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Road map

✦ Basic ideas behind the notion of Swarm Intelligence
✦ Nature’s examples

✦ Characteristics of Swarm Intelligence design

✦ Instances of Swarm Intelligence design: COIN and PSO

✦ Stigmergy and self-organization in insect societies

✦ The Ant Colony Optimization (ACO) metaheuristic

✦ Other metaheuristics for combinatorial optimization problems

✦ Application of ACO to routing in wired networks

✦ Application of ACO to routing in mobile ad hoc networks (F. Ducatelle)

✢→ These overheads are redundant in number and words, but
are intended to be a sort of booklet to be used later as a
reference, if you will get interested in the topics which will be
discussed
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Swarm Intelligence: what’s this?

✦ A computational and behavioral metaphor for problem solving that
originally took its inspiration from the Nature’s examples of collective
behaviors (from the end of ’90s)

✧ Social insects (ants, termites, bees, wasps): nest building,
foraging, assembly, sorting,. . .

✧ Vertebrates: swarming, flocking, herding, schooling

✦ Any attempt to design algorithms or distributed problem-solving
devices inspired by the collective behavior of social insects and other
animal societies [Bonabeau, Dorigo and Theraulaz, 1999]

✢ . . . however, we don’t really need to “stick” on examples from Nature,
whose constraints and targets might differ profoundly from those of
our environments of interest . . .
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Nature’s examples of SI

Fish schooling ( c©CORO, CalTech) 3



Nature’s examples of SI (2)

Birds flocking in V-formation ( c©CORO, Caltech)
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Nature’s examples of SI (3)

Termites’ nest ( c©Masson)
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Nature’s examples of SI (4)

Honeybees’ comb ( c©S. Camazine)
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Nature’s examples of SI (5)

Swarm of killer bees
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Nature’s examples of SI (6)

Killer bees ( c©S. Camazine) Bees’ nest ( c©S. Camazine)
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Nature’s examples of SI (7)

Ant chain ( c©S. Camazine) Ant wall ( c©S. Camazine)

9



Nature’s examples of SI (8)

Wasps’ nest ( c©G. Theraulaz)
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Nature’s examples of SI (9)

✦ Ants: leaf-cutting, breeding, chaining

✦ Ants: Food catering

✦ Bees: scout dance
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What all these behaviors have in common?

✦ Distributed society of autonomous individuals/agents

✦ Control is fully distributed among the agents

✦ Communications among the individuals are localized

✦ Stochastic agent decisions (partial/noisy view)

✦ System-level behaviors appear to transcend the behavioral
repertoire of the single (minimalist) agent

✦ Interaction rules seem to be simple

✦ The overall response of the system features:
✧ Robustness
✧ Adaptivity
✧ Scalability
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I had a dream . . .

. . . I can generate complexity out of simplicity: I can put all the
previous ingredients in a pot, boil them down and get good, robust,
adaptive, scalable algorithms for my problems!

. . . it reminds me of alchemists . . .
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. . . but it’s just about design choices

There’s no magic!

✦ Task complexity is a conserved variable

✦ Given a Problem + Constraints + Costs + Optimization Criteria:
How do I solve it?

✦ The final design choice is usually a rather obscure match
between designer’s expertise, problem’s characteristics,
constraints and targets
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Swarm Intelligence design means . . . ?

✦ Allocating computing resources to a (large?) number of
minimalist units (swarm?)

✦ No centralized control (not at all?)

✦ Units interact in a simple and localized way

✦ Units do not need a representation of the global task

✦ Stochastic components are important

✦ . . . and let generate useful global behaviors by
self-organization

✢ Modular design shifting complexity from modules to protocols
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The dark side of SI design

✢ Predictability is a problem in distributed bottom-up approaches

✢ Efficiency is another issue (BTW, are ants efficient?)

✢ What’s the overall cost? (self-organization is dissipative)

✢ Sometimes is a lazy shortcut to problem solution

✢ Loads of parameters to assign (e.g., how many agents?)

✦ Nature had millions of years to “design” effective systems by
ontogenetic and phylogenetic evolution driven by selection,
genetic recombination and random mutations,
but we have less time. . . 16



A (tentative) more general definition of SI

✦ Given a set of N � 1 communicating and distributed
autonomous agents (e.g., cells, ants, communication devices,
computer processes) each engaged in one or more tasks, and
with no or little centralized control,

✦ if from the local interactions among the agents results a
process of self-organization that gives rise to interesting/useful
behaviors at the system level, we can say that we are
observing a phenomenon of Swarm Intelligence

✢ Does Collective Intelligence sound better?

