
Visually–driven analysis of movement data by progressive
clustering

Salvatore Rinzivillo* Dino Pedreschi Mirco Nanni Fosca Giannotti
KDD Lab, University of Pisa

{rinziv,pedre}@di.unipi.it
KDD Lab, ISTI – CNR, Pisa

{mirco.nanni,fosca.giannotti}@isti.cnr.it
 Natalia Andrienko Gennady Andrienko

Fraunhofer Institute IAIS, Sankt Augustin, Germany
{gennady.andrienko, natalia.andrienko}@iais.fraunhofer.de

Abstract
The paper investigates the possibilities of using clustering techniques in visual exploration
and analysis of large numbers of trajectories, i.e. sequences of time-stamped locations of
some moving entities. Trajectories are complex spatio-temporal constructs characterized by
diverse non-trivial properties. To assess the degree of (dis)similarity between trajectories,
specific methods (distance functions) are required. A single distance function accounting for
all properties of trajectories, first, is difficult to build, second, would require much time to
compute, third, might be difficult to understand and to use. We suggest the procedure of
progressive clustering where a simple distance function with a clear meaning is applied on
each step, which leads to easily interpretable outcomes. Successive application of several
different functions enables sophisticated analyses through gradual refinement of earlier
obtained results. Besides the advantages from the sense-making perspective, progressive
clustering enables a rational work organization where time-consuming computations are
applied to relatively small potentially interesting subsets obtained by means of “cheap”
distance functions producing quick results. We introduce the concept of progressive clustering
by an example of analyzing a large real dataset. We also review the existing clustering
methods, describe the method OPTICS suitable for progressive clustering of trajectories, and
briefly present several distance functions for trajectories.

Keywords: trajectories, spatio-temporal data, visual analytics, geovisualization, exploratory
data analysis, scalable methods.

1 Motivation
The large amounts of movement data collected by means of current tracking technologies
such as GPS and RFID call for scalable software techniques helping to extract valuable
information from these masses. This has stimulated active research in the fields of geographic
information science (Hornsby & Egenhofer 2002, Miller 2005), databases (Güting &
Schneider 2005), and data mining (Giannotti & Pedreschi, 2007). A general framework for
analysis of movement data where database operations and computational methods are
combined with interactive visual techniques is suggested in (Andrienko et al. 2007). Among
other methods, the framework includes cluster analysis, which is the primary focus of this
paper.

Clustering is one of the general approaches to exploring and analyzing large datasets since it
allows an analyst to consider groups of objects rather than individual objects, which are too
numerous. The groups need to be formed in such a way that the variability of relevant
characteristics of objects within a group is low while the differences between the
characteristics of objects in different groups are high. For this purpose, clustering techniques

use certain methods for estimating differences between objects in terms of relevant
characteristics. These differences are also called “distances” (in the abstract space of the
characteristics) and the methods for computing them are called “distance functions”.

It should be noted that clustering is not a standalone method of analysis whose outcomes can
be immediately used for whatever purposes (e.g. decision making). An essential part of the
analysis is interpretation of the clusters by a human analyst; only in this way they acquire
meaning and value. To enable the interpretation, the results of clustering need to be
appropriately presented to the analyst. Visual and interactive techniques play here a key role.
Clustering methods are often included in visualization systems and toolkits (e.g. Seo &
Shneiderman 2002, Guo et al. 2006, Sips et al. 2007, Schreck et al. 2007).

In analysis of movement data, the objects that need to be analyzed are trajectories, i.e.
sequences of time-stamped locations of some moving entities. These are quite complex
spatio-temporal constructs. Their potentially relevant characteristics include the geometric
shape of the path, its position in space, the life span, and the dynamics, i.e. the way in which
the spatial location, speed, direction and other point-related attributes of the movement
change over time. Clustering of trajectories requires appropriate distance functions which
could properly deal with these by no means trivial properties. However, creating a single
function accounting for all properties is hardly a reasonable endeavor irrespective of the effort
this would require. On the one hand, not all characteristics of trajectories may be
simultaneously relevant in practical analysis tasks. On the other hand, clusters produced by
means of such a universal function would be very difficult to interpret.

A more reasonable approach is to give the analyst a set of relatively simple distance functions
dealing with different properties of trajectories and provide the possibility to combine them in
the process of analysis. The simplest and most intuitive way is to do the analysis in a
sequence of steps. In each step, clustering with a single distance function is applied either to
the whole set of trajectories or to one or more of the clusters obtained in the preceding steps.
If it is clear to the analyst how each distance function works (of course, the analyst needs to
know only the principle but not the technical details), the clusters obtained in each step are
easy to interpret by tracking the history of their derivation. Step by step, the analyst
progressively refines his/her understanding of the data. New analytical questions arise as an
outcome of the previous analysis and determine the further steps. The whole process is called
“progressive clustering”. Visual and interactive techniques are essential for supporting this
process.

Besides the ease of interpretation, there is one more reason for the progressive way of
clustering. The properties of trajectories differ in their complexity; hence, the corresponding
distance functions will inevitably require different amounts of computational resources.
Applying a sophisticated distance function to a large dataset may take much time and result in
undesirable gaps in the process of analysis. It may be more reasonable first to divide the
dataset into suitable parts by means of “cheaper” functions and apply more demanding
functions to the parts of the data.

An analysis by progressive clustering is largely an extemporaneous activity where the analyst
decides what to do next on the basis of previously obtained results using his/her knowledge of
the domain as well as common sense. It is hardly possible to describe this activity as a general
algorithm to apply in any situation. In this paper, we are going to introduce the concept of
progressive clustering by an example of analyzing a real dataset of a considerable size. Before
that, we provide background information about the existing clustering techniques and distance
functions suitable for clustering of trajectories of movement.

2 Background

2.1 Clustering

As we have mentioned, the aim of a clustering method is to produce a set of groups of objects
where the objects in the same group (cluster) are near each other and the groups are distant
from each other. The problem of finding the optimal clustering is NP-hard. There are several
strategies proposed in the literature for finding a near-optimal solution in polynomial time:
partition-based, hierarchical, and density-based algorithms (Kaufman & Rousseeuw, 1990).

