Structure and Function of the XCS Classifier System

Stewart W. Wilson

Prediction Dynamics Concord, MA wilson@prediction-dynamics.com

- Learning machine (program).
- Minimum *a priori*.
- "On-line".
- Capture regularities in environment.

To get reinforcements ("rewards", "payoffs")

(Not "supervised" learning—no prescriptive teacher.)

Inputs:

Now binary, e.g., 100101110

—like thresholded sensor values. Later continuous, e.g., <43.0 92.1 7.4 ... 0.32>

Outputs:

Now discrete decisions or actions, e.g., 1 or 0 ("yes" or "no"), "forward", "back", "left", "right" Later continuous, e.g., "head 34 degrees left" XCS contains rules (called *classifiers*), some of which will match the current input. An action is chosen based on the predicted payoffs of the matching rules.

```
<condition>:<action> => <prediction>.
```

Example: 01#1## : 1 => 943.2

Note this rule matches more than one input string:

This adaptive "rule-based" system contrasts with "PDP" systems such as NNs in which knowledge is distributed.

- For each action in [M], classifier predictions *p* are weighted by fitnesses *F* to get system's net prediction in the prediction array.
- Based on the system predictions, an action is chosen and sent to the environment.
- Some reward value is returned.

1. By "updating" the current estimate.

For each classifier C_i in the current [A],

 $p_j \leftarrow p_j + \alpha(R - p_j),$

where R is the current reward and α is the learning rate.

This results in p_j being a "recency weighted" average of previous reward values:

$$p_{j}(t) = \alpha R(t) + \alpha (1 - \alpha) R(t - 1) + \alpha (1 - \alpha)^{2} R(t - 2) + \dots + (1 - \alpha)^{t} p_{j}(0).$$

2. And by trying different actions, according to an *explore/exploit* regime.

A typical regime chooses a random action with probability 0.5.

Exploration (e.g., random choice) is necessary in order to learn anything. But exploitation—picking the highest-prediction action is necessary in order to make best use of what is learned.

There are many possible explore/exploit regimes, including gradual changeover from mostly explore to mostly exploit.

- Usually, the "population" [P] is initially empty. (It can also have random rules, or be seeded.)
- The first few rules come from "covering": if no existing rule matches the input, a rule is created to match, something like imprinting.

```
Input: 11000101
Created rule: 1##0010# : 3 => 10
Random #'s and action, low initial prediction.
```

• But primarily, new rules are derived from existing rules.

• Besides its prediction p_j , each classifier's *error* and *fitness* are regularly updated.

Error: $\varepsilon_j \leftarrow \varepsilon_j + \alpha(|R - p_j| - \varepsilon_j).$

Accuracy: $\kappa_j \equiv \epsilon_j^{-n}$ if $\epsilon_j > \epsilon_0$, otherwise ϵ_0^{-n}

Relative accuracy: $\kappa_j' \equiv \kappa_j / \left(\sum_i \kappa_i\right)$, over [A].

Fitness: $F_j \leftarrow F_j + \alpha(\kappa'_j - F_j).$

• Periodically, a *genetic algorithm* (GA) takes place in [A].

Two classifiers C_i and C_j are selected with probability proportional to fitness. They are copied to form C_i' and C_j' .

With probability χ , C_i' and C_j' are *crossed* to form C_i'' and C_j'' , e.g.,

 C_i " and C_j " (or C_i ' and C_j ' if no crossover occurred), possibly mutated, are added to [P].

Can I see the overall process?

They remain in [P], in competition with their offspring.

But two classifiers are *deleted* from [P] in order to maintain a constant population size.

Deletion is probabilistic, with probability proportional to, e.g.:

- A classifier's average action set size a_j —estimated and updated like the other classifier statistics.
- a_j/F_j , if the classifier has been updated enough times, otherwise a_j/F_{ave} , where F_{ave} is the mean fitness in [P].
- —And other arrangements, all with the aim of balancing resources (classifiers) devoted to each niche ([A]), but also eliminating low fitness classifiers rapidly.