✢ Do we need restriction on aspects like: Nature-inspiration,
short-range locality, agent simplicity, awareness of global task,
homogeneity,. . . ? −→ Parameters
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Key elements of SI

✦ The swarm lives distributed in some abstract or real space

✦ Local communication allows to get nonlinear global behaviors

✦ Structures resulting from individuals’ local interactions
develops by a process of Self-organization
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Self-organization: definitions

✢ Self-organization consists of set of dynamical mechanisms whereby structure
appears at the global level as the result of interactions among lower-level
components. The rules specifying the interactions among the system’s
constituent units are executed on the basis of purely local information,
without reference to the global pattern, which is an emergent property of the
system rather than a property imposed upon the system by an external
ordering influence [Bonabeau et al., 1997]

✢ More general: any dynamic system from which order emerges entirely
as a result of the properties of individual elements in the system, and
not from external pressures (e.g., Beńard cellular convection,
Belousov-Zhabotinski reactions)

✢ In more abstract terms: self-organization is related to an increase of
the statistical complexity of the causal states of the process [Shalizi,
2001]: when a number of units have reached organized coordination,
it is necessary to retain more information about the inputs in order to
make a statistically correct prediction
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Characteristics of self-organization (in biology)

Basic ingredients:

✦ Multiple interactions

✦ Amplification of fluctuations and Randomness

✦ Positive feedback (e.g., recruitment and reinforcement)

✦ Negative feedback (e.g., limited number of available foragers)

Signatures:

✦ Creation of spatio-temporal structures (e.g., foraging trails, nest
architectures, social organization)

✦ Multistability (e.g., ants exploit only one of two food sources)

✦ Existence of bifurcations when some parameters change (e.g.,
termites move from a non-coordinated to a coordinated phase only if
their density is higher than a threshold value)
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Main forms of communication

✦ Point-to-point: antennation, trophallaxis (food or liquid
exchange), mandibular contact, direct visual contact, chemical
contact, . . . unicast radio contact!

✦ Broadcast-like: the signal propagates to some limited extent
throughout the environment and/or is made available for a
rather short time (e.g., use of lateral line in fishes to detect
water waves, generic visual detection, actual radio broadcast

✦ Indirect: two individuals interact indirectly when one of them
modifies the environment and the other responds
asynchronously to the modified environment at a later time.
This is called stigmergy [Grassé, 1959] (e.g., pheromone
laying/following, post-it, web)
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Ant algorithms, Particle swarms and . . .

✦ Stigmergy has led to Ant Algorithms and in particular to Ant
Colony Optimization (ACO) [Dorigo & Di Caro, 1999]

✦ Broadcast-like communication is related to schooling and
flocking behaviors, that have inspired Particle Swarm
Optimization [Kennedy & Eberhart, 2001]. Neighbor broadcast
is also at the basis of Cellular Automata [Wolfram, 1984], one
of the early examples of swarm computation

✦ The use of all the three forms of communication encompasses
more general systems showing collective organized behaviors
(COIN, immune systems, cultural algorithms, neural systems,
human organizations, mobile ad hoc networks,. . . )
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Examples of SI from biology

✢ Immune system: high diversity, mobility, distributed, dynamic,
pipelined strategies, several communication strategies,
multi-objective, learning, memory . . .

✢ Brains, slime molds, gene regulatory networks . . .

✢ Our body: a swarm of swarms [Hoffmeyer, 1995] 23



. . . and from “us”

✢ Routing in communications networks: a system of distributed
and adaptive controllers search online for good communication
paths between computers

✢ Artificial Neural Networks: artificial neurons connected through
artificial synapses that learn to approximate functions, solve
classification tasks, control robot motion,. . .

✢ Artificial Immune Systems: patterns (antigens) identification
and memorization, coupled with proliferation of pattern
matching agents (antibodies), are used for intrusion detection
and removal, and content search [Ganguly & Deutsch, 2005]

✢ Crowd control: rush hours in Tokyo’s Shinjuku station, movies
like ANTZ or Titanic

✢ Economy: a new view beyond classical economics which
denies the direct interaction between individuals [Ormerod,
1998]; empowerment in companies
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Collective robotics

✢ Collective robotics is attracting a lot of interest: groups of
robots play soccer (RoboCup), unload cargo, patrol vast areas,
cluster objects, self-assemble (Swarm-bots), and will maybe
“soon” participate to war :-( . . .

✦ Robot assembly to cross a gap

✦ Robot assembly to transport a prey

✢ Look at RoboCup (www.robocup.org) and Swarm-bots
(www.swarm-bots.org)!
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Back to the algorithmic frameworks. . .

✢ Ant Colony Optimization (ACO) and Particle Swarm Optimization
(PSO) are the most popular frameworks based on the original notion
of SI (CA?)

✢ At the core of the design of ACO and PSO there is the specific way the
agents communicate in the spatial environment. These two
optimization frameworks focus on two different ways of distributing,
accessing and using information in the environment

✢ In ACO and PSO agents are rather simple, since they do not learn at
individual level

✢ The agents in the Collective Intelligence (COIN) framework are
reinforcements learners, therefore they can be arbitrarily complex.
COIN’s design focuses on generic multi-agent reinforcement learning.
Focus on the role of distributing and managing utility functions/values
among the agents

✢ On a complexity scale, from the simplest: (CA, NN), PSO, ACO, COIN
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Other related frameworks/keywords

Just names and buzzwords here:

Distributed Artificial Intelligence, Computational Economics,
Multi-player Cooperative Game Theory, Evolutionary Computation
(Population-based), Artificial Life, Statistical Physics, Markov
Fields, Network Theory, Neural Networks, Traffic Theory . . .

