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Dynamical Hidden Markov Models
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Abstract—This paper proposes an approach for recognizing
human activities (more specifically, pedestrian trajectories) in
video sequences, in a surveillance context. A system for automatic
processing of video information for surveillance purposes should
be capable of detecting, recognizing, and collecting statistics of
human activity, reducing human intervention as much as possible.
In the method described in this paper, human trajectories are
modeled as a concatenation of segments produced by a set of low
level dynamical models. These low level models are estimated in an
unsupervised fashion, based on a finite mixture formulation, using
the expectation-maximization (EM) algorithm; the number of
models is automatically obtained using a minimum message length
(MML) criterion. This leads to a parsimonious set of models tuned
to the complexity of the scene. We describe the switching among
the low-level dynamic models by a hidden Markov chain; thus,
the complete model is termed a switched dynamical hidden Markov
model (SD-HMM). The performance of the proposed method is
illustrated with real data from two different scenarios: a shopping
center and a university campus. A set of human activities in both
scenarios is successfully recognized by the proposed system. These
experiments show the ability of our approach to properly describe
trajectories with sudden changes.

Index Terms—Expectation-maximization, hidden Markov
models(HMMs), human activities, minimum message length,
mixture models, unsupervised learning, visual surveillance.

I. INTRODUCTION

H UMAN activity recognition (HAR) aims at under-
standing what people are doing from their position,

shape, or movement, observed in video sequences. HAR is a
key technical component in boosting the interaction between
people and environments equipped with sensors and computa-
tional resources. Smart rooms are examples of environments
equipped with cameras and microphones, which are used to
infer what people are doing in order to interact with them
[21], [40], [59]. Another widespread example of environ-
ments equipped with sensors is video surveillance of large
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infrastructures, such as parks, airports, shopping malls. In the
surveillance case, one standard goal is to characterize trajecto-
ries and behaviors, in order to detect abnormal situations, such
as running or fighting [23].

An automatic surveillance system should have the ability to
learn typical behaviors from video data, without involving spe-
cific knowledge about the actions performed by humans in the
monitored environment. This objective has been addressed in
several works, such as [33] and [59]. Typical approaches com-
prise three steps [3], [8], [9], [13], [20], [22], [25], [26], [31],
[33], [41], [47], [51], [59]: (a) the objects of interest (people)
are segmented and tracked; (b) a sequence of features (position,
motion, shape) is extracted from the tracked objects; (c) these
features are used to classify the observed behavior into one of
several classes of interest. This classification can be based on
simple rules [3], [13], [20], or using learning methods exploiting
the statistical regularities of the data [60]. Since human motion
may be complex, it is often more efficiently modeled using a
concatenation of simple models. This idea underlies the use of
hierarchical models, in which the lower level describes simple
events, while the higher levels describe complex actions [21].

This paper proposes a two-layer hierarchical model for
human activity recognition. The lower layer consists of a bank
of dynamical models, each of which is tailored to describe a
specific motion regime. The higher layer models the switching
among the lower layer dynamical systems. For example, the
trajectory of a person “entering a shop” in a shopping mall
can be decomposed into a set of segments, with each segment
described by a different motion regime (or dynamical model).
Both the low level models and the high level switching are
learned from training data in a fully automatic way. The low
level models are common to all the activities and their param-
eters (as well as their number) are learned in an unsupervised
way.

Underlying our approach is the observation that people tend
not to move randomly through their environments. Instead, they
usually engage in motion patterns, related to typical activities or
specific locations that they might be interested in approaching.
This observation suggests that it is possible to obtain the most
significant low level dynamical models within the observed
trajectories, a task we address using unsupervised learning
of Gaussian mixture models (GMM) with embedded model
selection [16].

Building on the low-level models, the activities to be recog-
nized are represented by modeling the switching patterns among
these models as Markov processes. We thus have a complete
generative model of the trajectories in each activity, which is
used for recognition.
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The remainder of the paper is organized as follows. Section II
presents an overview of previous work. In Section III, we de-
scribe the model of the pedestrian’s activities. Section IV details
the estimation of the low level dynamic models, while the top
level activity model is explained in the Section V. Section VI
describes the classification of the activities. Section VII reports
experimental results with real data. Appendix A describes the
tracking procedure used to extract the trajectories from the video
data.