Basic example for illustration: Boolean 6-multiplexer.

$$1 \ 0 \ 1 \ 0 \ 0 \ 1 \ \rightarrow \qquad F_6 \rightarrow 0$$

 $\frac{1\ 0\ 1\ 0\ 0\ 1}{\uparrow}$

XCS

$$F_6 = x_0' x_1' x_2 + x_0' x_1 x_3 + x_0 x_1' x_4 + x_0 x_1 x_5$$

 $\boldsymbol{l} = \boldsymbol{k} + \boldsymbol{2}^k \quad \boldsymbol{k} > \boldsymbol{0}$

$$F_{20} = x_0'x_1'x_2'x_3'x_4 + x_0'x_1'x_2'x_3x_5 + x_0'x_1'x_2x_3'x_6 + x_0'x_1'x_2x_3x_7 + x_0'x_1x_2'x_3'x_8 + x_0'x_1x_2'x_3x_9 + x_0'x_1x_2x_3'x_{10} + x_0'x_1x_2x_3x_{11} + x_0x_1'x_2'x_3'x_{10} + x_0x_1'x_2x_3x_{11} + x_0x_1'x_2x_3x_{12} + x_0x_1'x_2x_3x_{13} + x_0x_1'x_2x_3'x_{14} + x_0x_1'x_2x_3x_{15} + x_0x_1x_2'x_3'x_{16} + x_0x_1x_2'x_3x_{17} + x_0x_1x_2x_3x_{19}$$

$$\underbrace{\begin{array}{ccc}01100010100100001000 \rightarrow 0\\ \hline \end{array}}_{\bullet}$$

What are the results like?— 2

What are the results like?— 3

Population at 5,000 problems in descending order of numerosity (first 40 of 77 shown).

					PRED	ERR	FITN	NUM	GEN	ASIZ	EXPER	TST
0.	11	##	#0	1	0.	.00	884.	30	.50	31.2	287	4999
1.	00	1#	##	0	0.	.00	819.	24	.50	25.9	286	4991
2.	01	#1	##	1	1000.	.00	856.	22	.50	24.1	348	4984
3.	01	#1	##	0	0.	.00	840.	20	.50	21.8	263	4988
4.	11	##	#1	0	0.	.00	719.	20	.50	22.6	238	4972
5.	00	1#	##	1	1000.	.00	698.	19	.50	20.9	222	4985
6.	01	#0	##	0	1000.	.00	664.	18	.50	23.9	254	4997
7.	10	##	1#	1	1000.	.00	712.	18	.50	22.4	236	4980
8.	00	0#	##	0	1000.	.00	674.	17	.50	21.2	155	4992
9.	10	##	0#	0	1000.	.00	706.	17	.50	19.9	227	4990
10.	11	##	#0	0	1000.	.00	539.	17	.50	24.5	243	4978
11.	10	##	1#	0	0.	.00	638.	16	.50	20.0	240	4994
12.	01	#0	##	1	0.	.00	522.	15	.50	23.5	283	4967
13.	00	0#	##	1	0.	.00	545.	14	.50	20.9	110	4979
14.	10	##	0#	1	0.	.00	425.	12	.50	23.0	141	4968
15.	11	##	#1	1	1000.	.00	458.	11	.50	21.1	76	4983
16.	11	##	11	1	1000.	.00	233.	6	.33	22.1	130	4942
17.	0#	00	##	1	0.	.00	210.	6	.50	23.1	221	4979
18.	11	##	01	1	1000.	.00	187.	5	.33	21.1	86	4983
19.	01	10	##	1	0.	.00	168.	4	.33	19.1	123	4939
20.	11	#1	#0	0	1000.	.00	114.	4	.33	26.2	113	4978
21.	10	##	11	0	0.	.00	152.	4	.33	23.9	34	4946
22.	10	1#	0#	1	0.	.00	131.	3	.33	21.7	111	4968
23.	00	0#	0#	0	1000.	.00	117.	3	.33	22.8	57	4992
24.	11	1#	#0	0	1000.	.00	68.	3	.33	28.7	38	4978
25.	10	#1	0#	0	1000.	.00	46.	3	.33	20.6	4	4990
26.	10	##	11	1	1000.	.00	81.	3	.33	23.9	113	4950
27.	#1	#0	#0	0	1000.	.00	86.	3	.50	23.6	228	4981
28.	01	10	##	0	1000.	.00	61.	2	.33	22.5	16	4997
29.	01	00	##	0	1000.	.00	58.	2	.33	22.2	46	4981
30.	10	0#	0#	1	0.	.00	63.	2	.33	22.8	22	4866
31.	11	0#	#1	1	1000.	.00	63.	2	.33	23.2	35	4953
32.	00	1#	#0	1	1000.	.00	77.	2	.33	20.7	7	4985
33.	10	#1	0#	1	0.	.00	93.	2	.33	24.5	28	4968
34.	11	#1	#1	1	1000.	.00	59.	2	.33	21.8	12	4983
35.	01	#1	#0	1	1000.	.00	75.	2	.33	23.1	21	4944
36.	01	#0	#1	0	1000.	.00	36.	2	.33	21.7	3	4997
37.	11	##	01	0	0.	.00	92.	2	.33	19.7	41	4948
38.	10	##	##	1	703.	.31	8.	2	.67	22.3	10	4980
39.	#1	1#	#0	0	856.	.22	11.	2	.50	27.4	22	4978