(see [Wolpert and Tumer, 2000] for references and discussions)
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COIN

The Collective Intelligence framework [Wolpert and Tumer, 2000]
consists of:

✦ A large multi-agent system,

✦ where there is little to no centralized, personalized
communication and/or control,

✦ there is a provided world utility function that rates the possible
histories of the full system,

✦ each agent “runs” a reinforcement learning algorithm
(microlearning).
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COIN

✢ Central issues in COIN: how to map the world utility function
into private utility functions for each of the agents? How the
private utility functions can be designed so that each agent can
realistically hope to optimize its function, and at the same time
the collective behavior of the agents can optimize the world
utility?

✢ The assignment of the rewards to the agents is a critical aspect
in multi-agent reinforcement learning systems
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COIN

✢ COIN focuses on an inverse problem: how to configure local
dynamical laws and the management of the system-level utility
in order to induce the desired global behavior.
This is the ultimate dream of every engineer dealing with
complex systems

✢ Fixing the agent characteristics and studying the response to
different world utilities and distribution of them is also extremely
useful: Economics!

✢ COIN is a general mathematical framework. Not straightforward
to understand. It points out where the problems are and
provides formal tool to reason. However, does not provides
straight or automatic design answers. It has been applied to
routing and game problems. Not really popular, but worth to
give a look at
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Particle Swarm Optimization

✦ Population-based stochastic optimization technique

✦ Purpose: optimization of continuous nonlinear functions

✦ Background: bird flocking and fish schooling, artificial life,
social systems

✦ First work: [Eberhart and Kennedy, 1995]

✦ Popularity: A book [Kennedy and Eberhart, 2001], a recent
special issue on IEEE Transaction on Evolutionary
Computation [Vol. 8, June 2004], topic of interest in several
conferences and workshops

✦ It’s actually a sort of generalization of Cellular Automata
[Wolfram, 1984]
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Cellular Automata

✦ A set of simple automata, that is, finite state machines with few
states S = {s1, s2, . . . , sk}

✦ A topology of interconnection, such that each automaton ai

has ni neighbors N (ai) = {a1
i , a

2
i , . . . , s

ni

i }

✦ A state-transition function F that depends on the current state
si(t) of the automaton and on the state of its neighbors N (ai)

✦ At discrete time-steps (and either synchronously or
asynchronously) each automaton gets the state from its
neighbors and possibly change state accordingly

✦ Examples: numeric solution of differential equations, voting in
social networks , fluid dynamics, cell behavior . . . Loads of
theoretical studies
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PSO: background

✦ Early work on simulation of bird flocking aimed at
understanding the underlying rules of flocking [Reynolds,
1984] and roosting behavior [Heppner & Grenader, 1990]

✦ The rule were supposed simple and based on social behavior:
sharing of information and reciprocal respect of the occupancy
of physical space

✦ Social sharing of information among conspeciates seems to
offer an evolutionary advantage

✦ Target: study of human social behavior on the basis of bird/fish
swarm behavior. The notion of change in human social
behavior/psychology is seen as the analogous of change in
spatial position in birds
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PSO: background (2)

✦ Initial simulation: a population of N >> 1 agents is initialized on
a toroidal 2D pixel grid with random position and velocity,
(x̄i, v̄i), i = 1, . . . , N

✦ At each iteration loop, each agent determines its new speed
vector according to that of its nearest neighbor

✦ A random component is used in order to avoid fully
unanimous, unchanging flocking

✦ All this was not so exciting, but the roosting behavior of
Heppner was intriguing: it looked like a dynamic force such
that eventually the birds were attracted to land on a specific
location. The roost could be the equivalent of the optimum in a
search space!
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PSO: background (3)

✦ In real life, birds don’t know for instance were food is, but if one
puts out a bird feeder he/she will see that within hours a great
number of birds will find it, even though they had no previous
knowledge about it. This looks like the flock dynamics enables
members of the flock to capitalize on one another’s knowledge

✦ The agents can be therefore assimilated to solution hunters
that socially share knowledge while they fly over a solution
space. Each agent that has found anything good leads its
neighbors toward it. So that eventually they can land on the
best solution in the field
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PSO: the meta-algorithm

✢ Each agents is a particle-like data structure that contains: the
coordinates of the current location in the optimization landscape, the
best solution point visited so far, the subset of other agents that are
seen as neighbors

procedure Particle Swarm Optimization()
foreach particle ∈ ParticleSet do

init at random positions and velocity;
select at random the neighbor set;

end foreach
while (¬ stopping criterion)

foreach particle ∈ ParticleSet do
calculate current fitness and update memory;
get neighbor with best fitness;
calculate individual deviation between current and best so far fitness;
calculate social deviation between current and best neighbor fitness;
calculate velocity vector variation as weighted sum between deviations;
update velocity vector;

end foreach
end while

return best solution generated; 36



PSO: 1D example, one particle

One particle behavior: sequence of x and xbest values
20.00 10.00
18.21 18.21
16.43 16.43
14.64 16.43
13.24 16.43
12.03 16.43
11.06 11.06
10.09 11.06
9.71 11.06
8.85 11.06
9.14 11.06

