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Increasing numbers of books, websites and articles are devoted to the concept of 
‘swarm intelligence’. Meanwhile, a perhaps confusing variety of  computational 
techniques are seen to be associated with this term, such as ‘agents’, ‘emergence’, 
‘boids’, ‘ant colony optimisation’, and so forth. In this chapter we attempt to 
clarify the concept of swarm intelligence and its associations, and we attempt to 
provide a perspective on its inspirations, history, and current state. We focus on 
the most popular and successful algorithms that are associated with swarm 
intelligence, namely ant colony optimisation, particle swarm optimisation, and 
(more recently) foraging algorithms, and we cover the sources of natural 
inspiration with these foci in mind. We then round off the chapter with a brief 
review of current trends. 
 

1, Introduction 
 
Nature provides inspiration to computer scientists in many ways. One source of 
such inspiration is the way in which natural organisms behave when they are in 
groups. Consider a swarm of ants, a swarm of bees, a colony of bacteria, or a flock 
of starlings. In these cases and in many more, biologists have told us (and we have 
often seen for ourselves) that the group of individuals itself exhibits behaviour that 
the individual members do not, or cannot. In other words, if we consider the group 
itself as an individual – the swarm – in some ways, at least, the swarm seems to be 
more intelligent than any of the individuals within it. 
    This observation is the seed for a cloud of concepts and algorithms, some of 
which have become associated with swarm intelligence. Indeed, it turns out that 
swarm intelligence is only closely associated with a small portion of this cloud. If 
we search nature for scenarios in which a collection of agents exhibits behaviour 
that the individuals do not (or cannot), it is easy to find entire and vast sub-areas 
of science, especially in the bio-sciences. For example, any biological organism 
seems to exemplify this concept, when we consider the individual organism as the 
‘swarm’, and its cellular components as the agents.  
    We might consider brains, and nervous systems in general, as a supreme 
exemplar of this concept, when individual neurons are considered as the agents. 
Or we might zoom in on certain inhomogeneous sets of bio-molecules as our 
‘agents’, and herald gene transcription, say, as an example of swarm behaviour. 
Fortunately, for the sake of this chapter's brevity and depth, it turns out that the 
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swarm intelligence literature has come to refer to a small and rather specific set of 
observations and associated algorithms. This is not to say that that computer 
scientists are uninspired by the totality of nature’s wonders that exhibit such ‘more 
than the sum of the parts’ behaviour – much of this volume makes it clear that this 
is not so at all. However, if we focus on the specific concept of swarm intelligence 
and attempt to define it intensionally, the result might be thus: 
 
  

1. Useful behaviour that emerges from the cooperative efforts of a group of 
individual agents; 

2. … in which the individual agents are largely homogeneous; 
3. … in which the individual agents act asynchronously in parallel; 
4. … in which there is little or no centralised control; 
5. … in which communication between agents is largely effected by some 

form of stigmergy; 
6. … in which the `useful behaviour' is relatively simple (finding a good 

place for food, or building a nest -- not writing a symphony, or surviving 
for many years in a dynamic environment). 

 
So, swarm intelligence is not about how collections of cells yield brains (which 
falls foul of at least items 2, 5, and 6), and it is not about how individuals form 
civilizations (violating mainly items 3, 5 and 6), and it is not about such things as 
the lifecycle of the slime mould (item 6). However, it is about individuals co-
operating (knowingly or not) to achieve a definite goal. Such as, ants finding the 
shortest path between their nest and a good source of food, or bees finding the best 
sources of nectar within the range of their hive. These and similar natural 
processes have led directly to families of algorithms that have proved to be very 
substantial contributions to the sciences of computational optimisation and 
machine learning. 
     So, originally inspired, respectively, by certain natural behaviours of swarms of 
ants, and flocks of birds, the backbone of swarm intelligence research is built 
mainly upon two families of algorithms: ant colony optimisation, and particle 
swarm optimisation. Seminal works on ant colony optimisation were Dorigo et al 
(1991) and Colorni et al (1992a; 1992b), and particle swarm optimisation harks 
back to Kennedy & Eberhart (1995). More recently, alternative inspirations have 
led to new algorithms that are becoming  accepted under the swarm intelligence 
umbrella; among these are search strategies inspired by bee swarm behaviour, 
bacterial foraging, and the way that ants manage to cluster and sort items. Notably, 
this latter behaviour is explored algorithmically in a subfield known as swarm 
robotics. Meanwhile, the way in which insect colonies collectively build complex 
and functional constructions is a very intriguing study that continues to be carried 
out in the swarm intelligence arena. Finally, another field that is often considered 
in the swarm intelligence community is the synchronised movement of swarms; in 
particular, the problem of defining simple rules for individual behaviour that led to 
realistic and natural behaviour in a simulated swarm. ‘Reynolds’ rules’ provided a 
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general solution to this problem in 1987, and this can be considered an early 
triumph for swarm intelligence, which has been exploited much in the film and 
entertainment industries.   
    In the remainder we expand on each of these matters. We start in section 2 with 
an account of the natural behaviours that have inspired the main swarm 
intelligence algorithms. Section 3 then discusses the more prominent algorithms 
that have been inspired by the techniques in section 2, and section 4 notes some 
current trends and developments and offers some concluding remarks. 
 
 

2. Inspiration from Nature 
 
2.1 Social Insects and Stigmergy 
 
Ants, termites and bees, among many other insect species, are known to have a 
complex social structure. Swarm behaviour is one of several emergent properties 
of colonies of such so-called social insects. A ubiquitous characteristic that we see 
again and again in such scenarios is stigmergy. Stigmergy is the name for the 
indirect communication that seems to underpin cooperation among social insects 
(as well as between cells, or between arbitrary entities, so long as the 
communication is indirect).  
    The term was introduced by Pierre-Paul Grassé in the late 1950s. Quite simply, 
stigmergy means communication via signs or cues placed in the environment by 
one entity, which affect the behaviour of other entities who encounter them. 
Stigmergy was originally defined by Grassé in his research on the construction of 
termite nests. Figure 1 shows a simplified schematic of a termite nest. We will say 
more about termite nests in section 2.1.3, but for now it suffices to point out that 
these can be huge structures, several metres high, constructed largely from mud 
and from the saliva of termite workers. Naturally, the complexity and functionality 
of the structure is quite astounding, given what we understand to be the cognitive 
capabilities of a single termite. 
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Figure 1. A highly simplified schematic of a termite nest 
 
 
 