The partition-based methods, as suggested by the name, partition the dataset into sub-groups,
such that the objective function for each cluster is maximized. In order to reach a good
approximation, the partitions are refined in an iterative way until the result converges to a
stable solution. This approach is used, for example, in k-means and k-medoid methods, like
the CLARANS method proposed in (Ng & Han, 1994): given an input parameter k, the
method chooses k random objects from the datasets as cluster seeds and assigns all the other
ones to the nearest seed. Then, the algorithm refines the clusters by moving objects from one
cluster to another until a stable configuration is reached. The algorithm of Self-Organizing
Map (Kohonen 2001), or SOM, has a similar principle of work. First, a two-dimensional
matrix of prototype vectors is built either randomly or by applying the Principal Component
Analysis to the data (at the end, each vector will represent a cluster). Then, for each object,
the closest prototype vector is found. The vector and its neighbors in the matrix are adjusted
to this object using the technique of neural network training. This operation is done
iteratively; the duration of the training is specified as a parameter. SOM combines clustering
and projection and is therefore popular among researchers designing tools for visual data
analysis (e.g. Guo et al. 2006, Schreck et al. 2007). The partition-based methods produce
convex clusters as a result of adding objects to the nearest clusters.

The hierarchical approaches work through an iterative hierarchical decomposition of the
dataset, represented by means of a dendrogram. This is a tree-like representation of the dataset
where each internal node represents a cluster and the leaves contain the single objects of the
dataset. A dendrogram may be created either from the bottom (objects are grouped together)
or from the top (the dataset is split into parts until a termination condition is satisfied).

The density-based clustering methods rely on the concept of density to identify a cluster: for
each point inside a cluster, the neighborhood of a given radius has to contain at least a given
minimum number of points, i.e. the density of the cluster has to be not less than the density
threshold. Density-based algorithms are naturally robust to such problems as noise and
outliers since they usually do not affect the overall density of the data. Trajectory data often
suffer from some underling random component and/or low resolution of the measurements, so
noise tolerance is a highly desirable feature.

The algorithms in the DBSCAN family (Ester et al. 1996) appear to be good candidates for
density-based clustering of trajectories since they are noise-tolerant and, additionally, can be
easily adapted to complex data at reasonable computational costs. In (Nanni & Pedreschi,
2006) the authors focus on the OPTICS algorithm (Ankerst et al. 1999). The OPTICS
algorithm does not produce a clustering of a dataset explicitly but instead creates a
Reachability Plot, described in the following, which is an intuitive, data-independent
visualization of the cluster structure of the data. It yields valuable information for a better
comprehension of the data and may be used for assigning each object to a cluster or to the
noise.

2.2 OPTICS

In this section we briefly present the OPTICS algorithm and the underlying definitions,
specifically, of a core object and the reachability distance of an object p with respect to a
predecessor object o.

An object p is called a core object if the neighborhood around it is a dense region, and
therefore p should belong so some cluster and not to the noise. Formally:

Definition 1 (Core Object): Let p be an object in a dataset D, Eps a distance threshold, and
NEps(p) the Eps-neighborhood of p (i.e. the set of objects {x in D | d(p,x) < Eps}). Given an
integer parameter MinNbs (minimum number of neighbors), p is a core object if NEps(p) >=
MinNbs.

Using the core object definition, we can distinguish the objects that are potentially in some
clusters from the noise. However, the problem of assigning each object to an appropriate
cluster remains. The OPTICS method proceeds by exploring the dataset and enumerating all
the objects. For each object p it checks if the core object conditions are satisfied and, in the
positive case, starts to enlarge the potential cluster by checking the condition for all neighbors
of p. If the object p is not a core object, the scanning process continues with the next unvisited
object of D. All objects that lie on the border of a cluster may not satisfy the core object
condition, but this does not prevent them to be included in a cluster. In fact, a cluster is
determined both by its core objects and the objects that are reachable from a core object, i.e.
the objects that do not satisfy the core object condition but that are contained in the Eps-
neighborhood of a core object. From these considerations, we have the following:

Definition 2 (Reachability Distance): Let p be and object, o a core object, Eps a distance
threshold and NEps(o) the Eps-neighborhood of o. Denoting with n-distance(p) the distance
from p to its n-th neighbor in the order of proximity, and given an integer parameter MinNbs,
the reachability distance of p with respect to o is defined as: reach-dEps,MinNbs(p,o) =
max{MinNbs-distance(o), d(o,p)}. The distance denoted as MinNbs-distance(o) is also called
the core distance of o.

The reachability distance of p with respect to o is essentially the distance between the two
objects except for the case when p is too close. In this case, the distance is normalized to the
core distance. The concepts are illustrated in Figure 1.

Figure 1. An illustration of the definitions 1 and 2 by points: the point o is a core point since
in its neighborhood of radius Eps there are at least 3 points (MinNbs=3). The core distance of
the point o is given by the distance to its third neighbor in the order of proximity (the smaller
circle). The reachability distance of the point p1 denoted as r(p1) is equal to the core distance.
The reachability distance of the point p2, denoted r(p2), is equal to the distance from o to p2.

The task of the OPTICS algorithm is to assign a reachability distance to each object of the
dataset. It proceeds as follows. Initially a random object p0 is chosen. Then, at each iteration i,

the next object pi chosen from D is the object with the smallest reachability distance with
respect to all already visited core objects. The process is repeated until all objects in D have
been considered. The results are summarized in a reachability plot: the objects are represented
along the horizontal axis in the order of visiting them and the vertical dimension represents
their reachability distances.

Figure 2. An example of reachability plot. On the left, the order of visiting the objects
(points) is indicated by numbers.

Intuitively, the reachability distance of an object pi corresponds to the minimum distance from
the set of its predecessors pj, 0<j<i. As a consequence, a high value of the reachability
distance roughly means a high distance from the other objects, i.e. indicates that the object is
in a sparse area. Clusters appear in the reachability plot as valleys; thus, in Figure 2 two
clusters may be detected. To partition the data into a set of clusters plus noise, it is now
sufficient to choose a threshold value Eps for the maximum value of reachability distance
allowed within a cluster. The peaks that exceed this value are considered as noise and the
valleys below this value as clusters.

Ankerst et al. (1999) have demonstrated that the shape of the reachability plot is insensitive to
the choice of the value for the parameter Eps. Essentially, this parameter only affects the
separation of the noise from the clusters: a low value results in treating less dense regions as
noise while a high value would turn them into (parts of) clusters.

