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• Sample space

• Event: Any collection of possible 
outcomes for an experiment.

• Events are subsets of sample space. 

• Event occurrence ⇒ The outcome 
of the experiment lies in set A.
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Set and Probability Theory



• Basic operation on events: Union(∪), Intersection (∩), Complementation 
( 𝐶𝐶)
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Set and Probability Theory



• Probability is a set function whose domain is a sigma algebra, B (Borel field 
on S) and range is [0, 1]

• B can be thought of as set of all subsets of S
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Set and Probability Theory



• Scoring on dart board
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Defining Probability



• Fundamental theorems
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Probability Calculus

How?



• Q: Flip a coin 3 times. If there are 2 heads, what’s the probability that the first 
flip is heads? 
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Conditional Probability and Independence
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• Conditioning can be thought of as shrinkage of the effective sample space 
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Conditional Probability and Independence
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• Q: If a family has 2 children. Given that one of them is a girl what is the 
probability that both are girls? 

½ (?) or more or less (?)
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Conditional Probability and Independence
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• Q: If a family has 2 children. Given that one of them is a girl what is the 
probability that both are girls? 

• ½ (?) or more or less (?)

• Answer:

Sample space, S = {BB, BG, GB, GG} 

P(both girl | one of them girl) =  
1
4
3
4

= 1
3
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Conditional Probability and Independence
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• Three prisoners 

• Q: Whose reasoning (Warden’s or Prisoner A’s) is correct?
• Answer: Warden. Why? See example 1.3.4 in SI [Casella and Berger, 2002]

11

Conditional Probability and Independence
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• Statistical independence

• Useful (algebraic) representations

• Bayes’ rule
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Conditional Probability and Independence
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• Example problem:

• Solution:

13

Conditional Probability and Independence
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• A random variable is a mapping (function) from Sample space, 𝑆𝑆 into real numbers, ℝ.
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Random Variable
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• The cumulative distribution function (cdf) of a random variable is defined as 𝐹𝐹𝑋𝑋 𝑥𝑥 =
𝑃𝑃𝑋𝑋 𝑋𝑋 ≤ 𝑥𝑥 ,∀𝑥𝑥
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Cumulative Distribution
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• “Mass” and “density” function, 𝑓𝑓𝑋𝑋(𝑥𝑥) applies to discrete and continuous random variables 
respectively.
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Density and Mass Functions
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• Mean/Expected value (1st moment) denoted by 𝜇𝜇 or 𝐸𝐸[𝑋𝑋]

• Variance (2nd moment) denoted by 𝜎𝜎2 or 𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋]
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Mean and Variance
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• A random variable 𝑋𝑋 ~ 𝑈𝑈𝑈𝑈𝑈𝑈 (𝑁𝑁) when

• Mean 𝐸𝐸[𝑋𝑋] and Variance 𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋]
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Discrete Uniform Distribution
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• A bernoulli trial is an experiment which has exactly two outcomes: success/failure 
(e.g., tossing a coin yields S = {H, T}) with a parameter p (success probability)

• A random variable 𝑋𝑋 ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (𝑝𝑝) when
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Bernoulli Distribution
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• A binomial distribution models the total number of successes in a n identical and 
(independent) Bernoulli trails.
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Binomial Distribution
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• However, note that there are 𝑛𝑛
𝑦𝑦 ways in which one can obtain the event {𝑌𝑌 = 𝑦𝑦}

• Since these are all independent trails, P(𝑌𝑌 = 𝑦𝑦) is given by:

• Which is also the pmf of the random variable 𝑌𝑌 ~ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛, 𝑝𝑝)

• Mean 𝐸𝐸[𝑌𝑌] = 𝑛𝑛𝑛𝑛 and Variance 𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌] = 𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)

• By the addition properties for independent random variables, the mean and variance of the 
binomial distribution are equal to the sum of the means and variances of the n independent 
Bernoulli variable
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Binomial Distribution
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Binomial Distribution
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• Comparing 𝑋𝑋1 ~ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛 = 20, 𝑝𝑝 = 0.5) , 𝑋𝑋2 ~ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛 = 20, 𝑝𝑝 = 0.7) ,
𝑋𝑋3 ~ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛 = 40, 𝑝𝑝 = 0.5). The PMF plot is shown below.

• Note that 𝑃𝑃 𝑋𝑋1 = 10 > 𝑃𝑃 𝑋𝑋2 = 10 > 𝑃𝑃 𝑋𝑋3 = 10 . But  𝑃𝑃 𝑋𝑋1 = 18 < 𝑃𝑃 𝑋𝑋2 = 18 < 
𝑃𝑃 𝑋𝑋3 = 18 What does this mean?
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Binomial Distribution
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• Comparing 𝑋𝑋1 ~ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛 = 20, 𝑝𝑝 = 0.5) , 𝑋𝑋2 ~ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛 = 20, 𝑝𝑝 = 0.7) ,
𝑋𝑋3 ~ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛 = 40, 𝑝𝑝 = 0.5). The CDF plot is shown below.

