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Abstract

In order to study the convergence properties of the AdaBalgsirithm, we reduce AdaBoost to
a nonlinear iterated map and study the evolution of its weiglectors. This dynamical systems
approach allows us to understand AdaBoost’s convergerugeeres completely in certain cases;
for these cases we find stable cycles, allowing us to exylisitlve for AdaBoost’s output.

Using this unusual technique, we are able to show that AdsBimes not always converge to a
maximum margin combined classifier, answering an open muresh addition, we show that “non-
optimal” AdaBoost (where the weak learning algorithm doesnmecessarily choose the best weak
classifier at each iteration) may fail to converge to a maxinmargin classifier, even if “optimal”
AdaBoost produces a maximum margin. Also, we show that ifB\tsst cycles, it cycles among
“support vectors”, i.e., examples that achieve the samdiasshanargin.

Keywords: boosting, AdaBoost, dynamics, convergence, margins

1. Introduction

Boosting algorithms are currently among the most popular and most sudcgsfrithms for pat-

tern recognition tasks (such as text classification). AdaBoost (Frendd&chapire, 1997) was the
first practical boosting algorithm, and due to its success, a number of siroidatibg algorithms
have since been introduced (see the review paper of Schapire,f20@3, introduction, or the re-
view paper of Meir and Rtsch, 2003). Boosting algorithms are designed to construct a “strong”
classifier using only a training set and a “weak” learning algorithm. A “Weddssifier produced

by the weak learning algorithm has a probability of misclassification that is sligellyw 50%,

i.e., each weak classifier is only required to perform slightly better thandoraiguess. A “strong”
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classifier has a much smaller probability of error on test data. Hence,dlgggéhms “boost” the

weak learning algorithm to achieve a stronger classifier. In order to iexptoweak learning al-

gorithm’s advantage over random guessing, the data is reweighted l@tieerénportance of the
training examples is changed) before running the weak learning algoriteach iteration. That is,
AdaBoost maintains a distribution (set of weights) over the training examghesselects a weak
classifier from the weak learning algorithm at each iteration. Training ebentipat were misclas-
sified by the weak classifier at the current iteration then receive highayhtg at the following

iteration. The end result is a final combined classifier, given by a thidsthtinear combination of
the weak classifiers.

AdaBoost does not often seem to suffer from overfitting, even aftarge number of itera-
tions (Breiman, 1998; Quinlan, 1996). This lack of overfitting has beptaged to some extent by
themargin theoryof Schapire, Freund, Bartlett, and Lee (1998). Tierginof a boosted classifier
is a number between -1 and 1, that according to the margin theory, canugitlud as a confidence
measure of a classifier’s predictive ability, or as a guarantee on thealjigaion performance. If
the margin of a classifier is large, then it tends to perform well on test datae margin is small,
then the classifier tends not to perform so well. (The margin of a boostssifida is also called the
minimum margin over training examplgAlthough the empirical success of a boosting algorithm
depends on many factors (e.g., the type of data and how noisy it is, theityagfahe weak learn-
ing algorithm, the number of boosting iterations, regularization, entire margnibdion over the
training examples), the margin theory does provide a reasonable expiefiatiagh not a complete
explanation) of AdaBoost’s success, both empirically and theoretically.

Since the margin tends to give a strong indication of a classifier’'s perfaenanpractice, a
natural goal is to find classifiers that achieve a maximum margin. Since thBoadaalgorithm
was invented before the margin theory, the algorithm became popular dueptagtical success
rather than for its theoretical success (its ability to achieve large margingge AdaBoost was not
specifically designed to maximize the margin, the question remained whethetiirdiaes actually
maximize the margin. The objective function that AdaBoost minimizes (the exfiahkss) is not
related to the margin in the sense that one can minimize the exponential loss whitlas@ously
achieving an arbitrarily bad (small) margin. Thus, AdaBoost does not,ciy ¢gtimize a cost
function of the margins (see also Wyner, 2002). It was shown analytiteltyAdaBoost produces
large margins, namely, Schapire et al. (1998) showed that AdaBoost ashi¢veast half of the
maximum margin, and &sch and Warmuth (2002) have recently tightened this bound slightly.
However, because AdaBoost does not necessarily make progressisoincreasing the margin
at each iteration, the usual techniques for analyzing coordinate algordbmst apply; for all
the extensive theoretical and empirical study of AdaBoost prior to thgeptevork, it remained
unknown whether or not AdaBoost always achieves a maximum margiticsolu

A number of other boosting algorithms emerged over the past few yeagithatore explicitly
to maximize the margin at each iteration, such as AdaBo@¥itsch and Warmuth, 2002), arc-
gv (Breiman, 1999), Coordinate Ascent Boosting and Approximate Quetel Ascent Boosting
(Rudin et al., 2004c,b,a; Rudin, 2004), the linear programming (LP) bapatgorithms including
LP-AdaBoost (Grove and Schuurmans, 1998) and LPBoost (Dentiak,e2002). (Also see the
e-boosting literature, for example, Rosset et al., 2004.) However, AostB® still used in practice,
because it often empirically seems to produce maximum margin classifiers witletmwvadization
error. In fact, under tightly controlled tests, it was shown empirically thanthgimum margin
algorithms arc-gv and LP-AdaBoost tend to perfosmorsethan AdaBoost (Breiman, 1999; Grove
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and Schuurmans, 1998). In the experiments of Grove and Schuur@898&),(AdaBoost achieved
margins that were almost as large, (but not quite as large) as those oPtladégarithms when
stopped after a large number of iterations, yet often achieved loweralzadion error. AdaBoost
is also easy to program, and in our trials, it seems to converge the fastsigspect to the margin)
among the coordinate-based boosting algorithms.

Another surprising result of empirical trials is that AdaBoost does seebe toonverging to
maximum margin solutionasymptoticallyin the numerical experiments of Grove and Schuurmans
(1998) and Rtsch and Warmuth (2002). Grove and Schuurmans have questiontgunhdaBoost
is simply a “general, albeit very slow, LP solver”. If AdaBoost is simply a giramaximization
algorithm, then why are other algorithms that achieve the same margin perfonoiag than Ada-
Boost? Is AdaBoost simply a fancy margin-maximization algorithm in disguisis,ibsomething
more? As we will see, the answers are sometimes yes and sometimes no. Bdlaeaargins do
not tell the whole story.

AdaBoost, as shown repeatedly (Breiman, 1997; Friedman et al., 2@@6¢HRet al., 2001;
Duffy and Helmbold, 1999; Mason et al., 2000), is actually a coordinaseetd algorithm on a
particular exponential loss function. However, minimizing this function in othays does not
necessarily achieve large margins; the process of coordinate desagtirtbte somehow responsible.
Hence, we look to AdaBoost’s dynamics to understand the process bly thieimmargin is generated.

In this work, we took an unusual approach to this problem. We simplified Adsi&o reveal
a nonlinear iterated map for AdaBoost’s weight vector. This iterated mags givdirect relation
between the weights at tinte@nd the weights at time+ 1, including renormalization, and thus pro-
vides a much more concise mapping than the original algorithm. We then anéyzelynamical
system in specific cases. Using a small toolbox of techniques for analgyimamical systems, we
were able to avoid the problem that progress (with respect to the margis)raa occur at every
iteration. Instead, we measure progress another way; namely, via thergence towards limit
cycles.

To explain this way of measuring progress more clearly, we have foundothsome specific
cases, the weight vector of AdaBoost produces limit cycles that candigtiaally stated, and are
stable. When stable limit cycles exist, the convergence of AdaBoost camderstood. Thus,
we are able to provide the key to answering the question of AdaBoost&igence to maximum
margin solutions: a collection of examples in which AdaBoost’s convergeanebe completely
understood.

Using a very low-dimensional example X8, i.e., 8 weak classifiers and 8 training examples),
we are able to show that AdaBoost does not always produce a maximuginrsatution, finally
answering the open question.

There are two interesting cases governing the dynamics of AdaBoosadbeuere the optimal
weak classifiers are chosen at each iteration (the “optimal” case), amdghevhere permissible
non-optimal weak classifiers may be chosen (the “non-optimal” case)elogtimal case (which
is the case we usually consider), the weak learning algorithm is requiréttse a weak classifier
that has the largest edge at every iteration, where the edge measupesftiimance of the weak
learning algorithm. In the non-optimal case, the weak learning algorithm magsehany weak
classifier as long as its edge exceedthe maximum margin achievable by a combined classifier.
This is a natural notion of non-optimality for boosting, thus it provides a ahg#mse in which to
measure robustness. Based on large scale experiments and a gapdtidhidoounds, Rtsch and
Warmuth (2002) conjectured that AdaBoost does not necessarilyemio a maximum margin
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classifier in the non-optimal case, i.e., that AdaBoost is not robust in thsesdn practice, the
weak classifiers are generated by CART or another weak learningthlgoimplying that the
choice need not always be optimal.

In Section 8, we show this conjecture to be true using>a54example. That is, we show
that “non-optimal AdaBoost” (AdaBoost in the non-optimal case) may aopterge to a maximum
margin solution, even in cases where “optimal AdaBoost” does.

Empirically, we have found very interesting and remarkable cyclic dynamiosainy differ-
ent low-dimensional cases (many more cases than the ones analyzed iapi¥ for example,
those illustrated in Figure 6. In fact, we have empirically found that AdaBmasluces cycles on
randomly generated matrices — even on random matrices with hundreds ofstbme On low-
dimensional random matrices, cycles are almost always produced irxperiraents. Thus, the
story of AdaBoost’s dynamics does not end with the margins; it is importantitty AdaBoost’s
dynamics in more general cases where these cycles occur in orderdostamd its convergence
properties.

