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Abstract—Effectively mining anomalous subgraphs in net-
works is crucial for many application scenarios, such as disease
outbreak detection, financial fraud detection, and activity mon-
itoring in social networks. Identifying anomalous subgraphs is
extremely challenging due to their complex topological structures
and high-dimensional attributes, various notions of anomalies,
and the exponentially large subgraph space in a given graph.
Existing classical shallow models typically rely on handcrafted
anomaly measure functions, which cannot handle common situ-
ations when such prior knowledge is unavailable. Recently, deep
learning-based methods provide an end-to-end way that learns
the anomaly measure functions. However, although they have
achieved great success in detecting node-level, edge-level, and
graph-level anomalies, detecting anomalous at the subgraph level
has been largely under-explored due to enormous difficulties
in subgraph representation learning, supervision, and end-to-
end anomaly quantification. To circumvent the above mentioned
challenges, this paper proposes a novel deep framework named
Anomalous Subgraph Autoencoder (AS-GAE) to extract the
anomalous subgraphs in an unsupervised and weakly supervised
manner. Specifically, we first develop a location-aware graph
auto-encoder to uncover the anomalous areas in the given graph
according to the mismatch during the reconstruction. Then
a supermodular graph scoring function module is proposed
to assign reasonable anomaly scores to the subgraphs in the
extracted anomalous areas. The superiority of our proposed
method was demonstrated through extensive experiments on two
synthetic datasets and nine real-world datasets.

Index Terms—Anomaly detection, Deep graph autoencoder

I. INTRODUCTION

Network data is a popular type of data that describes the

properties of discrete objects and their pairwise relationship.

Given a network, one of the major tasks in the field of network

data mining is the detection of anomalous subgraphs. A

subgraph can be defined as an anomaly when its connectivity

structure or attributive properties can be described as an

outlier in the graph. For example, the significant difference

in subgraph topological structure is one type of anomaly

subgraph. As shown in Figure 1(a), in a regular lattice material

network, one might expect the inserted impurity as an outlier

because the topological structure is different from other areas

in the graph. Similarly, infectious disease researchers may have

an interest in discovering a new unknown infectious disease

at the early stage of a disease outbreak (e.g. COVID-19) from

the health surveillance network. In normal cases, the count of

cases for different disease symptoms should follow a statistical

distribution such as the Poisson distribution. As shown in

Figure 1(b), a group of connected nodes with significant

abnormal symptom attributes may indicate a potential disease

outbreak is taking place.

Existing graph anomaly detection algorithms [1] can be

categorized into traditional shallow methods [2], [3] and deep

learning-based method [4], [5]. Previous shallow approaches

to detecting anomaly subgraphs have mainly focused on manu-

ally defining anomaly quantification metrics for subgraphs and

developing methods to extract anomalous patterns based on the

designed measures. Although the ideas behind these shallow

methods are simple and intuitive, the shallow mechanisms

are suffered from the limited capability of capturing non-

linear properties to discriminate complex anomalies from

graphs with high-dimensional features and irregular topolog-

ical structures [6]. More importantly, these methods require

prior knowledge to determine the measurement function for

detecting anomalies, which are usually unavailable due to

the unknown nature of anomaly subgraph patterns in many

practical applications [7], [8], and cannot make the detection

process end-to-end. On the other hand, deep learning-based

methods, which have received growing attention in recent

years [9], can extract expressive representations of objects,

such as nodes or graphs, to effectively distinguish abnormal

and normal objects. Previous works have shown impressive

progress in many graph anomaly detection tasks [9].

Despite the success in generalizing deep learning techniques

to graph anomaly detection problems, most previous works

only focus on detecting node- or edge-level anomalies. The

task of anomaly subgraph mining has been largely under-

explored and has just started to attract attention. However,

there is no trivial way to simply apply these methods to

accomplish the task of detecting anomalous subgraphs due

to several unique challenges: (1) Difficulty in obtaining
sufficient training labels in an end-to-end manner without
intensive supervision. Deep learning approaches heavily rely

on the training objectives to optimize model parameters.

For anomalous subgraph detection, this necessitates sufficient

training labels and appropriate loss function such that models

can effectively discriminate the anomalous patterns. Unfortu-

nately, the training labels are hard to sufficiently obtain due

to the exponential possible subgraphs in a given graph, and

designing proper objectives for detecting anomalous subgraphs

is challenging because there is usually no prior knowledge

about the anomalies. (2) Difficulty in preserving both
geodesic distance and topological similarity among nodes
for representing subgraph anomaly. Existing end-to-end

works that consider node- or edge-level cannot be directly used

for subgraph-level anomaly detection. For example, within

the scope of a given anomaly subgraph, individual nodes or

edges might be normal. It only turns out to be anomalous
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Fig. 1: (a) An example of a structural anomaly subgraph in a rugular lattice material. The potentially anomalous subgraph

in red has a significantly different topology from other regions in the given network, which may be skeptical of a potential

imperfection area. (b) An example of an attributive anomaly subgraph in a simulated disease outbreak network with three

attributes of disease symptoms (fever, cough and broken bones). The potentially anomalous subgraph in the red dashed

circle has an anomalous subset of attributes (cough and fever). The count number of these two attributes within the anomaly

subgraph area are significantly higher than other nodes.

when considered as a group compared to other areas. Merely

aggregating node- or edge-level anomaly scores can not reflect

the subgraph abnormality. But how to jointly consider intra-

subgraph structure, as well as the subgraph’s position and

relation to the whole graph, is indispensable yet very chal-

lenging. (3) Difficulty in quantifying the degree of being
abnormal under arbitrary and unknown anomaly types.