II. PREVIOUS WORK

Activity recognition systems can be grouped in two broad
classes: systems targeted to the short range analysis (e.g., ges-
ture recognition [22], [25], [47], [59], smart rooms [59]), and
systems tailored to long range analysis (e.g., trajectory recog-
nition and prediction [26], surveillance of large infrastructures
[8], [13], [31], [33], [41], [51]). The work described in this paper
falls in the second class.

As explained above, the recognition of human activities is
usually done using a three-step bottom-up approach: segmenta-
tion and tracking, feature extraction, and classification. Several
approaches to these three steps will be briefly discussed in the
next paragraphs. Detailed surveys on HAR can be found in [1],
[10], [19], [23], and [36].

A. Segmentation and Tracking

Most systems use static cameras and assume that the back-
ground is static as well. In this case, moving object detection
(segmentation) can be performed by detecting changes in the
image, i.e., by separating active regions (foreground) from the
static background. In the simplest cases, the current image is
subtracted from the static background image and the differ-
ences are compared with a threshold. However, background
subtraction is extremely sensitive to scene changes, as well
as to lighting changes and other extraneous events, which has
stimulated several improvements to this approach. For example,
the uncertainty associated to each background pixel may be
taken into account, by modeling it as a random variable with a
Gaussian distribution [59], or a mixture of Gaussians distribu-
tions [41], [51]. Other systems model background fluctuations
by using more than one background image [8], [20].

The detected objects are then tracked in order to obtain their
trajectories in the video sequence. This can be done by region
matching, using feature tracking [14], by template or object
matching [7], [13], [20], [33], or by Kalman filtering [30], [40],
[59]. Region matching in consecutive frames is usually a simple
operation if the person is isolated and unoccluded, but becomes
more difficult under occlusions and with groups merging and/or
splitting; these difficulties have been tackled in [27], [61]. Some
feature tracking methods try to overcome the occlusion problem
by tracking local features (provided that some small regions of
the object remain unoccluded); this can be done using scale-in-
variant feature transforms (SIFT) [32] or the mean shift algo-
rithm [14]. An additional operation has to be done in this case
in order to associate the detected features with each object of
interest. This is not a trivial task since there is object overlap
and the number of detected features changes during the obser-
vation period [48]. Both techniques (region matching and fea-

ture tracking) can be used in a complementary way to improve
the performance of the tracker [48]. Template matching is also
used in some tracking methods [20]; however, it is often diffi-
cult to cope with changes in the visual appearance of the object
to be tracked. Adaptive templates can partially overcome these
difficulties but template updating is not a robust operation. In
long range settings, the active regions detected in the image are
often represented by their centroids and tracked using Kalman
filtering [40]. In the presence of outliers produced by clutter,
more sophisticated approaches are needed, such as the multiple
hypothesis tracker [41].

B. Features

Human activity recognition is usually based on features, the
choice of which depends on the particular application in hand
and on the geometry of the camera and scene. In long range
problems (e.g., outdoor surveillance), the most commonly used
feature is the location (of the centroid) of the person in the scene
[21], [40], [41], [51], since it is a stable and robust feature. Other
features used include shape features, such as the silhouette, the
star skeleton [13], and temporal templates [7].

In short range problems, additional features are often used,
such as the position of the feet, hands and head [20], [59], 2-D or
3-D estimates of the human body segments [44], facial features
[12], periodicity features [11].

In this paper, since our goal is long range surveillance, we
focus on trajectories.

C. Activity Recognition

A formal definition of what is an activity depends strongly on
the application domain considered and on the specific problem
being addressed. In a surveillance application, examples of
activities can be “walking”, “running”, “entering”, “leaving”,
“fighting”, or other activities which the users/owners of the
system find of interest. At this point, we will not attempt a
formal definition of activity classes other than say that the goal
of activity classification is to classify the observed persons’
behavior (as observed by the video camera) into one element
of this set of classes.