To this extent, we prove that if AdaBoost cycles, it cycles only among afs&stupport vec-
tors” that achieve the same smallest margin among training examples. In thés sensonfirm
observations of Caprile et al. (2002) who previously studied the dynaiméteavior of boosting,
and who also identified two sorts of examples which they termed “easy” ad."hin addition,
we give sufficient conditions for AdaBoost to achieve a maximum margirtiealwhen cycling
occurs. We also show that AdaBoost treats identically classified exanplaseaexample, in the
sense we will describe in Section 6. In Section 10, we discuss a case in MiaBoost exhibits
indications of chaotic behavior, namely sensitivity to initial conditions, and mewv into and out
of cyclic behavior.

We proceed as follows. In Section 2 we introduce some notation and state #Bodst al-
gorithm. Then in Section 3 we decouple the dynamics for AdaBoost in theybiaae so that we
have a nonlinear iterated map. In Section 4, we analyze these dynamicsifigpla case: the case
where each weak classifier has one misclassified training example. n3aexample, we find
that the weight vectors always converge to one of two stable limit cyclesyiatious to calculate
AdaBoost’s output vector directly. From this, we can prove the outp@daBoost yields the best
possible margin. We generalize this casenta min Section 5. In Section 6 we discuss identically
classified examples. Namely, we show that the weights on identically class#iathty examples
can be shifted among these examples while preserving the cycle; that isplusoif stable cycles
can occur. For an extension of the simple 3 case, we show that manifolds of cycles exist and
are stable. In Section 7 we show that the training examples AdaBoost aymbesare “support
vectors” in that they all achieve the same margin. In the process, we pravictmula to directly
calculate the margin from the cycle parameters. We also give sufficieditimos for AdaBoost
to produce a maximum margin classifier when cycling occurs. Then in Sectian @oduce an
example to show non-robustness of AdaBoost in the non-optimal caSection 9, we produce the
example discussed above to show that AdaBoost may not converge taraumarargin solution.
And finally in Section 10, we provide a case for which AdaBoost exhibits atdins of chaotic
behavior.
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2. Notation and Introduction to AdaBoost

The training set consists of examples with labéls, yi) }i=1...m, where(xi,yi) € X x{—1,1}. The
spaceX never appears explicitly in our calculations. l#t= {h,...,h,} be the set of all possible
weak classifiers that can be produced by the weak learning algorithmewhex — {1, -1}.
We assume that ifi; appears in#{, then—h; also appears itt{. Since our classifiers are binary,
and since we restrict our attention to their behavior on a finite training setawessume the
number of weak classifiersis finite. We typically think ofn as being very largan < n, which
makes a gradient descent calculation impractical beaause number of dimensions, is too large;
hence, AdaBoost uses coordinate descent instead, where onlyeakeciassifier is chosen at each
iteration.

We define arm x n matrix M whereM;j = yhj(x), i.e., Mij; = +1 if training examplei is
classified correctly by weak classifief, and—1 otherwise. We assume that no columribthas
all +1's, that is, no weak classifier can classify all the training exampleecty. (Otherwise the
learning problem is trivial. In this case, AdaBoost will have an undefirted size.) Although
M is too large to be explicitly constructed in practice, mathematically, it acts as the'iopiyt”
to AdaBoost in this notation, containing all the necessary information abeuivdak learning
algorithm and training examples.

AdaBoost computes a set of coefficients over the weak classifiers. ratidgtet, the (unnor-
malized) coefficient vector is denoted; i.e., the coefficient of weak classifiéf determined by
AdaBoost at iteratioth is A j. The final combined classifier that AdaBoost output$ys,, given
Via At/ ([ Atmad 2

n h n
PACTILIRW Al ="3 Al
=1
In the specific examples we provide, eithgior —h; remains unused over the course of AdaBoost’s
iterations, so all values of; ; are non-negative. Thmargin of training example is defined by
yifa(xi). Informally, one can think of the margin of a training example as the distarycedime
measure) from the example to the decision boundary,fx(x) = 0}.

A boosting algorithm maintains a distribution, or set of weights, over the tragxagples that
is updated at each iteratian This distribution is denoted; € A, anddtT is its transpose. Here,
An, denotes the simplex ofrdimensional vectors with non-negative entries that sum to 1. At each
iterationt, a weak classifieh;, is selected by the weak learning algorithm. Tiebability of error
at iterationt, denotedl_, for the selected weak classifigg on the training examples (weighted by
di) is 3 (i:my,=—1) G- Also, denoted, :=1—d_. Note thatd, andd- depend on; although we
have simplified the notation, the iteration number will be clear from the contextedgeof weak
classifierj; at timet with respect to the training examples(@& M) ,, which can be written as

Jt»

(dTM)'t: dt,'_ dt,:d —d_=1-2d_.
t : i:M%:l | i:Migz 1 | ’

Thus, a smaller edge indicates a higher probability of error. Foofitenal case (the case we
usually consider), we will require the weak learning algorithm to give usatbsak classifier with
the largest possible edge at each iteration,

jt € argmaxd{ M)j,
i

1561



RUDIN, DAUBECHIES, AND SCHAPIRE

i.e., ji is the weak classifier that performs the best on the training examples welghtiedFor the
non-optimalcase (which we consider in Section 8), we only require a weak classifiesevedge
exceed®, wherep is the largest possible margin that can be attainediffpr.e.,

jre{i:(diM);>p}.

(The valuep is defined formally below.) The edge for the chosen weak clasgifariterationt is
denotedt, i.e.,r = (dfM)j,. Note thatd, = (1+r¢)/2 andd_ = (1—r¢)/2.

The margin theory developed via a set of generalization bounds thadsed bn the margin dis-
tribution of the training examples (Schapire et al., 1998; Koltchinskii andfrarko, 2002). These
bounds can be reformulated (in a slightly weaker form) in terms of the minimum margich was
the focus of previous work by Breiman (1999), Grove and Schuurifi®#8), and Rtsch and War-
muth (2002). Thus, these bounds suggest maximizing the minimum margin auergraxamples
to achieve a low probability of error over test data. Hence, our goal isdboafinormalized vector
X € A, that maximizes the minimum margin over training examples; |(rM15\)i (or equivalently
min;y; fA(X;)). Thatis, we wish to find a vector

A e argmaxmin(M\);.
Aep, !

We call this minimum margin over training examples (i.e., it ); /|| A||1) the /1-marginor sim-
ply marginof classifierA. Any training example that achieves this minimum margin will be called
asupport vector Due to the von Neumann Min-Max Theorem for 2-player zero-sum games

min max(d"M); = maxmin(MX);.

deln ] Xeh, i
That is, the minimum value of the edge (left hand side) corresponds to thienomaxvalue of the
margin (i.e., the maximum value of the minimum margin over training examples, rightdide).
We denote this value bg. One can think op as measuring the worst performance of the best
combined classifier, mjtM X);.

The “unrealizable” or “non-separable” case where- O is fully understood (Collins et al.,
2002). For this work, we assunpe> 0 and study the less understood “realizeable” or “separable”
case. In both the non-separable and separable cases, AdaBoestges to a minimizer of the
empirical loss function

FOA) = ‘ie—““)i.

In the non-separable case, tdgs converge to a fixed vector (Collins et al., 2002). In the
separable case, thgs cannot converge to a fixed vector, and the minimum valleisf0, occurring
as||A|]1 — . Itis important to appreciate that this tells us nothing about the value of thérmarg
achieved by AdaBoost or any other procedure designed to minimiZB see why, consider any
A € Ap such thattMA); > 0 for all i (assuming we are in the separable case so suclesxists).
Then limy_. aX will produce a minimum value fof, but the original normalized need not yield
a maximum margin. To clarify, any normalizedfor which (M A); > 0 for alli produces a classifier
that classifies all training examples correctly, has unnormalized courttetpat attain values df
arbitrarily close to 0, yet may produce a classifier with arbitrasityallmargin. In other words, an
arbitrary algorithm that minimizels can achieve an arbitrarily bad margin. So it must beptiogess
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AdaBoost(“optimal” case):
1. Input: Matrix M, No. of iterationgmax
2. Initialize: Ayj=0forj=1,...,n
3. Loopfort=1,... tmax

@) thj=e MMi/sm eMNifori=1,..,m
(b) jt € argmaxdiM);
J

(©) re=(d{M);,
(@) o =3in($1)
(&) Aty1= At + e, Whereej, is 1 in positionj; and O elsewhere.

4. Output: At/ || Atyel|1
Figure 1: Pseudocode for the AdaBoost algorithm.

of coordinate descent that awards AdaBoost its ability to increase manginsimply AdaBoost’s
ability to minimizeF. The value of the functiof tells us very little about the value of the margin;
even asymptotically, it only tells us whether the margin is positive or not.

Figure 1 shows pseudocode for the AdaBoost algorithm. Usualljthector is initialized to
zero, so that all the training examples are weighted equally during the fistigte The weight
vectord; is adjusted so that training examples that were misclassified at the previaiiteare
weighted more highly, so they are more likely to be correctly classified at tkieteeation. The
weight vectord; is determined from the vector of coefficients, which has been updated. The
map fromd; to d;.; also involves renormalization, so it is not a very direct map when written in
this form. Thus on each round of boosting, the distributipims updated and renormalized (Step
3a), classifierj; with maximum edge (minimum probability of error) is selected (Step 3b), and the
weight of that classifier is updated (Step 3€). Note Mgat= 3}_; 0t1j.—j wherelj._; is L if jf = |
and 0O otherwise.