It is extremely hard to quantify the degree of abnormality

for arbitrary patterns of attribute and topological structure

of subgraph when a ground truth anomaly type is unknown.

Previous shallow methods typically utilize a handcrafted mea-

sure function, which is limited by its low expressive power

and generalizability to unseen anomalies. On the other hand,

existing deep learning methods learn the scoring function from

scratch, which is usually subject to the exponentially growing

search space and can easily lead to overfitting issues.

In order to address all the above mentioned challenges,

this paper proposes a novel deep Anomalous Subgraph

Autoencoder (AS-GAE) framework for detecting anomaly

subgraphs. Specifically, to overcome the issue of lacking

sufficient ground truth anomalies, we train the model in an

unsupervised or weakly supervised manner by optimizing

self-supervised learning objectives. Therefore, our framework

does not require any prior knowledge about the anomalies.

To simultaneously maintain geodesic distance and topological

similarity information among nodes to represent subgraph

anomalies, a novel location-aware graph autoencoder module

is proposed to extract expressive representation vectors. There-

fore, a residual graph can be constructed from the original

graph by uncovering the mismatched areas of the graph during

the reconstruction. Finally, to assign a reasonable anomaly

score to any subgraph with arbitrary attributes and topologies,

a supermodular graph anomalies quantification module is

applied to introduce an inductive bias in a collective way.

II. RELATED WORK

Anomaly subgraph detection in networks. There has

been a long time of research efforts on the subjects of anomaly

subgraph detection in network data [1]. One mainstream of

works is to select a subset of nodes or edges from graphs

with respect to a given objective function and constraints.

Typically, SODA [2] identifies the anomaly subgraph by

giving an input subgraph query template, where the measure

metrics are based on the deviations in linkage compared to

its neighborhood [10]. Chen et at. [3] proposed a method

to assign a manually designed anomaly score function f of

nodes and maximize the total anomaly score
∑k

i=1 f(vi) of a

subset of nodes according to a constraint on the structure of

found nodes set (e.g. connected graph). However, the key to

their methods is the manually designed anomaly score function

which requires prior knowledge and can not be extended when

the potential anomaly type is unknown. Another stream of

works focuses on mining small subgraphs with anomalous

connectivity structure in the graph by analyzing the spectral

information from the given topology property of the graph.

Specifically, Miller et at. [11] applies eigenvalue decompo-

sition to the modularity matrix of the graph, and shows that

the existence of a small anomalous connected subgraph would

result in the appearance of high variance in the subspace

spanned by combinations of eigenvectors. Sharpnack et at.
[12] developed a method by utilizing a generalized likelihood

ratio test and a Lovász extended scan statistic for detecting a

well-connected region of vertices. However, these works can

only consider the topological structure of graphs and omit the

rich information that is carried by attributes, which means they

cannot handle attribute anomalies or mixed anomalies.

Recently, several anomaly detection studies in an unsuper-

vised manner by measuring the attribute and topology differ-

ence between the internal and external structure of a given

subgraph are proposed. AMEN [13] is a typical work that

was proposed to model the attribute distribution and measure

the normality of subgraphs by considering the consistency be-

tween internal and external information. Similarly, ANOMA-

LOUS [14] leverages a joint framework to fuse attribute and

network structure information and performs attribute selection

and anomaly detection based on CUR decomposition and

residual analysis. However, due to the low representative

power of manually designed shallow similarity measures, these

methods can not effectively distinguish anomalies from graphs.

Deep learning in graph anomaly detection. The deep
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approaches are capable of learning the expressive represen-

tations of nonlinear relationships within the complex structure

of objects [15]–[17]. The recent success studies of graph

neural networks (GNNs), further enrich the capability of

deep learning models for graph data mining tasks, including

graph anomaly detection [9], [18]. However, many existing

models such as DCI [19] and CARE-GNN [20] are supervised

models that require ground truth labels, which are usually not

available. Under the unsupervised learning manner, one stream

of works is applying deep one-class classification [4] loss to

the learned representation vectors of nodes in the graph, then

the anomaly scores are calculated according to the relative

distance from nodes to a sphere in the latent space. Another

stream of works [21], [22] typically employs an autoencoder

framework to reconstruct the graph, where the anomaly scores

of nodes/edges are computed as their reconstruction errors.

Although extensive efforts have been devoted to detecting

anomalous nodes/edges in graphs, little work has been done

on detecting anomalous subgraphs. DEEPFD [23] is a recent

attempt to address this problem. It first uses a graph autoen-

coder framework to learn the latent representation of nodes,

then applies a density-based clustering algorithm DBSCAN in

the latent representation space to detect a dense cluster, where

the extracted dense cluster is considered as the anomaly sub-

graph in the given graph. However, the effectiveness of their

proposed model is highly dependent on the assumption that the

representation vectors of nodes in anomalous subgraphs are

close to each other, while other normal nodes are uniformly

distributed in the remaining latent space. This assumption may

be invalid for networks when the normal nodes are shared

similar topology or attributes (e.g. a biological network).

Furthermore, this method cannot guarantee that the extracted

nodes are distributed close together in the graph, which may

contradict the idea of extracting an anomalous subgraph.

