Structure and Function of the XCS Classifier System

Stewart W. Wilson
Prediction Dynamics
Concord, MA
wilson@prediction-dynamics.com

- Learning machine (program).
- Minimum a priori.
- "On-line".
- Capture regularities in environment.

To get reinforcements ("rewards", "payoffs")

(Not "supervised" learning-no prescriptive teacher.)

xcs

Inputs:
Now binary, e.g., 100101110 —like thresholded sensor values.

Later continuous, e.g., <43.0 92.1 7.4 ... 0.32>

Outputs:

Now discrete decisions or actions,

$$
\text { e.g., } 1 \text { or } 0 \text { ("yes" or "no"), }
$$

"forward", "back", "left", "right"
Later continuous, e.g., "head 34 degrees left"

XCS contains rules (called classifiers), some of which will match the current input. An action is chosen based on the predicted payoffs of the matching rules.

$<$ condition $>:<$ action $>=><$ prediction $>$.

Example: $01 \# 1 \# \#: 1=>943.2$

Note this rule matches more than one input string:

$$
\begin{aligned}
& 010100 \\
& 010110 \\
& 010101 \\
& 011111 \\
& 011100 \\
& 011101 \\
& 011110 \\
& 011111 .
\end{aligned}
$$

This adaptive "rule-based" system contrasts with "PDP" systems such as NNs in which knowledge is distributed.

- For each action in [M], classifier predictions p are weighted by fitnesses F to get system's net prediction in the prediction array.
- Based on the system predictions, an action is chosen and sent to the environment.
- Some reward value is returned.

1. By "updating" the current estimate.

For each classifier C_{j} in the current [A],

$$
p_{j} \leftarrow p_{j}+\alpha\left(R-p_{j}\right),
$$

where R is the current reward and α is the learning rate.

This results in p_{j} being a "recency weighted" average of previous reward values:

$$
\begin{aligned}
p_{j}(t)=\alpha R(t) & +\alpha(1-\alpha) R(t-1)+\alpha(1-\alpha)^{2} R(t-2)+ \\
& \ldots+(1-\alpha)^{t} p_{j}(0) .
\end{aligned}
$$

2. And by trying different actions, according to an explore/exploit regime.

A typical regime chooses a random action with probability 0.5 .

Exploration (e.g., random choice) is necessary in order to learn anything. But exploitation-picking the highest-prediction action is necessary in order to make best use of what is learned.

There are many possible explore/exploit regimes, including gradual changeover from mostly explore to mostly exploit.

XCS Where do the rules come from?

- Usually, the "population" $[\mathrm{P}]$ is initially empty. (It can also have random rules, or be seeded.)
- The first few rules come from "covering": if no existing rule matches the input, a rule is created to match, something like imprinting.

Input: 11000101
Created rule: $1 \# \# 0010 \#$: $3=>10$
Random \#'s and action, low initial prediction.

- But primarily, new rules are derived from existing rules.
- Besides its prediction p_{j}, each classifier's error and fitness are regularly updated.

Error:

$$
\varepsilon_{j} \leftarrow \varepsilon_{j}+\alpha\left(\left|R-p_{j}\right|-\varepsilon_{j}\right)
$$

Accuracy: $\quad \kappa_{j} \equiv \varepsilon_{j}^{-n}$ if $\varepsilon_{j}>\varepsilon_{0}$, otherwise $\varepsilon_{0}{ }^{-\mathrm{n}}$
Relative accuracy: $\quad \kappa_{j}^{\prime} \equiv \kappa_{j} /\left(\sum_{i} \kappa_{i}\right)$, over [A].

Fitness: $\quad F_{j} \leftarrow F_{j}+\alpha\left(\kappa_{j}^{\prime}-F_{j}\right)$.

- Periodically, a genetic algorithm (GA) takes place in [A].