3. The Iterated Map Defined By AdaBoost

AdaBoost can be reduced to an iterated map forckfee as shown in Figure 2. This map gives a
direct relationship betweeth andd;, 1, taking the normalization of Step 3a into account automat-
ically. For the cases considered in Sections 4, 5, and 6, we only needéostend the dynamics
of Figure 2 in order to compute the final coefficient vector that AdaBaatoutput. Initialize
dij = 1/mfori =1,...,mas in the first iteration of AdaBoost. Also recall that all values;cdre
nonnegative sincg > p > 0.

To show the equivalence with AdaBoost, consider the iteration definedlbBdost and reduce
as follows. Since:

im; 1

1 141 o 1—r 2Vt 1— M 2

ag = 3ln , we haves™ Miita) — — (=~ Miit _
t 2 (1_rt> 1+ry 1+Mijtrt
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Iterated Map Defined by AdaBoost

1. j € argmaxd{M);
j
2. 1= (d;rM)h

3. Gy = 1+M. mfori=1,.

Figure 2: The nonlinear iterated map obeyed by AdaBoost’s weight \&edtbis dynamical system
provides a direct map fromk to d; 1.

Here, we have used the fact ti\tis a binary matrix. The iteration defined by AdaBoost combined
with the equation above yields:

e~ (MX)ig—(Mijiar) (o'
Giri = s = T
m d[ 1M 1+Mijre \ 2
lel )l 1+M|“rt 1- M,“rt

z— e (M) g (M7
Here, we have divided numerator and denominatogpj_yi e (MX)r, For each such thatijj, =1,
we find:

d'[.'
haas = Tl Y
1-— 1 (1 1
{l Mljtfl} dt (1+E> (%:t) + z{l M5, = -1} dt,i (1%2) (1%[{)
dt,i _ dt.,i _ dt,i
dy +d (%ﬁ) #p;zn(%) D
Likewise, for each such thaiij;, = —1, we finddy1j = ld‘T'rt Thus our reduction is complete. To

check that{", di1; = 1, i.e., that renormalization has been taken into account by the iterated map,
we calculate:
1 1 (1+r)  (1—r)
i = d _ = —
i;d‘“" Trrn 1oy 2(1+1)  2(1—ry)

For the iterated map, fixed points (rather than cycles or other dynamias)wben the training
data fails to be separable by the set of weak classifiers. In that cas@alysis of Collins, Schapire,
and Singer (2002) shows that the iterated map will converge to a fixed poitithat the\;s will
asymptotically attain the minimum value of the convex functif\) := ™, e~ MNi which is
strictly positive in the non-separable case. Consider the possibility of fiaids for thedt s in the
separable cage> 0. From our dynamics, we can see that this is not possible, sine@ > 0 and
for anyi such thatk; > 0,

ck i
(1+ Mi-,jtrt)

Thus, we have shown that AdaBoost does not produce fixed points sefbarable case.

Gii1i= 7 Chj.
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4. The Dynamics of AdaBoost in the Simplest Case : Theéx 3 Case

In this section, we will introduce a simple<3® input matrix (in fact, the simplest non-trivial matrix)
and analyze the convergence of AdaBoost in this case, using the iterapedf Section 3. We will
show that AdaBoost does produce a maximum margin solution, remarkablygtihiconvergence
to one of two stable limit cycles. We extend this example torthem case in Section 5, where
AdaBoost produces at leagh— 1)! stable limit cycles, each corresponding to a maximum margin
solution. We will also extend this example in Section 6 to include manifolds of cycles

Consider the input matrix

-1 1 1
M = 1 -1 1
1 1 -1

corresponding to the case where each classifier misclassifies one etrdireng examples. We

could add columns to include the negated version of each weak clasaifiétpe columns would

never be chosen by AdaBoost, so they have been removed for simplibigywvalue of the margin

for the best combined classifier defined Myis 1/3. How will AdaBoost achieve this result? We
will proceed step by step.

Assume we are in the optimal case, whgre argma>§(dtTM )j- Consider the dynamical system
on the simplexAs; defined by our iterated map in Section 3. In the triangular region with vertices
(0,0,1),(3,1.1),(0,1,0), j; will be 1 for Step 1 of the iterated map. That is, within this region,
01 < dkoandd; 1 < d 3, soj; will be 1. Similarly, we have regions fgf = 2 andj; = 3 (see Figure
3(a)).

AdaBoost was designed to set the edge of the previous weak classffiat &ach iteration, that
is, d¢r1 will always satisfy(dtTHM )j. = 0. To see this using the iterated map,

(dt+1) = z d“l—Ht_ z dtl 1-r,

{i:Mij =1} {i:Mij =
L1 1 1+rt 1 1-rn 1
+1+|’t 7l—rt N 2 1+r1¢ 2 1-—r¢ N

1)
This implies that after the first iteration, tligs are restricted to

{d:[(d"M)1=0]Jl(d"M)2 = 0] Jl(d"M)s = 0]}

Thus, it is sufficient for our dynamical system to be analyzed on thesaafgetriangle with vertices
(0,3,2), (3.0,2), (3.3,0) (see Figure 3(b)). That is, within one iteration, the 2-dimensional map
on the simplex\3 reduces to a 1-dimensional map on the edges of the triangle.

Consider the possibility of periodic cycles for thgs. If there are periodic cycles of lengih
then the following condition must hold fa*°,...,d7°in the cycle: For each either

e d°=0,0r
o Mia(1+Mir’9) =1,

wherer®® = (d¥°™M);,. (As usual d¥®" := (d?¥%)T, superscripf denotes transpose.) The state-
ment above follows directly from the reduced map iteratetimes. In fact, the first condition
diY°=0impliesdY°=0forallt € {1,..., T}. We call the second condition tlogcle condition
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Figure 3: (a) Regions af;-space where classifiejs= 1, 2,3 will respectively be selected for Step
1 of the iterated map of Figure 2. Sindgs = 1—d> — 0 1, this projection onto the
first two coordinatesk 1 andd > completely characterizes the map. (b) Regardless of
the initial positiond;, the weight vectors at all subsequent iteratidps..,d;, ., will be
restricted to lie on the edges of the inner triangle which is labelled. (c1) Withériter:
ation, the triangular region wheije= 1 maps to the lindd : (d"M); = 0}. The arrows
indicate where various points in the shaded region will map at the followingitara
The other two regions have analogous dynamics as shown in (c2) anddr3here are
six total subregions of the inner triangle (two for each of the three edgash subregion
is mapped to the interior of another subregion as indicated by the arrowodedinates
for the two 3-cycles. The approximate positiaj¥’, d5’°, anddg’® for one of the 3-cycles
are denoted by a small ‘0’, the positions for the other cycle are denotadimall ‘x'.
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7\
0.5/ u/ 0
o/
0.4¢
o
0.2 / >)
\\
0.2 03 d 04 05

t,1

Figure 4: 50 iterations of AdaBoost showing convergencd;isfto a cycle. Small rings indicate
earlier iterations of AdaBoost, while larger rings indicate later iterationsreléie many
concentric rings at positiord;”, d3’¢, anddg’".

Consider the possibility of a periodic cycle of length 3, cycling through eeeak classifier
once. For now, assumig =1, j,» = 2, j3 = 3, but without loss of generality one can chogge=
1, j» =3, j3 = 2, which yields another cycle. Assurd@i'C > 0 for alli. From the cycle condition,

1 = (LT+Mijr?) (1 +Mij,rs9) (1+Mij,rg) fori=1,2, and3 i.e.,

1 = (1-r?)@+rd9@+rg9 fori=1, )
1 = (1+r7)A-r)%(1+r3") fori=2 3
1 (L4179 1+r79(1 -1 fori=3 (4)

From (2) and (3),

(1=rP)(@+r) = @+rP9(1-r7),
thusr’® = r5’°. Similarly, r5Y° = rg’ from (3) and (4), sa° = r;’° = rJ’". Using either (2), (3),
or (4) to soIve for :=r{’= rgyc ry’° (taking positive roots S|nce> 0) we find the value of the
edge for every iteration in the cycle to be equal to the golden ratio minus one, i.e

Vv6-1

r =
2

Now, let us solve for the weight vectors in the cyd’", d5’°, andd3’“. Att =2, the edge with
respect to classifier 1 is 0. Again, it is required that ed¢filies on the simplexs.

(d9"M); =0 and chyc—l that is,

—dY AP =0 and dYCH AP+ AL =1,
1
thus, df = >
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Sinced?)’ = 3, we haved?’y = 3 —d;%5. Att = 3, the edge with respect to classifier 2 is 0. From
the iterated map, we can wn@’C in terms ofd5*.

cyc 1 cyc cyc

3 2 £ 1+M.2r 1+r  1—r  1+4r’
CyC_L_\/gil cyc __ }_ cyc 37\/6
dy3 = 5= "2 and thus d;5 = > d; i

Now that we have found3’, we can recover the rest of the cycle:

W (3—\6 V-1 1>T
1 - 9 PPy 9

4
0 — (

(ﬁ—l 1 3—\B>T

N
N

3-5 \E—1>T

dcyc _ -
3 4 2 4

To check that this actually is a cycle, startlng fr@l‘ﬁ’ AdaBoost will choosg; = 1. Thenry =

(d¥TM); = f 1 Now, computmgﬁ for all i yieldsdy*“. In this way, AdaBoost will cycle
between weak classﬁleys_ 1,2,3,1,2, 3 etc.
The other 3-cycle can be determined similarly:

<3—\@ 1 \/§—1>T

dCyC’ -
1 4 2 4

T
dcyd o 1 \/5—1 3—\/5
2 - 27 4 9 4 9

cyd
d3

<\/§—1 3-5 1>T

4 7 4 2

Since we always start from the initial conditida = (3, 1, %)T the initial choice ofj; is arbitrary;
all three weak classifiers are within the argmax set in Step 1 of the iteratedTimiggarbitrary step,
along with another arbitrary choice at the second iteration, determines whibh two cycles the
algorithm will choose; as we will see, the algorithm must converge to oneeséttwo cycles.