III. PROBLEM FORMULATION

We consider an attributed network as G = (V, E), where

V = {v1, v2, . . . , vN} is a set of nodes that N = |V| denotes

the number of nodes in the graph and E ⊆ V × V is the

set of edges. We also let X ∈ R
N×p denotes the node

attribute matrix and A ∈ R
N×N represents the adjacency

matrix. Specifically, the attribute of node vi can be expressed

as a p dimensional vector xi ∈ R
p. Aij = 1 denotes there

is an edge connecting nodes vi and vj ∈ G, otherwise

Aij = 0. A subgraph h of the given G is represented as

H = (VH , EH) where VH ⊆ V is a subset of nodes and EH is

the corresponding set of edges. XH ,AH are the corresponding

node attribute and adjacency matrices. With the preliminary

notion of the attributed network, we formalize the anomalous

subgraph detection problem as follows:

Problem 1. Anomalous subgraph detection. Given a graph
G, the task of anomalous subgraph detection is to search for
a subgraph H ⊆ G that is most different from the majority of
graph, where the degree of being abnormal is quantified by a
score function f .

The main goal of this paper is to effectively extract anoma-

lous subgraphs from a given graph, which is extremely difficult

to address due to several unique challenges: 1) Difficulty in

obtaining sufficient training labels in an end-to-end manner

without intensive supervision. 2) Difficulty in maintaining

both geodesic distance and topological similarity information

among nodes for representing subgraph anomalies. 3) Dif-

ficulty in quantifying the degree of being abnormal under

arbitrary and unknown anomaly types.

IV. METHODOLOGY

In order to design an effective method for detecting anoma-

lous subgraph in attributed networks by addressing the above

mentioned challenges, we propose a novel framework named

deep Anomalous Subgraph Autoencoder (AS-GAE), which is

shown in the Figure 2. In the rest of this section, we first

introduce the details of the two core components of our whole

framework AS-GAE: location-aware graph autoencoder in

Section IV-A and supermodular graph anomalies quantifi-
cation in Section IV-B. Then in Section IV-C, in order to

optimize the parameters in these two modules without intense

supervision, we present the objective function of AS-GAE un-

der an unsupervised learning setting and a weakly supervised

learning manner. Specifically, a novel location-aware graph
autoencoder, which is shown in Figure 2(a), is first performed

to map the input graph G into low-dimensional embeddings

Z by an encoder φ, and then reconstruct the graph structure

and features from the low-dimensional embeddings through a

decoder ϕ. Then the disparity between the original graph and

the reconstructed graph is used to generate the residual graph

R as our core to identify the candidate anomaly subgraphs.

Especially, we propose a novel location-aware encoder to

enhance relative dependency information among nodes in a

collective way for representing subgraph anomalies. As shown

in Figure 2(b), among the candidate anomaly subgraphs in the

built residual graph R, we jointly detect the most anomaly

subgraph and learn the underlying anomaly scoring function

by a novel supermodular graph anomalies quantification mod-

ule. Finally, to optimize all the parameters involved in the

AS-GAE framework without intense supervision, we propose

two learning strategies where one is unsupervised and the

other is weakly supervised. Therefore, our framework is not

limited to any specific anomaly types, nor does it require prior

knowledge about the anomaly patterns.

A. Candidate anomaly subgraphs extraction by location-
aware graph autoencoder

To detect the most anomalous subgraph, we first extract

a few candidate anomalous subgraphs from the given input

graph. Most existing methods that require intense supervision

cannot handle this problem due to the lack of prior knowledge

of potential anomalous patterns. One-class classification [4]

and reconstruction-based method [24] are two commonly

used ways to find the anomalies in an unsupervised man-

ner. However, since the number of possible subgraphs in

a given graph grows exponentially, one-class classification-

based methods can easily lead to overfitting issues due to
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Fig. 2: The overall framework of our proposed model, which is composed of two components: (a) location-aware graph
autoencoder and (b) supermodular graph anomalies quantification. The location-aware graph autoencoder module first

maps the information of both local neighborhoods and global locations into low-dimensional latent embeddings Z by a

location-aware encoder φ, then reconstructs both the adjacency matrix A and node features X through the decoder ϕ. Then

the residual graph R is built according to the mismatch between the reconstructed graph ϕ(φ(G)) and original graph G
to uncover the potential anomalous area. For each subgraph in the constructed graph, the supermodular graph anomalies
quantification module applies a graph supermodular function (SP-Function f ) to assign an anomaly score to it.

the huge search space. On the other hand, the reconstruction-

based method is able to avoid graph scanning by constructing

the residuals between true data and estimated data. Specif-

ically, reconstruction-based anomaly detection methods are

established by finding low-dimensional representations of the

original data, where anomalous and normal data are expected

to be separated from each other. Traditional methods, such as

Principal Component Analysis (PCA), suffer from the limited

expressive capability of their model, which may lead to false

alarms [25]. Graph autoencoder, which serves as an unsuper-

vised deep neural network technique, can capture the nonlinear

correlations between data due to its strong approximation

power. After obtaining these low-dimensional embeddings,

they are restored to the original data space, which is called the

reconstruction of the original graph data. By reconstructing

data from low-dimensional embeddings, the nature of the

majority pattern in the data is captured while outliers and

noise are filtered out. Reconstruction error, which is defined

as the degree of mismatch between the original data and the

reconstructed data from low-dimensional embeddings, can be

considered a strong indicator for describing anomalies in the

dataset [5], [21], [26]–[28]. Specifically, larger reconstruction

errors indicate a higher probability of anomalies, as they

deviate significantly from the majority patterns.

