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Set and Probability Theory

Sample space e
Event: Any collection of possible
outcomes for an experiment.

Events are subsets of sample space. vﬁv

Event occurrence = The outcome
of the experiment lies in set A.
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Set and Probability Theory

Basic operation on events: Union(U), Intersection (M), Complementation
C

C )

Theorem 1.1.4 For any three events, A, B, and C, defined on a sample space S,

a. Commutativity AUB=BUA,
ANB=BnNA;
b. Associativity AU{(BUCY=(AUBYUC,
AN{(BNC)=(ANB)NC;
c. Distributive Laws AN(BUC)=(ANB)U(ANC),
AU(BNC)=(AUB)N(AUC);
d. DeMorgan’s Laws (AU B)" = A°N B¢,
(AN B)" = AU B°.
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Set and Probability Theory

* Probability 1s a set function whose domain 1s a sigma algebra, B (Borel field
on S) and range is [0, 1]
* B can be thought of as set of all subsets of S

Definition 1.2.4 Given a sample space S and an associated sigma algebra B, a

probability function is a function P with domain B that satisfies

1. P(A) > 0 for all A € B.

2. P(S)=1.

3. If A, Az, ... € B are pairwise disjoint, then P(U$2, A;) = 3 2 P(A;).
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Defining Probability

* Scoring on dart board

Example 1.2.7 (Defining probabilities-II) The game of darts is played by
throwing a dart at a board and receiving a score corresponding to the number assigned
to the region in which the dart lands. For a novice player, it seems reasonable to
assume that the probability of the dart hitting a particular region is proportional to
the area of the region. Thus, a bigger region has a higher probability of being hit.

Referring to Figure 1.2.1, we see that the dart board has radius r and the distance
between rings is r/5. If we make the assumption that the board is always hit (see
Exercise 1.7 for a variation on this), then we have

L Area of region 1
P (scoring i points) = Aren of dast board "

For example

et O (Ef

P (scoring 1 point) = o 5

It is easy to derive the general formula, and we find that

(6 -4)2%—(5-1)?
52 ’

independent of 7 and r. The sum of the areas of the disjoint regions equals the area of

the dart board. Thus, the probabilities that have been assigned to the five outcomes
sum to 1, and, by Theorem 1.2.6, this is a probability function (see Exercise 1.8). ||

Figure 1.2.1. Dart board for Example 1.2.7

P (scoring i points) = i=1,...,9,



Probability Calculus

e Fundamental theorems

Theorem 1.2.8 If P is a probability function and A is any set in B, then
a. P(0) =0, where 0 is the empty set;

b. P(A) < 1; v
c. P(A%) =1- P(A).

Theorem 1.2.9 If P is a probability functio A and B are any sets in B, then
a. P(BN A®) = P(B) - P(ANB);| How?
b. P(AuB)= P(A)+ P(B) — P(AN B);
c. If AC B, then P(A) < P(B).
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Conditional Probability and Independence
* Q: Flip a coin 3 times. If there are 2 heads, what’s the probability that the first

flip 1s heads? B - sf i
p 1s heads Scenario: Flip a fair coin three times

A = “First flip is heads” P(A) =3}
— [HHH, HHT, HTH, HTT) A B
B = “Two flips are heads”  P(B) = 3 " THH
= THT
— (HHT, HTH, THH) THT
1T

Conditional probability

@ Flip a coin 3 times. If there are 2 heads, what’s the probability that
the first flip is heads?

@ Rephrase: Assuming B is true, what'’s the probability of A?

@ Since B is true, the coin flips are one of HHT, HTH, or THH.

@ Out of those, the outcomes where A is true are HHT and HTH
(which is A N B). So 2 out of the 3 possible outcomes in B give A.

@ The probability of A, given that B is true, is
P({HHT,HTH})  2/8 2 P4 | B) — P(ANB)

P({HHT,HTH,THH}) 3/8 3 P(B)

Prof. Tesler Conditional Probability and Bayes’ Theorem Math 186 / January 8, 2014 3/3

T Slide courtesy of G.Tesler’s Math 186 Arjun Mukherjee (UH) 7



Conditional Probability and Independence

* Conditioning can be thought of as shrinkage of the effective sample space

A B

P(A) = probability of A

measures A as a fraction of the sample space.
P(A | B) = probability of A, given B

measures A N B as a fraction of B:

P(ANB)

P(A|B) = 0

T Venn diagram courtesy of G.Tesler Math 186 Arjun Mukherjee (UH) 8



Conditional Probability and Independence

* Q: If a family has 2 children. Given that one of them 1s a girl what 1s the
probability that both are girls?