10.13 11.06

 0

 0.1
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 0.4
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 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20

X

B

X

B

1.0 6.0
1.8 6.0
4.4 6.0
7.2 7.2

10.0 10.0
12.8 12.8
15.6 15.6
18.4 18.4
21.2 21.2
23.9 23.9
26.7 26.7
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Some final considerations on PSO

✦ Equivalent to a real-valued 2D CA where the state of a particle
is (x̄, v̄) ∪ (x̄best, f(x̄best, x̄best(N ))

✦ The neighborhood relationship is not transitive, however other
choices can be selected

✦ Social networks can be asymmetric (A is connected to B but B
might not care about A)

✦ An update of the state (position on the optimization landscape)
is calculated as a tradeoff between individual and social
knowledge

✦ Tested on benchmarks for continuous functions (e.g., [van den
Berg and Engelbrecht, 2004]) and NN training (10–50
particles). Performance comparable to genetic algorithms, but
simpler to design and analyze
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Stigmergy and Ant-inspired algorithms

✦ Stigmergy is at the core of most of all the amazing collective
behaviors exhibited by the ant/termite colonies

✦ Grassé (1959) introduced this term to explain nest building in
termite societies

✦ Goss, Aron, Deneubourg, and Pasteels (1989) showed how
stigmergy allows ant colonies to find shortest paths between
their nest and sources of food

✦ These mechanisms have been reverse engineered to give
raise to a multitude of ant colony inspired algorithms based on
stigmergic communication and control

✦ The Ant Colony Optimization metaheuristic (ACO) [Dorigo & Di
Caro, 1999] is the most popular, general, and effective SI
framework based on these principles
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Few facts about Social Insects

✦ Social insects :
✧ Ants
✧ Termites
✧ Some bees
✧ Some wasps

✦ 1018 living insects (rough estimate)

✦ 2% of insect are social and most of them are eusocial

✦ 50% of all social insects are ants

✦ Total weight ants ≈ Total weight humans
(one ant 1÷ 5 mg)

✦ Ants are successfully around since 100 million years, Home
sapiens sapiens only since 50,000 years
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Ant colonies

✦ Ant colony size: from as few as 30 to millions of workers

✦ Work division:

Reproduction −→ Queen
Defense −→ Specialized workers
Defense −→ Soldiers
Food collection −→ Specialized workers
Brood care −→ Specialized workers
Nest brooming −→ Specialized workers
Nest building −→ Specialized workers
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Some interesting collective ant behaviors

✦ Nest building and maintaining

✦ Division of labor and adaptive task allocation

✦ Discovery of shortest paths between nest and food

✦ Clustering and sorting (e.g., dead bodies, eggs)

✦ Structure formation (e.g., deal with obstacles)

✦ Recruitment for foraging (tandem, group, mass)

✦ Cooperative transport (e.g., food)
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. . . and solitary ones: Ant navigation

✢ Depends on the sensorial capabilities of ant species as well as
on the characteristics of the environment and function within
the colony. Can make use of:

✦ Visual landmarks (use of memory and learning, encounters
with colony mates)

✦ Chemical landmarks (pheromone)

✦ Compass-based (e.g., Cataglyphis desert ant uses light
polarization)

✦ Dead-reckoning, path integration (calculation of the home
vector)

✦ Correlated random walk
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Pheromone laying-attraction is the key

✦
While walking, the ants lay on the
ground a volatile chemical substance,
called pheromone

✦ Pheromone distribution modifies the environment(the way it is
perceived) creating a sort of attractive potential fieldfor the ants

✦ This is useful for retracing the way back, for mass recruitment, for
labor division and coordination, to find shortest paths. . .
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Termite nest building

✦ Grassé observed that insects are
capable to respond to so called
significant stimuliwhich activate a
genetically encoded reaction. In turn,
this reaction as new significant stimuli,
generating a recursive feedback that
can lead to a phase of a global
coordination

✦ Stigmergy = incite to work
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Stigmergy and stigmergic variables

✦ Stigmergy means any form of indirect communication among a
set of possibly concurrent and distributed agents which
happens through acts of local modification of the environment
and local sensing of the outcomes of these modifications

✦ The local environment’s variables whose value determine in
turn the characteristics of the agents’ response, are called
stigmergic variables

✦ Stigmergic communication and the presence of stigmergic
variables is expected (depending on parameter setting) to give
raise to a self-organized global behaviors

✦ Blackboard/post-it, style of asynchronous communication
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Examples of stigmergic variables

✢ Leading to diverging behavior at the group level:

✦ The height of a pile of dirty dishes floating in the sink

✦ Nest energy level in foraging robot activation [Krieger and
Billeter, 1998]

✦ Level of customer demand in adaptive allocation of pick-up
postmen [Bonabeau et al., 1997]

✢ Leading to converging behavior at the group level:

✦ Intensity of pheromone trails in ant foraging: shortest paths!
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Shortest path behavior in ant colonies

✦ While walking, at each step a routing decision is issued.
Directions locally marked by higher pheromone intensity are
preferred according to some probabilistic rule:

π ( τ η),
π

τ

η

Decision Rule
Stochastic

Morphology
Terrain

Pheromone

???