Furthermore, the result of the OPTICS algorithm is also insensitive to the original order of the
objects in the dataset. The objects are visited in this order only until a core object is found.
After that, the neighborhood of the core object is expanded by adding all density-connected
objects. The order of visiting these objects depends on the distances between them and not on
their order in the dataset. It is also not important which of density-connected objects will be
chosen as the first core object since the algorithm guarantees that all the objects will be put
close together in the resulting ordering. A formal proof of this property of the algorithm is
given in (Ester et al. 1996).

The algorithm is sensitive to the choice of the value for MinNbs since it determines which
objects can be treated as core objects. The effect of MinNbs is visually illustrated in Figure 3.
For a dense dataset, a small value of MinNbs may yield a very large number of core objects
with small neighborhoods. This is manifested in a high oscillation of the reachability plot,
where clusters are hard to detect (top of Figure 3). A high value of MinNbs results in a
smoother plot where clusters are better identifiable (bottom of Figure 3). However, when the
dataset is not very dense, too few or no core objects will be found. This will prevent
uncovering potentially interesting clusters. Hence, the parameter MinNbs should be adjusted
to the density of the data. Since the density may vary throughout the dataset, it may be

reasonable to use different values of MinNbs for different subsets of the data. We shall return
to this issue in describing the exploration of the example dataset.

Figure 3. The impact of the parameter MinNbs. Top: MinNbs=5; bottom: MinNbs=20.

Figure 4 presents the pseudo code of the OPTICS implementation. Among the other
parameters, the method takes as an input also the distance function. This function determines
the distance between two trajectories and the neighborhood of a given trajectory.

Figure 4. A pseudo code of the OPTICS algorithm.

OPTICS (SetOfTrajectories, Eps, MinNbs, Distance)
for each t in SetOfTrajectories do
 if (not t.isProcessed()) then
 neighbors := Distance.neighbors(t, Eps)
 t.setProcessed(true);
 t.setReachabilityDistance(Infinity);
 t.setCoreDistance(neighbors, Eps, MinNbs); // According to definition 2
 emit(t);
 if (t.getCoreDistance() < Infinity) then // This is a core point ⇒ Expand the cluster
 PriorityQueue.updateOrAddAll(Neighbors);
 while (not PriorityQueue.isEmpty())
 t1 = PriorityQueue.pop();
 t1_neighbors = Distance.neighbors(t1, Eps)
 t1.setProcessed(true)
 t1.setCoreDistance(t1_neighbors, Eps, MinNbs)
 emit(t1);
 if (t1.getCoreDistance() < Infinity) then // This is a core point
 PriorityQueue.updateOrAddAll(t1_neighbors);
 end while
 end if
 end if
end for

The complexity of the algorithm is O(n× log n) where n is the number of the objects in the
dataset and log n is the time for selecting the neighborhood of each object. It is assumed that
there is an index of objects that allows retrieving the neighborhood of an object in logarithmic
time. In our prototype implementation, however, we use a linear scan of the dataset to select
the neighborhood of an object. This increases the complexity of the implementation to n2.
This is acceptable for the purpose of our experimentation, but we are working on devising
various methods of indexing to decrease this complexity. Building an index of trajectories is,
in general, not a simple task since each distance function requires its own indexing strategy.
However, for basic distance functions, the definition of an index may be quite simple. This
can be aptly used in progressive clustering, in which simpler distance functions are more
likely to be applied in earlier steps to the whole data or large subsets. With the use of
appropriate indexes, these steps can be done more efficiently. More complex functions can
then be applied in successive steps of the analysis to much smaller subsets, so that the use of
indexes is no longer so critical.

3 Clustering of trajectories
Spatio-temporal data introduce new dimensions and novel issues in performing the clustering
task. In movement data, for a given object id we have a triple (xi,yi,ti) for each time instant ti.
The set of triples for a given object id may be viewed as a function fid: time → space, which
assigns a spatial location to the object id for each time moment. We call such a function a
trajectory and we concentrate on the problem of clustering a given set of trajectories.

The extensions of existing clustering methods to the spatio-temporal domain can be classified
into two approaches: feature-based models and direct geometric models (Kriegel et al. 2003).
In the first case, the objects of the dataset are projected to a multidimensional vector space
and their similarities are computed in the new projection. In the second model, the spatial and
temporal characteristics of the objects are directly used for defining the distances. We follow
the second approach by developing a library of distance functions that compare the
trajectories according to various spatial and spatio-temporal properties an analyst may be
interested to consider. The properties include the origins of the trips, the destinations, the start
and end times, the routes (where a route is characterized in terms of the geometric shape of
the footprint and its spatial position and orientation), and the dynamics of the movement
(which may be defined in terms of the relative times when different positions have been
reached and/or the variation of the speed throughout the trip).

The distance functions accounting for these properties differ in complexity. Thus, very simple
functions are sufficient for comparing trajectories according to the origins and/or destinations.
The functions “common source” and “common destination” compute the distances in space
between the starting points or between the ending points of trajectories, respectively. These
are the distances on the Earth surface if the positions are specified in geographical coordinates
(latitudes and longitudes) or the Euclidean distances otherwise. The function “common source
and destination” returns the average of the distances between the starting points and between
the ending points of two trajectories. In a similar way, temporal distances between the starting
and/or between the ending moments of trajectories are used to compare and group trajectories
according to the absolute times of the trips.

Comparing routes and dynamics is more complex. Various approaches are possible here (e.g.
Pelekis et al. 2007, Trajcevski et al. 2007). Our library currently includes four distance
functions differing in the computational complexity and in the resulting precision of assessing
the similarity. Two simpler functions take the starting and ending points of two trajectories
plus several intermediate check points from each trajectory and compute the average from the

spatial distances between the corresponding points. The functions differ in the way of
choosing the check points. In the function “k points”, the user specifies the desired number
(k) of check points, which are selected so as to keep the number of intermediate points
between them constant. In the function “time steps”, the user specifies the desired temporal
distance between the check points. Both functions roughly estimate the similarity of the
routes; the precision depends on the number of check points. The latter function also estimates
the similarity of the movement dynamics. It should be noted that these two functions can
work sufficiently well only for “perfect” data, i.e. complete trajectories with equal time
intervals between the position records and only minor positioning errors. Unfortunately, this
is not always the case.