5 (7) or more or less (?)
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Conditional Probability and Independence

Q: If a family has 2 children. Given that one of them 1s a girl what 1s the
probability that both are girls?

Y5 (?7) or more or less (?)

Answer:

Sample space, S = {BB, BG, GB, GG}

P(both girl | one of them girl) =

B wls [ R
I
Wl

Arjun Mukherjee (UH)
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Conditional Probability and Independence

Three prisoners

Example 1.3.4 (Three prisoners) Three prisoners, A, B, and C, are on death
row. The governor decides to pardon one of the three and chooses at random the
prisoner to pardon. He informs the warden of his choice but requests that the name
be kept secret for a few days.

The next day, A tries to get the warden to tell him who had been pardoned. The
warden refuses. A then asks which of B or C will be executed. The warden thinks for
a while, then tells A that B is to be executed. |

Warden’s reasoning: Each prisoner has a % chance of being pardoned. Clearly,
either B or C must be executed, so [ have given A no information about whether
A will be pardoned.

A’'s reasoning: Given that B will be executed, then either A or C will be pardoned.
My chance of being pardoned has risen to .

Q: Whose reasoning (Warden’s or Prisoner A’s) 1s correct?
Answer: Warden. Why? See example 1.3.4 1in SI [Casella and Berger, 2002]
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Conditional Probability and Independence

Statistical independence
Definition 1.3.7 Two events, A and B, are statistically independent if

(1.3.8) P(AN B) = P(A)P(B).

Useftul (algebraic) representations

P(ANB) = P(A|B)P(B), P(ANB)=P(BIA)P(A). P(AIB)= P(BIA)p

P(B)’
Bayes’ rule

Theorem 1.3.5 (Bayes’ Rule) Let A;, Aa,... be a partition of the sample space,

and let B be any set. Then, for eachi=1,2,...,

P(B|A:)P(A:)
251 P(B|A;)P(A;)

P(A|B) =

Arjun Mukherjee (UH)



Conditional Probability and Independence

Example problem:

Two litters of a particular rodent species have been born, one with two brown-haired
and one gray-haired (litter 1), and the other with three brown-haired and two gray-

haired (litter 2). We select a litter at random and then select an offspring at random
from the selected litter.

(a) What is the probability that the animal chosen is brown-haired?

(b) Given that a brown-haired offspring was selected, what is the prnhabﬂlty that the
sampling was from litter 17

a.

Solution:
P(Brown Hair)

= P(Brown Hair|Litter 1)P(Litter 1) + P(Brown Hair|Litter 2)P(Litter 2)
2V (L) (3 (L)L
N 3 2 5 2/ 30

b. Use Bayes Theorem

. e — P(BH|L1)P(L1) _ 3GE) _ 1w
PiLitter 1{Brown Hair) - = 5 p i+ PBALPEZ ~ &~ 19

30
Arjun Mukherjee (UH) 13




Random Variable

 Arandom variable is a mapping (function) from Sample space, .S into real numbers, R.

Example 1.4.3 (Three coin tosses-II) Consider again the experiment of tossing
a fair coin three times from Example 1.3.13. Define the random variable X to be the
number of heads obtained in the three tosses. A complete enumeration of the value
of X for each point in the sample space is

s HHH HHT HTH THH TTH THT HTT TTT
X(s) 3 2 2 2 1 1 1 0

The range for the random variable X is X = {0,1,2,3}. Assuming that all eight
points in S have probability &, by simply counting in the above display we see that

the induced probability function on A" is given by

(L]

T 0
1
]

Q0L | =
mia | b

G | e

For example, Px(X = 1) = P({HTT,THT, TTH}) = %. Il

Arjun Mukherjee (UH) 14



Cumulative Distribution

e The cumulative distribution function (cdf) of a random variable is defined as F'x(x) =

Example 1.5.2 (Tossing three coins) Consider the experiment of tossing three

fair coins, and let X = number of heads observed. The cdf of X is F,
1.000 =
0 f-cc<z<0 i ATEEDT
750
s fo<z<l sl
(1.5.1) Fx(z)=4¢1 if1<z<?2 |
L
T if2<z<3 NE
8 = .125*—
L 1 1[ 3 5 I < 00. nl} 1 : i ‘l'! ol
The step function Fx(z) is graphed in Figure 1.5.1. There are several points to n Figure 1.5.1. Cdf of Example 1.5.2

from Figure 1.5.1. Fx is defined for all values of z, not just those in & = {0,1, 2, 3}.
Thus, for example,

Fx(2.5) = P(X < 2.5) = P(X = 0,1,0r 2) = E.