    Following several field trips to Africa in the late 1930s and 1940s studying 
termites and their nests, among other things, Grasse showed that the regulation 
and the co-ordination of the nest-building activity did not depend on the termite 
workers themselves, but was instead achieved by the nest itself. That is, some kind 
of stimulating configuration of materials triggers a response in a termite worker, 
where that response transforms the configuration into another configuration that 
may, in turn, trigger yet another, possibly different, action performed by the same 
termite or by any other termite worker in the colony. This concept of stigmergy 
was attractive and stimulating, but at the time, and often today, it was and is often 
overlooked by students of social insects because it leaves open the important 
operational issue of how the specific trigger-response configurations and stimuli 
must be organized in time and space to allow appropriate co-ordination. But 
despite the general vagueness of Grassé's formulation, stigmergy is recognised as 
a very profound concept, the consequences of which are still to be fully explored. 
Stigmergy is not only of potential importance for our understanding of the 
evolution and maintenance of social behaviour in animals, from communally 
breeding species to highly social insects, it is also turning out to be a crucial 
concept in other fields, such as artificial intelligence, robotics, or the social, 
political and economic sciences. Meanwhile, in the arena of natural computing, 
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stigmergy is the fundamental concept behind one of the main swarm intelligence 
algorithms, as well as several others.    
     Apart from termite nests, another exemplary case of stigmergy in nature is that 
of pheromone deposition. Ants deposit pheromone along their paths as they travel; 
an ant striking out on her own will detect pheromone trails, and prefer to follow 
such trails already travelled. In general, the concept of stigmergy captures 
underlying commonalities in (usually) insect behaviours that are underpinned by 
indirect communication. This covers more emergent behaviours than trail-
following, and (the original inspiration for the term) the construction of structures 
such as termite mounds and bee hives. Stigmergy also seems key to behaviours 
such as brood sorting and cemetery clustering -- some ant species are known to 
spatially cluster their young into age-groups within the nest, and they keep their 
nests tidy by removing dead nest mates and piling them into clusters outside.  

The phenomenon of stigmergy has much earlier evolutionary roots; it is now 
used to explain the morphologies of multicellular organisms, sea-shells, and so 
forth. Essentially, individual cells position themselves in a way influenced by 
deposits left behind by their colleagues or precursors. A useful way to think of it is 
that stigmergic communication involves a ‘stigmergy structure’ which is like a 
notepad, or an actual structure, built from cues left by individuals.  

The structure itself may be a spatially distributed accumulation of pheromone, 
or a partially built hive, or a partially constructed extracellular matrix. The 
structure itself influences the behaviours of the individuals that ‘read’ it, and these 
individuals usually also add to the structure. Army ants find their directions of 
travel influenced by pheromone trails, and they add to the trails themselves. 
Termites are triggered by particular patterns that they see locally in the partially 
built mound, and act in simple and specific ways as a result, resulting in additions 
to the structure itself. An authoritative overview of stigmergy associated 
behaviours in nature is Bonabeau et al (1997), while Theraulaz (1994) provides a 
comprehensive survey of  self-organisation processes in insect colonies. As hinted 
above, when we consider the stigmergic processes often observed in nature, the 
most prominent sources of inspiration from the swarm intelligence viewpoint are 
those of navigation to food sources, sorting/clustering, and the collective building 
of structures. We briefly consider each of these next.  

 
2.1.1 Natural Navigation 
 
Navigation to food sources seems to depend on the deposition of pheromone by 
individual ants. In the natural environment, the initial behaviours of a colony of 
ants in seeking a new food source is for individual ants to wander randomly. 
When an ant happens to find a suitable food source they will return to their 
colony; throughout, the individual ants have been laying pheromone trails. 
Subsequent ants setting out to seek food will sense the pheromone laid down by 
their precursors, and this will influence the path they take up. Over time, of 
course, pheromone trails evaporate. However, consider what happens in the case 
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of a particularly close food source (or, alternatively, a faster or safer route to a 
food source). The first ant to find this source will return relatively quickly. Other 
ants that take this route will also return relatively quickly, so that the best routes 
will enjoy a greater frequency of pheromone laying over time, becoming strongly 
fancied by other ants. The overall collective behaviour amounts to finding the best 
path to a nearby food source, and there is enough stochasticity in the process to 
avoid convergence to poor local optima – trail evaporation ensures that suboptimal 
paths discovered early are not converged upon too quickly, while individual ants 
maintain stochasticity in their choices, being influenced by but not enslaved by the 
strongest pheromone trail they sense. Figure 2 shows a simple illustration, 
indicating how ants will converge via stigmergy towards a safer and faster way to 
cross a flow of water between their nest and a food source. 

 
 
 
 
 

 
 

Figure 2: Convergence to a safer crossing over time. 
 

 
 
 In figure 2, we see three contrived snapshots of a simple scenario over time. 

On the left, ants need to cross a narrow stream of flowing water towards a 
tempting food source, and three crossings – fallen twigs – present themselves. 
Initially ants are equally likely to try each one. Each of these ants lays its trail of 
pheromone as it makes its journey towards the right. Over time, however, the path 

nest nest nest 

food food food 
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towards the middle twig becomes less laid with pheromone, simply because, 
unlike the situation with the upper and lower twigs, there are no ants laying 
pheromone on their way back from that particular path. Eventually, on the right, 
we see several ants are following the path defined by the lower twig, both 
attracted by, and further multiplying, the steady build-up of pheromone on this 
path, which is faster than that on the path defined by the upper twig. Although the 
upper twig provides a fairly short journey, it is more perilous, since this twig is 
quite narrow, and several ants fall off before being able to strengthen the path. 

Actually, this is one of the simplest and most straightforward activities in social 
insects related to pheromones. The term ‘pheromone’ itself was promoted for this 
context in 1959 (the late 1950s was clearly a fruitful period for swarm intelligence 
vocabulary) (Karlson & Luscher, 1959), to encompass the broad range of 
biologically active chemicals used by insects for varieties of communicative 
purpose. The context in which we describe it above is known in biology as 
‘recruitment’, referring broadly to tasks in which individuals discover an 
opportunity (usually a food source) and need to recruit others to help exploit it. 
However there are many other behaviours that are associated with pheromones, 
such as indicating alarms or warnings, interactions between queens and workers, 
and mating. An excellent source of further information is Vander Meer et al 
(1998b), and in particular Vander Meer et al (1998a).   
 
 
2.1.2 Natural Clustering 
 
Turning now to a different style of swarm behaviour, it is well known that ant 
species (as well as other insect species) exhibit emergent sorting and clustering of 
objects. Two of the most well known examples are the clustering of corpses of 
dead ants into cemeteries (achieved by the species Lasius Niger, Pheidole 
pallidula, and Messor sancta (Depickere et al, 2004), and the arrangement of 
larvae into similar-age groups (so called brood-sorting, achieved by Leptothorax 
unifasciatus (Franks & Sendova-Franks, 1992)).  

For example, in Leptothorax unifasciatus ant colonies, the ants' young are 
organised into concentric rings called annuli. Each ring comprises young of a 
different type. The youngest (eggs, and micro-larvae) are clustered together in the 
central cluster. As we move outwards from the centre, progressively older groups 
of larvae are encountered. Also, the spaces between these rings increase as we 
move outwards.  