✦ This basic pheromone laying-following behavior is the main
ingredient to allow the colony converge on the shortest path
between the nest and a source of food
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Ant colonies: Pheromone and shortest paths

Nest

Food

t = 0 t = 1

Nest

Food

Pheromone Intensity Scale

Food

Nest

t = 2 t = 3

Nest

Food
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Ant colonies in a more complex discrete world

Food
Nest

Pheromone Intensity Scale

✢ Multiple decision nodes

✢ A path is constructed through a sequence of decisions

✢ Decisions must be taken on the basis of local information only

✢ A traveling cost is associated to node transitions

✢ Pheromone intensity locally encodes decision goodness as
collectively estimated by the repeated path sampling

✢ Are ant colonies able to “solve” such complex problems?
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Ant colonies: Ingredients for shortest paths

✦ A number of concurrent autonomous (simple?) agents (ants)

✦ Forward-backward path following/sampling

✦ Multiple paths are tried out and implicitly evaluated

✦ Local laying and sensing of pheromone

✦ Stochastic step-by-step decisions biased by pheromone

✦ Positive feedback effect (local reinforcement of good decisions)

✦ Persistence / evaporation of the pheromone field

✦ Iteration over time of the path sampling actions

✦ Convergence onto the shortest path?
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What pheromone represents in abstract terms?

✦ Distributed, dynamic, and collective memory of the colony

✦ Learned goodness of a local move (routing choice)

✦ Circular relationship: pheromone trails modify environment→
locally bias ants decisions→ modify environment

Outcomes of path construction are used to modify pheromone distribution

Paths

Pheromone distribution biases path construction
π

τ
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A meta-strategy for shortest path problems

✦ By reverse engineering ant colonies’ shortest path behavior we
get an effective metaheuristic, ACO, based on repeated path
sampling and distributed/collective decision learning through
reinforcements, to solve shortest path problems . . .

✦ . . . in a possibly fully distributed and adaptive way

✦ . . . and we know that shortest paths are a very general model
for combinatorial optimization and decision problems!
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ACO: general architecture

procedure ACO metaheuristic()
while (¬ stopping criterion)

schedule activities
ant agents construct solutions using pheromone();
pheromone updating();
daemon actions(); /∗ OPTIONAL ∗/

end schedule activities
end while

return best solution generated;
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ACO: From natural to artificial ant colonies(1)

Destination

Source
1

4

3

8

9

6

5

7

2

τ ;η14

13τ ;η13

12τ ;η12

τ ;η

τ ;η58

14 59 59

58

Pheromone Intensity Scale

✦ Each node i holds an array of pheromone variables:
~τi = [τij ] ∈ IR, ∀j ∈ N (i) → Learned through path sampling

✦ and an equivalent array of heuristic variables:
~ηi = [ηij ] ∈ IR, ∀j ∈ N (i) → Resulting from other sources ↑

✦ τij = q(j|i): estimated quality/goodness/utility of moving
to next node j conditionally to the fact of being in i 55



ACO: From natural to artificial ant colonies(2)

Destination

Source

1

4

3

8

9

6

5

7

2

✢ Each ant is an autonomous agent that constructs a path P1→9

→ proposes a solution to the problem

✢ There might be one or more ants concurrently active at the
same time. Ants do not need synchronization

✢ Next hops are selected through a stochastic decision policy

πε(i; ~τi, ~ηi) 56



ACO: Ant-routing table and decision policy
✦ The values of τi and ηi at each node i must be combined and

given a relative weight in order to assign a precise goodness
value to each locally available next hop j ∈ N (i):

Ai(j) = fτ (τ i, j) ◦ fη(ηi, j)

✦ Ai(j) is called the (Ant-routing table): it summarizes all the
information locally available to make next hop selection.
Examples: τα

ij · η
β
ij , ατij + (1− α)ηij

✦ Ai(j) values are used by πε to take a probabilistic decision:

✧ Example - Random-proportional: pij =
Ai(j)

∑

k∈N (i)Ai(k)
✧ Example - ε-greedy:

{

if pb > pu : pij = 1 if j = arg maxAi(j), 0 otherwise
else : pij = 1/|N (i)|, ∀j ∈ N (i)
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ACO: Some important issues to clarify. . .

✦ What the decision nodes / pheromone variables represent
(states?)

✦ When and how pheromone variables are updated (evaluation)
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ACO’s logical diagram can help to understand

Generation of solutions

Pheromone

Schedule  Activities

Problem Representation

Manager

Construction of solutions

using pheromone variables

to bias the construction steps

Ant-like Agents

Daemon Actions

without the direct 

use of pheromone

Decision Points

Pheromone

Combinatorial 

Problem
Optimization
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Decisions are based on state features

✦ Pheromone variables represent the decision variables that are
the object of learning

✦ In principle we should try to learn good state transitions: ↑
τij = q(xj |xi), or, equivalently τij = q(cj |xi)

✧ Computationally unfeasible:
number of decision variables > number of states
(neuro-dynamic programming?)