Arjun Mukherjee (UH) 15



Density and Mass Functions

« “Mass” and “density” function, fx(x) applies to discrete and continuous random variables

reSpectively. @)= P(X=2) forallz. P(X <) = Fx(z) = [

Example 1.6.4 (Logistic probabilities) For the logistic distribution of Example
1.5.5 we have

F-r
1 frul (1+e&
FXII} = 1+ e~®
and, hence, Hnsxsb]-jb Silx
a
d geucs
z) = —Fx(z) = : =F (b) - F (a)
Ix(z) o x(z) (1re-o) x x
The area under the curve fx(z) gives us interval probabilities (see Figure 1.6.1): | | i | : J
x
-4 =3 =2 -] 0 3 4
Pla< X <b) = Fx(b)—Fx(a)
b a Figure 1.6.1. Area under logistic curve
- [ @a- [ @)
b
= fx(z)dz

There are really only two requirements for a pdf (or pmf), both of which are im-
mediate consequences of the definition.
Arjun Muknerjee (UH) 16



Mean and Variance

* Mean/Expected value (15t moment) denoted by p or F|X]
Definition 2.2.1 The expected value or mean of a random variable g(X'), denoted
by Eg(X), is

2o 9(z) fx(z) dz if X is continuous

Eg(X) = { Y oex9(2) fx(z) =Y, cr9(z)P(X =z) if X is discrete,

* Variance (2" moment) denoted by o or Var[X]

Definition 2.3.2 The variance of a random variable X is its second central moment,
Var X = E(X — E X)2. The positive square root of Var X is the standard deviation
of X.

Var X =E(X —EX)? = E[X?-2XEX + (EX)?
=EX?-2(EX)?+(EX)?
=EX? - (EX)?,

Arjun Mukherjee (UH)
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Discrete Uniform Distribution
A random variable X ~ Un: (NN) when

(3.2.1)

P(X = z|N) = %,

2 2=12...,N,

where N is a specified integer. This distribution puts equal mass on each of the

outcomes 1,2,...,N.

Mean E[X| and Variance Var|X]

We then have
N N
1 N+1
EX =) zP(X =z|N) = ZI‘E ==
=1 =]
and
N
1 (N +1)(2N +1)
2 __ Y=\l
EX -Zm N 5 :
=]
and so

Var X = EX? - (EX)?
_(N+1)@N+1) (N+1)\?
I 6 2

_(N+1)(N-1)
M 12

Arjun Mukherjee (UH)
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Bernoulli Distribution

* A bernoulli trial 1s an experiment which has exactly two outcomes: success/failure

(e.g., tossing a coin yields S = {H, T}) with a parameter p (success probability)
* Arandom variable X ~ Bern (p) when

(3.2.3) X = { 1 with probability p 0<p<i,

0 with probability 1 — p, — e

The value X = 1 is often termed a “success” and p is referred to as the success
probability. The value X = 0 is termed a “failure.” The mean and variance of a
Bernoulli(p) random variable are easily seen to be

EX =1p+0(1 - p) =p,
Var X = (1 - p)*p+ (0 - p)*(1 — p) = p(1 - p).

Arjun Mukherjee (UH) 19



Binomial Distribution

e A binomial distribution models the total number of successes in a n 1dentical and

(independent) Bernoulli trails.
If n identical Bernoulli trials are performed, define the events

A; = {X =1 on the ith trial}, i=1,2,...,n.

If we assume that the events A,,..., A, are a collection of independent events (as is
the case in coin tossing), it is then easy to derive the distribution of the total number
of successes in n trials. Define a random variable Y by

Y = total number of successes in n trials.