In cemetery formation, certain ant species are known to cluster their dead into 
piles, with individual piles maintained at least a minimal distance from each other. 
In this way, corpses are removed from the living surroundings, and cease to be a 
hindrance to the colony. One aspect of this behaviour in particular is that it is 
arguably not exemplary of swarm behaviour; i.e. it is perhaps not collective 
intelligence. The explanatory model that seems intuitively correct and confirmed 
by observation (Theraulaz et al, 2002) is one in which an individual operates 
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according to quite simple rules while otherwise generally wandering around 
randomly:   

 
  

1. If not carrying a corpse, and a single corpse (or quite small cluster of 
corpses) is encountered, pick it up. 

2. If carrying a corpse, and a relatively large cluster of corpses is 
encountered, put it down. 

  
 

A single ant could achieve the clustering observed in nature, that seems to 
operate according to these rules (Theraulaz et al, 2002). However, the emergent 
clusters are produced faster when a collection of ants are involved. Gaubert et al 
(2007) is a useful reference for discussion of mathematical and other models of 
these behaviours. Meanwhile, a steady line of recent research is investigating 
computational clustering methods that are directly inspired by these natural 
phenomena (Handl & Meyer, 2007). The first such inspired clustering algorithm 
was proposed by Lumer & Faieta (1994), closely based on the Deneubourg et al 
(1991) model of the natural process. In recent work (Handl et al, 2006), an ant-
based clustering method called ATTA is tested, and the case is made convincingly 
that ant-based clustering algorithms certainly have a niche in data mining, 
performing particularly well on problems where the number of clusters are not 
known in advance, and where the clusters themselves are highly variable in size 
and shape. In this article our focus stays with optimisation and we will say little 
more about clustering; we refer the reader again to Handl and Meyer's recent 
review (Handl & Meyer, 2007) for further study on this topic. 

 
 
2.1.3 Natural construction 
 
We now consider the extraordinary collective behaviour that leads to the 
construction of achievements such as wasp nests, termite mounds and bee hives. 
Brood-sorting, considered above, exemplifies a simple structure that arises from 
collective behaviour. However the more visible and impressive structures such as 
termite mounds have always impressed observers, and often confounded us when 
we try to imagine how such simple minds can lead to such creations. As will be 
clear from context, stigmergy seems to be the key to understanding these 
buildings; patterns inherent in partial elements of structures are thought to trigger 
simple rule-based behaviour in the insect, which in turn changes the perceived 
patterns, and so on ..., until a complete hive or nest is built. Much computation-
based study has been made of this by Bonabeau, Theraulaz and co-workers. 

In nature, the sizes of such social insect structures can reach an astounding 30 
metres in diameter (Grassé, 1984). An impressive example of the complexity of 
these structures comes from the African termites Macrotermitinae, ‘the fungus 
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growers’. In a mature nest of this species, there are typically six distinct elements 
of structure (we adapt this description from Bonabeau et al, 1998): 
 

1. The protective and ribbed cone-shaped outer walls (also featuring 
ventilation ducts). 

 
2. Brood chambers within the central `hive' area. They have a laminar 

structure and contain the nurseries where the young termites are raised.  
 

3. The hive consists of thin horizontal lamellae supported by pillars. 
 

4. A flat floor structure, sometimes exhibiting cooling vents in a spiral 
formation. 

 
5. The royal chamber: a thick walled enclosure for the queen, with small 

holes in the walls to allow workers in and out. This is usually well 
protected underneath the hive structure, and is where the queen lays her 
eggs. 

 
6. Garden areas dedicated to cultivating fungi. These are arranged around 

the hive, and have a comb-like structure, arranged between the central 
hive and the outer walls.   

 
7. Tunnels and galleries  constructed both above and below ground which 

provide pathways from the termite mound to the colony's known foraging 
sites.   

 
  
 

So, how does a collection of termites make such a structure? Perhaps this is the 
most astonishing example of natural swarm intelligence at work. Observations and 
descriptions of such structures from the biology literature have tended to focus on 
description, elucidating further and finer detail from a variety of species, but have 
done little to clarify the mechanism. However, computational simulation work 
such as Theraulaz & Bonabeau (1995), has indicated how such behaviour can 
emerge from collections of ‘micro-rules’,  where patterns of  the growing structure 
perceived by an individual termite (or ant, wasp, etc ...) act as a stigmergic trigger, 
perhaps in tandem with other environmental influences, leading to a specific 
response that adds a little new structure. Theraulaz and Bonabeau (1995) and 
Bonabeau et al (2000) have shown how specific collections of such micro-rules 
can lead to, in simulation, a variety of emergent structures, each of which seems 
convincingly similar to wasp nests from specific wasp species.  Figure 3 (reprinted 
detail with permission) shows examples of three artificial nests, constructed in this 
fashion, that closely resemble the nest structures of  three specific wasp species; 
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several more such are presented in Theraulaz & Bonabeau (1995) and Bonabeau et 
al (2000). 

 
 

 
 
 
Figure 3. Fig. 2 from Bonabeau et al (2000), reproduced with permission.  These show 
results from artificial colonies of ten wasps, operating under the influence of stimulus-
response micro-rules based on patterns in a 3D hexagonal brick lattice. (a) A nest-like 
architecture resembling the nests of Vespa wasps, obtained after 20,000 building steps;  (b) 
An architecture resembling the nests of Parachartergus wasps, obtained after 20 000 
building steps; (c)  resembling Chatergus nests, obtained after 100 000 building steps; (d, e) 
Showing internal structure of (c).  
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In Figure 4 we see some examples of micro-rules of the kind that can lead to the 
types of structures shown in Figure 3. A micro-rule simply describes a three-
dimensional pattern of ‘bricks’; in the case of the experiments that led to Figure 3, 
a brick has a hexagonal horizontal cross section, and there are two types of brick 
(it was observed that at least two different brick types seem necessary for 
interesting results). The three dimensional pattern describes the immediate 
neighbourhood of a single central brick, including the seven hexagonal cells above 
it (the upper patches of hexagons in figure 4) the six that surround it, and the 
seven below it. In the figure, a ‘white’ hexagonal cell is empty – meaning no brick 
here; otherwise there are two kinds of bricks, distinguished by different shadings 
in the figure. A micro-rule expresses the following building instruction: ‘if the 
substructure defined by this pattern is found, with the central cell empty, than add 
the indicated type of brick in the central position’.   
 
 
 

 
 
Figure 4. An illustration of two ‘micro-rules’ from the space of such rules that can lead to 
structures such as those in Figure 3. A single micro-rule defines a building instruction 
based on matching a pattern of existing bricks. A single column of three groups of 7 
hexagonal cells is a micro-rule, by describing a structure around the neighbourhood of the 
central cell (which is empty in the matching pattern. The building instruction is to fill the 
central cell with the indicated type of `brick’. In this figure, two example micro-rules are 
shown, each further illustrated by ‘before’ and ‘after’ building patterns on the right. 
  