Two classifiers C_{i} and C_{j} are selected with probability proportional to fitness. They are copied to form $\mathrm{C}_{\mathrm{i}}{ }^{\prime}$ and $\mathrm{C}_{\mathrm{j}}{ }^{\prime}$.
With probability $\chi, \mathrm{C}_{\mathrm{i}}{ }^{\prime}$ and $\mathrm{C}_{\mathrm{j}}{ }^{\prime}$ are crossed to form $C_{i}^{\prime \prime}$ and $C_{j}{ }^{\prime \prime}$, e.g.,
$\mathrm{C}_{\mathrm{i}}{ }^{\prime \prime}$ and $\mathrm{C}_{\mathrm{j}}{ }^{\prime \prime}$ (or $\mathrm{C}_{\mathrm{i}}{ }^{\prime}$ and $\mathrm{C}_{\mathrm{j}}{ }^{\prime}$ if no crossover occurred), possibly mutated, are added to $[\mathrm{P}]$.

xCS
 Can I see the overall process?

They remain in [P], in competition with their offspring.

But two classifiers are deleted from [P] in order to maintain a constant population size.

Deletion is probabilistic, with probability proportional to, e.g.:

- A classifier's average action set size a_{j} —estimated and updated like the other classifier statistics.
- a_{j} / F_{j}, if the classifier has been updated enough times, otherwise $a_{j} / F_{\text {ave }}$, where $F_{\text {ave }}$ is the mean fitness in [P].
-And other arrangements, all with the aim of balancing resources (classifiers) devoted to each niche ([A]), but also eliminating low fitness classifiers rapidly.

Basic example for illustration: Boolean 6-multiplexer.

$$
F_{6}=x_{0} x_{1}^{\prime} x_{2}+x_{0}^{\prime} x_{1} x_{3}+x_{0} x_{1}^{\prime} x_{4}+x_{0} x_{1} x_{5}
$$

$$
\boldsymbol{l}=\boldsymbol{k}+2^{k} \quad \boldsymbol{k}>0
$$

$$
F_{20}=x_{0}^{\prime} x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime} x_{4}+x_{0}^{\prime} x_{1}^{\prime} x_{2}^{\prime} x_{3} x_{5}+
$$

$$
x_{0} x_{1}^{\prime} x_{2} x_{3} x_{6}+x_{0} x_{1}^{\prime} x_{2} x_{3} x_{7}+
$$

$$
x_{0} x_{1} x_{2}^{\prime} x_{3} x_{8}+x_{0} x_{1} x_{2} x_{3} x_{9}+
$$

$$
x_{0} x_{1} x_{2} x_{3} x_{10}+x_{0} x_{1} x_{2} x_{3} x_{11}+
$$

$$
x_{0} x_{1} x_{2}^{\prime} x_{3}^{\prime} x_{12}+x_{0} x_{1}^{\prime} x_{2}^{\prime} x_{3} x_{13}+
$$

$$
x_{0} x_{1}^{\prime} x_{2} x_{3}^{\prime} x_{14}+x_{0} x_{1}^{\prime} x_{2} x_{3} x_{15}+
$$

$$
x_{0} x_{1} x_{2} x_{3}^{\prime} x_{16}+x_{0} x_{1} x_{2} x_{3} x_{17}+
$$

$$
x_{0} x_{1} x_{2} x_{3} x_{18}+x_{0} x_{1} x_{2} x_{3} x_{19}
$$

$01100010100100001000 \rightarrow 0$

xCs
 What are the results like?-2

Population at 5,000 problems in descending order of numerosity (first 40 of 77 shown).