Although existing graph autoencoder models can handle

individual nodes, they can not accurately handle subgraphs

because autoencoder models can not accurately reconstruct

subgraph context. Specifically, as shown in Figure 3, they can

not tell whether the neighbors of a node are in the region

of the subgraph or in a far away region, which leads to the

loss of subgraph information in the learned representation.

The key reason behind it is the insufficient expressive power

Fig. 3: Example of plain graph autoencoders failing to detect

potential anomalous subgraphs. Since the global positions of

nodes in the learned latent representation are lost, nodes can

not be aware of which node is directly connected to them.

Although (v1, v2) is different in G1 and G2, the learned

representations will be identical. Therefore, (v1, v2) in G1 and

G2 will be encoded into the same embedding, resulting in a

large reconstruction error and causing the model to tend to

treat normal subgraphs as abnormal.

of ordinary graph neural network encoders in representing

subgraphs because they can not retain the global location of

nodes in the graph, which results in the inability to capture

the dependence between nodes in a given subgraph and hence

the failure to detect the real anomalies.

In order to correctly reveal the potential contextual anomaly

areas, we design a location-aware graph autoencoder to incor-

porate the locational information of nodes in the network when

performing message aggregation. To be specific, we first sam-

ple a set of C random anchor nodes VC = {v1, v2, . . . , vC} in

the given graph G. Then the shortest distance from each node

to anchors, which is denoted as S ∈ R
N×C , is calculated
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and treated as additional node labels. Thus the global location

of each node can be inferred from the shortest distances to

all anchor nodes (relabeled nodes attributes). The modified

location-aware graph-autoencoder is able to capture the de-

pendence properties among nodes when they are located in a

close area within the global context of the graph. This module

plays a critical role in correctly reconstructing the normal areas

and uncovering the real anomalous areas in the graph.

Mathematically, given the input graph G, our proposed

location-aware autoencoder first maps the adjacency matrix

A, node attributes matrix X, and distances to anchors matrix

S into the latent representation vectors z ∈ R
N×D through

location-aware encoder φ, where D is the dimension of latent

representation and zi ∈ R
D is the corresponding latent vector

for the node vi. Formally, one convolutional operation of a

location-aware encoder can be represented as:

X(�+1) = g(�)
(
X(�),S,A|W(�)

)
, (1)

where g(�), X(�) and W (�) is the graph convolution function,

the latent embeddings of nodes, and a trainable weight matrix

at layer �, respectively. We take the attribute matrix X as the

input of the first layer, which is equivalent to X(0). Then,

we reconstruct both node attributes matrix X′ and adjacency

matrix A′ from extracted latent embeddings z by decoder ϕ.

Specifically, the reconstructed attribute x′
i of node vi can be

represented as:

x′
i = ρ (zi|WX) , (2)

and the reconstructed link A′
ij between node vi and node vj

can be represented as:

A′
ij = � ({zi, zj}|WA) , (3)

where ρ and � are two multilayer perceptron (MLP) modules

and WX and WA are two trainable weight matrices. Then the

learning objective is composed of two self-supervised tasks,

which we can write as

L(G,ϕ(φ(G))) = λ ‖X−X′‖+ (1− λ) ‖A−A′‖ , (4)

where φ is the location-aware encoder and ϕ is the nonlinear

decoder. λ is a hyperparameter to tune the trade-off between

the importance of structure information and attribute informa-

tion and ‖·‖ is commonly chosen to be the �2-norm.

The residual graph R can then be built upon the mismatch

between the original graph G and the reconstructed graph

ϕ(φ(G)). We first define the reconstruction error ri of one

node vi as:

ri = λ ‖xi − x′
i‖+ (1− λ)

∑
j

∥∥Aij −A′
ij

∥∥ , (5)

then the residual graph R is constructed as:

R = (VR, ER) ,VR = {vi|vi ∈ V & ri < τ}, (6)

where ER is the corresponding set of edges to the set of nodes

VR and τ is a threshold to filter out the nodes.

Fig. 4: An example of the synergy of anomalies in a social

network. Here users A, B, and C are potential fraudulent

users, which are equally abnormal in their individual behavior

as users D, E, and F, respectively. But it is natural to

consider users A, B, and C are more anomalous because of

their connections to potentially fraudulent users, which might

reinforce the implies that they are anomalous.

B. Quantifying anomalous scores of subgraphs by graph su-
permodular function

Given the extracted residual graph R from the original

graph G by the reconstruction results of the location-aware

graph autoencoder, the nodes VR in the residual graph can

exhibit as a set of connected components {g|g ⊆ R} where

each component g is an induced subgraph of the original

graph G. Here a key question is how to evaluate the degree

of abnormality of each extracted component in the residual

graph. It is worth noting that the subgraph-level anomaly

detection problem is different from the node-level anomaly

detection problem, which only considers individual nodes

without considering their overall dependencies within close-

range regions. Instead, when individual nodes are connected

in the same component, the synergy of anomalies is cru-

cial for detecting subgraph-level anomalies. For example in

Figure 4, in an online social network, it is more desirable

to treat a subgraph of three connected potentially fraudulent

users as more anomalous rather than three separate isolated

users because they have abnormal neighbors. Therefore, more

concretely, when quantifying the anomaly of a given subgraph,

its value needs to be no less than the sum of the anomalies

of all its individual partitions. This indicates that the anomaly

quantization function should be supermodular.