 
Intuition suggests how the construction by a collection of agents such as wasps of 
artefacts such as those in Figure 3, or even more complex artefacts, may be 
facilitated by specific collections of micro-rules, however that does not make it 
easy to design a set of micro-rules for a specific target construction. Sets of micro-
rules achieving the illustrated results were obtained by using a carefully designed 
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evolutionary algorithm. Interested readers should consult Bonabeau et al (2000) 
for further detail, including analyses of the operation of the emerging rulesets, 
revealing the requirement for various types of co-ordination implicitly built in to 
the micro-rule collection.   

Meanwhile, it is a long way from wasp nests to termite mounds, especially 
mounds of the complexity hinted at above. However, by considering and 
extending partial models for elements of termite mounds, in Bonabeau et al (1998) 
some basis is provided for the suspicion that  such complexity may be explained 
by the interaction of  stimulus-response (`micro-rule’) based processes and 
pheromone-based triggers that modify the stimulus-response behaviour,  unfolding 
over time as a controlled morphogenetic process.  

Finally we note that much of what we have discussed in this subsection forms 
part of the basis for the new field of `swarm robotics'. This area of research 
(Sahin, 2005; Mondada et al, 2005) focuses on what may be achievable by 
collections of small, simple robots furnished with relatively non-sophisticated 
ways to communicate. Chief among the motivating elements of such research are 
the qualities of robustness, flexibility and scalability that swarm robots could bring 
to a number of tasks, ranging through agriculture, construction, exploration and 
other fields. Imagine we wish to build a factory on Mars, for example. We might 
imagine this could be performed, in some possible future, by a relatively small 
collection of very sophisticated and intelligent robots. However, in the harsh 
conditions of Mars, we can expect that loss or destruction of one or more of these 
is quite likely. Swarms of simple robots, instead, are far more robust to loss and 
damage, and may present an altogether more manageable, shorter-term and more 
adaptable approach than the ‘super-robot’ style.  

As yet, swarm robotics has not risen to such heights, although there is 
published discussion along these lines, drawing from the sources of natural 
inspiration we have already discussed (Cicirello & Smith, 2001). Meanwhile, 
interesting and useful behaviours have been demonstrated in swarm robotics 
projects, after, in almost all cases, considerable work in design, engineering and 
construction of the individual ‘bots’. Supporting these studies, a large part of 
swarm robotics research is into how to design the individual robots’ behaviours in 
such a way that the swarm (or team) achieves an overall goal or behaviour. 
Unsurprisingly to many, it turns out that the judicious use of evolutionary 
computation proves effective for this difficult design problem (Waibell et al, 
2009). However, hand-design or alternative principled methods for designing 
behaviours remains a backbone of this research, especially when the desired 
overall behaviour is complex, involving many tasks (e.g. Ducatelle et al, 2009), 
and in general there are several emerging issues in swarm robotics that have 
sparked active current lines of research, such as the problem of ‘interference’ – 
swarm robots, whether co-operating on the same task or not, often physically 
interfere with each others’ operation  (Pini et al, 2009) – and the problem of 
achieving tasks with minimal energy requirements (Roberts et al, 2008).  
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Relatively impressive behaviours from swarm robotics research has so far 
included  co-operative transport of one or more objects, and  co-operation towards 
moving up a vertical step (as large as the bots involved); readers may visit the 
European Project  ‘Swarmbots’ and ‘Swarmanoids’ websites for explanation and 
many other resources, at http://www.swarm-bots.org/, and at 
http://www.swarmanoid.org/ as well as similar resources such as 
http://www.pherobot.com/. Hardware and related technology issues 
remain a bottleneck that still inhibits a full exploration of social insect swarm 
intelligence in robotics, however this work continues toward that end and will be 
observed with great interest. 
 
  
 
2.2 Foraging 
 
There are broadly two types of natural process that go by the term "foraging", and 
in turn provide sources of inspiration for optimisation (or resource allocation) 
methods.  In both cases,  the overall emergent behaviour is that the swarm finds 
and exploits good food sources, adaptively moves to good new sources as current 
ones become depleted, and does all of this with efficient expenditure of energy (as 
opposed to, for example, brute force search of their environment). The means by 
which this behaviour is achieved is rather different in these two sources of 
inspiration.  

In one case, that of `bacterial foraging' (Passino, 2002), individual bacteria are 
(essentially) directed towards rich areas via chemotaxis; that is, they exist in an 
environment in which their food source diffuses, so they can detect and respond to 
its presence. In particular, chemotaxis refers to movement along a chemical 
gradient. An individual e-coli bacterium has helical appendages called flagellae 
which spin either clockwise or anticlockwise (we can think of them as analagous 
to propellers). When they spin in one direction, the bacterium will ‘tumble’; this is 
an operation which ends up moving the bacterium a short distance, and leaving it 
with an essentially random new orientation. When the flagellae spin in the other 
direction, the bacterium's movement will be a ‘run’ - this is a straight-line 
movement in the direction the bacterium was facing at the beginning, and 
continues as long as the flagellae continue to spin in the same direction.  

In a nutrient-free and toxin-free environment, an individual bacterium will 
alternate between clockwise and anti-clockwise movement of its flagellae. So, it 
tumbles, runs, tumbles, runs, and so forth. The effect of this behaviour is random 
search for nutrients. However, when the bacterium encounters an increasing 
nutrient gradient, that is, a higher concentration of nutrient in its direction of 
movement, its internal chemistry operates in a way that causes the runs to be of 
longer duration. It still alternates between tumbles and runs, but maintains longer 
run lengths so long as the gradient continues to increase. The effect of this is to 
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explore and exploit the food source, moving upwards along the nutrient gradient, 
while maintaining an element of stochastic exploration.  

In addition, under certain conditions we know that bacteria secrete chemicals 
that attract each other. There is speculation that this can happen in response to 
nutrient rich environments, so that additional bacteria are recruited to exploit the 
food source, where the attractive secretions build further on the attraction provided 
by the chemical gradient. Also, there is evidence that bacteria release such an 
attractant under stressful conditions too, which in turn may be a protective 
response; as they swarm into a sizeable cluster, many individuals are protected 
from the stressful agent. These self-attractant and chemotactic behaviours are 
known to lead to pattern formation under cetain conditons (Budrene & Berg, 
1991). These and many other details have been elucidated for e. coli and similar 
bacteria via careful experimentation, for example: Berg & Brown (1972), Segall et 
al (1986), and  deRosier (1998).  