A more complex distance function “route similarity” has been designed to tolerate
incomplete trajectories (i.e. where some parts in the beginning and/or in the end are missing)
and more significant positioning errors. It is also better suited to unequal time intervals
between records. The function repeatedly searches for the closest pair of positions in the two
trajectories. It computes the mean distance between the correspondent positions along with a
penalty distance for the unmatched positions. A detailed description of the function is
presented in (Andrienko et al. 2007).

The function “route similarity + dynamics” takes into account the relative times of arriving in
corresponding positions. The relative times are the temporal distances to some reference time
moments, which are individual for each trajectory. These may be, for example, the starting
times of the trajectories or their ending times. In our implementation, the reference time
moments in two trajectories under comparison are defined by the spatially closest pair of their
positions, i.e. the times of arriving in these positions are taken as the reference times. This
particular way of selecting reference times has been chosen for the purpose of tolerance to
possible incompleteness of trajectories.

After the reference times of two trajectories have been selected, the further comparison is
done as follows. Let us denote the trajectories as P and Q and their reference times as t0(P)
and t0(Q), respectively. We scan all the points of P starting from the position p0 visited at the
time t0(P). For each position pi, we search for the point qi in Q such that the time distance of qi
from t0(Q) is the closest among all positions to the time distance of pi from t0(P). The distance
between P and Q is computed as the average sum of the distances between the corresponding
positions plus penalties in case of different durations of the two trajectories. The same
approach can be easily applied for considering the absolute times of the two trajectories. In
this case, corresponding positions of two trajectories are the positions achieved at the same or
possibly closest time moments. In both relative and absolute time strategies, two approaches
to the selection of corresponding points are possible: selection from the existing sample points
registered by the positioning device and interpolation of positions between the sample points.

The library of distance functions is easily extendable. In particular, it is possible to add
functions accounting for various auxiliary information such as properties of the moving
individuals (age, profession, …), type of movement (walking, biking, driving, …), or
properties of the environment (types of roads, land cover, points of interest, …). It is also
possible to use a pre-computed matrix of pairwise distances between trajectories coming from
an external source.

In the following we shall present an example scenario of exploration of a big set of
trajectories by means of progressive clustering. In this scenario we shall not use all of the
available distance functions but only the functions “common destination”, “common source
and destination”, and “route similarity”. There are several reasons for this. First, a few
functions are quite sufficient for explaining the concept of progressive clustering. Second, the

functions taking into account the absolute times of the trips are not relevant since the data
refer to quite a short time interval of four hours. Third, the functions comparing dynamics are
useful mostly for trajectories with similar routes. As will be further seen, route similarity
occurs relatively rarely in the example dataset.

Our selection of the functions for the example analysis scenario will allow us to demonstrate a
reasonable way of combining simple and complex distance functions in exploring a big
dataset. The general strategy is to apply simpler and therefore less time-consuming functions
for dividing the data into manageable subsets with clear semantics and to use more
sophisticated and resource-demanding functions for in-depth exploration of the subsets.

4 Visualization of clusters of trajectories
To visualize a trajectory on a map display, we draw a polygonal line connecting its successive
positions. The starting position is marked by a small hollow square and the ending position by
a larger filled square (Figure 5A). Trajectories can also be visualized in a space-time cube
where the vertical dimension represents time. However, when multiple trajectories are
visualized in this way, both the map and the cube get severely cluttered and therefore
illegible. A possible approach to solving this problem is based on clustering. The idea is to
group trajectories by similarity using clustering techniques (Figure 5B) and then represent
each group in a summarized way without drawing the individual trajectories (Figure 5C).

Figure 5. A) Visualization of a single trajectory on a map. B) A cluster of trajectories with
similar routes; each trajectory is drawn with 30% opacity. C) A summarized representation of
the cluster.

A representation like in Figure 5C is built by counting the numbers of moves between
significant places passed by the trajectories. The significant places may include road crossings
and various areas of interest. The widths of the directed lines are proportional to the numbers
of moves. Thick lines indicate the major flows while thin lines represent deviations.

However, it is quite problematic to make this approach work for arbitrary movement data.
One of the problems is that so coherent trajectories as in Figure 5B occur very rarely in real
data while most trajectories are quite dissimilar to others. Another problem is that significant
places are often not known. Besides these difficulties, the approach itself is insufficient as is
deals only with the spatial properties of trajectories but not with the temporal properties.

While the best possible solution to all problems is yet to be found, we have developed a
workable approach which helps to cope with complexities of real data. The approach is based
on dynamic aggregation of movement data. A dynamic aggregator is a special kind of object
which is linked to several other objects (members of an aggregate) and computes certain
aggregate attributes such as the member count and the minimum, maximum, average, median,
etc. from the attribute values of the members. The aggregator reacts to various kinds of
interactive filtering by adjusting the values of the aggregate attributes: only the members that
pass through the current filter are taken into account in computing the values.

We have introduced two types of dynamic aggregators of movement data: summation places
and aggregate moves. A summation place is an area in space which is “aware” of all
trajectories passing through it and stores the positions and times of entering in the area and
exiting from it. The fragments of the trajectories lying inside the area are the members of the
place. A summation place counts its members and computes such aggregate attributes as the
minimum, maximum, average, median, and total time spent in the area, statistics of the
speeds, etc., as well as the number of starts (first points of trajectories) and the number of
ends (last points). An aggregate move is defined by two places A and B and is “aware” of all
trajectories that visit A and B in this specific order without passing any intermediate place.
The members of the move are the respective trajectory fragments. An aggregate move
produces the count of its members and statistical summaries of the lengths of the fragments,
their durations, and speeds.

A summation place may optionally be visualized on a map by drawing the outline of the area
and/or filling the interior. Irrespective of whether the places themselves are shown or not,
current values of selected aggregate attributes may be visualized by graduated symbols or by
diagrams. An aggregate move is visualized on a map as a vector (directed line) as shown in
Figure 5C. The thickness of the vector is proportional to the current value of the member
count (default) or any other aggregate attribute selected by the user.

The interactive filters, which make dynamic aggregates re-compute their attribute values,
include temporal filter (selection of a time interval), spatial filter (selection of a “window” in
space), attribute filter (selection of trajectories by their attributes such as duration and length),
and cluster filter (selection of clusters). In re-computing, the aggregates take into account only
the active members, i.e. the members that have passed through all currently set filters. When
an aggregate move has no active members, it does not appear on a map; otherwise, the
thickness of the corresponding vector is adjusted to the current value of the currently
represented aggregate attribute. The same happens to symbols or diagrams representing
aggregate attributes of summation places.