Given a graph G with a collection of N labeled nodes V =
{v1, . . . , vN}, the set of all subgraphs can be represented as

H = {H|H ⊆ G}. A graph scoring function f : H → R

assigns a real value to any graph H ∈ H. Here suppose H is

the subgraph that is induced by set of nodes VH . We also use

H+{u} to denote the subgraph which is induced by the set of

nodes VH ∪ {u} when {u} /∈ VH . We give the definition of a

graph supermodular function as following:

Definition 1. For all Q,H ∈ H that VQ ⊆ VH ⊆ V\{u}, a
graph function f(·) is said to be supermodular if and only if

f(Q+{u})− f(Q) ≤ f(H+{u})− f(H). (7)

A simplest example of supermodular function on graph can

be given as f(G) = |V|+ |E|, where |E| denotes the number

of edges in graph G.

To fully utilize the reconstruction results by our location-

aware graph autoencoder and make the whole framework
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in an end-to-end manner, we hence propose a novel deep

graph supermodular neural network by extending the previous

submodular deep learning model [29]. Specifically, given an

input graph G, one updating function of node vi by deep graph

supermodular neural network at layer � can be expressed as:

x
(�+1)
i = σ(�)(w

(�)
1

ᵀ
x
(�)
i +

∑
j∈N (i)

w
(�)
2

ᵀ
x
(�)
j ), (8)

where σ(�) is a non-negative non-decreasing convex func-

tion and w(�) is a non-negative weight matrix. The whole

deep graph supermodular neural network can be achieved by

stacking L layers of updating operation in Equation 8 and a

summation operation over all nodes, which is expressed as:

f(G) =
∑
i

x
(L)
i , (9)

where x
(L)
i is the scalar value of node vi after L stacked graph

convolution operations.

Theorem 1. For any graph G with non-negative node at-
tributes, the graph scoring function f : H → R that is defined
in Equation 9 is supermodular.
Proof. We first prove that one layer of graph operation function

on all nodes in Equation 8 is supermodular. For simplicity and

without loss of generality, we suppose the input node attributes

x(�) are one-dimensional non-negative scalar values and let

w
(�)
1 = w

(�)
2 = w(�), hence we can rewrite Equation 8 as

x
(�+1)
i = σ(�)(

∑
j∈N (i)∪{i}

w(�)x
(�)
j ).

Since the linear combinations of node scalar values∑
j∈N (i)∪{i} w

(�)x
(�)
j is a modular function and σ(�) is a

non-negative non-decreasing convex function, the composi-

tion convolution operation is supermodular [29]. Then, it is

straightforward to know that in Equation 9 the summation over

all supermodular functions is still supermodular. �
C. Unsupervised and Weakly supervised learning objectives
of AS-GAE

To optimize the parameters involved in the previously

mentioned components location-aware graph autoencoder and

supermodular graph scoring function without intense supervi-

sion, we first present the objective function of the proposed

framework under an unsupervised learning manner and then a

weakly supervised strategy when partial labels are available.
1) Unsupervised model: After the training process, the

anomalous scores can be given by the function f(g), ∀g ⊆ R.

Subgraphs with higher anomaly scores are considered to have

a higher probability of being anomalies. The loss function of

AS-GAE under an unsupervised setting can be described as

min
φ,ϕ,r

L (G,φ(ϕ(G))) + βF (R),

s.t.F (R) =
∑
g⊆R

max{0, r − f(g)} − γ ‖r‖ ,

where R is the residual graph and f(·) is the supermodular

scoring function. β and γ are two hyperparameters, and ‖·‖ is

commonly chosen to be the �2-norm.

The core idea of designing the loss function for unsuper-

vised anomaly subgraph mining is that the majority of the

graph should be normal. The first term in the loss function

is the reconstruction error of the location-aware graph au-

toencoder, which is given in Equation 4. The second term

is used to further penalize components in the residual graph

with relatively small anomalous scores. For example, when

there are multiple subgraphs in the residual graph, due to the

rarity of the anomaly, it is reasonable to assume that most

of the subgraphs found should still be normal. The learnable

parameter r serves as a threshold for filtering the subgraphs

in the residual graph. When the anomaly score of a subgraph

given by f is larger than the threshold r, then no further

penalization is given because it has a high probability to be a

true anomaly subgraph.

2) Weakly Supervised Model: We generalize the unsuper-

vised learning model to a slightly looser constraint setting. In

some real-world situations, an imprecise ground true anomaly

area can be provided, but not the exact type of anomaly. For

example, when a protest event occurs, it is difficult to locate

an accurate location range (e.g. a street) in a short period

of time, but it may be easy to obtain a wider range (e.g.

a city). When given a large range of unknown anomalies,

it is worth designing an algorithm to reduce the extent of

the anomaly region. We name this setting weakly supervised

anomaly detection. The difference point is that there exists an

anomaly subgraph in the given area of nodes Q and there

are no anomalies outside this scale. Thus we modify the

second term to a formulation, which first further penalizes

the subgraphs in the residual graph that lie outside the scale

Q. On the other hand, it encourages the subgraph with the

largest anomaly score that is within the scale. In this setting,

we denote a given scale Q ⊆ V as a collection set of nodes

from the graph G, where all nodes in the ground truth anomaly

subgraph are belonged to Q. The loss function of our proposed

model for weakly supervised learning can be described as

min
φ,ϕ,f

L (G,φ(ϕ(G))) + βF (R),

s.t.F (R) = −max
g⊆R

{(1− tg) log f(g)}+
∑
g⊆R

tg log f(g),

where R is the residual graph and tg represents whether the

component g is outside the contextural scale of given nodes

collection Q, where tg = 0 when g ⊆ Q otherwise tg = 1.