• Note that 𝐹𝐹𝑋𝑋 𝑋𝑋1 = 14 > 𝐹𝐹𝑋𝑋 𝑋𝑋2 = 14 >𝐹𝐹𝑋𝑋 𝑋𝑋3 = 14 . What does this mean?
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Binomial Distribution
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• Comparing 𝑋𝑋1 ~ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛 = 20, 𝑝𝑝 = 0.5) , 𝑋𝑋2 ~ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛 = 20, 𝑝𝑝 = 0.7) ,
𝑋𝑋3 ~ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛 = 40, 𝑝𝑝 = 0.5). The CDF plot is shown below.

• Note that 50% of the cdf space is bounded by 𝑋𝑋1 < 10 , 𝑋𝑋2 < 14 , 𝑋𝑋3 < 20 . Where 
10, 14 and 20 happens to be the means of 𝑋𝑋1, X2, X3. What does this mean? 
𝑋𝑋 ~ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑈𝑈)
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Binomial Distribution
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• Used for modeling events occurring in a fixed time interval with known average 
rate (𝜆𝜆). E.g, # of phone calls per hour with a avg. rate of 3 call/hr.

• A random variable 𝑋𝑋 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆) has the following PMF

• Mean, 𝐸𝐸[𝑋𝑋] = 𝜆𝜆 (Obviously!)
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Poisson Distribution
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• Poisson distribution models the degree of
spread around a known average rate of
occurrence.

• 𝑋𝑋1 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆) models the # of
occurrences in the next time interval.

• More precisely, given the average rate for
temporal processes (e.g, mails per day, phone
calls per hour, etc.), Poisson specifies the
likelihood of counts (of mails, phone calls)
during one/next period of observation.

• Comparing 𝑋𝑋1 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆 = 1) vs. 𝑋𝑋2 ~
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆 = 4) vs. 𝑋𝑋3 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆 = 10)
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Poisson Distribution
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Poisson Distribution
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• Generalization of a Bernoulli trail

• 𝑋𝑋 ~ 𝐶𝐶𝐶𝐶𝐶𝐶(𝐾𝐾; 𝒑𝒑 =< 𝑝𝑝1, 𝑝𝑝2,… . 𝑝𝑝𝐾𝐾 >) is probability distribution that describes the result of 
a random event that can take exactly 1 out of K possible outcomes, with the probability of 
each outcome separately specified. 

• It can be thought of as a K-way dice with K faces (or a roulette wheel!). P(𝑖𝑖𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) = 𝑝𝑝𝑖𝑖. 
Clearly, ∑𝑖𝑖=1

𝐾𝐾 𝑝𝑝𝑖𝑖 = 1

• PMF is given by 𝑃𝑃(𝑋𝑋 = 𝑖𝑖|𝒑𝒑) = 𝑝𝑝𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝐾𝐾.

• NOTE: This is important in various NLP/Text Mining models for sampling words out of a 
distribution over words and often (loosely) referred to as a Multinomial distribution

29

Categorical Distribution
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• PMF formulation using inversion bracket [𝑋𝑋 = 𝑖𝑖], 1 ≤ 𝑖𝑖 ≤ 𝐾𝐾

• 𝑃𝑃 𝑋𝑋 𝑝𝑝 = ∏𝑖𝑖=1
𝐾𝐾 𝑝𝑝𝑖𝑖

[𝑋𝑋=𝑖𝑖]

• Mean 𝐸𝐸[𝑋𝑋 = 𝑖𝑖] = 𝑝𝑝𝑖𝑖 and Variance 𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋 = 𝑖𝑖] = 𝑝𝑝𝑖𝑖 1 − 𝑝𝑝𝑖𝑖 . 
Where [𝑋𝑋 = 𝑖𝑖] evaluates to 1 if 𝑋𝑋 = 𝑖𝑖, otherwise 0.

• The possible probabilities form a standard K-1 dimensional 
simplex.

• Q: Given a random number generator, rand(0,1) how would you 
devise a sampling scheme to sample from a Categorical 
distribution?

• Hint: Try simulating a biased coin toss with Pr(H) = 0.7. Then 
extend to Cat(4, <0.1, 0.2, 0.4, 0.3>)
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Categorical Distribution
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• Also called Normal distribution. Key distribution in all of Bayesian Statistics.