In particular, when some cluster of trajectories is selected, the summation places and
aggregate moves summarize only the trajectories belonging to this cluster. The resulting
representation of the cluster on a map display may, ideally, look like in Figure 5C. The user

can additionally apply the temporal filter for exploring the time-related properties of the
trajectories in the cluster.

A crucial prerequisite for creating dynamic aggregators of movement data is the availability
of a set of significant places, which can be turned into summation places and determine the
possible aggregate moves. As already mentioned, significant places are often not known in
advance. Therefore, we have developed a method for obtaining a kind of “surrogates” of
significant places. The method, first, extracts characteristic points from the available
trajectories, which include the start and end points, the points of turns and the points of stops.
For determining the turns and stops, the method requires two user-specified thresholds: the
minimum angle of a turn and the minimum duration of a stop, i.e. keeping the same position.
Then, the method builds areas (for simplicity, circles) around concentrations of characteristic
points and around isolated points. The sizes of the areas depend on the user-defined minimum
and maximum circle radii. These areas then serve as surrogate significant places for building
dynamic aggregates of the movement data.

It should be noted that the use of computationally produced surrogates may not give so nice
and clear picture of summarized trajectories as by using semantically defined significant
places. The difference can be seen by comparing Figures 5C and 6C.

Figure 6. A) Automatically extracted summation places (only the places passed by the
trajectories from a selected cluster are visible). B) Aggregation of the active trajectories using
the extracted places. C) The summation places have been hidden and only the aggregate
moves are visible.

Figure 6 demonstrates a typical result of applying our method to a big dataset with very high
variation among the trajectories. For such data, the method produces a large number of rather
chaotically distributed circles. As is seen in Figure 6A, the circles passed by a cluster of
trajectories may not be suitably aligned (in contrast, for producing Figure 5C, we have
manually defined significant places by encircling the road crossings on the background map
image). This produces excessive aggregate moves, which obscure the view. Note that the
summarization works well enough in the regions where the circles are adequately aligned.

It is clear that further work is required for finding a proper way for automated extraction of
significant places from movement data. It may seem that applying the method described
above separately to each cluster of trajectories rather than to the whole dataset might solve the
problem. However, not always clusters consist of coherent trajectories; counter-examples may
be seen in Figure 9.

To alleviate the problem and understand better the properties of clusters of trajectories, an
analyst may use additional visual and interactive facilities. Thus, interactive filtering applied
to aggregate moves (rather than to the original trajectories) allows the analyst to disregard
minor variations and uncover major flows pertaining to a cluster of trajectories (Figure 7). It
may also be helpful to visualize the aggregate attributes associated with the summation
places. For example, the pie charts in Figure 8 (left) represent the numbers of starts (yellow
segments) and ends (blue segments) of trajectories in automatically extracted summation
places. To avoid or reduce overlapping between the symbols or diagrams representing the
attributes, it may be reasonable to summarize movement data also by cells of a regular grid
(Figure 8, right). An additional advantage of this is the equal sizes of the summation places,
which facilitates comparisons between the respective aggregate characteristics.

Figure 7. Application of interactive filtering to aggregate moves representing a cluster of
trajectories. On the right, only the moves with at least 15 members are visible.

Figure 8. Visualization of aggregate attributes in summation places.

In the example analysis scenario, which follows, we shall use illustrations where clusters are
visualized by coloring trajectory lines; no aggregation is applied. The reason is that the
illustrations have to be static while the aggregation techniques are dynamic and work
sufficiently well only in combination with the facilities for interaction.

5 Example: progressive clustering of car trajectories in Milan

5.1 Data

For the example analysis scenario we use a subset of a dataset collected by GPS-tracking of
17,241 cars in Milan (Italy) during one week from Sunday to Saturday. The subset consists of
6187 trajectories made on Wednesday 04/04/2007 between 6:00AM and 10:00AM. The
reason for selecting a subset is that the clustering techniques are not yet mature enough to
cope with the whole dataset, which includes about 176,000 trajectories. However, even this
relatively small subset is too big for analyzing by purely visual and interactive techniques and
is therefore sufficient for studying the potential for using clustering in visual exploration of
movement data. In our study, we use our implementation of the algorithm OPTICS. It has
three parameters: the distance threshold Eps and the minimum number of neighbors MinNbs,
according to Definition 1, plus the distance function F. Some of the distance functions may
have additional parameters.

5.2 Progressive clustering for handling uneven data density

The data subset we are going to analyze describes the movement of cars in the morning of a
working day. It may be expected that a large part of the data represents trips of the car owners
to their work places. We would like to start our analysis with detecting the major regions in
which people come to work. A suitable distance function for this purpose is “common
destination”. However, it turns out that just a single application of clustering with this
distance function does not work well. As have been explained earlier, outcomes of density-
based clustering are sensitive to the parameter MinNbs (see Figure 3), which needs to be

adjusted to the density of the data. However, the data may not be equally dense throughout the
whole space. This is the case for the Milan dataset.

Progressive clustering is a good practical approach to analyzing unevenly dense data. The
idea works as follows. At the beginning, clustering with a large value for MinNbs is applied to
the whole dataset. The analyst should “play” with the parameter until getting a few clusters
that are spatially coherent and well interpretable. In addition to these, many small clusters can
be produced but the analyst may ignore them on this stage. After examining, describing, and
explaining the most significant clusters, the analyst excludes their members from the further
analysis and applies clustering with smaller MinNbs to the remaining data. Again, the goal is
to obtain coherent and interpretable clusters. Then, as on the previous stage, the largest
clusters are examined, described, and excluded from the further consideration. After that, the
procedure may be repeated for the remaining data with yet smaller MinNbs. If the remaining
data are sparse, it may also be meaningful to increase the value of Eps. Note that one and the
same distance function is used on each stage of the exploration and only the parameter values
vary. The procedure is repeated until the analyst gets a sufficiently complete and clear
understanding of the dataset properties related to the chosen distance function.

Figure 9. Progressive clustering helps to detect coherent clusters in data with uneven spatial
density.