V. EXPERIMENTAL RESULTS

In this section, we first introduce the experimental settings,

then the effectiveness of our proposed framework in both unsu-

pervised and weakly supervised manners is presented through

a set of comprehensive experiments. All the experiments are

conducted on a 64-bit machine with four NVIDIA TITAN

Xp GPUs. The proposed method is implemented with Pytorch

deep learning framework [30]. The link to our code is at the

github repository https://github.com/rollingstonezz/subgraph

anomaly detection icdm22.
A. Experimental Settings

1) Synthetic datasets: In order to examine the effective-

ness of our proposed method in detecting different types
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of anomalous subgraphs in a given graph, we first generate

two sets of synthetic datasets, including a structural anomaly

synthetic dataset and an attributive anomaly synthetic dataset.

We provide a brief description of these two datasets as follows:

Structural anomaly synthetic dataset. We first apply several

existing commonly used graph generator models to generate

the background graph. In this paper, we investigate the follow-

ing classic graph generators as background graph: (1) Erdös-

Rényi (ER) model that can sample graphs with given node

and edge number uniformly at random; (2) Watts-Strogatz

(WS) model that can generate small-world properties graph;

(3) Barabási-Albert (BA) model that can generate scale-free

graphs; and (4) complete graphs. Then a small subgraph with

a different structural property is inserted into the background

graph as the ground truth anomaly subgraph. We extend previ-

ous works [2], [3] to insert two types of anomaly subgraphs:

chain and dense graphs, to demonstrate the effectiveness of

our proposed framework in detecting both sparse and dense

anomaly subgraphs and the failure of previous benchmark

models in this task.

Attributive anomaly synthetic dataset. We also generalize

previous simulation studies on detecting disease outbreak [31].

Specifically, a random geometric graph model is first utilized

to place N nodes uniformly at random in a rectangular domain.

An edge between nodes is formed if a pair of nodes is within

a spatial distance threshold. A small circle area that is set at

random is considered the ground truth outbreak area, where

the sub-network within this area is considered the anomaly

subgraph. To simulate disease outbreaks, for all nodes in

the normal region, their node attributes are sampled from a

given Poisson distribution Pn(x) =
λx
ne
−λn

x! . For nodes in the

outbreak area, another Poisson distribution Pa(x) =
λx
ae
−λa

x!
with a different expectation value λa is applied to a certain

percentage of attributes.

2) Real-world datasets: To further evaluate the perfor-

mance of our proposed method and comparison methods in

real-world scenarios, nine public real-world attributed network

datasets, including four citation network datasets, three so-

cial network datasets, one communication dataset, and one

materials dataset, are utilized as benchmark datasets in our

experiments. We provide a brief description of these real-world

datasets as follows:

Citation networks. ACM [21], Cora, CiteSeer, and

Pubmed [32] are four commonly used public citation network

datasets. Each dataset contains bag-of-words representation of

documents and citation links between the documents.

Social networks. Blog and Flickr [21] are two social networks

formed by online users. All users are with a list of tags, and

their following relationships form connections. Wiki [19] is

another social network that describes co-editing relationships

between editors on Wikipedia pages.

Communication network. Email [33] is an e-mail communi-

cation network of a large European research institution. Nodes

indicate members of the institution. An edge between a pair

of members indicates that they exchanged at least one email.

Background graph Complete ER random WS small-world BA scale-free

Anomaly type Dense Chain Dense Chain Dense Chain Dense Chain

L1SUB 0.557 0.533 0.861 0.511 0.521 0.486 0.963 0.503
AMEN 0.554 0.976 0.601 0.632 0.654 0.522 0.711 0.501
DEEPFD 0.505 0.495 0.974 0.947 0.497 0.488 0.973 0.947
DOMINANT 0.409 0.486 0.598 0.611 0.589 0.701 0.598 0.456
DEEPSVDD 0.953 1.000 0.489 1.000 1.000 1.000 0.475 0.981
AS-GAE 0.976 1.000 0.984 1.000 1.000 1.000 1.000 1.000

TABLE I: AUC scores of the structure anomaly synthetic

datasets. The best performance on each dataset is in bold.

Material network. OMDB [34] is an open-access elec-

tronic structure database for three-dimensional organic crys-

tals. Nodes indicate atoms and the edges are formed according

to the distance between nodes.

The ground-truth anomalous labels are available in the

datasets ACM, Blog, Flickr, and Wiki by previous studies [19],

[21]. For the rest datasets, we further investigate the effec-

tiveness of mining subgraph-level anomalies of AS-GAE by

following the generation strategy used in previous works [21],

[22], [35] to inject synthetic anomalous subgraphs into the

original data manually. Specifically, for datasets excluding

OMDB, we first randomly sample a subgraph in the given

graph, then replace the attributes of the nodes in the sampled

subgraph with random distant nodes’ features for injected

attributive anomalies or make the sampled subgraph fully

connected for injected structural anomalies. For the OMDB

dataset, we manually inject one impurity cell into the regular

periodic lattice and consider the injected impurity cell as the

ground truth anomaly subgraph. The basic statistics and the

number of anomalies in datasets are summarized in Table II.