The other broad style of efficient collective foraging behaviour is that exhibited 
by the honeybee (among other insects). When a bee discovers a food source some 
distance from the hive, it returns to the hive and communicates the direction, 
distance and quality of the food source to other bees. The details of this 
communication, achieved by specialised ‘dances’, are quite remarkable, and have 
emerged from a series of ingenious experiments and observations, largely by Karl 
von Frisch (1967). The essential details are these: in context, the dance is 
performed in alignment with a particular aspect of the hive structure, which 
provides an absolute reference against which the bee audience can perceive 
specific angles. The main dance is the ‘waggle’ dance, which consists of a straight 
line movement, during which the bee waggles from side to side along the way. 
This straight line movement is done upwards at a particular angle from the 
vertical. At the end of the straight line part, the bee loops round to the starting 
point and repeats (actually, it alternates the direction of this loop, drawing a figure 
"8"). The angle of this dance from vertical indicates to the bee audience the  
direction they need to take with respect to the current position of the Sun. Among 
various extraordinary aspects of this, it is known that the bee automatically 
corrects for movement of the Sun during the day, and communicates the correct 
direction. Also, at times, the bee will pause its dance, and allow watching bees to 
sample the nectar it is carrying, giving an indication of the quality of the food 
source.  
     More interesting from the algorithmic viewpoint, however, is that the 
abundance of the food source is communicated by the duration of the dance 
(essentially, the number of times the figure "8" is repeated). An individual 
enjoying this performance may or may not decide to follow these directions and 
be ‘recruited’ to this particular source. Such an individual may also be exposed to 
rival performances. However, the longer the duration, the more bees will see this 
dance, and the more will be recruited to this dance rather than others. In this way, 
the bee colony sports the emergent behaviour of smart resource allocation, with 
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more bees assigned to better sources, and adaptation over time as returning bees 
gradually provide shorter and shorter dances as the source becomes depleted. 
     As we will see later, both bee and bacterial foraging have been taken as the 
inspiration for general optimisation methods, as well as for approaches to the 
specific problem domain of optimal resource allocation.   
 
 
2.3 Flocking 
 
Perhaps the most visible phenomenon that brings to mind swarm intelligence is 
the travelling behaviour of groups (flocks, swarms, herds, etc...) of individuals that 
we are all familiar with. The mesmerising behaviour of large flocks of starlings is 
a common morning sight over river estuaries. Swarms of billions of monarch 
butterflies, herds of wildebeeste, schools of tunafish, swarms of bees, all share 
common emergent behaviours, chiefly being: 
 

1. the individuals stay close to each other, but not too close, and there seem 
to be no collisions;  

2. swarms change direction smoothly, as if the swarm was a single 
organism; 

3. unlike a single organism, yet still smoothly and cleanly, swarms 
sometimes pass directly through narrow obstacles (in the way that a 
stream of water passes around a vertical stick placed centrally in the 
stream's path). 

  
In some ways, such swarm behaviour is arguably less mysterious than other 
emergent behaviours; it seems clear that we might be able to explain this 
behaviour via a built-in predisposition for individuals to stay with their colleagues, 
and we can readily imagine how evolution will have favoured such behaviour: 
there is safety in numbers. However, the devil is in the detail, and it took seminal 
work by Reynolds (1987) to outline and demonstrate convincing mechanisms that 
can explain these behaviours. Reynolds' work was within the computer graphics 
community, and has had a volcanic impact there. Now known as ‘Reynold's rules’, 
the recipe that achieves realistic swarm behaviour (with some, but not obtrusively 
much, parameter investigation needed depending on the species simulated) is this 
triplet of steering behaviours to be followed by each individual in a swarm: 

 
Separation: steer to avoid coming too close to others. 
 
Alignment: steer towards the mean heading of others. 
 
Cohesion: steer towards the mean position of others 

  
A basic illustration of each rule is given in Figure 4. In the figure, we take the 
common terminology of `boid’ to refer to an individual in a flock. The figure 
shows examples of the adjustments that might be made under the guidance of the 
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rules. To understand how realistic swarm simulation works, it is important to note 
that each boid has its own perceptual field – i.e. it could only ‘see’ a certain 
distance, and had a specific field of view (boids cannot see behind them, for 
example). The adjustments it makes to its velocity at any time are therefore a 
function of the positions and velocities of the boids in its perceptual field, rather 
than a function of the flock as a whole. 
     The rules are key ingredients to a realistic appearance in simulated flocks, but 
there are several other details, particularly regarding obstacle avoidance and goal-
seeking behaviour. Interested readers may consult Reynolds (1987) and the many 
papers that cite it. It is important to note that these rules are not strictly nature-
inspired, in the sense that Reynolds was not attempting to explain natural 
swarming behaviour, he was simply attempting to emulate it. However, the 
resulting behaviour was found to agree well with observations of natural flocking 
behaviour (e.g. Partidge (1982) and Potts (1984)), and Reynolds (1987) reported  
that “many people who view these animated flocks immediately recognize them as 
a representation of a natural flock, and find them similarly delightful to watch”. 
These techniques are now common in the film industry; among the earliest uses 
were in the film Batman Returns (1992, director Tim Burton), in which Reynolds’ 
rules lay behind the simulated bat swarms and flocks of penguins. 
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Figure 5. Illustrating Reynolds’ rules, which lead to natural-looking behaviour in simulated 
swarms. Upper: Separation: each boid makes an adjustment to velocity which prevents it 
coming too close to the flockmates in its perceptual field. Middle: Alignment: a boid 
adjusts its heading towards the average of those in its perceptual field; lower: a boid makes 
an adjustment to velocity that moves it towards the mean position of the flockmates in its 
perceptual field. 
 
Meanwhile, natural flocking behaviour also turns out to be one of the sources of 
inspiration for the highly popular and successful particle swarm optimisation 
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algorithm, which appears in the next section as one of the prominent flagships for 
swarm intelligence. It is not obvious why flocking behaviour might lead to an 
optimisation algorithm, however it soon becomes clear when we consider the 
dynamics of flocking, and the tendency of optimisation landscapes to be locally 
smooth. In the case of bacterial foraging, the dynamics of the natural behaviour 
are such that individuals will tend to congregate around good areas. With the 
bacterial example, nature provides mechanisms for suggesting appropriate 
directions of movement, while there is a clear goal for the bacterial colony to 
achieve - find nutrient rich (and toxin free) areas. In particular for the current 
context, the secretion of attractant chemicals is a mechanism that promotes 
bacteria swarming together, while an individual's position in its environment 
directly provides it with a level of `fitness' that it can sense in terms of nutrient 
concentration.  
    When we consider flocking behaviour in birds, however, Reynolds' work 
provides clues about appropriate ways to move together as a swarm, but there is 
no clear mirror of a `fitness' in the environment. Often birds will migrate from A 
to B, knowing where they are going, rather than seeking new environments. 
However, if flocks did have a goal to move towards `fitter' positions in the 
landscape they travel, then it becomes intuitively reasonable to consider the 
cohesive swarm behaviour as a sensible way to achieve local exploration around 
fit areas, perhaps enabling the sensing of even fitter areas that may then sway the 
overall movement of the flock. In this way, flocking behaviour combines with a 
little algorithm engineering to achieve a very successful optimisation mechanism. 
 