Figure 9 presents the results of three steps of progressive clustering according to trip
destinations (i.e. end points of the trajectories) we have applied to the subset of trajectories
under analysis. The trajectories are drawn on the map display with 30% opacity (the degree of
opacity may be interactively changed, as well as the line thickness). The map on the left
represents 3 biggest clusters resulting from the clustering with F=”common destination”,
Eps=500m and MinNbs=15: 1781 trajectories in the “red”, 893 in the “blue” and 354 in the
“green” cluster; all other clusters are much smaller. We can clearly distinguish the trajectories
ending in the city center from those ending on the northeast and southwest. Before coming to
this result, we tried to cluster the same trajectories with Eps=500m and MinNbs=10. The
attempt was not successful, i.e. no understandable clusters were obtained. In particular, all the
trajectories visible on the left of Figure 9 and many others were put together.

However, after excluding the three biggest clusters produced with MinNbs=15, the clustering
with Eps=500m and MinNbs=10 works quite well for the remaining trajectories and gives
easily identifiable and interpretable clusters. The biggest ones are shown in the middle of
Figure 9; the sizes range from 299 (dark red) to 127 (violet). After viewing these clusters, we
have excluded them and applied the clustering with Eps=500m and MinNbs=5 to the
remaining trajectories. The biggest of the resulting clusters are shown on the right of Figure 9.

The sizes of the orange and brown clusters are 219 and 207, respectively, and the sizes of the
other clusters range from 91 to 45. Besides these, there are many much smaller clusters,
which are not very interesting.

In this way, we have identified the major regions to which people drive in the morning of a
working day. Progressive clustering with the use of the same distance function but different
parameter settings has helped us to cope with uneven spatial density of the data. However, for
gaining a comprehensive view of the data, it is insufficient to use just one simple distance
function but is necessary to combine several functions, as will be demonstrated in the next
subsection.

5.3 Progressive clustering for deeper understanding of data

The clustering with the use of the distance function “common destination” allowed us to
group the trajectories according to the trip destinations. One of our findings is that many trips
end in the center of Milan (the red cluster in Figure 9 left). Now we are interested in exploring
these trips more in depth. We select the “red” cluster and apply further clustering with the
distance function “route similarity” to its member trajectories. This allows us to detect that a
great part of them are very short trajectories within the center. The image on the left of Figure
10 presents the biggest cluster obtained with Eps=1000 and MinNbs=5. It consists of 517
short trajectories situated inside the center; this is 29% of all trajectories ending in the center.
Among the remaining trajectories, there are rather few clusters of trajectories with similar
routes, and the clusters are very small. The biggest of them are shown in the middle of Figure
10; the sizes range from 11 to 28 (the line thickness has been increased for a better visibility).
1074 trajectories, i.e. 63% of 1781, have been classified as “noise”, which means the absence
of frequent routes among them.

Figure 10. Left and middle: the major clusters obtained by applying the distance function
“route similarity” to the trajectories ending in the center of Milan. Right: a result of clustering
all trajectories with the distance function “common source and destination”.

In the same way, we analyze the “blue” and “green” clusters (Figure 9 left), i.e. the
trajectories ending on the north-west and on the south-east, respectively. The results are very
similar to what we have learned about the trips ending in the center: the majority of the
trajectories represent short trips with the starts close to the ends while the remaining
trajectories form only a few small clusters. This observation about the trajectories in the three
largest clusters makes us think that it may be also true for the whole set of trajectories. To
check this, we apply clustering with the distance function “common source and destination”
to the whole set of trajectories. This function is computationally much “cheaper” and faster

than the function “route similarity” while being adequate to our goal. The results of the
clustering made with the parameters Eps=800m and MinNbs=8 are presented on the right of
Figure 10. They show that in most cases when trajectories have close starts and close ends the
starts are also close to the ends. Thus, the clusters where the starts of the trajectories
significantly differ from their ends include in total only 127 trajectories (2%) whereas the
clusters where the starts are close to the ends include 1439 trajectories, or 23% of all (4621
trajectories, or 75%, have been regarded as “noise”; they are shown in grey). It can be noted
that the clusters include not only very short trajectories but also long trajectories where the car
drivers returned to the starting points of the trips. However, these long trajectories are much
less numerous than the short ones. The results obtained with the parameters Eps=800m and
MinNbs=8 are consistent with results obtained using other parameter values.

Hence, about a quarter of the trajectories represent trips where the starts are close to the ends,
and most of them are short local trips. Now we want to investigate the properties of the trips
on longer distances. In particular, we are interested in typical (frequently taken) routes. We
exclude the clusters with the local and round trips and apply clustering with the distance
function “route similarity” to the remaining trajectories, including the “noise”. Figure 11
presents the results of the clustering with the parameters Eps=800m and MinNbs=5. The
biggest cluster (bright green lines in the middle image) consists of 66 trajectories, the
remaining 40 clusters contain from 5 to 25 trajectories, and 4163 trajectories have been
classified as “noise”. Among the trajectories included in the clusters there are three major
types of routes: (1) peripheral routes using the belt around the city (Figure 11 left); (2) radial
routes from the periphery towards the inner city (Figure 11 middle); (3) radial routes from the
inner city towards the periphery (Figure 11 right). It may be seen that the clusters of inward
routes (middle) are bigger and more numerous than the clusters of outward routes (right). This
may signify that inward movement occurs more frequently than outward movement in the
morning of a working day. Interestingly, there are no frequent inward routes from the south-
east.

Figure 11. Results of clustering of the trajectories with the starts differing from the ends
using the function “route similarity”. Left: peripheral routes; middle: inward routes; right:
outward routes.

Clustering with other parameter values brings very similar results. The differences are mainly
in the sizes of the bigger clusters and the number of very small clusters. In different
experiments, from 77 to 90% of the trajectories are treated as “noise”, i.e. no frequent routes
are found among them.

6 Discussion

6.1 Summary of findings

Our exploration of the trajectories made by 5063 different cars in Milan in the morning of
Wednesday, 04/04/2007, have brought us the following findings:

1) The destinations of the trips are spread throughout the territory. There are no places
significantly more popular than the others.

2) A large part of the trips are small local trips where the starts are close to the ends.

3) There is a large variety of routes. Groups of trajectories following similar routes are very
small in comparison to the size of the dataset. Most trajectories follow quite unique routes.

4) Among the relatively frequent routes, there are many peripheral routes using different
segments of the road belt around the city. The trajectories following these routes mostly do
not enter the inner city.

5) Relatively frequent are also radial routes from the periphery inside the city. The most
frequent is the route from the north-west.