3) Benchmark models: We compare our proposed method

with several existing unsupervised anomaly detection algo-

rithms, including two non-deep learning methods and three

state-of-the-art deep learning methods:

(1) L1SUB [11] is a method to detect small, anomalous graphs

embedded into background networks. It computes the L1-norm

of the eigenvectors of the graph modularity matrix and finds

the subspace of the eigenvector with the abnormal variance.

(2) AMEN [13] is a method that proposed a measure to

leverage both structural and attributive information to quantify

internal consistency and external separability of nodes.

(3) DEEPFD [23] is a deep graph neural network method to

detect group anomalies in a given network. It first generates

the latent embeddings of each node by a graph autoencoder

model. Then the anomalous subgraphs are extracted by a dense

block detection algorithm DBSCAN.

(4) DOMINANT [21] is a deep graph autoencoder method to

detect anomalies in an attributed network. It utilizes a graph

neural network-based architecture for processing both graph

structure and features.

(5) DEEPSVDD [4] is a deep one-class classification based

anomaly detection method named deep SVDD. We generalize

this method to do the task of subgraph anomaly detection in a

most intuitive way. For each node in the graph, we select its

k-hop subgraph and map it to a high dimensional sphere by

a graph neural network. Then the most distant subgraph from

the sphere will be considered the most anomaly subgraph.

4) Evaluation metrics: We utilize the AUC score, a widely

used evaluation metric for anomaly detection tasks that mea-
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Fig. 5: The experimental results for the attribute anomaly

synthetic dataset with varying ratio λa/λn of the expectation

values of the normal and abnormal distribution.

sures the area under the plot of true positive rate against false

positive rate, to quantify the performance of AS-GAE and

comparison methods. Specifically, we report the AUC score of

detecting the set of nodes in the anomalous subgraph, where

a larger value indicates a higher detection performance.

B. Unsupervised learning results

1) Effectiveness results: We compare our proposed method

AS-GAE with benchmark methods on both synthetic datasets

and real-world datasets in an unsupervised learning manner.

The comparison of AUC scores for the structural anomaly

synthetic dataset is provided in Table I, by extensive combi-

nations of different background graphs and inserted anomalous

subgraphs. In Figure 5, we illustrate the results of experiments

on attributive anomaly synthetic dataset, where we vary the

division ratio λa/λn of the expectation values of normal

and abnormal distributions for a robustness test. Finally, we

provide the results of real-world datasets in Table II. We

summarize our observations on the effectiveness of AS-GAE

and comparison models below:

(1) The results demonstrate the strength of our proposed

method by consistently achieving the best results in all eight

structure anomaly synthetic tasks, all nine attributive anomaly

synthetic tasks, and eight out of nine real-world datasets.

Specifically, our results outperformed the benchmark models

by over 31.7% on average for structure anomaly synthetic

datasets, 41.6% on average for attributive anomaly synthetic

datasets, and 16.1% on average for real-world datasets.

(2) It is also worth noting that the deep learning-based

benchmark methods (DEEPFD, DOMINANT, DEEPSVDD,

and AS-GAE) show a more competitive performance than

the non-deep learning-based benchmark methods (L1SUB and

AMEN), by over 15.6% on average for structure anomaly syn-

thetic datasets, 13.8% on average for attributive anomaly syn-

thetic datasets, and 12.9% on average for real-world datasets,

which arguably indicates that non-deep learning methods have

limited capability to effectively discriminate anomalies from

graphs with complex structures or rich attributes.

(3) Our proposed method shows a stronger detection perfor-

mance compared to other deep learning methods. A possible

reason is that our method takes advantage of the dependence

relationships information within the context of the graph to

acquire a more competitive performance.

(4) As shown in Table I, in the structure anomaly syn-

thetic datasets experiments, our proposed method consistently

achieves superior anomaly detection performance with re-

spect to different combinations of background graphs and

anomaly subgraphs, which proves the robustness of our pro-

posed method. In comparison, the DEEPFD method and

DEEPSVDD method have significantly different performances

on different background graphs. For example, the DEEPFD

method shows strong detection performance when having a

random graph or scale-free graph as a background graph,

while the DEEPSVDD method has competitive performance

when the background graph is a complete graph or small-

world graph. In addition, the L1SUB method also achieves

over 21.7% better performance on detecting dense subgraphs

than detecting chain subgraphs.

2) Ablation study: Here we investigate the impact of the

proposed components of AS-GAE. We first consider a variant

NO LA that removes the location-aware encoder module,

where it only uses a plain graph autoencoder to reconstruct the

graph. To study the effectiveness of the proposed supermodu-
lar graph scoring module, we further construct a variant NO
SF that substitutes the supermodular function with a simple

modular function (where we use summation over nodes in

this case). Due to the limitation of pages, we only present the

results of six real-world datasets in Table III.

(1) Our full model has achieved the best performance on five

out of six datasets. Specifically, the full model outperforms

the variants NO LA and NO SF by 12.7% and 2.8% on

average, respectively. The performance results validate that

both location-aware encoder and supermodular graph scoring
modules can benefit the task of subgraph anomaly detection.

(2) The detection performance drops significantly on the Wiki,

Email, and OMDB datasets when we remove the location-

aware module. We observe that these three datasets have

significantly fewer dimensions of node attributes (average

dimension = 15.3) than the other three networks (average

dimension = 1, 878), which may indicate that the location-
aware encoder module plays a more critical role in detecting

subgraph anomalies when the number of dimensions of node

attributes is relatively small.