Activity classification is usually based on generative proba-
bilistic dynamical models of trajectories, with hidden Markov
models (HMM, [42]), and variants thereof, being the most
widely adopted tool. Being a generative model, an HMM can
be used to produce synthetic sequences with the same proba-
bilistic properties as the observations. Discriminative methods
have also been used in activity recognition since they do not
attempt to model the data, but only the decision; see [53], where
a comparison between maximum entropy Markov models and
conditional random fields (CRF) is carried out. A problem
which remains unsolved to a large extent is the representation
of interacting people and group activities. Two steps towards
this direction can be found in [40], using coupled HMMs, and
in [21], based on Bayesian networks. Other machine learning
methods have also been used with some success, namely, neural
networks [26], [47], dynamic Bayesian networks [60] and the
so-called abstract HMM [30], [54], [55].

In [55], the scene is split into a set of square cells and
the movement of pedestrians between neighboring cells is
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described by Markov models (primitive behaviors). Complex
behaviors are defined by the concatenation of primitive behav-
iors. This system is based on a hierarchical generative model
as ours. However, there are several differences. First, space is
discretized into a small number of cells appropriate for indoor
scenes while we use continuous trajectories which are more
appropriate for outdoor/far-field settings. Second, the system in
[55] is event driven (switching can only occur when the person
meets a landmark) while this restriction is not imposed in ours.

III. HUMAN ACTIVITY MODEL

A. Class-Conditional Generative Model

The inputs to our human activity classifier are trajectories of
the centers of mass of the people tracked in the video sequence.
Formally, each trajectory is a length-n sequence of positions,

with . Consider that the activity
class is represented by variable ; our classifier
is based on class-conditional generative models for the trajecto-
ries, , which are next described.

Since the trajectories are nonstationary, they are not easily
described by a single dynamical model. Instead, we use a set
of dynamical models, each of which associated to a dif-
ferent motion direction and speed. Thus, we assume that

is produced by a switched dynamical system

(1)

where is the label of the low level model at
time , and are independent samples of a zero-
mean Gaussian random vector with identity covariance; the pa-
rameters of this system are , the mean displace-
ment vectors of each model, and , the covari-
ance matrices of the random displacements under each model.
Naturally, model (1) specifies the conditional probability den-
sity of a trajectory , given a sequence of model labels

, i.e.,

(2)

where is the probability density of the initial position and
denotes a Gaussian probability density function of

mean and covariance , computed at . In this paper, we
assume that the low level dynamical models characterized
by and are the same for all the
classes (activities), this being the reason why is not con-
ditioned on , i.e., .

At the higher level, we assume that the label sequence
of a trajectory of class is a

sample of a Markov chain with transition matrix (of dimen-
sion ), which is characteristic of each activity class. For-
mally

(3)

where denotes the th element of matrix .
The sequence is of course obtained from

the video sequence, but is an unobserved

(hidden) sequence. The class-conditional generative model
is thus finally obtained by marginalizing with respect to the
missing label sequence

(4)
The next sections describe how the parameters of the low

level models, , and the tran-
sition matrices of the high level models, , are es-
timated from training data.

IV. ESTIMATION OF LOW LEVEL MODEL

The maximum likelihood estimate of all the parameters
of our model can be obtained from a training set of labeled
training trajectories, .
Each pair denotes that training trajectory

was generated by an activity of class
, and is the length of the training tra-

jectory .
Assuming that the training trajectories are independent, the

log-likelihood function for the model parameters is given by

(5)

(6)

where is given by (2) and is given
by (3). Maximizing (6) with respect to and can
be done using a slightly modified version of the Baum-Welch
algorithm (BMA) [42]. Essentially, this maximization corre-
sponds to estimating the parameters of a set of hidden Markov
models which share a common set of Gaussian emission den-
sities parameterized by , but
with different transition matrices .