To show that these cycles are globally stable, we will show that the map istieaction from
each subregion of the inner triangle into another subregion. We only toeeghsider the one-
dimensional map defined on the edges of the inner triangle, since within catioiteevery trajec-
tory starting within the simples lands somewhere on the edges of the inner triangle. The edges of

the inner triangle consist of 6 subregions, as shown in Figure 3(d). Weonsider one subregion,

the segment fronf0, 2, 1) " to (1,3,1)", or simply (x, 1,1 — x)" wherex e (0,1). (We choose not

to deal with the endpoints since we will show they are unstable; thus the dysnam:er reach or
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converge to these points. For the first endpoint the map is not defingdpathe second, the map
is ambiguous; not well-defined.) For this subregjoge- 1, and the next iterate is

X 1 I x /111 1\’
1-(1-2x) "1+ (1—-2x) 14+ (1-2x) _<§’4(1—x)’§_4(1—x)>'

To compare the length of the new interval with the length of the previous int@reaise the fact that
there is only one degree of freedom. A position on the previous intermddeaniquely determined
by its first component € (0, %). A position on the new interval can be uniquely determined by its
second component taking valu%l_—x), where we still have € (0,}). The map

1

XHm

is a contraction. To see this, the slope of the m 1592 taking values within the interval}l, g).
Thus the map is continuous and monotonic, with absolute slope strictly less thEmeInext it-
erate will appear within the intervg$, 7, %)T to (3.3, %)T which is strictly contained within the
subregion connectinf, 1, %)T with (3, %,O)T. Thus, we have a contraction. A similar calculation
can be performed for each of the subregions, showing that eacegsoibmmaps monotonically to
an area strictly within another subregion by a contraction map. Figure 3(dirdtes the various
mappings between subregions. After three iterations, each subregiebyapmonotonic con-
traction to a strict subset of itself. Thus, any fixed point of the threetiteraycle must be the
unique attracting fixed point for that subregion, and the domain of attrafdichis point must be
the whole subregion. In fact, there are six such fixed points, one &br ®#bregion, three for each
of the two cycles. The union of the domains of attraction for these fixed psitite whole triangle;
every positiond within the simplexA; is within the domain of attraction of one of these 3-cycles.
Thus, these two cycles are globally stable.

Since the contraction is so strong at every iteration (as shown abovehsbki slope of the
map is much less than 1), the convergence to one of these two 3-cyclegfissteFigure 5(a) shows
where each subregion of the “unfolded triangle” will map after the firsaiien. The “unfolded
triangle” is the interval obtained by traversing the triangle clockwise, staatidgending a(O, %, %)
Figure 5(b) illustrates that the absolute slope of the second iteration of thiantiag fixed points
is much less than 1; the cycles are strongly attracting.

The combined classifier that AdaBoost will output is

-
T (22 Ly (B0 1y (s

Acornp _(z'”(ﬁ? 2IN=e) =) 111y
combined= normalization constant B 7

3’3’3

and since mir{M Acombinedi = % we see that AdaBoost always produces a maximum margin solu-
tion for this input matrix.

Thus, we have derived our first convergence proof for AdaBooa specific separable case.
We have shown that at least in some cases, AdaBoost is in fact a margimiziag algorithm. We
summarize this first main result.

Theorem 1 For the3 x 3 matrix M:
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a) ©s559 b) (s
q) . e 2 ........................
° =
g ks
'§5.0,5) 5(5,0,.5)
o (o))
c c
S S
< <
5(.5,.5,0) .5(.5,.5,0)
3 g
o ) o
©-3¢%.5) (5,5.0) (5,0.5) (0.5,5) 058 5.5 (5.5.0) (5.0.5) (0.5.5)
position along triangle position along triangle

Figure 5: (a) The iterated map on the unfolded triangle. Both axes givdicates on the edges of
the inner triangle in Figure 3(b). The plot shows whdye; will be, givend;. (b) The
map from (a) iterated twice, showing whetg 3 will be, givend;. For this “triple map”,
there are 6 stable fixed points, 3 for each cycle.

e The weight vectord; converge to one of two possible stable cycles. The coordinates of the

cycles are:

T

g _ (3-v5 Vv6-11
1 - 4 Y 4 72 9
T

dcyc _ } 3_\/5 5_1
2 - 27 4 b 4 bl
-

g — (VB-113-V5
3 - 4 a27 4 )

and

T

q@¢ _ [(3-Vv51V5-1
1 - 4 >27 4 9
T

dcyd o } \/5*1 3*\/6
2 - 27 4 ) 4 9
-

dcyd . 5-1 3—\/5 }
s 4 ° 4 2] "

e AdaBoost produces a maximum margin solution for this madrix

5. Generalization to m Classifiers, Each with One MisclassifieExample

This simple 3 classifier case can be generalizedhtoassifiers, each having one misclassified
training example; we will find solutions of a similar nature to the ones we founth&3x 3 case,
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where there is a rotation of the coordinates at every iteration and a cionradere,

1 1 1 ... 1
1 -1 1 ... 1
M = 1 1 -1
: w1
1 . ... 1 -1

Theorem 2 For the mx m matrix above:

e The dynamical system for AdaBoost’s weight vectors contains at{least)! stable periodic
cycles of length m.

e AdaBoost converges to a maximum margin solution when the weight ¥ectorerge to one
of these cycles.

The proof of Theorem 2 can be found in Appendix A.

6. ldentically Classified Examples and Manifolds of Cycles

In this section, we show how manifolds of cycles appear automatically fraticajynamics when
there are sets of identically classified training examples. We show that theotdarof cycles that
arise from a variation of the 8 3 case are stable. One should think of a “manifold of cycles” as a
continuum of cycles; starting from a position on any cycle, if we move aloeglitections defined

by the manifold, we will find starting positions for infinitely many other cyclese3émanifolds
are interesting from a theoretical viewpoint. In addition, their existencestatallity will be an
essential part of the proof of Theorem 7.

A set of training exampleg is identically classifiedf each pair of training exampldésandi’
contained inI satisfyy;h;(xi) = yrhj(xi/) Vj. That is, the rows andi’ of matrix M are identical;
training examples andi’ are misclassified by the same set of weak classifiers. When AdaBoost
cycles, it treats each set of identically classified training examples as ongraxample, in a
specific sense we will soon describe.

For convenience of notation, we will remove tlog¢ notation so thatl; is a position within the
cycle (or equivalently, we could make the assumption that AdaBoost stadascgcle). Say there
exists a cycle such thdi; > 0Vi € 1, whered; is a position within the cycle anld possesses some
identically classified examplek (I is not required to include all examples identically classified
with i € I.) We know that for each pair of identically classified examplasdi’ in I, we have
Mij, = My, Vt =1,...,T. Let perturbatiora € R™ obey

> =0, and als@; = 0 fori ¢ 1.
iel

Now, letdf :=d1 +a. We accept only perturbatiorssso that the perturbation does not affect the
value of anyj; in the cycle. That is, we assume each componemt isfsufficiently small; since
the dynamical system defined by AdaBoost is piecewise continuous, is$i@to choosa small
enough so the perturbed trajectory is still close to the original trajectonyBiterations. Alsod}
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must still be a valid distribution, so it must obey the constrdihe An, i.e.,3;a = 0 as we have
specified. Choose any elementndi’ € 1. Now,

I’? = (d?TM)jl = (leM)h + (aTM)jl = r1+Zai—Mﬁ1 = rl+Mi’leai_: r

el iel
o2, o2, o 1
dad. = Li _ Li _ 1 + =i+ _
2 1+Mij1r? 1+Mijlr1 1—|—|V|ijll’1 .'].—|—|\/|i/jll’1ai 2 _'l_—|—Mi/j1I’1ai
1
B = (™M), =(d"M),+————(@M)j,=rp+-——— 5 aMj
2 (3" M)j, = (d2' M)}, + 1+Mi’j1r1( )iz =T2+ 1+Mi,j1r1iezja| ij2
— r2+L a1.—: ro
1+Mi/jlrli€7
21 T4+ Mij,rd  14+Mi,rz 1+Mij,ra  (1+Myj,r2) (14 Myj,r1)
1
= d3i+ a

(14 Mirj,r2) (14 My ra)

0. = dri+ a =dyj+a =df;.

I_ItT:1(1+ Mi’jtrt)
The cycle condition was used in the last line. This calculation shows that iferterp any cycle
in the directions defined by, we will find another cycle. An entire manifold of cycles then exists,
corresponding to the possible nonzero acceptable perturbati&ffectively, the perturbation shifts
the distribution among examples i with the total weight remaining the same. For example, if
a cycle exists containing vectdq with di 1 = .20,d; > = .10, andd; 3 = .30, where{1,2,3} C 1,
then a cycle wittd; = .22,d; 2 = .09, anddy 3 = .29 also exists, assuming none of fiis change;
in this way, groups of identically distributed examples may be treated as onmgkxdecause they
must share a single total weight (again, only within the region where noiine ¢fs change).