				PRED	ERR	FITN	NUM	GEN	ASIZ	EXPER	TST
0.	11 \#\#	\#0	1	0 .	. 00	884	30	. 50	31.2	287	4999
1.	00 1\#	\#\#	0	0.	. 00	819.	24	. 50	25.9	286	4991
2	01 \#1	\#\#	1	1000.	. 00	856	22	. 50	24.1	348	4984
3	01 \#1	\#\#	0	0 .	. 00	840.	20	. 50	21.8	263	4988
4	11 \#\#	\#1	0	0.	. 00	719.	20	. 50	22.6	238	4972
5.	00 1\#	\#\#	1	1000.	. 00	698.	19	. 50	20.9	222	4985
6.	01 \#0	\#\#	0	1000.	. 00	664	18	. 50	23.9	254	4997
7.	10 \#\#	1\#	1	1000.	. 00	712.	18	. 50	22.4	236	4980
8.	00 0\#	\#\#	0	1000.	. 00	674	17	. 50	21.2	155	4992
9.	10 \#\#	0\#	0	1000.	. 00	706	17	. 50	19.9	227	4990
10.	11 \#\#	\#0	0	1000.	. 00	539.	17	. 50	24.5	243	4978
11.	10 \#\#	1\#	0	0.	. 00	638.	16	. 50	20.0	240	4994
12.	01 \#0	\#\#	1	0	. 00	522.	15	. 50	23.5	283	4967
13.	00 0\#	\#\#	1	0	. 00	545.	14	. 50	20.9	110	4979
14.	10 \#\#	0\#	1	0.	. 00	425	12	. 50	23.0	141	4968
15.	11 \#\#	\#1	1	1000.	. 00	458.	11	. 50	21.1	76	4983
16.	11 \#\#	11	1	1000.	. 00	233	6	. 33	22.1	130	4942
17.	0\# 00	\#\#	1	0.	. 00	210.	6	. 50	23.1	221	4979
18.	11 \#\#	01	1	1000.	. 00	187.	5	. 33	21.1	86	4983
19.	0110	\#\#	1	0.	. 00	168.	4	. 33	19.1	123	4939
20.	11 \#1	\# 0	0	1000.	. 00	114	4	. 33	26.2	113	4978
21.	10 \#\#	11	0	0 .	. 00	152.	4	. 33	23.9	34	4946
22.	10 1\#	0\#	1	0.	. 00	131.	3	. 33	21.7	111	4968
23.	00 0\#	0\#	0	1000.	. 00	117.	3	. 33	22.8	57	4992
24.	11 1\#	\#0	0	1000.	. 00	68.	3	. 33	28.7	38	4978
25.	10 \#1	0\#	0	1000.	. 00	46.	3	. 33	20.6	4	4990
26.	10 \#\#	11	1	1000.	. 00	81	3	. 33	23.9	113	4950
27.	\#1 \#0	\#0	0	1000.	. 00	86	3	. 50	23.6	228	4981
28.	0110	\#\#	0	1000.	. 00	61	2	. 33	22.5	16	4997
29.	0100	\#\#	0	1000.	. 00	58.	2	. 33	22.2	46	4981
30.	10 0\#	0\#	1	0.	. 00	63	2	. 33	22.8	22	4866
31.	11 0\#	\#1	1	1000.	. 00	63.	2	. 33	23.2	35	4953
32.	00 1\#	\#0	1	1000.	. 00	77.	2	. 33	20.7	7	4985
33.	10 \#1	0\#	1	0.	. 00	93.	2	. 33	24.5	28	4968
34.	11 \#1	\#1	1	1000.	. 00	59.	2	. 33	21.8	12	4983
35.	01 \#1	\#0	1	1000.	. 00	75.	2	. 33	23.1	21	4944
36.	01 \#0	\#1	0	1000.	. 00	36.	2	. 33	21.7	3	4997
37.	11 \#\#	01	0	0.	. 00	92.	2	. 33	19.7	41	4948
38.	10 \#\#		1	703.	. 31	8.	2	. 67	22.3	10	4980
39.	\#1 1\#	\# 0	0	856.	. 22	11.	2	. 50	27.4	22	4978

Action sets [A] for input 101001 and action 0 at several epochs.