In this paper, we follow an alternative route motivated by
the following considerations. Since the parameters of the
low-level models, , are the
same for all the activity classes, it makes sense to estimate
them in an unsupervised way directly from a training set

, containing unlabeled trajectories of all
the activities. Under model (2), the observed increments in the
th training trajectory , are

conditionally independent, given the (unobserved) low-level
model labels, ; thus, in the presence of these
labels, estimating would be trivial. Our proposal is to treat
these increments as independent samples of a Gaussian mixture
with parameters , that is, to ignore the Markovian nature of
each sequence , for . The crucial advantage
of this approximation is that it allows direct application of
mixture fitting algorithms; in particular, we adopt a technique
that simultaneously performs model selection (i.e., estimates
the number of low-level models ) [16].
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Let be the set of all the observed incre-
ments in all the training trajectories (the total number is

). Under the assumption explained in the previous
paragraph, we model this set of increments as independent sam-
ples from a Gaussian mixture with components and param-
eters

(7)

where is the weight of the th component in the mixture.
To simultaneously estimate the low-level model parameters

and their number , we
use the criterion and algorithm proposed in [16]. Essentially,
the method proposed in that paper uses a model selection cri-
terion based on the minimum message length (MML) principle
[57]. The MML criterion is then directly optimized using a mod-
ified version of the EM algorithm which is able to annihilate re-
dundant components; thus, after being initialized with a large
number of randomly placed components, that algorithm pro-
vides a parsimonious estimate of the mixture parameters. The
method also avoids some of the well known drawbacks of the
standard EM algorithm for mixtures; namely, the sensitivity to
initialization and the need to avoid the boundary of the param-
eter space (when working with free covariance matrices) where
the likelihood is unbounded. For more details, see [16].

An alternative, more classical approach, would be to use an
HMM for each activity class, with the number of low level
models selected by one of the well known model selection
criteria, such as Akaike’s information criterion (AIC) [2] or the
Bayesian information criterion (BIC) [52], which is formally
equivalent to the basic version of the minimum description
length (MDL) criterion [45], or even the method [4] In that
approach, the HMM parameters are estimated from the data
using the EM algorithm (in this case the Baum-Welch algo-
rithm), for a range of numbers of low level models; then, the
model leading to the lowest value of the corresponding model
selection criterion is selected. In the experimental results sec-
tion, we will show that the shared low-level models obtained
using the algorithm from [16] yield a higher activity classifi-
cation accuracy, when compared to the standard HMM-based
approach, thus demonstrating the adequacy of our approach to
the problem addressed in this work.

V. ESTIMATION OF ACTIVITY MODEL

After estimating the parameters of the low-level models
using the procedure presented in the previous section, it is nec-
essary to estimate the transition matrices of each activity class,

. These transition matrices are estimated from a
set of labeled sequences .

In particular, we obtain the transition matrix estimate , for
each , from a set of trajectories from class

, using a simplified version of the Baum-Welch algorithm
[42]. Let us denote as the set of
training trajectories from class . Notice that, conditionally on
the low-level model label sequence, the increments in these tra-
jectories are independent [see (2)]. Thus, instead of the absolute

positions in these trajectories, we consider these increments;
let , where (as in the previous section)

. We consider that
the probability density of the first position, is know for
all classes and needs not be estimated. We thus have an -state
hidden Markov model, with Gaussian emission densities with
means and covariance matrices .
All these parameters, as well as the number of states ,
were estimated using the unsupervised method presented
in the previous section. To estimate , we simply use the
Baum-Welch algorithm [42], but keeping frozen the emission
density parameters.

VI. CLASSIFICATION

The classification problem can be formulated as follows:
given a new observed trajectory , classify it into the set of
activities . A trajectory from class is modeled ac-
cording to (1), where is a sample of a Markov
model with transition matrix , estimated as explained in the
previous section. This model allows computing the class-con-
ditional likelihood of a trajectory , that is, , where

is the set of low level model parameter estimates, which is
common to all the classes. Each class-conditional likelihood
term , for , is computed by running
one forward/backward recursion of the Baum-Welch proce-
dure, with the corresponding model parameter estimates and

. The classification of the trajectory is obtained by the
maximum a posteriori (MAP) rule, i.e.,

(8)

where is the a priori probability of the activity , herein
taken simply as . Thus, given the trajectory ,
the classifier requires running one forward-backward recursion
(as in the Baum-Welch algorithm) under all candidate classes

.

