Homework 1

Text Retrieval and Zipf's Law

Natural Language Processing

Instructor: Arjun Mukherjee

Q1: Consider the following mini corpus containing 4 documents: [2 points]

Doc 1: new home sales top forecasts Doc 2: home sales rise in july Doc 3: increase in home sales in july Doc 4: july new home sales rise

Compute the inverted index for this collection as discussed in class.

Q2: What is the time complexity (O) in terms of the length of the posting lists for the most efficient way of computing/retrieving all documents for the following queries? [4 points]

(a) a AND b

(b) NOT a

(c) NOT b

(d) a OR b (assuming you have a hash set data-structure which can perform lookups in O(1), i.e., constant time)

For terms/words, a, b, the length of the posting list is L(a), L(b). So your final answer should be in big-O notation. Something like $O(g(\cdot))$ where $g(\cdot)$ is a function of L(a), L(b). Also assume that the total number of documents in the corpus is N. Show/give reasons as to how you arrived at your solution.

Q3. Recommend the most efficient query processing order for the following query: [2 point]

kaleidoscope AND tangerine AND marmalade AND trees Assume that these terms in a given corpus have the following length of their posting lists:

Term	Size	of	posting	list
kaleidoscope	87009			
marmalade	10791	LЗ		
tangerine	4665	53		
trees	31681	L2		

Q4: For what value of ρ and B does the Mandelbrot's law $f = P(r + \rho)^{-B}$ becomes the Zipf's law? [2 points]