 
 
3. Two Main Concepts for Swarm Intelligence Algorithms  
 
When we consider the impact of swarm intelligence so far on computer science, 
two families of algorithms clearly stand out in terms of the amount of work 
published, degree of current activity, and the overall impact on industry. One such 
family is inspired directly by the pheromone-trail following behaviour of ant 
species, and this field is known as Ant Colony Optimization (ACO). The other 
such family is inspired by flocking and swarming behaviour, and the main 
exemplar algorithm family is known as Particle Swarm Optimization (PSO). Also 
in this family are algorithms based on bacterial foraging, and some of the 
algorithms that are based on bee foraging; these share with PSO the broad way in 
which the natural phenomenon is mapped onto the concept of search within a 
landscape.  In this section we discuss these two main families in turn.  
 
3.1 Ant Colony Optimization 
 
Ant Colony Optimization (ACO) was introduced in 1996 via an algorithm called 
`Ant System' (AS) (Dorigo et al, 1996). The basic approach used in AS remains 
highly characteristic of most ACO methods in current use, and we will describe it 
next.  
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     Recall that, in the natural case, an ant finds a path from its nest to a food source 
by following the influences of pheromone trials laid down by previous ants who  
have previously sought food (and usually returned). AS, and ACO algorithms in 
general, mirror aspects of this behaviour quite faithfully. In short: an artificial ant 
builds a solution to the optimisation problem at hand, and lays down simple 
`artificial pheromone' along the route it took towards that solution. Following 
artificial ants then build solutions of their own, but are influenced by the 
pheromone trails left behind by their precursors. This is the essential idea, and 
starts to indicate the mapping from the natural to the artificial case. However, 
there are various further issues necessary to consider to make this an effective 
optimization algorithm. We discuss this further in the next section, focussing on 
the mapping from the basic ideas of ACO to applications in optimisation. 
 
3.1.1 Applying ACO to optimisation problems 
 
In order to apply AS to an optimisation problem, the problem needs to be 
represented in such a way that any candidate solution to it is a specific path along 
a network. This network can be conceived as having a single start node, from 
which (usually) every ant starts, and a single finish node, reaching which indicates 
that the path taken encodes a complete solution. A clear example might be the 
network of roads in a city, where each junction of roads is a node in the network, 
and each road is an arc or edge between nodes. Consider the problem of finding 
the shortest path between a specific junction A and another specific junction B. In 
this case, A and B are clearly the start and finish nodes, and we can imagine an 
ACO approach which maps very closely indeed to the natural case. However, with 
a little thought, it is clear that we should constrain each individual ants' path 
construction so that it does not return to a junction it has already visited (unless 
this is a valid move for the problem under consideration). Also, though we might 
choose to simulate the preferential recruitment of new ants to shorter paths by 
closely following the natural case, it seems more sensible and straightforward to 
make the pheromone trail strength directly a function of the solution quality. That 
is, when an ant has completed its path, we evaluate the quality of its solution, and 
render things such that better solutions lead to stronger pheromone deposits along 
its arcs. These pheromone deposits will decay over time, however, just as in the 
natural case - we can see that this will prevent premature convergence to poor 
solutions that happen to be popular in the early stages. 
     Finally, since such information is often available to us, and would seem useful 
in cases where ants have large numbers of choices, we might bias the paths 
available at each junction with the aid of a simple heuristic evaluation of the 
potential of that arc. For a shortest path problem, for example, this could be based 
on how much closer to B each arc would leave the ant.   
      With such considerations in mind, we can envisage artificial ants travelling the 
road network from A to B via distinct but sensible routes. At each junction, the ant 
senses the pheromone levels that await it at each of the arcs it can feasibly take. 
These levels are made from many components; arcs that are highly attractive will 
probably enjoy the remnants of trails from prior ants that have reported good 
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solutions, and/or may have a good heuristic component. Arcs with low pheromone 
levels will probably be losers in the heuristic stakes, and have seen little activity 
that has led to good solutions; however, the ant may still choose such an arc, since 
our algorithm is stochastic.  
    Finally, as an individual artificial ant arrives at B, it retrospectively lays 
pheromone on the path it took, where the strength of that pheromone trail will 
reflect the quality of its solution. The next artificial ant starts from A and sees a 
slightly updated pheromone trail (stigmergic) pattern, and so it continues.  
    To apply this method to other problems, we simply need (implicitly, at least) a 
network-based representation of the problem as described. If we are solving the 
traveling salesperson problem (TSP), for example, the network is the complete 
graph of the cities, each arc between cities indicates the distance or cost of that 
arc, and in this case an individual ant can start anywhere. As we follow an 
individual ant's route, we sensibly constrain its potential next-hops to avoid cycles, 
and along the way we may bias its choices simply by using the distance of the next 
arc, and it retrospectively lays pheromone once it has completed a tour of all 
cities. In general, an optimisation problem can always be approached in this way, 
by suitable choices of semantics for nodes and arcs, and well designed routines for 
generating and constraining an ant's available choices at each junction.  
    We can now finish this explication by clarifying the AS algorithm, which in fact 
has already been covered verbosely in the above. Once the transformation of the 
problem has been designed, so that an ant's path through a network provides a 
candidate solution, the algorithm cycles through the following two steps until a 
suitable termination condition is reached: 
 
 

Solution Construction: a number of ants individually construct solutions 
based on the current pheromone trail strengths (initially, pheromone is 
randomly distributed). Each ant steps through the network choosing 
among feasible paths. At each choice point, the ant chooses among 
available arcs according to a function of the pheromone strength on each 
arc, and of the heuristic values of each arc. In the original, and still 
commonly used version of this function (see Dorigo et al (1996) and 
many more), the pheromone and heuristic components for each arc are 
exponentiated to parameters α and β respectively, allowing for tuning of 
the level to which the algorithm relies on exploration and heuristic 
support. Also, the overall attractiveness value of each arc is scaled so that 
the ant can treat these values as a probability distribution over its 
available choices. 
 
Pheromone Update: When the ants' paths are complete, for each ant, the 
corresponding solution is evaluated, and pheromone is laid on each arc 
travelled in proportion to the overall solution quality. Also, the 
component of pheromone strength that arises from earlier ants is reduced. 
Quite simply, for any particular arc, its updated pheromone strength pnew 
is (1−ρ)pold + ρf, where ρ controls the speed of pheromone decay, and f 
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accumulates the overall quality of solutions found which involved that 
arc in the current iteration.  

 
 
ACO has now been applied to very many problems, and (clearly, or we would 
probably not have devoted so much time to it) has been very successful, especially 
when hybridized with local search or some other meta-heuristic (in such 
hybridized algorithms, an ant will typically use the additional heuristic for a short 
time to find an improvement locally to its solution). Initially demonstrated for the 
TSP (Dorigo et al, 1996), there are an enormous number of applications of ACO 
now published. We mention vehicle routing (Gambardella et al, 1999), rule 
discovery (Parpinelli et al, 2002), and protein/ligand docking (Korb et al, 2007), 
just to give some initial idea of the range of applications. To discover more, recent 
surveys include Blum (2005) and Gutjahr (2007), the latter concentrating on 
theoretical analyses. Meanwhile, Socha & Dorigo (2008) show how to apply ACO 
to continuous domains (essentially, ants select parameters via a probability density 
function, rather than a discrete distribution over a fixed set of arcs). 
 