VII. EXPERIMENTS

This section reports experimental results using both synthetic
and real data. The video sequences of the real data were obtained
by surveillance cameras located in a shopping center and on a
university campus.

A. Synthetic Data

We first illustrate the performance of the algorithm with a
synthetic example. This example intends to demonstrate the ef-
fectiveness of the approach in the case where the classes share
exactly the same low level displacement statistics, only being
different at the higher level (i.e., different transition matrices).
Consider the trajectories from two classes depicted in red and
green in Fig. 1. The low-level statistics of the two classes are
roughly the same: 50% of horizontal displacements (right) and
50% of vertical (up) displacements, with the same mean and
covariance: (horizontal displacement),

(vertical displacement), . The
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Fig. 1. Two activities sharing the same low level data, with different transition
matrices. Training data (left), test data (right).

Fig. 2. Fitting Gaussian mixtures to the displacements in the synthetic scenario.
Two low level models are correctly estimated in the example (left); type “red”
activity (center); type “green” activity (right).

difference between the two classes resides only on the tran-
sition matrices which are, respectively, for the red and green
trajectories

(9)

The trajectories of the red class have a low probability of
switching between the two low level models ( is close to
identity), while those of the green class have a 0.5 probability
of switching at each instant. Notice also that the stationary
distributions of these transition matrices are both equal to

, meaning that, on average, the trajectories of both
classes perform the same number of vertical and horizontal
displacements. Using this model, we generate 100 training
trajectories (Fig. 1, left) and 100 test trajectories (Fig. 1, right).

The estimation of the low-level model parameters, i.e.,
is shown in Fig. 2. As expected, a mixture of

two Gaussian was fitted to the displacements; the corresponding
mean vector and covariance estimates have errors of less than
0.1% with respect to the true parameters. The estimated transi-
tion matrices are

(10)

very close to the true underlying matrices. Finally, the classifi-
cation accuracy obtained on the test data was 100%, showing
that it was possible to distinguish trajectories from each class,
using only the switching pattern.

B. Real Data

Fig. 3 shows the two scenarios considered in the experi-
ments with real data, where different type of activities (to be

Fig. 3. The two scenarios: (left) shopping center and (right) university campus.

Fig. 4. Trajectories observed in the shopping (top row) and in the campus
(bottom row) scenarios.

Fig. 5. Examples of the four activities defined for the shopping scenario:
(a) entering, (b) leaving, (c) passing, and (d) browsing. All the dots belonging
to the trajectory (centroid of the bounding box) as well as the last bounding
box are plotted.

detailed below) take place. Fig. 4 shows examples of observed
trajectories.

After observing many trajectories during several days, we de-
fined a set of high level activities of interest for each scenario.
In the shopping scenario, we have defined four main activities:
“entering” the shop, “leaving” the shop, “passing” in front of
the shop, and “browsing”. Fig. 5 shows examples of trajectories
of these four classes.

For the university campus, we defined a set of seven high level
activities: “entering building”, “leaving building”, “crossing
park up”, “crossing park down”, “passing through”, “walking
along”, and “wandering”. Fig. 6 shows examples of trajectories
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Fig. 6. Examples of trajectories from seven classes defined: (a) “entering
building”, (b) “leaving building”, (c) “walking along”, (d) “crossing (diago-
nally) park up”, (e) “crossing (diagonally) park down”, (f) “passing through”,
and (g) “wandering”. Here, we just plot the centroid of the pedestrians’ blobs.

for each of these seven classes. Each high level class is com-
posed of a sequence of low level motion dynamical models, the
parameters of which are estimated by the unsupervised learning
scheme presented above. Recall that all of these trajectories
may have the corresponding “mirror” activities, i.e., the same
activity performed in the opposite direction.