We will now consider a simple case where manifolds of cycles exist, and wshuill that these

manifolds are stable in the proof of Theorem 3.
The form of the matriXv is

-1 1 1
-1 1 1
1 -1 1
1 -1 1
1 1 -1
1 1 -1
1 1 1
1 1 1

To be more specific, the firgj training examples are misclassified onlytgy the nexig, examples
are misclassified only bi,, the nextqs examples are misclassified only by, and the lasty
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examples are always correctly classified (their weights converge to. z€hjs we consider the
components ofl as belonging to one of four pieces; as long as

i i drderds ! cyc 4cyc qcyc qcycd cyd cyd
Zdi, >od, > d) = d7’% d3’%, d3’%, a7, d5°, ordZ’“from Section 4,
i= i=g1+1 i=q1+02+1

thend lies on a 3-cycle as we have just shown.

Theorem 3 For the matrixM defined above, manifolds of cycles exist (there is a continuum of
cycles). These manifolds are stable.

The proof of Theorem 3 can be found in Appendix B.

7. Cycles and Support Vectors

Our goal is to understand general properties of AdaBoost in casa®wiicling occurs, to broaden
our understanding of the phenomenon we have observed in Sectionardy 6. Specifically, we
show that if cyclic dynamics occur, the training examples with the smallest mawgiha training
examples whose, ; values stay non-zero (the “support vectors”). In the process, rvede a
formula that allows us to directly calculate AdaBoost’s asymptotic margin fronedges at each
iteration of the cycle. Finally, we give sufficient conditions for AdaBadosproduce a maximum
margin solution when cycling occurs.

As demonstrated in Figure 6, there are many low-dimensional maivides which AdaBoost
empirically produces cyclic behavior. The matrices used to generate theeptgts in Figure 6 are
contained in Figure 7. These matrices were generated randomly aneéde@tows and columns
that did not seem to play a role in the asymptotic behavior were eliminated). ¥évabcyclic
behavior in many more cases than are shown in the figure; almost evedittensional random
matrix that we tried (and even some larger matrices) seems to yield cyclic belauioempirical
observations of cyclic behavior in many cases leads us to build an unlirgeof AdaBoost’s
general asymptotic behavior in cases where cycles exist, though thetesoessarily a contraction
at each iteration so the dynamics may be harder to analyze. (We at laaseabg cycles AdaBoost
produces are stable, since it is not likely we would observe them otheywisese cyclic dynamics
may not persist in very large experimental cases, but from our empengdnce, it seems plausible
(even likely) that cyclic behavior might persist in cases in which there emgfew support vectors.

When AdaBoost converges to a cycle, it “chooses” a set of rowsaad of columns, that is:

e The ji’s cycle amongst some of the columnshdf but not necessarily all of the columns. In
order for AdaBoost to produce a maximum margin solution, it must choosed solumns
such that the maximum margin fbt can be attained using only those columns.

e The values ot} ; (for a fixed value of) are either always 0 or always strictly positive through-
out the cycle. Asupport vectolis a training example such that thed ;’s in the cycle are
strictly positive. These support vectors are similar to the support veat@support vector
machine in that they all attain the minimum margin over training examples (as we wil) sho
These are training examples that AdaBoost concentrates the hard&$teoremaining train-
ing examples have zero weight throughout the cycle; these are the esaimpi@re easier
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Figure 6: Examples of cycles from randomly generated mathte#én image ofM for each plot
appears in Figure 7. These plots show a projection onto the first two canfzoof Ada-
Boost’s weight vector, e.g., the axes mightdpe vs. di ». Smaller circles indicate earlier
iterations, and larger circles indicate later iterations. For (a), (d) andf) iterations
were plotted, and for (b) and (e), 300 iterations were plotted. Plot @ys/®500 itera-
tions, but only every 20th iteration was plotted. This case took longer toecgayvand
converged to a simple 3-cycle.
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b)
[ ]
-
-
d)
i -
) 2-4 6 8
f)

l ] 0

Figure 7: The matrice®! used to generate the plots in Figure 6. White indicates a value of 1, and
black indicates a value of -1. The sizeMfdoes not seem to have a direct correlation on
either the number of iterations per cycle, or the speed of convergenayttea
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for the algorithm to classify, since they have margin larger than the supgctdrs. For sup-
port vectors, the cycle condition holdg,_ (1 + M;j,re*°) = 1. (This holds by Step 3 of the
iterated map.) For non-support vectgrg, 4 (1+ Mij, re”°) > 1 so thed j's converge to O (the

cycle must be stable).

Theorem 4 AdaBoost produces the same margin for each support vector anerlargrgins for

other training examples. This margin can be expressed in terms of treepgrameters P, ..., r7*.

Proof Assume AdaBoost is cycling. Assurde is within the cycle for ease of notation. The cycle
produces a normalized outpA®©:=lim;_. At /|| At||1 for AdaBoost. (This limit always converges
when AdaBoost converges to a cycle.) Denote

= T O = S 1In 14n
chC._t; t_t;Z 1-r)

Leti be a support vector. Then,

1t 1t 1, /(141
MAYS), = — § Mjor=— S Mij,=In
M = o33 g (1)
_ 1 Tln<1+Mmrt>_ 1| LM
ZZCth: 1—Mjjre 27cyc =1 1= Mijre
i 2
A M [ 1
2Zcyc =1 L= Mij;rt tl:!(l+Mijtrt)
1, [x 1

= In
2Zcyc tl:l (1— Mjj,re) (14 Mij, 1)

_ o] el
27cyc _tul—rt2 22{11%'”(%)
_ Il a-rP) (5)
I T l‘H’f ’
ey (T7

The first line uses the definition of; from the AdaBoost algorithm, the second line uses the fact
thatM is binary, the third line uses the fact thais a support vector, i.e[j]{_;(1+ Mijr) = 1.
Since the value in (5) is independentipthis is the value of the margin that AdaBoost assigns to
every support vectar. We denote the value in (5) @gycle, Which is only a function of the cycle
parameters, i.e., the edge values.

Now we show that every non-support vector achieves a larger mam@igie For a non-

2
support vector, we have[]_; (1+Mij,r;) > 1, thatis, the cycle is stable. Thus>0n [m} .
t=1 1t
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Now,

1 J 1 1+ M;;
(MAY9); = —— Y Mjj0p = In{nt( + '“rt)]
Zoye & 22cyc nf(l_ Mijfrf)

2Zcyc [ Me(X—Mijsre) | 2Zeye | [Te(14 Mijere)
—InAta(d-rf) _ Hoyole
1-+ry
Innzy (35

Thus, non-support vectors achieve larger margins than suppdorsec |

The previous theorem shows that the asymptotic margin of the supportvectioe same as the
asymptotic margin produced by AdaBoost; this asymptotic margin can be direatiputed using
(5). AdaBoost may not always produce a maximum margin solution, as weeslin Sections 8
and 9; however, there are sufficient conditions such that AdaBoitlshwtomatically produce a
maximum margin solution when cycling occurs. Before we state these congmiendefine the
matrix Mcyc € {—1,1}Me*"eve which contains certain rows and columnshdf To constructM ¢yc
from M, we choose only the rows & that correspond to support vectors (eliminating the others,
whose weights vanish anyway), and choose only the columiisarfrresponding to weak classifiers
that are chosen in the cycle (eliminating the others, which are never chfiseryaling begins
anyway). Heremyc is the number of support vectors chosen by AdaBoostgpds the number
of weak classifiers in the cycle.

Theorem 5 Suppose AdaBoost is cycling, and that the following are true:

1.
“max min(Mcyo\)i = maxmin(MA); = p
A€lngy ! Aeh, |
(AdaBoost cycles among columndwthat can be used to produce a maximum margin solu-
tion.)

2. There exist\, € An, . such thatMcycAp)i = p fori =1,...,meyc. (AdaBoost chooses support
vectors corresponding to a maximum margin solutionNiyc.)

3. The matrixM¢yc is invertible.

Then AdaBoost produces a maximum margin solution.

The first two conditions specify that AdaBoost cycles among columihg tifat can be used to
produce a maximum margin solution, and chooses support vectorspmmoisg to this solution.
The first condition specifies that the maximum margin(corresponding to the matriM) must be
the same as the maximum margin correspondirlg ¢g. Since the cycle is stable, all other training
examples achieve larger margins; hepads the best possible margMcc can achieve. The second
condition specifies that there is at least one analytical solWjosuch that all training examples of
Myc achieve a margin of exacty.
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Proof By Theorem 4, AdaBoost will produce the same margin for all of the rofwd g, since
they are all support vectors. We denote the value of this margjgJaj.

Let xm,. = (1,1,1,..., 1)7, with Meyc COMponents. From 2, we are guaranteed the existence of
Ap such that

M cyc)\p = PXmeyc-
We already know
M cyc)\CyC = HeycleXmeyc

since all rows are support vectors for our cycle. SiNtg. is invertible,

A= HcycleM (?y](-IXn'byc and ’\P = pM (?y]&chyc?

so we have\?° = constant\,. SinceA”°andX, must both be normalized, the constant must be

Itis possible for the conditions of Theorem 5 not to hold, for exampleglitiom 1 does not hold
in the examples of Sections 8 and 9; in these cases, a maximum margin solutitrachieved.
It can be shown that the first two conditions are necessary but the thérdsanot. It is not hard
to understand the necessity of the first two conditions; if it is not possibleouge a maximum
margin solution using the weak classifiers and support vectors AdaBassthosen, then it is not
possible for AdaBoost to produce a maximum margin solution. The third condgithus quite
important, since it allows us to uniquely identiRf¥“. Condition 3 does hold for the cases studied
in Sections 4 and 5.