The event {Y = y} will occur only if, out of the events A,,..., A,, exactly y of
them occur, and necessarily n — y of them do not occur. One particular outcome (one
particular ordering of occurrences and nonoccurrences) of the n Bernoulli trials might
be Ay NAyNA§N.--NA,_1 N AS. This has probability of occurrence

P(A1NANASN---NA,_1NAL) =pp(1 —p)e-+ - p(1 —p)
n—y

:py(l _p) 1

Arjun Mukherjee (UH) 20



Binomial Distribution

However, note that there are (Z) ways 1n which one can obtain the event {Y = y}

Since these are all independent trails, P(Y = y) 1s given by:

P(y:ylﬂ!p):: (:)pyilhp)nry! y=01112:*":n‘r

Which is also the pmf of the random variable Y ~ Bin(n, p)
Mean E[Y] = np and Variance Var[Y] = np(1 — p)

By the addition properties for independent random variables, the mean and variance of the
binomial distribution are equal to the sum of the means and variances of the » independent

Bernoulli variable
Arjun Mukherjee (UH) 21



Binomial Distribution

Example 3.2.3 (Dice probabilities) Suppose we are interested in finding the
probability of obtaining at least one 6 in four rolls of a fair die. This experiment can be
modeled as a sequence of four Bernoulli trials with success probability p = % = P(die

shows 6). Define the random variable X by

X = total number of 6s in four rolls.

Then X ~ binomial(4, §) and
P(at least one 6) = P(X >0)=1—- P(X =0)

-6 @

Arjun Mukherjee (UH)
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Binomial Distribution

e Comparing X; ~ Bin(n =20,p=0.5) , X, ~ Bin(n =20,p =0.7) ,
X3 ~ Bin(n = 40,p = 0.5). The PMF plot is shown below.

F'\.!_
= * p=0.5 and n=20
= p=0.7 and n=20
= 4 * p=0.5 and n=40
N ]
E_ L +*
=
L J
E_ o ™
=
g- |
= .

* . . ° .
E_'-—mlﬂ-' *adis *rassesnnsnne
= ] r I I I

0 10 20 30 40

. Note that P(X; = 10) > P(X, = 10) > P(X, = 10). But P(X; = 18) < P(X, = 18) <
P(X; = 18)What does this mean?
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Binomial Distribution

e Comparing X; ~ Bin(n =20,p=0.5) , X, ~ Bin(n =20,p =0.7) ,
X3 ~ Bin(n = 40,p = 0.5). The CDF plot is shown below.

=
—

- -—
m —
o - .—
._
:D st
=
= - -
=
._
i — p=0.5 and N=20
A - p=0.7 and N=20
- .—- - p:DS and IN=40
S | sssesrisssless®™]
e [ T 1 [ 1
0 10 20 30 40

* Note that Fy(X; = 14) > Fy(X, = 14) >Fy (X5 = 14). What does this mean?

Arjun Mukherjee (UH)



Binomial Distribution

e Comparing X; ~ Bin(n =20,p=0.5) , X, ~ Bin(n =20,p =0.7) ,
X3 ~ Bin(n = 40,p = 0.5). The CDF plot is shown below.

=
—

m—
= .-

=
= -

= - 4
=
._
i — p=0.5 and N=20
A - p=0.7 and N=20
- ¢ - p=0.5 and N=40
g ————t O -p-e .—'r_ p
[ T 1 [ 1
0 10 20 30 40

* Note that 50% of the cdf space is bounded by (X; < 10), (X, < 14), (X3 < 20). Where

10, 14 and 20 happens to be the means of X, X,, X3. What does this mean?
X ~ InvCDF(U)

Arjun Mukherjee (UH) 25



Poisson Distribution

Used for modeling events occurring in a fixed time interval with known average

rate (A\). E.g, # of phone calls per hour with a avg. rate of 3 call/hr.
A random variable X ~ Poisson(\) has the following PMF

e~ A\T

P(X =z|])) = —;

, xz=01.....

g Jn.)lz
!

Mean, E[X] = ) (Obviously!) EXEEI z

= e~ ? Z - - (substitute y =z — 1)

Arjun Mukherjee (UH) 26



Poisson Distribution

Poisson distribution models the degree of
spread around a known average rate of

occurrence.
X; ~ Poisson(A) models the # of
occurrences 1n the next time interval. 0.40—
*2 e A=1
0.35} |
- : 0.30f | * A=4
More precisely, given the average rate for el | o \—=10
temporal processes (e.g, mails per day, phone 7 U.ED |
: : x 0.201 [ oe
calls per hour, etc.), Poisson specifies the = .| 2 .
likelihood of counts (of mails, phone calls) 010l /| Eﬂi_f'm o
during one/next period of observation. oosl f @ et o _
0.00 ! "“'-"'“"D'-g'f"“'—-"‘* =N :!l:n.u_-_-_E_Q'_ﬂ:rlm_
. . “0 5 10 15 20
Comparing X; ~ Poisson(A=1) vs. X, ~ ;

Poisson(\ = 4) vs. X3 ~ Poisson(A = 10)

Arjun Mukherjee (UH) 27



Poisson Distribution

Example 3.2.4 (Waiting time) As an example of a waiting-for-occurrence ap-
plication, consider a telephone operator who, on the average, handles five calls every
3 minutes. What is the probability that there will be no calls in the next minute? At
least two calls?