• When 𝑋𝑋 ~ 𝑁𝑁(𝜇𝜇 = 0,𝜎𝜎2 = 1), 
we say X follows standard normal distribution.
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Gaussian Distribution
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• For standard normal, Z ~ 𝑁𝑁(𝜇𝜇 = 0,𝜎𝜎2 = 1), actual probabilities are often looked up 
using a table.
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Gaussian Distribution
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Gaussian as Binomial Approximation
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How?

https://www.stat.tamu.edu/%7Elzhou/stat302/standardnormaltable.pdf
https://www.stat.tamu.edu/%7Elzhou/stat302/standardnormaltable.pdf


• A random variable, X ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛼𝛼,𝛽𝛽) is continuous distribution in [0, 1] with two shape 
parameters.

• Beta distribution is often used to model proportions because they lie in [0, 1].
• Mean 𝐸𝐸[𝑋𝑋] and Variance 𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋]:

34

Beta Distribution
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• Comparing different Beta densities and shape parameters.

• Mean 𝐸𝐸[𝑋𝑋] and Variance 𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋]:
• Q: What does the mean value tell us? How do we relate them to the curve?
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Beta Distribution

Arjun Mukherjee (UH)



• An n-dimensional random vector (which is also a random variable), 
X =< X1, X2, … Xn > is a function form sample space S to ℝ𝑛𝑛

• Bivariate case for two tosses of fair dice
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Random Vectors in Euclidean ℝn

Arjun Mukherjee (UH)



• Bivariate case for two tosses of fair dice

• How does the joint distribution of (X, Y) look like?
• The joint PMF (or PDF) gives us the complete probability distribution of the random 

vector (X,Y) [i.e., the values it can take and the probabilities of those events (X,Y) 
attaining those values].
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Random Vectors in Euclidean ℝn
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• The joint distribution for (X, Y) in the previous example

• What happens if we care only about one random variable 
of our random vector? E.g., What is P(Y=0)?

• We need marginal distributions, i.e., P(Y=0, X is any 
allowable value). 
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Joint and Marginal Distributions
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• Similarly, we can define joint and marginal for continuous random vectors
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Joint and Marginal: Continuous Case
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• Generalization of Beta. A multivariate K-dimensional random variable, 𝐗𝐗 = <
X1, X2, … XK > ~ 𝐷𝐷𝐷𝐷𝐷𝐷(𝐾𝐾,𝜶𝜶 =< 𝛼𝛼1,𝛼𝛼2,𝛼𝛼3, …𝛼𝛼𝑘𝑘 >) on the K-1 simplex 
(ℝ𝐾𝐾−1) having the following density function.

• The density exists on the K-1 dimensional simplex defined by

• Dirichlet distributions are often used (as priors) with multinomial/categorical 
distributions for modeling word emission.

• Mean 𝐸𝐸 𝑋𝑋𝑖𝑖 = 𝛼𝛼𝑖𝑖
𝛼𝛼0

where 𝛼𝛼0 = ∑𝛼𝛼𝑖𝑖
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Dirichlet Distribution
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• Consider the Dirichlet distribution of order K = 3.

• If we plot the samples of 𝐗𝐗 = < X1, X2, X3 > ~ 𝐷𝐷𝐷𝐷𝐷𝐷(𝐾𝐾 = 3,𝜶𝜶 =< 𝛼𝛼1,𝛼𝛼2,𝛼𝛼3 >) using 
a concentration heat map, we get

• Base measure defines the mean distribution
• Concentration parameter (𝛼𝛼) governs density. Values >/< 1 prefer dense/spare variates

respectively (i.e., individual samples of a draw are close/far away from each other).
41

Dirichlet Distribution: Interpretation
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• Another example of a Dirichlet distribution of order K = 3.

• Base measure defines the mean distribution
• Concentration parameter (𝛼𝛼) governs density. Values >/< 1 prefer dense/spare variates

respectively (i.e., individual samples of a draw are close/far away from each other).
• Also see D.Blei's tutorial (slides 32-39)
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Dirichlet Distribution: Interpretation
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http://www.cs.princeton.edu/%7Eblei/blei-mlss-2012.pdf


• A more tangible example!

• Consider you want to cut a string of length = 1 unit to K=3 pieces of different lengths 
where each of the K=3 pieces had a designated average length (1

2
, 1
3

, 1
6

respectively) 
with some variance. How would different string cuts look like?

• The above cuts are nothing but samples of the Dirichlet distribution, 𝐷𝐷𝐷𝐷𝐷𝐷(𝐾𝐾 = 3,𝜶𝜶 =<
1
2

, 1
3

, 1
6

>). 43

Dirichlet Distribution: String Cuts
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