C. Homography and Centroids

When tracking a person across the camera field of view,
shape, position and speed are influenced by the perspective
effect. This makes the training as well as the classification a
space-varying task which is hard to model, since the observa-
tions (e.g. centroids) collected from the images depend both
on the ongoing trajectory and on the viewing geometry. See,
for instance, Fig. 5(a), (b) and (d); in these frames there are
very small displacements. This happens due to the following
different reasons: in Fig. 5(a) and (b), the small displacements
are caused by the camera position, whilst in Fig. 5(d), the
small displacements are originated by the low velocity of the
pedestrian.

To achieve viewpoint invariance, all image measurements are
projected onto a view orthogonal to the ground plane (bird’s eye
view), using a projective transformation (homography) between
the image and a plane parallel to the ground. The parameters of
this projection were obtained by considering a set of points in
the scene with known ground-plane coordinates. The homog-
raphy is defined as follows:

(11)

where and are the coordinates in the real world
and in the image plane, respectively. Since the non singular ho-

Fig. 7. Two scenarios after the homographic transformation: (a) Homographic
projection to the ground plane (Campus); (b) region of interest (Campus);
(c) homographic in the shopping scenario.

mogeneous matrix has 8 degrees of freedom, four points are
needed to determine them uniquely.

In this work, we have adopted the centroids of the pedes-
trians’ blobs as features. Ideally, one would like to work with
points that lie on the ground plane, for instance, the pedestrians’
feet. However, the centroids of the pedestrians’ blobs are more
stable and robust and less prone to segmentation errors [29]. Be-
sides, the use of the ground plane points requires the assump-
tion of the position and orientation of the camera with respect
to the ground. Moreover, using the centroids, the pedestrian
heights does not affect the ground plane alignment. Indeed, in
our surveillance applications, the distance between the camera
to the ground plane is very large in comparison with the first
and second order statistics of the heights of the moving objects.
Fig. 7(a) shows an image of the campus after this transforma-
tion, while Fig. 7(b) shows the region of interest on the trans-
formed image, where all the trajectories take place. Fig. 7(c)
shows the transformed image of the shopping.

From this point on, we will use the ground plane homography,
to represent the positions of the bounding boxes.

D. Low-Level Model Estimates

Fig. 8 shows several estimates of the mixture components
with different numbers of modes, for the shopping data. The
mixture estimated by the algorithm from [16] has five com-
ponents [Fig. 8(e)]; thus, we use five low level dynamical
models, which have clear meanings: “stopped”, “moving
north”, “moving south”, “moving east”, “moving west”.

Fig. 9(a) and (b) shows two samples of the “leaving” activity.
The dynamical models used to represent this activity are shown
in Fig. 9(c) and (d) (red dots), which correspond to “moving
south” and “moving east”. The trajectory (red dots) are discon-
tinuous due to occlusions. Although these activities belong to
the same class, they exhibit significant variability as is clear in
the displacements (red dots) in Fig. 9(c) and (d). Fig. 10 shows
several trajectories of the “browsing” activity. In Fig. 10(a) and
(b), the pedestrian “browses” outside the shop. In Fig. 10(c), the
person “browses” outside and inside the shop.

Fig. 11 shows several estimates of the mixture components
with different numbers of modes, for the campus data. The mix-
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Fig. 8. Fitting a Gaussian mixture over the trajectories displacements in the
shopping scenario; (a), (b), (c), (d), (e), (f), (g), and (h) show the estimates with
1, 2, 3, 4, 5, 6, 7, and 8 components, respectively. The dots are the trajectories
displacements and the solid elipses are level curves of each component estimate.

Fig. 9. Two examples of the “leaving” activity (a), (b); corresponding displace-
ments (red dots) superimposed with gaussian mixtures previously estimated by
the unsupervised learning scheme (c), (d). Recall that the y-axis are opposed
between the image coordinates and the graphic coordinates; thus, the “upper”
red dots in (c), (d), correspond to the “down” direction in (a), (b).

ture selected by the algorithm from [16] has nine components
[Fig. 11(g)], indicating nine low level dynamical models, which
can be labeled as follows: “stopped”, “moving north”, “moving
south”, “moving east”, “moving west”, “moving north-west”,
“moving north-east”, “moving south-west”, “ moving south-
east”.