✧ It’s hard to learn. . .

✦ The alternative is to trade optimality for efficiency using state
features instead of the full states: τij = q(cj |ρ(xi))
The available state information can be used for feasibility ↑

60



Pheromone updating

✦ Ants update pheromone online step-by-step→ Implicit path
evaluation based on on traveling time and rate of updates

✦ Ant’s way is inefficient and risky

✦ The right way is online delayed + pheromone manager filter:
✧ Complete the path
✧ Evaluate
✧ “Retrace” and assign credit / reinforce the goodness value

of the decision (pheromone variables) that built the path
✧ Total path cost can be safely used as reinforcement signal

Example TSP: s = (c1, c3, c5, c7, c9), J(s) = L
τ13 ← τ13 + 1/L, τ35 ← τ35 + 1/L, . . .

✦ Online step-by-step decrease for exploration (e.g., ACS)

✦ If states: online step-by-step + bootstrapping is ok

✦ Offline: daemon, evaporation: τij ← ρτij , ρ ∈ [0, 1], 61



Designing an ACO algorithm

✦ Representation of the problem→ pheromone model ~τ

✦ Heuristic variables ~η

✦ Ant-routing table A

✦ Stochastic decision policy πε

✦ Solution evaluation J(s)

✦ Policies for pheromone updating

✦ Scheduling of the ants

✦ Daemon components

✦ Pheromone initialization, constants, . . .
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Best choices for static/centralized problems

✦ Last component as state feature for the pheromone model

✦ Problem’s costs or lower bounds as heuristic variables

✦ Multiplicative or additive ant-routing functions

✦ ε-greedy a random proportional for decisions

✦ Elitist strategies for pheromone updating

✦ Few ants at-a-time for a large number of iterations

✦ Problem-specific local search daemon procedures

✦ Bounded pheromone ranges
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Applications and performance
✦ Traveling salesman: state-of-the-art / good performance

✦ Quadratic assignment: good / state-of-the-art

✦ Scheduling: state-of-the-art / good performance

✦ Vehicle routing: state-of-the-art / good performance

✦ Sequential ordering: state-of-the-art performance

✦ Shortest common supersequence: good results

✦ Graph coloring and frequency assignment: good results

✦ Bin packing: state-of-the-art performance

✦ Constraint satisfaction: good performance

✦ Multi-knapsack: poor performance

✦ Timetabling: good performance

✦ Optical network routing: promising performance

✦ Set covering and partitioning: good performance

✦ Parallel implementations and models: good parallelization efficiency
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Application of ACO to routing problems

✦ Straightforward mapping

✦ Very good matching: multi-agent, adaptive, distributed

✦ Cheap/controllable realistic online Monte Carlo simulation

✦ No need of daemon components to get top performance

✦ Real-world problems of great practical interest

✦ Innovative design components

✦ Open to future developments in networks
(Autonomic view and Traffic Engineering)
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Routing in telecommunication networks (1)

1    2    3    4   5    6    7    9
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✦ Online and distributed data flow allocation problem

✦ Building and maintaining at each node a routing table that
maps destinations to next hops

✦ Centralized approaches are usually unfeasible

✦ Many different types of networks
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Routing in telecommunication networks (2)

✦ Routing consists of two basic tasks:
✧ Collecting and keeping up-to-date local state information

(e.g. link costs, topological connectivity)
✧ Exchanging this information and/or collecting similar,

non-local, information to locally get a global view, and use
this view to route data

✦ Local state information can be set:
✧ Using reliable a priori knowledge (optimal routing)
✧ Offline / manually
✧ Partly online (e.g., topology), partly offline (e.g., costs)
✧ Online following variations→ Adaptive routing

✦ Adaptivity→ optimization of resources (Traffic Engineering)
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The dark side of adaptivity

✦ Paths inconsistencies (loops), instabilities,
performance oscillations. . .

✦ Non-trivial setting of control parameters (time scales. . . )

✦ Problems with algorithms at the transport layer (e.g., TCP)

✦ Security issues

68



Link-state and distance-vector implementations

✦ Extensively used on Internet as IGP and BGP (OSPF, RIP)

✦ OSPF is used in larger Autonomous Systems

✦ Topology adaptive but not really traffic-adaptive

✦ Local estimations (costs, topology) have global impact
(link-state flooding, distance estimates bootstrapping)

✦ Single-path routing

✦ Deterministic

✦ No exploratory actions

✦ Only passive observation of local conditions and proactive
propagation of information, no active gathering of information

✦ Robust / complex protocols, but not in the direction of
Traffic Engineering
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AntNet & AntNet-FA

✦ First ACO algorithms for datagram networks [Di Caro & Dorigo,
1997, 1998] (Schoonderwerd et al. applied ACO to
telephone-like networks in 1996)