6) Outward trips are less frequent than inward trips and there are fewer re-occurring routes
among them.

The findings have been obtained by means of clustering combined with interactive visual
tools. Of course, clustering could also be used in combination with other tools, but we
intentionally avoided this in our example exploration to keep consistency with the focus of
this paper.

6.2 Roles of clustering and visualization

It is important to stress that obtaining clusters is not the goal but the means of the exploration.
The goal is to gain knowledge about the data and the phenomenon they represent. Therefore,
the findings listed above are the main results of our work while the clusters are used for
substantiating and illustrating these results.

The clustering can fulfill its role only in combination with appropriate visualization, which, in
particular, shows the relationships between the clusters and additional spatial information,
which is provided by the background map. This allows the analyst to interpret the clusters, i.e.
attach meaning to them and derive knowledge.

6.3 Novelty

The idea of progressive clustering appears very simple and obvious. Therefore, it seems very
unlikely that it has not been used elsewhere yet. Indeed, similar concepts of “stepwise
clustering” and “subspace clustering” exist in data mining. The approaches suggested so far
can be grouped into two categories: optimization-oriented refinement and result tuning. The
approaches from the first group optimize the algorithm performance by, for example,
providing approximated query results, which are later refined only for the borderline cases
(Brecheisen et al. 2006), or by pre-computing rough clusters, which are then refined through
more sophisticated aggregations (Breunig et al. 2001). The approaches from the second group
allow the user to tune clustering outcomes to his/her background knowledge. They are based
on visually-aided interactive post-processing, e.g. by moving objects between clusters (Assent
et al. 2007, Nam et al. 2007).

In our approach, performance optimization is not the main goal. The major motivation for
using progressive clustering with different distance functions is to be able to analyze complex

objects with heterogeneous properties (spatial, temporal, numeric, and qualitative), which
cannot be handled in the same way. The idea is to use a different distance function for each
kind of property for allowing the analyst to gradually build a comprehensive understanding of
the set of objects. To the best of our knowledge, this idea has not been introduced in the
literature yet. The possible reason is that clustering techniques have been mostly devised for
objects represented as points in a multi-dimensional space where all dimensions are treated in
the same way. When it comes to complex spatio-temporal constructs such as trajectories, this
approach cannot be quite adequate any more.

In principle, it is possible to combine several distance functions accounting for diverse
properties in a single function, which could account for all properties simultaneously.
However, this involves two serious disadvantages. First, such a hybrid function would be very
expensive in terms of computational resources. It would not be reasonable to apply it directly
to an entire big dataset since it may turn out that only a part if it really requires a detailed
analysis. Second, the results of such clustering would be very difficult to understand since the
clusters would simultaneously differ in many diverse respects. Therefore, the progressive
approach appears more practical and usable.

6.4 Sensitivity issues

Progressive clustering is an iterative procedure where results of clustering are used for
selection of a subset of data to be examined through further clustering with a different
distance function or different parameters. The procedure is not linear but involves returns to
previous steps and selection of different subsets for further examination. The process could be
viewed as a branching tree (there are systems where analysis sessions can be explicitly
visualized in this way, e.g. Goodell et al. 2006).

Of course, the order in which different distance functions or different parameter settings are
applied has a dramatic effect on the clusters appearing at the end of a branch. However, this
“instability” should not be regarded as a weakness of the method. First, as we have noted
earlier, clustering is primarily an instrument for gaining knowledge; hence, the knowledge
acquired on each step is a much more important result of analysis than the particular clusters
coming at the end. Second, a reasonable order of applying distance functions and parameter
settings is often prescribed by the nature and properties of the data and the analysis tasks.
Third, for some combinations of distance functions there is a logical order of application.
Thus, it is reasonable to apply the functions grouping trajectories by their starts and/or ends
before the function grouping trajectories by the routes.

Another kind of sensitivity is the sensitivity of each application of clustering to the parameter
settings. This problem is not specific to progressive clustering of trajectories but appears in
any clustering of any data. While it is important to compare results of clustering with different
parameter settings, it is very time-consuming to run the clustering procedure many times
using different combinations of parameter values. A suitable approach is automatic re-
clustering, or “bracketing”, which should be done in background mode, for example, while
the analyst examines the results of the first clustering. The analyst may specify the range of
variation of each parameter (for example, 500<=Eps<=1000 and 5<=MinNbs<=10) and the
step (for example, ΔEps=100 and ΔMinNbs=1) and let the machine produce clusters for all
value combinations. The next question is how to help the analyst to compare the results of the
different runs. A very basic support would be providing statistics about each result: the
number of clusters produced and the distribution of the cluster sizes, for example, in the form
of frequency histogram. Sharko et al. (2007) use a cluster stability matrix showing how often
pairs of objects appear in the same cluster. This allows the analyst to evaluate the overall
variation among the clustering results and to identify similar clusters. However, this method

has a limited scalability with respect to the number of clustered objects and is quite
demanding in terms of user’s workload. Hence, the problem of comparison of clustering
results requires further research.

Another possibility could be automated tuning of clustering parameters. The key issue here is
automatic assessment of the quality or interestingness of clusters, which could direct an
optimization procedure towards the best possible results. There are some generic quality
measures such as cohesion and separation (Tan et al. 2005) or average density (Nanni &
Pedreschi 2006). However, such mathematical properties of clusters do not necessarily
correlate with semantic interpretability or interestingness. Especially for such complex objects
as trajectories, automated evaluation of clusters is an open problem.

6.5 Progressive clustering versus hierarchical clustering

One of the possible ways of using progressive clustering is top-down hierarchical partitioning
of the original dataset, when the user chooses each time one cluster and subdivides it through
further clustering. However, the user is neither limited to this approach nor encouraged to
proceed in this particular way. The user can select any number of previously derived clusters
to form a subset of objects for further analysis. For example, the user could unite all clusters
of inward trips shown in Figure 11 and further cluster these trips according to their temporal
characteristics. It is even possible to “mix” clusters resulting from different runs of the
clustering tool, although this requires a few additional interactive operations. Hence, the
cluster structure which may be derived by progressive clustering is, generally, a lattice; a
hierarchy is only a special case. The procedure is flexible enough to fit to various user needs
and specifics of real data.