Fig. 10. Several trajectories of the “browsing” activity. Despite the consider-
able variability, our algorithm correctly recognizes the instances of this activity.

Fig. 11. Fitting Gaussian mixtures to the displacements in the campus scenario
with different numbers of components. The dots are the trajectories displace-
ments and the solid elipses are level curves of each component estimate.

E. Estimates of the Transition Matrices

Fig. 12 shows the transition matrices estimates of the
7 campus activities, obtained with the supervised training
procedure described in Section V, for the campus data. The
matrices are of size 9 9, since 9 is the number of low level
models selected for the campus data. In this figure, higher
transition probabilities are represented by darker gray levels.
The low level models are numbered from 1 to 9 in the following
order: “north”, “north-east”, “east”, “south-east”, “south”,
“south-west”, “west”, “north-west”, “stopped”. From Fig. 12,
we can see that the “entering” activity visits the “1”, “2” and
“3” low level models (darker columns). Similarly, the “leaving”
activity visits low models “5”, “6”, and “7”, since these activ-
ities are more irregular.
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Fig. 12. Estimated transitions matrices for each activity of the SD-HMM:
(a) entering; (b) leaving; (c) walking along; (d) crossing park up; (e) crossing
park down; (f) passing through cars; (g) browsing.

VIII. CLASSIFICATION RESULTS

A. Training/Testing Partitions

To assess the classification accuracy obtained with our ap-
proach, we have considered three different procedures for split-
ting the available data into training and testing sets: 1) a single
training/testing splitting; 2) a complete -fold cross validation;
3) a random sub-sampling validation.

The first procedure is simple and uses an arbitrary splitting of
all the available data set into two disjoint sets. In the second pro-
cedure, we consider the set containing all the available trajecto-
ries (of all the activities) in a random order; we then perform a
full ten-fold cross validation analysis. Finally, in the third pro-
cedure, we randomly select 10% of the data from each activity
for testing and use the remaining for training.

B. Classification Results for the Shopping Mall Dataset

In the case of the first experimental procedure (a fixed testing/
training partition, as described in Section VIII-A), the training
set contains three trajectories from each class. The test set is
composed of 62 trajectories. Regarding classes, we had to take
in consideration the “mirror” activities. A mirror activity is the
same activity but with some part(s) of the trajectory performed
in the opposite direction. For instance, in the shopping scenario,
if the “entering” activity follows the “left” then the “up” direc-
tions, the corresponding mirror activity follows the “right” then
the “up” directions. For both scenarios, we define mirrors for
all classes, with the exception of the “browsing” class, which
does not have a particular direction in the image. In Table I,
which shows the accuracy obtained in this experiment, we see
that some errors occur between the “browsing” and “passing”
activities. This may be due to the fact that “browsing” is char-
acterized by periods of very low or null velocity; of course a

TABLE I
CONFUSION MATRIX FOR THE SHOPPING SCENARIO WITH THE FIRST STRATEGY

TABLE II
CONFUSION MATRIX FOR THE SHOPPING SCENARIO

WITH THE THIRD STRATEGY

person passing in front of the shop may have periods of low ve-
locity, thus being confused with a browsing activity.

Using the second experimental procedure (ten-fold cross val-
idation) an accuracy of 100% was obtained for the activities
“entering”, “leaving” and “passing”, and 86% accuracy for the
“browsing” activity (with all the errors corresponding to mis-
classifications as “entering” activity).

Finally, with the third experimental procedure (random par-
tition of the data from each class), the results obtained are re-
ported in Table II.

C. Classification Results for the Campus Dataset

In this case, the available data contains 200 trajectories. As
above, we applied the three experimental procedures described
in Section VIII-A. The results obtained with the first procedure
are reported in Table III. The second experimental procedure
leads to 100% accuracy for all the activities. Finally, the results
obtained with the third strategy are shown in Table IV.