If we let X = number of calls in a minute, then X has a Poisson distribution with
EX=X=2.So

P(no calls in the next minute) = P(X = 0)

i 0
_e 5;3(;)
0!
= e %3 = 189;

P(at least two calls in the next minute) = P(X > 2)
=1-PX=0)-P(X =1)

— .496. I

Arjun Mukherjee (UH)
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Categorical Distribution

Generalization of a Bernoulli trail

X ~ Cat(K;p =< p1,pa, ... . P >) is probability distribution that describes the result of
a random event that can take exactly 1 out of K possible outcomes, with the probability of
cach outcome separately specified.

It can be thought of as a K-way dice with K faces (or a roulette wheel!). P(i?" face) = p;.
Clearly, Y2 . p, =1

PMF is givenby P(X =1i|p) = p;,1 <i < K.

NOTE: This 1s important in various NLP/Text Mining models for sampling words out of a
distribution over words and often (loosely) referred to as a Multinomial distribution

Arjun Mukherjee (UH) 29



Categorical Distribution

PMF formulation using inversion bracket [ X = [, 1<i< K ¢

e
P X|p) = Hililpz[ !

Mean E[X = i] = p; and Variance Var[X = i] = p;(1 — p;).
Where | X = ] evaluatesto 1 if X = 4, otherwise 0. /

The possible probabilities form a standard K-1 dimensional

simplex.

Q: Given a random number generator, rand(0,1) how would you

devise a sampling scheme to sample from a Categorical

distribution? The possible probabilities forthe &
Hint: Try simulating a biased coin toss with Pr(H) = 0.7. Then gfﬁigiﬂﬁfzg sonwinfe = 3

extend to Cat(4, <0.1, 0.2, 0.4, 0.3>) P1+ P2 + pa = 1 embeddedin

F-space.

Arjun Mukherjee (UH) 30



Gaussian Distribution

Also called Normal distribution. Key distribution in all of Bayesian Statistics.

The normal distribution has two parameters, usually denoted by u and o?, which
are its mean and variance. The pdf of the normal distribution with mean p and
variance o2 (usually denoted by n(u, 0?)) is given by

(3.3.13) f(z|p, 0?) = V@I_ e~(@-W/(20%) o < 2 < o0
o
bbb
B H=0, 0?=0.2, = ]
When X ~N(u = 0,0° = 1), n N -
. . . ~1 H=0, 02=50, ="
we say X follows standard normal distribution. | / \ p=-2, 0%=05,— -

Arjun Mukherjee (UH)



Gaussian Distribution

For standard normal, Z ~ N(u = 0,0% = 1), actual probabilities are often looked up
using a table.

~ If X ~ n(u,o0?), then the random variable Z = (X —u) /o has a n(0, 1) distribution,
also known as the standard normal. This is easily established by writing

P(Z£31=P(X;#£z)

= P(X < z0 + u)

o4
I / ”e—tm-u}‘ma’}dx
270 J-0o

1 * _a T —
. /2 . _ H
— e dt, substitute ¢t =
v 2T f_m ( o )

showing that P(Z < z) is the standard normal cdf.

L
_
[
N

R
-4 -3 -2 -l 0 2

Figure 3.3.1. Standard normal density
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Gaussian as Binomial Approximation

Example 3.3.2 (Normal approximation) Let X ~ binomial(25,.6). We can
approximate X with a normal random variable, Y, with mean p = 25(.6) = 15 and

standard deviation o = ((25)(.6)(.4))"/? = 2.45. Thus

P(X <13)~ P(Y <13) = < 1B=15) _ p(z < —82) = 206, | How?