✦ General architecture: straightforward application of ACO

✦ Careful design of each component

✦ State-of-the-art performance and seen as reference algorithm

✦ AntNet-FA is a smart improvement over AntNet
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AntNet: algorithm description (1)

✦ Proactive generation of Forward Ants

✦ An ant faithfully simulate a data packet
✧ Discover/sample a good path

✧ Update routing information

✦ Forward ants maintain a private memory of each visited node
and of the time of the visit (loops are removed)

Forward Ant

2 40 1 3

T1 T T 3 4T2

Memory

2 40 1 3

71



AntNet: algorithm description (2)
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AntNet: algorithm description (3)

✦ Next hop nodes are selected according to a stochastic
decision policy π parametrized by:
✧ Pheromone table τ i

✧ Heuristic variables ηi = Status of local link queues
✧ Memory of the nodes visited so far

ηij(t) ∝
1

expected waiting time at j’s queue

pd
ij(t) ∝ ατ d

ij(t) + (1− α)ηij(t)
Link j

Node i

Table
Pheromone

Queues
Link

Memory

???
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AntNet: algorithm description (4)

✦ At destination d the Forward Ant ak becomes a Backward Ant
and retraces the path

✦ At each node i the Backward Ant, coming from neighbor j:

✧ Updates the Parametric Delay ModelMd
i

✧ Evaluates the path: rd
ij(k) = J(T k

i→d,M
d
i )

✧ Updates the pheromone table
and the routing table with rd

ij

Forward Ant Path

Backward Ant

2 40 1 3

01 23 34

Parametric Delay Model

Memory

Memory

T 12T T T

Pheromone Table
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AntNet-FA: improving AntNet

✦ In AntNet the path trip time Ti→j is the actual time
experienced by the ant

✦ In AntNet-FA Forward ants make use of high priority queues
(they fly!)

✦ The trip time Ti→d is calculated during the backward journey,
estimating the waiting time at the link j to calculate the
one-hop time:

Ti→j = dj +
qj

bj

✦ Ti→j is an up-to-date estimate of the time to hop from i→ j
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What is the outcome of the ant actions?

✦ Proactive exploration and route adaptation

✦ At each node a bundle of datagram paths are available

✦ Each choice has a goodness value (pheromone) which is
online adapted to the traffic patterns ↓

✦ Data are spread stochastically (multi-path routing)

✦ The less good paths are backup paths

✦ Automatic load balancing

✦ Robust wrt ant failures and to parameter setting

✦ No global propagation of local estimates

✦ Active non-local information gathering

✦ Shortcomings: TCP, short-lived loops, topological adaptivity
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Critical design components

✦ Ant generation: when, where, how?

✦ Decision policy: instantaneous vs. longer-term view

✦ Evaluation and rewarding of sampled paths: metrics
(AntNet-FA), non-stationarity, hidden state, learning rate
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Experimental setup for AntNet(-FA)

✦ Extensive simulation studies

✦ Realistic experimental setup for:

✧ Network topology and physical characteristics

✧ Protocol for data transmission

✧ Spatial and Temporal Traffic Patterns

✧ Algorithms to compare the performances
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Networks

NSFNET-T1 (14, 21, 1.5) - US backbone (1987)
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Traffic patterns

Data Transmission Protocol
✦ Best-effort Datagram traffic

✦ IP-like protocol

✦ Discarding packet for no buffer space

✦ Failure situations not considered

✦ No arrival acknowledgment or error
notification packets

✦ Simple Flow control mechanism based on
a static production window

Data sessions
✦ Negative exp distribution for sessions’

inter-arrival times, global size, and packet
sizes

✦ Traffic patterns obtained by the
combination of three basic traffic types:

✧ Poisson (Spatially Uniform (UP) and
Random (RP))

✧ Constant Bit Rate (CBR)

✧ Hot Spots (HS)
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Algorithms used for comparison

Static - Link-state
✦ OSPF: Minimum cost paths, current IGP Internet algorithm

Adaptive - Link-state
✦ SPF: Link-state prototype, Adaptive link costs, last ARPANET algorithm

Adaptive - Distance-Vector

✦ BF: Asynchronous Bellman-Ford prototype, Adaptive link costs, ARPANET

✦ Q-Routing: Asynchronous Bellman-Ford with online updates and Q-Learning-like rule

✦ PQ-Routing: Q-Routing with a system to learn a model of the link queues

Ideal
✦ Daemon: Access the state of all the net queues, empirical bound on performance
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Results - NTTnet UP Load

Throughput
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Results - NTTnet UPHS Load

Throughput

0

5

10

15

20

25

30

35

40

45

50

AntNet OSPF SPF BF Q-R PQ-R Daemon

T
h

ro
u

g
h

p
u

t 
(1

0
6
 b

it
/s

e
c
)

4.1 4 3.9 3.8 3.7

End-to-end delay 90-th percentile

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

AntNet OSPF SPF BF Q-R PQ-R Daemon9
0
-t

h
 p

e
rc

e
n
ti
le

 o
f 
p
a
c
k
e
t 
d
e
la

y
s
 (

s
e
c
) 4.1 4 3.9 3.8 3.7

83



Results - NSFNET RP Load
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Results - Load Variation