7 Conclusion
Trajectories of moving objects are complex spatio-temporal constructs, and analysis of
multiple trajectories is a challenging task. To help a human analyst to make sense from large
amounts of movement data, we suggest the procedure of progressive clustering supported by
visualization and interaction techniques. A good property of this procedure is that a simple
distance function with a clear principle of work can be applied on each step, which leads to
easily interpretable outcomes. However, successive application of several different functions
enables sophisticated analyses through gradual refinement of earlier obtained results. Besides
the advantages from the sense-making perspective, progressive clustering provides a
convenient mechanism for user control over the work of the computational tools as the user
can selectively direct the computational power to potentially interesting portions of data
instead of processing all data in a uniform way. In particular, the analyst may use “expensive”
(in terms of required computer resources) distance functions for relatively small potentially
interesting subsets obtained by means of “cheap” functions producing quick results. In the
future, we plan to extend the ideas of progressive clustering to analysis of extremely large
datasets that cannot be processes in the main memory of the computer. The general approach
is that clustering is applied to a sample of trajectories, and then computations in the database
are used to attach remaining trajectories to the clusters obtained. This approach requires
efficient algorithms for checking trajectory membership in a cluster.

Acknowledgments
The work has been conducted within the EU-funded project GeoPKDD – Geographic
Privacy-aware Knowledge Discovery and Delivery, which aims at developing methods and
tools for analysis of massive movement data (IST-6FP-014915; http://www.geopkdd.eu).

We are grateful to the reviewers of our paper for their recommendations for improving the
text and suggestion of interesting questions for further research work.

References
Andrienko, G., Andrienko, N., & Wrobel, S. (2007). Visual Analytics Tools for Analysis of
Movement Data. ACM SIGKDD Explorations , 9(2), December 2007, 38-46.

Ankerst, M., Breunig, M., Kriegel, H.-P., & Sander, J. (1999). OPTICS: Ordering Points to
Identify the Clustering Structure. Proceedings of ACM SIGMOD International Conference on
Management of Data (SIGMOD'99). Philadelphia: ACM, 49-60

Assent, I., Krieger, R., Müller, E., & Seidl, T. (2007). VISA: visual subspace clustering
analysis. ACM SIGKDD Explorations, 9(2), December 2007, 5-12

Brecheisen, S., Kriegel, H.-P., & Pfeifle, M. (2006). Multi-step density-based clustering.
Knowledge and Information Systems, 9(3), March 2006, 284-308

Breunig, M.M., Kriegel, H.-P., Kröger, P., & Sander, J. (2001). Data bubbles: quality
preserving performance boosting for hierarchical clustering. Proceedings of the 2001 ACM
SIGMOD international conference on Management of data, Santa Barbara, California, USA,
79-90

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise. Second International Conference on
Knowledge Discovery and Data Mining, Portland, Oregon, 226-231

Giannotti, F., & Pedreschi, D., eds. (2007). Mobility, Data Mining and Privacy - Geographic
Knowledge discovery. Springer, Berlin.

Goodell, H., Chiang, C.-H., Kelleher, C., Baumann, A., & Grinstein, G. (2006). Collecting
and harnessing rich session histories, Proceedings of the International Conference on
International Conference on Information Visualization (IV’06), London, July 5-7, 117-123.

Guo, D., Chen, J., MacEachren, A.M., & Liao, K. (2006). A Visualization System for Spatio-
Temporal and Multivariate Patterns (VIS-STAMP), IEEE Transactions on Visualization and
Computer Graphics, 12(6), 1461-1474

Güting, R., & Schneider, M. (2005). Moving Objects Databases. Elsevier

Hornsby, K., Egenhofer, M.J. (2002). Modeling moving objects over multiple granularities.
Annals of Mathematics and Artificial Intelligence, 36, 177-194.

Kaufman, L., & Rousseeuw, P. (1990). Finding Groups in Data: an Introduction to Cluster
Analysis. John Wiley & Sons.

Kohonen, T. (2001). Self-Organizing Maps. Springer, Berlin, 3rd edition.

Kriegel, H., Brecheisen, S., Kroeger, P., Pfeifle, M., & Schubert, M. (2003). Using sets of
feature vectors for similarity search on voxelized CAD objects. SIGMOD Conference, 587-
598

Miller, H.J. (2005), A Measurement Theory for Time Geography, Geographical Analysis, 37,
17–45

Nam, E.J., Han, Y., Mueller, K., Zelenyuk, A., & Dan, I. (2007). ClusterSculptor: A Visual
Analytics Tool for High-Dimensional Data. IEEE Symposium on Visual Analytics Science and
Technology, 75-82

Nanni, M., & Pedreschi, D. (2006). Time-focused clustering of trajectories of moving objects.
Journal Intelligent Information Systems, 27, 267-289.

Ng, R., & Han, J. (1994). Efficient and Effective Clustering Methods of Spatial Data Mining.
Proc. 20th Int. Conf. on Very Large Data Bases. Santiago, Chile.

Pelekis, N., Kopanakis, I., Marketos, G., Ntoutsi, I., Andrienko, G., & Theodoridis, Y. (2007)
Similarity search in trajectory databases. In Proc. 14th Int. Symposium Temporal
Representation and Reasoning (TIME 2007), IEEE Computer Society Press, 2007, 129-140

Schreck, T., Tekusova, T., Kohlhammer, J., & Fellner, D. (2007). Trajectory-based visual
analysis of large financial time series data. SIGKDD Explorations, 9(2) December 2007, 30–
37.

Seo, J., & Shneiderman, B (2002). Interactively exploring hierarchical clustering results.
IEEE Computer, 35(7), 80-86

Sharko, J., Grinstein, G., Marx, K. A., Zhou, J., Cheng, C., Odelberg, S., Simon, H.-G.
(2007). Heat Map Visualizations Allow Comparison of Multiple Clustering Results and
Evaluation of Dataset Quality: Application to Microarray Data. IEEE 11th International
Conference Information Visualization, Washington, DC, 521-526

Sips, M., Schneidewind, J., & Keim, D.A. (2007). Highlighting space-time patterns: Effective
visual encodings for interactive decision-making, International Journal of Geographical
Information Science, 21 (8), 879 – 893.

Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to Data Mining. Addison-
Wesley.

Trajcevski, G., Ding, H., Scheuermann, P., Tamassia, R., & Vaccaro, D. (2007) Dynamic-
aware similarity of moving objects trajectories. In Proc. ACMGIS’07, Seattle, USA, 2007,
ACM Press, 75-82

