizing ||w||2



• Linear SVM: separable case
• Given a set of linearly separable training examples, 

D = {(x1, y1), (x2, y2), …, (xr, yr)}

• Learning is to solve the following constrained minimization problem, 

• Notice that 
summarizes
〈w ⋅ xi〉 + b ≥ 1    for yi = 1
〈w ⋅ xi〉 + b ≤ -1   for yi = -1

Solving this uses Quadratic programming (which is beyond the scope of this course). We can treat this 
as a black box!

riby ii  ..., 2, 1,   ,1)(  :Subject to
2

   :Minimize

=≥+〉⋅〈

〉⋅〈

xw

ww

riby ii  ..., 2, 1,   ,1( =≥+〉⋅〈 xw
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Support Vector Machine (SVM)



• What if the data is not linearly separable?

• Can we insist that 

41

Support Vector Machine (SVM)

? ..., 2, 1,   ,1)( riby ii =≥+〉⋅〈 xw
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• Linear separable case is the ideal situation. 
• Real-life data may have noise or errors. 

 Class label incorrect or randomness in the application domain. 

• Recall in the separable case, the problem was

• With noisy data, the constraints may not be satisfied. 
• It is possible to have no solution!
• Because no plane actually demarcates all positive and negative instances

riby ii  ..., 2, 1,   ,1)(  :Subject to
2

   :Minimize

=≥+〉⋅〈

〉⋅〈

xw

ww
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Support Vector Machine (SVM)
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• We need to relax the constraints
• Allow errors by relaxing the margin constraints 
• Introducing slack variables, ξi (≥ 0) as follows: 

〈w ⋅ xi〉 + b ≥ 1 − ξi for yi = 1
〈w ⋅ xi〉 + b ≤ −1 + ξi for yi = -1.

• The new constraints:
Subject to: yi(〈w ⋅ xi〉 + b) ≥ 1 − ξi, i =1, …, r,

ξi ≥ 0, i =1, 2, …, r.

• Example: Two error data points xa and xb (circled) in wrong regions 

43

Support Vector Machine (SVM)
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• Q:How to address the situation?
• Need to penalize the errors in the objective function. 
• Q: Why? What does it actually do?
• Finds optimal plane which has the least errors (from the training data)

• A natural way of doing it is to assign an extra cost for errors to change the objective 
function to 

• k = 1 is commonly used.
• The parameter C is important. Must be tuned to ensure we get a good model. 

Q:Why?
• Higher C tends to be strict, lower values of C tend to allow more errors in the learned 

model. C > 0.
44

Support Vector Machine (SVM)
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Support Vector Machine (SVM)
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ξ
ξ

ξ
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• Adding the slack variable, we have the new optimization problem. 

• This is often referred as soft-margin SVM
• Are we on the same page? 

• Q: Given a set of training examples {(xi, yi)}, 
which of the variables (𝒘𝒘, 𝝃𝝃,𝒃𝒃,𝑪𝑪, 𝒓𝒓,𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊) are known/unknown in the above 
optimization problem?
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Support Vector Machine (SVM)
• Q: What you should know to get going? 
• The intuition, where to find software (use SVMLight)
• Vector, line, length 
• Margin 
• QP with linear constraints 
• How to handle non-separable data (advanced!) 
 Slack variables 
Kernels to map to new feature space (Section 3.8.3 WDM)

• More math detail (for nerds!): Paper by C. Burges. A Tutorial on Support Vector 
Machines for Pattern Recognition

Arjun Mukherjee (UH)

http://research.microsoft.com/pubs/67119/svmtutorial.pdf


• In most (text) classification problems, words, n-grams serve as features.
• However, not all are relevant, useful to model building. Some are also redundant.

• Q: Why is this not good for model building/learning a classifier?

• How to solve this?

• Instead of using all features, select features which can separate the classes well, i.e., 
features having good discriminative strengths.

• Measures of discriminative strength: Information Gain (IG), Mutual Information, Chi-
Squared Statistic (𝜒𝜒2)
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Feature Selection



• Let C = {c1, c2, ..cm} and F = {f1, f2, …fn} denote the set of classes and features

• Three commonly used metrics:.

• (1) Information Gain: Expected change in entropy (of data, T) from a prior state to a state 
that takes some information (here, feature, a) as given.

• Q: What does this mean? If IG(f1) > IG(f2), what can we say about f1, f2?

• Q: How do we compute the probabilities? Assume two classes c1, c2 and features are 
words.
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Feature Selection



• Let C = {c1, c2, ..cm} and F = {f1, f2, …fn} denote the set of classes and features

• Three commonly used metrics:.

• (2) Mutual Information: Expected measure of association of two random variables, F, C.

• Compute probabilities using 2x2 contingency table.
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Feature Selection

Point wise 
mutual 

information 
(PMI)



• Let C = {c1, c2, ..cm} and F = {f1, f2, …fn} denote the set of classes and features

• Three commonly used metrics:.

• (3) Chi-Squared (𝜒𝜒2) Statistic: A measure for lack of independence between a feature f and 
class c.

• Compute probabilities using 2x2 contingency table.
• Q: If (𝝌𝝌𝟐𝟐 𝒇𝒇𝟏𝟏 > 𝝌𝝌𝟐𝟐 𝒇𝒇𝟐𝟐 ), which is a better feature? f1 or f2?

• Usually Chi-squared statistic and Information Gain (IG) have good discriminative 
strengths than MI.
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Feature Selection
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