247

			PRED	ERR	FITN	NUM	GEN	ASIZ	EXPER	TST	
0.	\#\# \#\# \#\#	0	431.	.440	8.	2	1.00	17.2	76	244	
1.	$\# \# 10$	$\# \#$	0	245.	.362	109.	2	.67	10.6	14	236
2.	$\# \#$	10	$0 \#$	0	893.	.146	504.	5	.50	11.2	8
200											

1135
PRED ERR FITN NUM GEN ASIZ EXPER TST
0. \#\# \#0 \#1 0 519. .419 1. 1.67 16.5 111134

1. \#\# \#0 0\# 0 510. . 390 27. 2 . 67 16.8 15119
2. \#\# 1\# \#\# 0 125. . 261 0. 1 . 8321.7 18 1132
3. \#0 \#\# 0\# 0 1000. . 021 4. 1 . 6717.7 1117
4. \#0 10 \#\# 0 454. .433 2. 1 .50 14.8 831106
5. \#0 10 0\# 0 735. . 343 27. 2 . 33 14.4 131106
6. 1\# \#\# \#1 0 169. . 282 2. $1 \quad .67 \quad 24.4 \quad 12 \quad 1119$
7. 1\# \#\# 0\# 0 445. . 418 13. 5 . 67 18.6 27119
8. 10 \#\# \#\# 0 1000. . 000 135. 2 . 67 24.2 3117
9. 10 \#\# 0\# 0 1000. . 000 451. 3 . $50 \quad 23.4 \quad 171117$

1333
PRED ERR FITN NUM GEN ASIZ EXPER TST
0. \#0 1\# 0\# 0 761. . 336 1. 1 . 50 10.6 101325

1. 1\# \#\# 0\# 0 652. . 387 5. 1 . 67 10.9 111325
2. 1\# \#0 \#1 0 107. . 197 6. 1 .50 22.0 81308
3. 1\# 10 0\# 0 829. . 228 26. 2 . 33 14.3 91325
4. 10 \#\# 0\# 0 1000. . 000 490. 4 . 50 11.6 261325

2410
PRED ERR FITN NUM GEN ASIZ EXPER TST
0. 1\# \#\# 0\# 0 360. . 394 0. 1 . 67 18.1 142404

1. 10 \#\# 0\# 0 1000. . 000 478. 10 . 50 20.1 952392

2725

				PRED	ERR	FITN	NUM	GEN	ASIZ	EXPER	TST
0.	\#0	\#\#	0\#	0	863.	.237	0.	3	.67	21.1	18
2714											
1.	10	$\# \#$	$0 \#$	0	1000.	.000	630.	13	.50	22.6	117
2.	10	$\# 0$	$0 \#$	0	1000.	.000	49.	1	.33	22.4	9
2638											
3.	10	1\#	$0 \#$	0	1000.	.000	58.	1	.33	18.4	8
2693											

Consider two classifiers C1 and C2 having the same action, and let C 2 be a generalization of C 1 . That is, C 2 can be obtained from C1 by changing some non-\# alleles in the condition to \#'s. Suppose that C1 and C2 are equally accurate. They will therefore have the same fitness. However, note that, since it is more general, C2 will occur in more action sets than C1. What does this mean? Since the GA acts in the action sets, C 2 will have more reproductive opportunities than C 1 . This edge in reproductive opportunities will cause C 2 to gradually drive C1 out of the population.

$$
\begin{aligned}
& \text { Example: } \\
& p \quad \varepsilon \quad F \\
& \text { C1: } 10 \# 001: 0 \Rightarrow 1000.001920 \\
& \text { C2: } 10 \text { \# \# } 0 \text { \#: } 0 \Rightarrow 1000.001920
\end{aligned}
$$

C2 has equal fitness but more reproductive opportunities than C 1 .

C2 will "drive out" C1

Fraction corract
System error/payoff range

Fraction correct
System error/payoff range

- - - - Pop size M/ 1000
$20 \mathrm{~m} \sim 5 \mathrm{x}$ harder than 11 m
$11 \mathrm{~m} \sim 5 \mathrm{x}$ harder than 6 m .

$$
\Rightarrow D=c g^{p}
$$

where $D=$ "difficulty", here learning time,

$$
\begin{aligned}
& g=\text { number of maximal generalizations, } \\
& p=\text { a power, about } 2.3 \\
& c=\text { a constant about } 3.2
\end{aligned}
$$

Thus " D is polynomial in g ".

What is D with respect to l, string length?
For the multiplexers, $l=k+2^{k}$,
or $l \rightarrow 2^{k}$ for large k.
But $g=4 \cdot 2^{k}$, thus $l \sim g$,
So that " D is polynomial in l " (not exponential).