3.1.2 Ant-Based Routing in Telecommunications 
 
The basic ACO idea of exploiting pheromone-trail based recruitment is also the 
inspiration for a healthy sub-area of research in communications networks; 
therein, ant-inspired algorithms are designed to assist with network routing and 
other network tasks, leading to systems that combine high performance with a 
high level of robustness, able to adapt with current network traffic and robust to 
network damage. Early and prominent studies in this line were by 
Schoonderwoerd et al (1996; 1997), which were soon built upon by di Caro and 
Dorigo's AntNet (1998). To explain this application area, and the way that ACO 
ideas are applied therein, it will be helpful to first explore the problem and the 
associated solution that was studied in Schoonderwoerd et al’s seminal work. 
     Schoonderwoerd et al were concerned with load balancing in 
telecommunication networks. The task of a telecommunication network is to 
connect calls that can arise at any node, and which may need to be routed to any 
other node. The networks themselves, as a function of the capacities of the 
constituent equipment at each node, cannot guarantee successful call connections 
in all cases, but they aim to maintain overall acceptable performance under 
standard conditions. At very busy times, and/or if a particular node is 
overwhelmingly flooded with calls, then typically many calls will be ‘dropped’. It 
is worth noting that there are problems with central control of such systems 
(landline telecommunication networks, mobile networks, traffic networks, and so 
forth …). To achieve centralised control in a way that manages load-balancing or 
any other such target, several disadvantages are apparent. The controller usually 
needs current knowledge about many aspects of the entire system, which in turn 
necessitates using communication links from every part of the system to the 
controller itself. Centrally managed control mechanisms therefore scale badly as a 
result of the rapidly increasing overheads of this communication, interfering with 
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the performance of the system itself. Also, failure in the controller will often lead 
to complete failure of the complete system.   

Schoonderwoerd et al’s ant-inspired approach, which remains a central 
part of the majority of more recent ant-based approaches, was to replace the 
routing tables in such networks with so-called ‘pheronome tables’. Networks of 
the type of interest invariably have a routing table at each node, specifying which 
‘next-hop’ neighbouring node to pass an incoming call to, given the ultimate 
desitination of that call. In Schoonderwoerd et al’s ‘Ant-Based Control’ (ABC) 
method, the routing table at a network node instead provided n probability 
distributions over its neighbouring nodes, one for each of the n possible 
destinations in the network. When a routing decision is to be made, it is made 
stochastically according to these probabilities – i.e. it is most likely that the next-
hop with the highest probability will be taken, but there is a chance that the next-
hop with the lowest probability will be taken instead. The entries in the 
pheromone table were considered analogous to pheromone trail strengths, and 
changed adaptively during the operation of the network.  Updating of these trails 
in ABC is very simple – whenever a call is routed from node A to B, the entries for 
A in node B’s routing table are all increased, with corresponding reductions to 
other entries. However this simple idea has obvious intuitive benefits; first, by 
testing various routing decisions over time (rather than deterministic decisions), 
the process effectively monitors the current health of a wide variety of different 
routing strategies; when a link is over-used, or down, this naturally leads to 
diminution in its probability of use, since the associated entries in routing tables 
will not be updated, and hence will naturally reduce as alternatives are updated. 
Also, as it turns out, the pheromone levels can adapt quite quickly to changes in 
call patterns and loads. The ABC strategy turned out to be surprisingly effective, 
despite its simplicity, when Schoonderwoerd et al compared it with a 
contemporary agent-based strategy developed by Appleby and Steward (1994), 
and found it superior over a wide range of different situations.  

Research in ant-based approaches for decentralised management is 
increasingly very active (e.g.  Hossein and Saadawi, 2003; Rosati et al, 2008; Di 
Caro et al, 2008). The essential idea, to replace static built-in routing strategies 
with stochastic ‘pheromone tables’ or similar, is applicable in almost all modern 
communication scenarios, ranging through ad-hoc computer networks, mobile 
telephone networks, and various layers of the internet. Ongoing research continues 
to explore alternative strategies for making the routing decisions, controlling the 
updates to pheromone trails, and so forth, while investigating various distinct 
application domains, and continuing to find competitive or better performance 
than alternative state of the art methods used in network engineering. 
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3.2 Particle Swarm Optimization and Foraging 
 
Particle swarm optimization (PSO) was established in 1995 with Kennedy and 
Eberhart's paper in IJCNN (Kennedy & Eberhart, 1995). The paper described a 
rather simple algorithm (and time has seen no need to alter its straightforward 
fundamentals), citing Craig Reynolds' work as inspiration (Reynolds, 1987), along 
with slightly later work in the modelling of bird flocks (Heppner & Grenander, 
1990). The basic idea is to unite the following two notions: (i) the behaviour of a 
flock of birds moving in 3D space towards some goal; (ii) a swarm of solutions to 
an optimisation problem, moving through the multidimensional search space 
towards good solutions. 
    Thus, we equate a `particle' with a candidate solution to an optimization 
problem. Such a particle has both a position and a velocity. Its position is, in fact, 
precisely the candidate solution it currently represents. Its velocity is a 
displacement vector in the search space, which (it hopes) will contribute towards a 
fruitful change in its position at the next iteration. 
    The heart of the classic PSO algorithm is in the step which calculates a new 
position for the particle based on three influences. The inspiration from Reynolds 
(1987) is clear, but the details are quite different, and, of course, exploit the fact 
that the particle is moving in a search space and can measure the `fitness' of any 
position. The influences - the components that lead to the updated position – are: 
 

Current velocity: the particle's current velocity (obviously); 
 
Personal Best: the particle remembers the fittest position it has yet 
encountered, called the personal best. A component of its updated 
velocity is the direction from its current position to the personal best; 
 
Global Best: every particle in the swarm is aware of the best position 
that any particle has yet discovered (i.e. the best of the personal bests). 
The final component of velocity update, shared by all particles, is a 
vector in the direction from its current position to this globally best 
known position. 