2.45

while the exact binomial calculation gives

1 3 2 5 STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.
z

0 01 ) a3 K 86 o o
I '25 -I -39 | 00005 OH04 00004 000 00004 00004 00003
— ooa7 00007 D0oas _oobas oo00s_D00as Donos
P(X < 13) = (ﬁ) ,4] — 267 S
T 1 6 | oo0i6 00015 0014 00014 00013 oot
o023 o002z owoz1__ooozo o019 oow17
I 00034 Doa31 00027
00045 00039
I= 00069 00056
00097 00079
w135 o011
w187 0154
00256 00212
w0347 0289
00466 00391
00621 00523
00520 00695
01072 00914
01390 o2z e
01786 DISTE 01539
02275 00801970
02672 0255 02500
3593 M6 034 !
04457 DIG 03920 03673
05450 DIBT 04846 Diss1
6651 De0sT 05938 Dsse2
08076 0735 072s =]
09680 08851 08601 08226
nso7 16510383 DoRss
13567 12507 am0z iz
15866 1468614457 13786
18406 [EITT=E 16109
21186 19766 19489 15673
24196 22665 22363 21476
THazs 25785 25463 2510
30854 9106 28774 27760
3458 32636 3278 31207
38209 36307 352 )
4207 A0 39743 38591
46017 A8 43644 A2dES
50000 AS006 _ATEOS 46114
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Beta Distribution

A random variable, X ~ Beta(a, 8) is continuous distribution in [0, 1] with two shape
parameters.

(3.3.16) f(z|a,B) = ——

B(a, 3)
where B(a, 3) denotes the beta function,

*'(1-z)°!, 0<z<l, a>0, B>0,

1
B(a, B) = /ﬂ z* (1 —-z)P ' dz.

The beta function is related to the gamma function through the following identity:

(3.3.17) B(a, B) = %%]
Beta distribution 1s often used to model proportions because they lie in [0, 1].
Mean E[X] and Variance Var|X]:

¥ af

a+ — (a+ 8 (a+0+1)

EX =

Arjun Mukherjee (UH) 34



Beta Distribution

* Comparing different Beta densities and shape parameters.

) (' af
* Mean E[X] and Variance Var[X]: EX=7775 and VarX = e TH+r1)

* Q: What does the mean value tell us? How do we relate them to the curve?

25"' —  a=0=05
e n=h/4=1
— a=1/3=3
.3 1] ¥ PRVPIVRY SURTIN. VAP e —  w=2F=2 ]
[ — a=233=5
1.5F b : 4_.,_ ..........................................
w I ~ T
5 ~
| .
T.0F S / ..................................... ............... \ ....................
/ § ™,
b ff(// \
L fx' : \
0.5 ’ U S SRR 4. iRl ]
:’f : \\\
r :.r" \\\
" f; : . : \,
'%.D 0.2 0.4 0.6 0.8 1.0
- 4
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Random Vectors in Euclidean R

An n-dimensional random vector (which 1s also a random variable),
X =< X4,X,, ... X, > is a function form sample space S to R"

Bivariate case for two tosses of fair dice

Example 4.1.2 (Sample space for dice) Consider the experiment of tossing
two fair dice. The sample space for this experiment has 36 equally likely points and
was introduced in Example 1.3.10. For example, the sample point (3, 3) denotes the
outcome in which both dice show a 3; the sample point (4, 1) denotes the outcome in
which the first die shows a 4 and the second die a 1; etc. Now, with each of these 36
points associate two numbers, X and Y. Let

X = sum of the two dice and Y = |difference of the two dice.

For the sample point (3,3), X =3+3=6and Y =|3 - 3| =0. For (4,1), X =5 and
Y = 3. These are also the values of X and Y for the sample point (1,4). For each of
the 36 sample points we could compute the values of X and Y. In this way we have
defined the bivariate random vector (X,Y').
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Random Vectors in Euclidean R”

Bivariate case for two tosses of fair dice

Having defined a random vector (X, Y), we can now discuss probabilities of events
that are defined in terms of (X,Y). The probabilities of events defined in terms of
X and Y are just defined in terms of the probabilities of the corresponding events
in the sample space S. What is P(X = 5 and Y = 3)? You can verify that the only
two sample points that yield X = 5 and Y = 3 are (4,1) and (1,4). Thus the event
“X =5and Y = 3" will occur if and only if the event {(4,1),(1,4)} occurs. Since
each of the 36 sample points in S is equally likely,

P({{4: 1)!(1!4]}) = % = %

Thus,

P(X=5andY=3]=-1%.

How does the joint distribution of (X, Y) look like?