Apply ideas from multi-step reinforcement learning.
Need the action-value of each action in each state.
What is the action-value of a state more than one step from reward?

Intuitive sketch:

$$
p_{j} \leftarrow p_{j}+\alpha\left[\left(r_{\mathrm{imm}}+\underset{a^{\prime} \in A}{\gamma \max } P\left(x^{\prime}, a^{\prime}\right)\right)-p_{j}\right]
$$

where p_{j} is the prediction of a classifier in the current action set [A],
x^{\prime} and a^{\prime} are the next state and possible actions, $P\left(x^{\prime}, a^{\prime}\right)$ is a system prediction at the next state, and r_{imm} is the current external reward.

Can I see the overall process?

- Previous action set [A]-1 is saved and updates are done there, using the current prediction array for "next state" system predictions.
- On the last step of a problem, updates occur in [A].

What are the results like?-1

- Animat senses the 8 adjacent cells.

Fbb
O * b
Q b b

- Coding of each object:

$$
\begin{aligned}
& \mathrm{F}=110 \text { "food } 1 " \\
& \mathrm{G}=111 \text { "food2" } \\
& \mathrm{O}=010 \text { "rock } 1 " \\
& \mathrm{Q}=011 \text { "rock2" } \\
& \mathrm{b}=000 \text { "blank" }
\end{aligned}
$$

- "Sense vector" for above situation: 000000000000000011010110
- A matching classifier: \#\#\#\#0\#00\#\#\#\#00001\#\#101\#\# : 7

2

Two generalizations discovered by XCS in Woods1.

$$
\begin{aligned}
& \text { OOF OOF } \\
& \text { OOO } \\
& 000 \\
& 000
\end{aligned}
$$

> Action 0
> ,
\#\#\#\#\#\#\#\#\#\#\#\# 0 \# 504 Clear W
\#\#\#\#\#\#\#\#\#\#\#1 \#\# $0 \quad 710$ Opaque W

```
(Food = 11 = "Tasty","Opaque"
Rock = 01 = "Bland","Opaque"
Blank = 00 = "Bland", "Clear")
```

Inputs:
$\ll x_{1} \pm \Delta x_{1}>\ldots<x_{n} \pm \Delta x_{n} \gg:<$ action $>\Rightarrow p$

Actions:
$\ll x_{1} \pm \Delta x_{1}>\ldots<x_{n} \pm \Delta x_{n} \gg:<a \pm \Delta a>\Rightarrow p$
—and combine matching rules à la fuzzy logic, perhaps.

Time:
$\ll x_{1} \pm \Delta x_{1}>\ldots<x_{n} \pm \Delta x_{n} \gg:<a \pm \Delta a>\Rightarrow \frac{d p}{d t}$
-action selection based on steepest ascent of p.

Example (McCallum's Maze):

0	0	0	0	0	0	0
0		$*$		$*$		0
0		0		0		0
0		0	F	0		0
0	0	0	0	0	0	0

* Aliased states. Optimal action not determinable from current sensory input.

Approaches:

- "History window" - remember previous inputs
- Search for correlation with past input events
$\checkmark \cdot$ Adaptive internal state:

Example: "if $x>y$ for any x and y, and action a is taken, payoff is predicted to be p."

Cannot be represented using a single classifier with traditional conjunctive condition, since it's a relation.

However, it can be represented using an "s-classifier":
$(>x y):<a c t i o n a>\Rightarrow p$
i.e., a classifier whose condition is a Lisp
s-expression.

With appropriate elementary functions, s-classifiers can encode an almost unlimited variety of conditions.

They can be evolved using techniques of genetic programming.

xCs

Rule-based, not PDP ("parallel distributed processing")

- Structure is created as needed
- Learning may often be faster because classifiers are inherently non-linear
- Learning complexity may be less than most PDPs
- Classifiers can keep and use statistics; difficult in a network
- Hierarchy and reasoning may be easier, since knowledge is in subroutine-like packages