  
 
Following a random initialisation of positions and velocities, evaluation of the 
fitness of the particles' current positions, and consequent initialisation of the 
personal bests and global best, PSO proceeds in a remarkably straightforward 
manner. First, each particle updates its velocity by adding a vector in each of the 
above three component directions. To provide these vectors, in the classic 
algorithm, the current velocity component is left undisturbed, while the personal 
and global best components are each scaled by a random scalar drawn uniformly 
from [0,2].  The resulting vector is used to update the current velocity, and the 
new velocity vector is used to update the current position. The new position is 
evaluated, bookkeeping is done to update personal and global bests, and then we 
repeat.  
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   Kennedy and Eberhart initially reported that PSO appeared to do very well over 
a wide range of test problems, including its use as an alternative to 
backpropogation for training an artificial neural network (Kennedy & Eberhart, 
1995). Perhaps helped by the ease of implementation of this algorithm 
(remarkably few lines of code are needed for the classic algorithm), an avalanche 
of papers began to follow, almost invariably adding to the evidence that this 
algorithm provides a very substantial contribution to optimization practice. 
Naturally, this field is now rich in variants and extensions to the original design -- 
a number of recent surveys are available (e.g. Reyes-Sierra & Coello, 2006;  Yang 
et al, 2007) – while the published applications are as varied as one might expect 
from such a generally applicable algorithm.   
 
3.2.1 Bacteria and Bees 
  
    Newer to the ranks of swarm-intelligence based optimisation, and yet to prove 
quite as  widely successful, are techniques inspired by bacterial and bee foraging. 
For the most part, these algorithms follow the broad direction of PSO, in that 
individuals in a swarm represent solutions moving through a landscape, with the 
fitness of their current solution easily obtained by evaluating their position. 
Meanwhile, just as with PSO, an individual's movement through this landscape is 
influenced by the movements and discoveries of other individuals. The fine details 
of a Bacterial Foraging Algorithm (BFA), however, are quite distinct, and in one 
of the more popular methods draw quite closely from what is known (and briefly 
touched upon above) about bacterial swarming in nature. Passino (2002) presents 
a fine and detailed explication of both the natural case and the BFA. It turns out 
that BFA-style algorithms are enjoying quite some success in recent application to 
a range of engineering problems (e.g. Niu et al, 2006;  Tripathy & Mishra, 2007; 
Guney & Basbug, 2008).  
    Also inspiring, so far, a small following are algorithms that are inspired by bee 
foraging behaviour. The authoritative sources for this are Quijano and Passino's 
papers respectively outlining the design and theory (Quijano & Passino, 2007a) 
and application (Quijano & Passino, 2007b) of a bee foraging algorithm. In 
Quijano & Passino (2007a) the design of a bee foraging algorithm is presented in 
intimate connection with an elaboration of the mechanisms of natural bee foraging 
(such as we briefly described earlier). The algorithm is as much a model of the 
natural process as it is a routine applicable to certain kinds of problem. 
Considering individual bees as resources, the concept here is to use bee foraging 
behaviour as a way to ideally distribute those resources in the environment, and 
maintain an ideal distribution over time as it adapts to changing patterns of supply. 
Just as natural bees maintain an efficient distribution of individuals among the 
available sources of nectar, the idea is that this can be mapped to control problems 
which aim to maintain a distribution of resources (such as power or voltage) in 
such a way that some goal is maintained (such as even temperature or maximal 
efficiency). In Quijano & Passino, 2007b), we see the algorithm tested 
successfully on a dynamic voltage allocation problem, in which the task is to 
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maintain  a uniform and maximal  temperature across an interconnected grid of 
temperature zones.  
    Finally, we note that bee foraging behaviour has also directly inspired 
techniques for internet search, again, based on the notion of maintaining a 
maximally effective use of server resources, adapting appropriately and effectively 
to the relative richness of new discoveries (Walker, 2000; Nakrani & Tovey, 
2003).   
 
 
4. Current Trends and Concluding Notes  
 
We have pointed to a number of survey papers and other works from which the 
reader can attain a full grasp of the current activity in swarm intelligence 
algorithms, but in this brief section we attempt a few notes that outline major 
current trends, and then we wrap up. 
    A notable trend in recent work on particle swarm optimisation, and indeed on 
metaheuristics in general, is towards the creation of hybrid algorithms. While 
themes from evolutionary computation continue to be incorporated in PSO (Shi et 
al, 2005), others have explored the idea of hybridization with less frequently used 
techniques such as scatter search and path relinking (Yin et al, 2007), immune 
system methods (Zhang & Wu, 2008) and, indeed, ant colony optimization 
(Holden & Freitas, 2007). Meanwhile, the range of problems to which PSO may 
be applied has been greatly increased with the development of multi-objective 
forms of PSO (Coello et al, 2004). 
    Other work has involved the use of multiple swarms. This may allow each 
swarm to optimize a different section of the solution (van den Bergh & 
Engelbrecht, 2004). Alternatively,  each swarm may be configured differently to 
take advantage of the strengths of different PSO variants (e.g. Jordan et al, 2008), 
in an attempt to create a more reliable algorithm that can be applied to a wide 
range of problem domains. 
    The themes of multi-objective optimization and hybridization equally apply to 
recent research into ant-colony optimisation. While multi-objective ACO is a 
more mature field than multi-objective PSO (see, for example, MARIANO & 
Morales, 1999), work continues in categorizing and comparing multi-objective 
approaches to ACO (e.g. Garcia-Martinez et al, 2007), in creating generic 
frameworks for multi-objective ACO and in creating new multi-objective variants 
(e.g. Alaya, 2007). Recent applications have seen single objective ACO 
hybridized with genetic algorithms (Lee et al, 2008), beam search (Blum, 2005b), 
and immune systems (Yuan et al, 2008) and multi-objective ACO used in 
combination with dynamic programming (Häckel et al, 2008) and integer linear 
programming (Doerner et al, 2006). 
    Other recent work has seen ACO adapted for use in continuous domains (Dreo 
Siarry, 2006; Socha & Dorigo, 2008), while research continues into variations of 
ACO and new algorithm features, for example, different types of pheromone and 
the use of dominance rules to warn ants from searching amongst solutions known 
to be of low quality (Lin et al, 2008). 
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    Recent work on bacterial foraging algorithms has concentrated on exploiting the 
effectiveness of the local search ability of the algorithm, while adapting it improve 
the global search ability on high dimensional and multi-modal problems. With this 
aim, bacterial foraging has be hybridized with more effective global optimizers 
such as genetic algorithms (Chen et al, 2007; Kim et al, 2007) and particle swarm 
optimization (Tang et al, 2007; Biswas et al, 2007).  
    In conclusion, we have attempted to demystify the concept of swarm 
intelligence, and, after touring through the chief sources of natural inspiration, 
distilled the essence of its impact and presence in computer science down to two 
major families of algorithms for optimisation. No less intriguing and exciting 
additional topics in the swarm intelligence arena, that we have also discussed, are 
stigmergic construction, ant-based clustering, and swarm robotics. It is abundantly 
clear that the natural inspirations from swarming ants, bees and birds (among 
others) have provided us with new ideas for optimisation algorithms that have 
extended the state of the art in performance on many problems, sometimes with 
and sometimes without additional tailoring and hybridization. Ant-based 
clustering seems also to provide a valuable contribution, while swarm robotics, 
stignergy based construction, and a variety of other emerging subtopics have 
considerable promise, and will doubtless develop in directions rather difficult to 
foresee. 
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