D. Comparison With the HMM Approach

We conclude the experimental study with a comparison
between our approach and a standard HMM-based classifier,
with the model order selected by the MDL/BIC or AIC criteria.
For this comparative study, we adopted the first experimental
procedure (fixed splitting of the data into training and testing
sets). The overall error rates shown in Table V confirm that the
adopted method from [16] yields a set of models with better
classification accuracy. This table also shows that BIC/MDL
outperforms AIC in this problem. More detail on the perfor-
mance of the HMM-BIC/MDL approach is found in Tables VI
and VII.

IX. CONCLUSION

In this work, we have presented a framework for modeling
and recognition of human trajectories in surveillance applica-
tions. The method uses switched dynamical models (low level
models), each of which describes a particular type of motion.
The low level models are shared by all the classes/activities,
thus are learnt in an unsupervised way, using a method which
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TABLE III
CONFUSION MATRIX FOR THE UNIVERSITY CAMPUS SCENARIO WITH THE FIRST STRATEGY

TABLE IV
CONFUSION MATRIX FOR THE UNIVERSITY CAMPUS SCENARIO FOR THE THIRD STRATEGY

TABLE V
OVERALL ERROR RATES FOR THE THREE MODEL

SELECTION STRATEGIES CONSIDERED

TABLE VI
PERFORMANCE USING HMM-BIC/MDL FOR THE SHOPPING SCENARIO

also selects the number of models. The high level models (prob-
abilistic switching) are separately estimated for each class. The
overall model resembles an HMM-based classifier, using a bank
of common dynamical models at the lower level.

The experimental results reported validate the method by
showing that this framework leads to a good classification ac-
curacy for surveillance applications. Future work will include
more complex activities and extension to other applications.

One possible work direction is the inclusion of an additional
level to deal with complex activities, in the spirit of hierarchical
HMMs. Each complex activity would be the concatenation of
several activities, each of which described by one SD-HMM
presented in this paper. The model would then have three levels:
i) low level, (ii) high level (activity model), and iii) a third level
which would handle the complex activities. Another interesting
issue to be studied concerns the discrimination of the same type
of activities occurring in different regions of the image. The low
level (displacements) information is the same but the activities

may have different meanings. One way to deal with this problem
may be to use regions/cells with special meaning.

APPENDIX A
TRACKING PROCEDURE

Although the tracking procedure is beyond the scope of the
paper, we briefly describe how the trajectories are obtained.
There has been considerable work on tracking systems, namely
based on features, edges, and boundaries [24], [28], [50], [58].
However, for our domain of application, the small size of the
targets prevents the use of feature-based approaches, especially
in the university campus scenario. In order to reach a common
procedure for both scenarios, the system herein implemented
consists of the following blocks: i) region detection, and ii) re-
gion association.

The first block detects the active regions in the image using
the Lehigh Omnidirectional Tracking System (LOTS) algorithm
[8], since it is considered to be amongst the best for surveillance
applications [38].

The tracking block connects active regions detected in con-
secutive frames. We assume that objects move slowly in the
scene, and, therefore, the corresponding regions should overlap.
Furthermore, we also assume that the object motion can be pre-
dicted and the prediction error should be small.

Both criteria are used to define an association cost for all pairs
of regions detected in consecutive frames. Let denote
the centroids of regions in consecutive frames. If these re-
gions overlap in the image domain, the association cost is given
by

where is the velocity estimate of the th region detected
in frame . On the other hand, the cost is infinite if
there is no overlap.
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TABLE VII
PERFORMANCE USING HMM-BIC/MDL FOR THE CAMPUS SCENARIO

After computing the cost matrix , we associate
pairs of regions using the mutual favorite pairing criterion i.e.,
we associate a pair of regions iff is the minimum
cost value in line and column . More sophisticated algorithms
could be used to perform this task, e.g., using optimization in
graphs [49], [56]. The method adopted in this paper is simple
and conservative in the sense that it does not associate regions in
ambiguous cases in which multiple interpretations are possible
(e.g., in region merging and splitting).
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