Action sets [A] for input 101001 and action 0 at several epochs.

247 PRED ERR FITN NUM GEN ASIZ EXPER TST ## 431. 2 1.00 17.2 0. ## ## .440 8. 76 244 0 109. ## 10 ## 245. .362 .67 10.6 1. 0 2 14 236 2. ## 10 0# 0 893. .146 504. 5 .50 11.2 8 200 1135 PRED NUM GEN ERR FITN ASIZ EXPER TST 0. ## #0 #1 519. .419 1. 1 .67 16.5 11 1134 0 1. ## #0 .390 27. 16.8 0# 0 510. 2 .67 15 1119 2. ## 1# ## 125. 0. 1 .83 21.7 1132 0 .261 18 3. #0 ## 0# 0 1000. .021 4. 1 .67 17.7 0 1117 4. #0 10 ## 0 454. .433 2. 1 .50 14.8 53 1106 5. #0 10 0# 735. .343 27. 2 .33 14.4 1106 0 13 1# ## #1 169. 24.4 6. .282 2. 1 .67 12 1119 0 7. 1# ## 0# 0 445. .418 13. 5 .67 18.6 27 1119 10 ## ## 24.2 8. 0 1000. .000 135. 2 .67 3 1117 9. 10 ## 0# 0 1000. .000 451. 3 .50 23.4 17 1117 1333 PRED ERR FITN NUM GEN ASIZ EXPER TST 0. #0 1# 0# 761. .336 1 .50 10.6 1325 0 1. 10 1# ## 0# 652. .387 5. 1 .67 10.9 11 1325 1. 0 2. 1# #0 #1 0 107. .197 6. 1 .50 22.0 8 1308 3. 1# 10 0# 829. .228 26. 2 .33 14.3 9 1325 0 10 ## 0# 0 1000. .000 490. .50 11.6 4. 4 1325 26 2410 EXPER PRED ERR FITN NUM GEN TST ASIZ 360. .394 Ο. 1 .67 18.1 0. 1# ## 0# 0 14 2404 1. 10 ## 0# 0 1000. .000 478. 10 .50 20.1 95 2392

\sim	7	γ	
2	1	2	Э

				PRED	ERR	FITN	NUM	GEN	ASIZ	EXPER	TST
0.	#0 #	# 0#	0	863.	.237	0.	3	.67	21.1	18	2714
1.	10 #	# 0#	0	1000.	.000	630.	13	.50	22.6	117	2714
2.	10 #	0 0#	0	1000.	.000	49.	1	.33	22.4	9	2638
3.	10 1	# 0#	0	1000.	.000	58.	1	.33	18.4	8	2693

Consider two classifiers C1 and C2 having the same action, and let C2 be a generalization of C1. That is, C2 can be obtained from C1 by changing some non-# alleles in the condition to #'s. Suppose that C1 and C2 are equally accurate. They will therefore have the same fitness. However, note that, since it is more general, C2 will occur in *more action sets* than C1. What does this mean? Since the GA acts in the action sets, C2 will have *more reproductive opportunities* than C1. This edge in reproductive opportunities will cause C2 to gradually drive C1 out of the population.