The joint PMF (or PDF) gives us the complete probability distribution of the random
vector (X,Y) [1.€., the values it can take and the probabilities of those events (X,Y)
attaining those values].
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Joint and Marginal Distributions

* The joint distribution for (X, Y) in the previous example T R
03 % , 3% , 3% , % %
*  What happens if we care only about one random variable ; 18 L s 1 18 1 L L i
of our random vector? E.g., What is P(Y=0)? 3 W, 18
; 18 ]_]a_ 18
* We need marginal distributions, 1.e., P(Y=0, X 1s any
allowable Value). Table 4.1.1. Values of the joint pmf f(x,y)

Theorem 4.1.6 Let (X,Y) be a discreie bivariate random vector with joint pmf
fx,v(z,y). Then the marginal pmfs of X and Y, fx(z) = P(X = z) and fy(y) =
P(Y = y), are given by

fx(2) =) fxy(z,y) and fy(y)=)_fxy(z,v).

yER TER
fr(0) = fx,y(2,0) + fx,y(4,0) + fx,v(6,0)

+fx,v(8,0) + fx,y(10,0) + fx,v(12,0)
1

—

3
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Joint and Marginal: Continuous Case

* Similarly, we can define joint and marginal for continuous random vectors

Definition 4.1.10 A function f(z,y) from R? into R is called a joint probability

density function or joint pdf of the continuous bivariate random vector (X,Y) if, for
every A C R?,

P((X,Y}EA)=Lff(m,y)d;rdy.

The marginal probability density functions of X and Y are also defined as in the
discrete case with integrals replacing sums. The marginal pdfs may be used to compute
probabilities or expectations that involve only X or Y. Specifically, the marginal pdfs
of X and Y are given by

[x(z) = /m f(z,y)dy, —o0 <z < o0,
(4.1.3) il

Iy (y) =/ f(z,y)dz, —o0<y<o0.
-0
Any function f(z,y) satisfying f(z,y) > 0 for all (z,y) € ®? and

1= [ [ f@deay
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Dirichlet Distribution

Generalization of Beta. A multivariate K-dimensional random variable, X = <
X1, Xy, . X > ~Dir(K,a =< aq, @, as, ...a, >) on the K-1 simplex
(RX~1) having the following den51ty functlon

[' o
f{rla"'!IH—l;ﬂi!" y ¥ ’ H T 1 B 1_[3 lh( }! a:(ﬂ-l!...
T (S
The density exists on the K-1 dimensional simplex defined by
Ty, s TR—1 =2 0
I]_—I—"'—I—Ij{_]_‘f-il
T =1—2y— - —Tp_4

Dirichlet distributions are often used (as priors) with multinomial/categorical
distributions for modeling word emission.

ai

Mean E[X;] = — where a, = Y q;

(04}
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Dirichlet Distribution: Interpretation

Consider the Dirichlet distribution of order K = 3.

If we plot the samples of X = < X{,X5,X3 > ~ Dir(K = 3,a =< aq, a,, a3 >) using
a concentration heat map, we get

BF e 05

™ -
Ry

11 1 1

a = [10, 10, 10] a = [2,5,15)

Base measure defines the mean distribution
Concentration parameter () governs density. Values >/< 1 prefer dense/spare variates

respectively (1.e., individual samples of a draw are close/far away from each other).
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Dirichlet Distribution: Interpretation

Another example of a Dirichlet distribution of order K = 3.

Dirichlet(1,1,1) ichlet(2,2,2) Dirichlet(10,16,10)

k‘\‘\

Dirichlet(2,10,2) Dirichlet(2,2,10) Dirichlet(0.9,0.9,0.9

IRANAN

Base measure defines the mean distribution

Concentration parameter (a) governs density. Values >/< 1 prefer dense/spare variates
respectively (1.e., individual samples of a draw are close/far away from each other).
Also see D.Blei's tutorial (slides 32-39)
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http://www.cs.princeton.edu/%7Eblei/blei-mlss-2012.pdf

Dirichlet Distribution: String Cuts

A more tangible example!

Consider you want to cut a string of length = 1 unit to K=3 pieces of different lengths

111

where each of the K=3 pieces had a designated average length (E )30 respectively)

with some variance. How would different string cuts look like?

1f2 1/3 1 /6

he above cuts are nothing but samples of the Dirichlet distribution, Dir (K = 3, a =<
11

, - , - >) L]
3’6

Nlr—\ﬁ
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