8. Non-Optimal AdaBoost Does Not Necessarily Converge to a Mamum Margin
Solution, Even if Optimal AdaBoost Does

Based on large scale experiments and a gap in theoretical bouattshRand Warmuth (2002)
conjectured that AdaBoost does not necessarily converge to a maximegmmbassifier in the
non-optimal case, i.e., that AdaBoost is not robust in this sense. Itigaaihe weak classifiers are
generated by CART or another weak learning algorithm, implying that the emgied not always
be optimal.

We will consider a 4 5 matrixM for which AdaBoost fails to converge to a maximum margin
solution if the edge at each iteration is required only to exqeétie non-optimal case). That is,
we show that “non-optimal AdaBoost” (AdaBoost in the non-optimal cassy not converge to a
maximum margin solution, even in cases where “optimal AdaBoost” does.

Theorem 6 AdaBoost in the non-optimal case may fail to converge to a maximum reaigition,
even if optimal AdaBoost does. An example illustrating this is

-1 1 1 1 -1
1 -1 1 1 -1
1 1 -1 1 1
1 1 1 -1 1

M =
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Proof For this matrix, the maximum margmis 1/2. Actually, in the optimal case, AdaBoost will
produce this value by cycling among the first four column$/of Recall that in the non-optimal
case:

jre{i:(diM)j=>p}.

Consider the following initial condition for the dynamics:

.
g (3-v53-v61 61
Y8 s 2 4 '
Since(d]M)s = (vV5—1)/2> 1/2 = p, we are justified in choosing = 5, although here it is not
the optimal choice. Another iteration yields

o

satisfying(d] M )4 > p for which we choosd, = 4. At the following iteration, we choosg = 3,
and at the fourth iteration we firth = d;. This cycle is the same as one of the cycles considered in
Section 4 (although there is one extra dimension). There is actually a wholéotdari 3-cycles,
sinced]T = (g, %5 —€, %, @) lies on a (non-optimal) cycle for arg 0 < € < %ﬁ. In any
case, the value of the margin produced by this cycle is 1/3, not 1/2. |

)

T
v5-1 3-V5
’ 4 ’ 4 ’

N
Al

We have thus established that AdaBoost is not robust in the sense arébdds if the weak
learning algorithm is not required to choose the optimal weak classifiercht igsxration, but is
required only to choose a sufficiently good weak classifiet {]j : (dtTM)j > p}, @ maximum
margin solution will not necessarily be attained, even if optimal AdaBoosidvoave produced
a maximum margin solution. We are not saying that the only way for AdaBoagireerge to a
non-maximum margin solution is to fall into the wrong cycle; it is conceivable tthexte may be
many other, non-cyclic, ways for the algorithm to fail to converge to a maximnamgin solution.

Note that for some matricdd, the maximum value of the margin may still be attained in the
non-optimal case; an example is the3matrix we analyzed in Section 4. If one considers th&@3
matrix in the non-optimal case, the usual 3-cycle may not persist. Oddlygyald-may emerge
instead. If AdaBoost converges to this 4-cycle, it will still converge tostime (maximum) margin
of 1/3. See Appendix C for the coordinates of such a 4-cycle. Thuss theno guarantee as to
whether the non-optimal case will produce the same asymptotic margin as thelaatima

In Figure 8, we illustrate the evolution of margins in the optimal and non-optinsdscéor
matrix M of Theorem 6. Here, optimal AdaBoost converges to a margiry®fvia convergence to
a 4-cycle, and non-optimal AdaBoost converges to a margin of 1/3 vizeogence to a 3-cycle.

9. Optimal AdaBoost Does Not Necessarily Converge to a Maximuidargin Solution

In this section, we produce a low-dimensional example that answers tkgajuef whether Ada-
Boost always converges to a maximum margin in the optimal case.
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0.5
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Optimal AdaBoost
:0 [ Non-Optimal AdaBoost
=
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=
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0 50  terations 150 200

Figure 8: AdaBoost in the optimal case (higher curve) and in the non-dptesa (lower curve).
Optimal AdaBoost converges to a margin gRlvia convergence to a 4-cycle, and non-
optimal AdaBoost converges to a margin of 1/3 via convergence to al8-cyt both
cases we start with, = 0.

Theorem 7 Consider the following matrix whose image appears in Figure 9 (one cathsesat-
ural symmetry more easily in the imaged version):

-1 1 1 1 1 -1 -1 11
1 1 1 -1 -1 1 1 1
1 -1 1 1 1 -1 1 1
17 -1 1 1 -1 1 1 1
M=1131 11 11 1 1 -1 6)
17 1 -1 1 1 1 1 -1
1 1 -1 1 1 1 -1 1
1 1 1 1 -1 -1 1 -1 |

For this matrix, it is possible for AdaBoost to fail to converge to a maximungimaolution.

Proof The dynamical system corresponding to this matrix contains a manifold ofybjratiracting
3-cycles. The cycles we will analyze alternate between weak classifigrad 1. If we consider
only weak classifiers 1, 2, and 3, we find that training examiple$ and 2 are identically classified,
i.e., rows 1 and 2 of matriM are the same (only considering columns 1, 2, and 3). Similarly,
examples 3, 4 and 5 are identically classified, and additionally, examples® anaining example
8 is correctly classified by each of these weak classifiers. Becausaweechnstructet to have
such a strong attraction to a 3-cycle, there are many initial conditions (initisésy@f\) for which
AdaBoost will converge to one of these cycles, including the vexter0. For the first iteration,
we chosej; = 1 to achieve the cycle we will analyze below; there are a few differentebldor j;
within the first few iterations, since the argmax set sometimes contains more thateoment. The
dynamics may converge to a different 3-cycle, depending on which valug are chosen within
the first few iterations. (Oddly enough, there are initial valued efhere AdaBoost converges to
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Figure 9: The image of the matrM in (6). White indicates +1, black indicates -1. This matrix has

natural symmetry.

a cycle in which a maximum margin solution is produced, although finding sugble equires

some work.)
To show that a manifold of 3-cycles exists, we present a velitsuch thatd, = d;, namely:
T
do— 3-v63-v5111+56-1 \/5—10 @)
1= 8 ) ) '6°6’ 6 ) ) ) ) .

To see this, we iterate the iterated map 4 times.

M — \/5—103—\/3 3v5-13/56-13/56-1111-3V5
e 2 72 712 12 0 12 20 12 )
and hergj; = 1,
.
4 — (11V5-1V5-15-13-V53-V5
2 - \2a 12 012 0 12 ' 8 ' 8
aM - (03-V5 v5-14-V54-V54-5 V/5-15+5
2 - ) 2 ) 2 ) 6 ) 6 ) 6 ) 4 ) 12 )
and herej, = 3,
.
de — v6—-1 v/5-1 3—-+/5 3-/5 3—\/5130
3 = 8 ' 8 ' 12 ' 12 ' 12 4’4
dv _ (35 VE-1,3 V63 VB3 V53-V5 6
s T 2 ' 2 T4 12°4 12’4 12° 4 6 )’

and herejz = 2, and therds = d;.
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ANNNAN ANAAANANAANANANANANANNANANNN

0 lterations 20 100

Figure 10: AdaBoost (lower curve) and Approximate Coordinate AsBensting (higher curve),
using the 8< 8 matrix M given in Section 9 and initial conditioA = 0. AdaBoost
converges to a margin of 1/3, yet the valugd 3/8. Thus, AdaBoost does not converge
to a maximum margin solution for this matiA.

Hence the 3-cycle exists, and since there are identically classified exampiesifold of cy-
cles exists; it is automatically stable due to the calculation in the proof of The®rd&he margin
produced by one of these 3-cycles is always 1/3, yet the maximum marghiganatrix is 3/8. To
see that a margin of 3/8 can be obtained, notehhat[2,3,4,1,2,2,1, 1]T x1/16=3/8 for all il

In Figure 10, we have plotted the evolution of the margin over timéfofor both AdaBoost
and Approximate Coordinate Ascent Boosting. Approximate CoordinaterAd®oosting (Rudin
et al., 2004c,b,a; Rudin, 2004) is an algorithm similar to AdaBoost that cgesg¢o a maximum
margin solution, and runs in polynomial time. AdaBoost rapidly convergeset@yhle analyzed
above and does not produce a maximum margin solution.

Again, we are not saying that the only way for AdaBoost to convergentmamaximum margin
solution is to fall into the wrong cycle since there may be many other non-cyaisvor the
algorithm to fail to converge to a maximum margin solution. However, many highrdiroeal
cases can be reduced to low dimensional cases simply by restricting otioattersupport vectors

and weak classifiers that are actually chosen by the algorithm. Thusdacypele may not be as
uncommon as one would expect, even in a realistic setting.

10. Indications of Chaos

Although we do observe cyclic behavior for many random low-dimensioadlices, we have found
an example for which AdaBoost exhibits behavior resembling that of atichdynamical system.
In particular, this case exhibits:

e Sensitivity to initial conditions.
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e Movement into and out of cyclic behavior.

The matrixM we consider for this section is given in Figure 7(a).

Figure 11 shows AdaBoost’s edgdort ranging from 0 to 10,000; a number of different initial
conditions were considered, which are of the faiqgn= afor all i, fora=0,0.01,0.02,0.03,0.05,0.06,0.07,0.08,0.09
and 01, (a-j) respectively. In many of these cases, cyclic behavior oaftessome time. In fact,
for a= 0.08, AdaBoost converges to a 3-cycle. Sometimes, AdaBoost seems taemigamd out
of cyclic behavior, and its behavior is not at all clear. Thus, this examplgests sensitivity to
initial conditions. This sensitivity makes sense, since the iterated map is nowauns, it is only
piecewisecontinuous. That is, if the argmax set contains two different elementg; smd j», the
arbitrary choice between them may cause the dynamics to change spebtalfula are near such
a boundary of g; region, a small perturbation may change the choicg chosen and the trajec-
tory may change dramatically. (Note that the Li and Yorke “Period-3-Imyiliraos” result does
not apply to the dynamical system defined by AdaBoost since the iteratets majcontinuous, as
illustrated in Figure 5 for the 83 case.)