NSFNET: UP Load Variation
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100-Nodes RandomNets - UP Load

Throughput

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0 100 200 300 400 500 600 700 800 900 1000

T
h
ro

u
g
h
p
u
t 
(1

0
6
 b

it
/s

e
c
) 

Simulation Time (sec)

OSPF
SPF

BF
Q-R

PQ-R
AntNet

AntNet-FA

Delay distribution

0.0

0.2

0.4

0.6

0.8

1.0

0 0.25 0.5 0.75 1 1.25 1.5

E
m

p
ir
ic

a
l 
D

is
tr

ib
u
ti
o
n

Packet Delay (sec)

OSPF
SPF

BF
Q-R

PQ-R
AntNet

AntNet-FA

(MSIA = 15.0, MPIA = 0.005)
86



150-Nodes RandomNets - RP Load

Throughput
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Routing Overhead

Routing Overhead (10−3) for some of the realized experiments

AntNet OSPF SPF BF Q-R PQ-R Daemon

NSF - UP 2.39 0.15 0.86 1.17 6.96 9.93 0.00

NSF - RP 2.60 0.16 1.07 1.17 5.26 7.74 0.00

NSF - UPHS 1.63 0.15 1.14 1.17 7.66 8.46 0.00

NTT - UP 2.85 0.14 3.68 1.39 3.72 6.77 0.00

NTT - UPHS 3.81 0.15 4.56 1.39 3.09 4.81 0.00

Routing Overhead = Ratio between the generated routing traffic and the total available bandwidth

For all the considered algorithms the routing overhead is quite low
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The Ant Colony Routing framework

✦ Flat organization, homogeneous agents, nodes that just hold
information, only proactive ant generation, fixed schedule
. . . work well in best-effort wired networks but what about
more complex environments?

✦ QoS, mobile ad hoc and mesh networks, autonomic view . . .

Ant Colony Routing (ACR)

✦ General framework for the design of (autonomic)
routing/control systems based on the generalization of ACO
ideas: collection of general strategies

✦ From colony of ants to societies of learning agents
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ACR: general architecture, ideas, applications

✦ Node managers: non-mobile reinforcement learning agents
that control/monitor local activities, proactively and/or
on-demand generate:

✧ Active perceptions: ant-like mobile agents, gather
non-local information

✧ Effectors: mobile specialized agents

✦ First steps toward the implementation of the ACR view:
✧ AntNet+SELA [Di Caro & Vasilakos, 2000] QoS in ATM

✧ AntHocNet [Di Caro, Ducatelle & Gambardella, 2004]
Best-effort routing in mobile ad hoc networks
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The end

Thanks for listening!
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Combinatorial problems

✦ Instance of a combinatorial optimization problem:

✧ Finite set S of feasible solutions
✧ Each with an associated real-valued cost J

✧ Find the solution s∗ ∈ S with minimal cost

✦ Costs can change over time→ dynamic problems

✦ Different modalities of solution: centralized, offline, distributed,
online

✦ In practice, a compact formulation 〈C, Ω, J〉 is used:
✧ C is a finite set of elements→ solution components
✧ Ω is a set of relations among C ’s elements→ constraints
✧ The feasible solutions are subsets of components that

satisfy the constraints Ω
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Examples of combinatorial problems (1)

✢ Shortest path (SPP): C = {graph nodes}

✢ Ex. Sequential decision processes (capacited graph)
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Examples of combinatorial problems (2)

✢ Traveling salesman problem (TSP): C = {cities to visit}

✢ Ex. Goods delivery

✢ Constrained shortest path
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Examples of combinatorial problems (3)

✢ Data routing: C = {network nodes}

✢ Shortest path + Multiple traffic flows to route simultaneously

✢ Telecommunication networks

Data traffic
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These are all important but difficult problems

✦ SPP is the easiest (polynomial time complexity)

✦ TSP has n! solutions, it’s NP-hard (exponential worst case
complexity) [centralized, offline]

✦ Routing is a real-world problem, depends on traffic dynamics
(and on our knowledge about it), traffic requirements (QoS),
network size, topology (mobile ad hoc networks) and capacity
[distributed, online]

✦ They can be all seen in terms of solving shortest path
problems. . .
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Then, how do we deal with these problems?

✦ SPP: very efficient algorithms are available (label setting /
correcting methods)

✦ TSP: for NP-hard problems optimal algorithms are
computationally inefficient or totally unfeasible
→ Heuristic algorithms for good solutions in practice

✦ Routing: there are optimal distributed algorithms for shortest
paths and traffic flows allocation, but:

✧ non-stationarities in traffic and topology, uncertainties, QoS
constraints are the norm not the exception!

✧ Optimized solutions require full adaptivity and fully
distributed behaviors (→ Traffic Engineering)

98



AntHocNet: pheromone distribution ↑
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SimpleNet - CBR Load

Throughput
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AntNet Power Vs. Routing Overhead

Normalized Power Vs. Routing Overhead

for increasing (per-node) rates of ant generation
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