Exar	nple:	р	3	F	
C1:	1 0 # 0 0 1 : 0	\Rightarrow	1000	.001	920
C2:	1 0 # # 0 # : 0	\Rightarrow	1000	.001	920

C2 has equal fitness but more reproductive opportunities than C1.

C2 will "drive out" C1

Does XCS scale up?

 $20m \sim 5x$ harder than 11m $11m \sim 5x$ harder than 6m.

$$\Rightarrow D = cg^p,$$

where D = "difficulty", here learning time, g = number of maximal generalizations, p = a power, about 2.3 c = a constant about 3.2

Thus "D is polynomial in g".

What is D with respect to l, string length?

For the multiplexers, $l = k + 2^k$, or $l \rightarrow 2^k$ for large k.

But $g = 4 \cdot 2^{k}$, thus $l \sim g$, So that "D is polynomial in l" (not exponential). Apply ideas from multi-step reinforcement learning.

Need the *action-value* of each action in each state.

What is the action-value of a state more than one step from reward?

Intuitive sketch:

 $p_j \leftarrow p_j + \alpha[(r_{\text{imm}} + \gamma \max_{a' \in A} P(x', a')) - p_j]$

where p_j is the prediction of a classifier in the current action set [A],

x' and a' are the next state and possible actions, P(x',a') is a system prediction at the next state, and r_{imm} is the current external reward.

Can I see the overall process?

XCS

- Previous action set [A]₋₁ is saved and updates are done there, using the current prediction array for "next state" system predictions.
- On the last step of a problem, updates occur in [A].

What are the results like?— 1

QOFQOGQOFOOFOOGQOG. QQOQOOOOOOQO*.QQOQOO. QQQOOOOQOQOQQOQ

XCS

- Animat senses the 8 adjacent cells.
 - F b b O * b Q b b
- Coding of each object:

F = 110 "food1"G = 111 "food2"O = 010 "rock1"Q = 011 "rock2"b = 000 "blank"

- "Sense vector" for above situation: 00000000000000011010110
- A matching classifier: ####0#00####00001##101## : 7

Two generalizations discovered by XCS in Woods1.

Inputs:

 $\langle x_1 \pm \Delta x_1 \rangle \dots \langle x_n \pm \Delta x_n \rangle : \langle action \rangle \Rightarrow p$

Actions:

 $\langle x_1 \pm \Delta x_1 \rangle \dots \langle x_n \pm \Delta x_n \rangle : \langle a \pm \Delta a \rangle \implies p$

—and combine matching rules à la fuzzy logic, perhaps.

Time:

$$\langle \langle x_1 \pm \Delta x_1 \rangle \dots \langle x_n \pm \Delta x_n \rangle \rangle : \langle a \pm \Delta a \rangle \implies \frac{dp}{dt}$$

—action selection based on steepest ascent of *p*.

Example (McCallum's Maze):

0	0	0	0	0	0	0
0		*		*		0
0		0		0		0
0		0	F	0		0
0	0	0	0	0	0	0

* Aliased states. Optimal action not determinable from current sensory input.

Approaches:

- "History window" remember previous inputs
- Search for correlation with past input events
- ✓• Adaptive internal state:

Example: "if x > y for any x and y, and action a is taken, payoff is predicted to be p."

Cannot be represented using a single classifier with traditional conjunctive condition, since it's a relation.

However, it can be represented using an "s-classifier":

(> x y) : $< action a > \Rightarrow p$

i.e., a classifier whose condition is a Lisp s-expression.

With appropriate elementary functions, s-classifiers can encode an almost unlimited variety of conditions.

They can be evolved using techniques of genetic programming.

Rule-based, not PDP ("parallel distributed processing")

- Structure is created as needed
- Learning may often be faster because classifiers are inherently non-linear
- Learning complexity may be less than most PDPs
- Classifiers can keep and use statistics; difficult in a network
- Hierarchy and reasoning may be easier, since knowledge is in subroutine-like packages