Within Figure 11, we can see AdaBoost moving into and out of cyclic beha@oexample,
in Figure 11(j). In order to closely examine the switch between the largerregioycling within
approximately iterations 8500-9381 and the following chaotic region, wesfaur attention on
the iterations just before the switch into chaotic behavior. This switch d@es 8& occur due to
a change in region. In other words, as AdaBoost cycles for many itesafin a cycle of length
14), the weight vectors (viewed every 14th iteration, as in Figure 12) teigosvards the edge of
a region and eventually cross over this edge. Where previously, gt #¢8 iteration AdaBoost
would choosg; = 19, itinstead choosgg= 3. Figure 12 shows the values(@f’ M)z and(d{ M) 19
at every 14 iterate preceding the switch into chaotic behavior at iteration 9381. FigyneHich
shows the evolution of two components of the weight vector, also illustratesatitehes into and
out of chaotic behavior.

Eventually, the dynamics drift back towards the same cycle and actually teeeomverge to
it, as shown in Figure 14(a). Here, the weight vectors do not crogsnggsince the values of the
largest two components ¢6" M) do not cross, as shown in Figure 14(b).

Thus, there are many open questions regarding AdaBoost’s dynanmicethea help us under-
stand its asymptotic behavior; for example, is AdaBoost chaotic in some cadesgs it perhaps
always produce cyclic behavior asymptotically?

11. Conclusions

We have used the nonlinear iterated map defined by AdaBoost to undkitstarpdate rule in
low-dimensional cases and uncover remarkable cyclic dynamics. Weilteescany aspects of
AdaBoost’'s dynamical traits including the fact that AdaBoost does notssarily converge to a
maximum margin solution. We have also proved the conjecture that AdaBoost imbust to
the choice of weak classifier. The key to answering these questionsurvamnalysis of cases in
which AdaBoost's asymptotic behavior could be completely determined. Thusderstanding of
simple cases has yielded answers to important open questions conceda#B@dst’s large-scale
asymptotic behavior.

We leave open many interesting questions. To what extent is AdaBoadtach&or what cases
does AdaBoost produce maximum margin solutions? Does AdaBoostséwhibit cyclic behavior
in the limit? If AdaBoost can behave chaotically without converging to a cyde, large does the
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a) 0.9
0.7
0.6f
0 lterations 5000 10000 "0 jterations 5000 10000
c)

0.6f+

5000 10000 Y 5000 10000

f) 0.9

Iterations

Iterations

0.6}

0.

5
0 5000 10000 0

h) oo

Iterations Iterations 5000 10000

9)

5000 10000 0 5000 10000

)

o
]

Iterations Iterations

0.

5
5000 10000 0 5000 10000

Iterations Iterations

Figure 11: AdaBoost is sensitive to initial conditions. Value of the edge each iteration, for
many different runs of AdaBoost. For all plots we used the maitishown in Fig-
ure 7(a), but with slightly different initial conditions. Some of these plots Isoke-
what chaotic except for a few regions where AdaBoost seems to bergpmg to a cycle
before becoming chaotic again. In (h), AdaBoost converges to a simpfel& after a
significant number of iterations.
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0.7535

0.753r

0.7525¢

0.752

0.7515¢

9283 9339 9381
Every 14th Iteration

Figure 12: The values ofd{ M)z and (d] M )19 at every 14" iterate preceding the switch into
chaotic behavior of Figure 11(j) wheee= 0.1. AdaBoost switches from a 14-cycle into
chaotic behavior after iteration 9381 when it switches regions, from tienmevhere
jt = 19 into the region wher@ = 3.

0.47
0.357
0.3f

dt.2

0.15} X§
0.1} Xea

0.05¢

Figure 13: Scatter plot odk ; vs. d > for the iterations surrounding the slow convergence to the
cycle in Figure 11(j), where the initial condition Ag j = 0.1 for all j. By examining
the circles (especially the smallest and largest ones) one can see the istattine
cyclic behavior, the slow migration towards a cycle, and the fast switchibhtzkhaotic
behavior. Again, smaller circles indicate earlier iterations and larger circlezate later
iterations.
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Figure 14: (a) Thisisthe same plot as in Figure 11(j), extended to 30,080dtes. After more than
13,000 iterations, AdaBoost finally seems to settle on the 14-cycle. (b)arhe glot as
in Figure 12, but for a different set of iterations. In Figure 12 the sdgeresponding
to j = 19 andj = 3 cross, whereas here, the edges are well separated. Thus, #siaBo
is able to maintain the cycle.
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matrix M need to be in order to produce such behavior? And finally, how doeBdaid achieve
its strong generalization performance if it does not simply maximize the margin‘hoje the

analytical tools provided in this work, namely the reduction of AdaBoost ynawhical system and
the analysis of its asymptotic behavior in special cases, will help yield angoréinese interesting
guestions.
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Appendix A. Proof of Theorem 2

Let us first assume a cycle with rotating coordinates exists for this cagé¢han we will prove its
existence and stability. Denote the first position in our cycle as follows (me e (cyc) notation
here):
dl — (Bl?"' 7Bi7'” 7Bm717Bm)T7
where 0< B1 < B2 < -+ < Bm. Note thaf3, = % again becaus@gM )1=0andy;d>; = 1. Now,
dIM = ((l_ 2I31>7 B (1_ ZBm_l),O)T,
s0j; =1 andr; = 1—2B;. Then, using the iterated map,
g — <g B2 B Bmi  Bm )T
2°2(1-B1)" '2(1-B1) T2(1-B1)’21-B1)/)

Assuming that the coordinates cycle,

Bi

Biii= m for i=2,....m (8)
in order for the current iterate to agree with the next iterate. This regursiation gives
B Bi
Pt = =gy ™
so that 5
R ©
and _
Bi=PBu[2(1—By)]t, fori=1,..m (10)
Thus, substituting (9) into (10), recalling tha = 1/2,
o Bm o avici L o iem
B = G pyprr 2Rl T = 520 Byl ™ ()
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It remains to show that there is a viable solutionfgto prove the existence of a cycle. (We require
a solution to obey; < 1/mso that it is possible fof;d;; = 1.) The conditiony;d;; = 1 can be
rewritten as

1- %i[zu— By ™

Substitutingg = 2(1— B1) and multiplying both sides by 1, we have a geometric series:

2cm71: il cifm+m71 _ - cifl _ 1-¢"
i; i; 1-¢

that is,
¢"-2¢™ty1=0. (12)
Substituting back fog,
2M(1—By)™(1-B1) -1 +1=0,
or more simply,
1-B:2"(1-B)™ *=0.

To show a solution exists fan > 4 (we have already handled the= 3 case), we will apply the
Intermediate Value Theorem to the function

¢(B_1, m):=1— B_12m(1— B_l)mfl'
We know¢ (0,m) = 1> 0. Consider

1 1 /9\™! 9\M1
Sm)=1-2"= () =1 (2) =
¢<10’m> 10<1o> <5> 9

Plugging inm = 4, we find thatp(1/10,4) = —104/625< 0. On the other hand, extending the
definition of ¢ to non-integer values af, we have

%(/iom _ 1 [.n (g)} <g>m<o forallm> 4.

Hence,$(1/10,m) < —104/625< 0O for allm> 4. By the Intermediate Value Theorem, there is a
root3; of ¢(-,m) for anym > 4 with 0< 31 <1/10. Since

O0BL™ _ g _ gym2(mp, - 1),

By

we haveg—g;([i,m) = 0 only whenp; = 1/m, and thatp(-,m) decreases for & B1 < 1/mand

increases fof; > 1/m (wheref; < 1). If m< 10, sinced(-,m) decreases for & B; < 1/m, the
Intermediate Value Theorem provides the unique roet @ < 1/10< 1/m. If m> 10, ¢(-,m)
decreases for € 31 < 1/mand increases to the valg¢1/10,m), which is negative. Thus, there is
a unique root & 1 < 1/m. Hence, the root exists and is unique fo> 4. Now we have shown
the existence and uniqueness of our cycle, namely the cycle starting from

di = (B1,281(1— B1),482(1— B1)%, .., 1/2) .
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Of course, this is not the only periodic orbit. Any permutation of the comptsrianl; will lie
on a periodic cycle. If (without loss of generality) we fix the first iteratibeach cycle to start with
the same first componedt; = 31, then the number of permutations of the other components (and
thus the number of periodic cycles we have defined by relabelling theicated) isilm— 1)!.

We now show that thesgn— 1)! cycles are stable. It is sufficient to show that just one cycle is
stable, since the others are obtained by simply relabelling the order of thdirtates (without loss
of generality sayj; =t fort =1,...,m). We add a perturbatioga to d;, small enough so that none
of the ji’s chosen within the cycle are affected. (Note that choosing such alpatiton is possible,
since the map is piecewise continuous, ad ... < By, without equality between th@’s. This
will ensure that nad; lies on the boundary of a region, so that the argr(rdﬁd\/l)j set contains
exactly one element.) Also, we requi¢"; a = 0 so the perturbed starting point still lies on the
simplexAm. Assumel|al|; is O(1), and thak is small. Our perturbed starting point is

f:=d;+ea
Now, sincer; = 1—2f3,
rd = (df'M)1=(di"M)1+€e@ M)y =1-2p;+€(@ M)z
Again we use the iterated map. Recall tBat= 3, andd3, = 3. For all otheri,

ga. _ Pitea Bi +ea
27142 T 2-2B+€(@M)y’

To see whether the perturbation has shrunk due to the dynamics, we coe@ipate — do. If
lal|1 < CJ|al|s whereC is a constant less than 1, the map is a contraction. Recall that

.
dr = (%731,"‘ 7Bm—1> -

851 = dg,l — d271 = 0,

Thus,

and for othel,
_ Bi +€a; g
2—2B1+¢€(@"M); -t

We are done with the= 1 term. For all other terms, we will do an approximation to first order in
€. Using a first order Taylor expansiqﬁrx ~ 1— X, we obtain

Séi = dg,l —d27i

M
1 1 _ 1 -5
1+r7 2-2B1+e@M)1 p1_p)) (1+ %) 2(1-B1)

Our expansion yields:

.
(Bi+ea) (1- 5552 .
— Pi-1-

5 a. o . ~
€§ = d27I daj 21— P
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Grouping terms in orders @f we can use (8) to show the first term vanishes, and we find:

~ ' i(a’™M
€8 =~ O+s<2(1il31) _E(ga_gl))12>+o(82)’ so that
& ~ a___ B@M) + O(e).

2(1-PB1) 4(1-P)?
We will show that the perturbation shrinks at every iteration. Saisesmall, we do not care about
the O(¢€) contribution toa. Recall thalzi Bi =1, so that:

Bl < gy Al 1 — Zﬁ“o
[(@™M)4]

= St g B 2+ O)
< 1 et jlalh+ O
— 2(1-By) 41— B)Z
3-2B
= a_ gyt o).

For the third line, we used the fact that the entried/ofire always within{—1,+1}. In order to

have 3.
- 1
4(1—By)? <t
we would need
3—2B1 < 4(1—B1)%>=4—8B1+4p2,
i.e.,
0<1—6B1+4p2,

or more simply,
B1< (3-V5)/4.
This condition does hold, since
0<PB1<1/10< (3—/5)/4.

Thus we have shown a contraction of the perturbation at the first iteratioidentical calculation
(one must simply reorder the components in the vectors) will yield a contreatievery iteration,
so our cycle is stable. We have thus proven the existence and stability-of)! cycles for the case
with mweak classifiers, each with 1 misclassified example.

Appendix B. Proof of Theorem 3

The existence of manifolds of cycles follows from the fact tialbas the same 3-cycles as the 3
case, except that the weight is distributed among identically classified exan{flecall that the
weights of the lastjy, examples vanish, since these examples are always correctly classified.) |
order to move along the manifold, just shift the weights among identically classi@mples; this
new weight vector will lie directly on another 3-cycle.

In order to show the manifold is stable, we will show that any vedfbthat lies sufficiently
near the manifold will be attracted towards it. More specifically, we will:
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e choose an arbitrary vectdf sufficiently close to the manifold of stable cycles.
e carefully choose a corresponding veatiaron the manifold.

e show there is a contraction, sending the succes§iwectors closer to thé; vectors at every
iteration. In this way, the path af’s will converge to the cycle obeyed by tdgs.

Consider an arbitrary vectalf, which we assume to be close enough to the manifold so that the
distance between vectdf and vectord; (defined below) i<(¢). Define

G+G2 O1+02+03 m
. a a . a a . a
Zdll, 2 = dl,il k = Z dl,i’ and k4 = Z dl,i‘
i= q1+1 i=1+qo+1 i=1+0+0z+1

Assume thatké k&, k&)T is O(g) close to eithed " d° d¥°,d¥¥¢ d¥°, or d° from Section 4.
Since we are permitted to freely shuffle the rows and colummd efithout loss of generality, we
assume thatk? k3,k3)T is O(¢) close tod?’", i.e., thatk? is O(¢) close tok; := (3—/5)/4, k3 is
close toky := (vVB5—1)/4, K8 is close toks := 1/2, andk? is O(€). Now we will carefully choose a
corresponding vectat; on the manifold, namely

ds if <o
g e I‘2da, if G <i<qi+0p (13)
. "3da, if QU+ <i<g+02+0s

0 otherwise

Definea; as follows:

% —1)dy; if i<
K _ _ - o
€qyj = dja_l — dl7i = tg 1 dl:' if P <I<Q1+02
k_z_l du; if P+ <i<qu+gp+03
d, otherwise

The assumption thal is sufficiently close to the manifold amounts to the assumption|fdlt; is
O(1). Itis important to note that each of the four piecesipfs proportional to a piece af;, and
thus proportional to a piece df. Recalling that; =r, =r3 =r = (v/5—1)/2, we have:

r'f = (dal‘M)lz(dlM)1+s(aIM)1:r+£(aIM)1, SO

1 1 B 1
1-13 1-r—g@M) (1) (1_8(511%)1>
1 g(ajM); 5
= 1
1-r < + 1-r +O()
1 1 B 1
= . = .
1+r% 1+r+e(@ M)y (1+r) <1+s(a11+'\f)1)
1 g(@alM),
— 1— 1 2 )
1+r < 1+r +O0()
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According to the iterated map, fo ¢, removing terms of)(€?),

da-
1
~ 1d1' (1+ >+il'r
_ 1d1| [1+ r1 Sjl,i]
- Li
g 1 k§
- & [1+ M (k—l—l
T
= o |:8(31M)1 ] (14)

Since the term in brackets does not depend,ome knowdg‘_’i is proportional tody; for i < q.
Recall that for the 3-cycle, the edge of weak classifier 1 must be 0 digieta Thus,(d3M); =0,
andy", d3; = 1, and as before:

1
-5 dd ds: =0 and d3 d3; =1, so
i; 2| _ qzl+l 2,i Zl 2| o qzl+1 2,i

_Zldgi = % and we also have ZleI = % (15)

Combining (14) and (15),

LM

piPR e

thus
dgi ~dy for i <. (16)
A similar calculation forg; < i < g; + @ yields
dg.
a 1,
i 14r2
dii e(alM); gay i
~ ’ - : 17
1+t (1 1+t * 1+r (47
_ di 1 g(alM)q +aa1,i
1+r 14r dy
_ Oy e@M) (K
- 1+r[1_ irr k_z_l
e@M)1 K
= Oy |-ty 2 8
s |-G (18)
And similarly, forqr + g <i < 1+ 02 + Oz,
d e(@M)1\ eay e@M); K8
a ~ — — 1 LA N 1 _3 . l
%i~ 1 (l 1rr ) taer 11t ks (19)
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For the remaining); + o+ gz <i < m,

(20)

a _ EAui _ Eay; 1_e(aIM)1 gy
20 14ra T 14y 1+r 141

This last set of components will always shrinktascreases, since the lagf examples are always
correctly classified. From (16), (18), (19), and (20), we can saeethich of the first three sections
of d3 is proportional to the corresponding sectiondefto O(€?), and that the last section df is
vanishing.

Now calculating the vecta, to O(¢€), incorporating equations (16), (17), (19), and (20):

0 if i <o
dij(alM i . .
Eapj = 03 — U ~ —%b;)'lﬂL% if Q<i<gr+02+0s
b otherwise

We will now show that; undergoes a contraction via the iterated map.

m T
ge10ii) [(@M)1] ]
_|lqa_ < (ZI g +1¥L 1 1 2
gllaglli = [l[dz—dz[l1 < 3[ (T+1)2 T +0(€%)
- (z{‘lql+1d1,i)2||a1\|1 I3l | | o)
(1+r) 1+r

Aside, we note(y ™, . 1d1j) =1/2+(v5-1)/4= (V5+1)/4. Also,r = (vV5-1)/2,50 ¥(1+
r)=(v5-1)/2. Now,

1+v5(v5-1)2 56-1
4 5 2
3(v/5-1)

= lafli=—7—+0() <llas.

Thus, we have shown a contraction at the first iteration. The same caloupatth indices changed
accordingly) is valid for each iteration, since the relation betwa@geandd, is now the same as the
relation betweenl? andds, that is, each section af is proportional to the corresponding section
of d, from (16), (18), and (19) (and the last section vanishes). Sinceathelation is valid for each
iteration, there is a contraction to the manifold at every iteration. Hence, thiéahdais stable.

IN

llaz||1 a2 +0(¢)

Appendix C. 4 Cycle for the 3x3 matrix in the Non-Optimal Case
In this appendix, we prove the following theorem:

Theorem 8 For the 3x3 matrix analyzed in Section 4, AdaBoost in the non-optimal case may
produce a 4-cycle which yields a maximum margin solution.

Proof We will show the existence of such a 4-cycle by presenting its coordiraidgymit a proof
of stability. One coordinate on the cycle is given by

.
qe_ (11 V22
1 7 \222 4’4 ]~
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The only choice foij; is j; = 2, and the edge value {5°'M), = 1/1/2, which is larger than 1/3.
Now, we computel;’® using the iterated map:

dm:(;L_}i_&y

2 2+V2'2'v2 2)

We now choosg, = 1 even though it is not the optimal choice. We are justified in this choice, since
the edge igdY°"M); = v2— 1> 1/3. Now iterating again, we obtaif’"

doye — (1 V21 \/§>T
3 = .

2742 4
Again, we must choosfs = 3 since it is the only permissible edgely’*'M)s = 1/v/2. Iterating,

m_Q_L_i_ng
N 2+V2'v2 2'2)

With the choicejs = 1, the edge value ig@°'M); = v/2—1 > 1/3, and the next iterate of the map
will yield d’°. We have completed the proof. |
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