3) Sensitivity analysis: Here we investigate the impact of

parameters on the effectiveness of AS-GAE.

(1) We first conduct the experiments to explore the impact

of the size of the anomaly subgraph with respect to a given

graph. Due to the limited space, we only show the result on the

material dataset. We set the range of anomaly subgraph ratio

from 2.5% to 25%. According to Table IV, the AUC scores

show an upward and convergence trend with the decrease

of anomaly subgraph ratio. The performance tends to drop

significantly when the percentage of anomalies is larger than

10%. One possible reason is that when the rate of anomalies

is high, it contradicts the rarity of anomalies.

(2) We then investigate the impact of the dimension D of

latent embedding in our autoencoder. The results of varying

the values of D from 8 to 256 on five real-world datasets are

shown on the left of Figure 6. According to the results, we

can observe that the performance is steady that the average

standard deviation is only 1.4%. There is a peak value of
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Dataset Email Cora Citeseer Pubmed OMDB Blog Flickr ACM Wiki
Nodes 1,005 2,708 3,327 19,717 1,124 5,196 7,575 16,484 8,227
Edges 25,571 5,429 4,732 44,338 17,522 171,743 239,738 71,980 744,652
Features 42 1,433 3,703 500 4 8,189 12,047 8,337 0
Anomalies 57 106 197 340 84 300 450 600 217
L1SUB 0.523 0.486 0.563 0.575 0.591 0.485 0.502 0.530 0.463
AMEN 0.603 0.626 0.645 0.773 0.768 0.534 0.605 0.621 0.442
DEEPFD 0.572 0.658 0.704 0.776 0.846 0.497 0.500 0.501 0.499
DOMINANT 0.674 0.752 0.832 0.840 0.618 0.781 0.749 0.748 0.487
DEEPSVDD 0.730 0.703 0.693 0.622 0.938 0.635 0.642 0.734 0.453
AS-GAE 0.753 0.829 0.795 0.925 0.980 0.784 0.764 0.751 0.561

TABLE II: AUC scores on nine real-world datasets. The best performance on each dataset is in bold.

Dataset Wiki Email Cora CiteSeer Pubmed OMDB
No LA 0.485 0.564 0.806 0.791 0.825 0.504
No SF 0.557 0.729 0.799 0.697 0.817 0.974
Full 0.561 0.753 0.829 0.795 0.825 0.980

TABLE III: Ablation study results. Full refers to our com-

plete model. NO LA refers to a variant that removes the

location-aware module. NO SF refers to another variant that

substitutes the supermodular function with a simple modular

function. The best AUC score of each dataset is in bold.

Anomaly rate 1/4 1/5 1/10 1/15 1/20 1/40

AS-GAE 0.734 0.817 0.961 0.968 0.980 0.978

TABLE IV: Influence of the AUC scores versus anomalous

rate, which varies from 1/4 to 1/40 on OMDB dataset.

performance when the latent dimension D is from 16 to 256.

More interestingly, the OMDB and Email datasets peak around

D = 16, while the Cora, Citeseer, and Pubmed datasets peak

at D ≥ 64. One possible reason is that the OMDB and Email

datasets have significantly less node attribute dimensionality

than the Cora, CiteSeer, and Pubmed datasets, which may

require less latent representation dimensionality to correctly

reconstruct normal regions.

(3) We further explore how the number C of sampled an-

chors in the location-aware autoencoder would impact the

effectiveness of AS-GAE. We vary the values of C from

25 to 200 on five real-world datasets as shown on the right

of Figure 6. According to the figure, we can observe that

the size of datasets is correlated with the value of C for

the peak performance. For the smaller size datasets such as

Email (1, 005) and OMDB (1, 124) their performances peak

at C ≤ 100, while peak performances occur at C ≥ 150 for

larger datasets such as CiteSeer (3, 327) and Pubmed (19, 717).

C. Weakly supervised learning results

In this part, we conduct experiments to examine the effec-

tiveness of our generalized method in a weakly supervised

learning manner. Specifically, given the anomalous subgraph

of each dataset as the ground truth, we sample a larger sub-

network by random walk as the scale of the provided node-

set Q. We use the ratio value q = |Q|
|g| to measure the

relative size of the given scale Q, where |g| is the size of

the given ground truth anomaly subgraph. For each dataset,

we vary the value of q from 2 to 12. The experimental

results on five real-world datasets are reported in Figure 7.

We can observe that detection performance continues to grow

on all datasets as the given range is shrink. Specifically, the

performance grows by 4.1% on average when the scale ratio

q changes from 12 to 2. In addition, it is worth noting that

Fig. 6: Left: The sensitivity study for the number of latent

dimensions D versus AUC scores on five real-world datasets.

Right: The sensitivity study for the number of anchors C
versus AUC scores on five real-world datasets.

Fig. 7: The weakly supervised learning experiments on five

real-world datasets with varying scale rates q.

the performance scores are almost converged to the values

in the unsupervised learning setting when the given scale

is comparable to the whole graph. The experimental results

demonstrate that our proposed method effectively utilized the

provided scale to further improve the anomaly detection power

under our framework.

D. Training time analysis

The training time of AS-GAE under both unsupervised

learning and weakly supervised learning settings are given

in Table V with respect to a varying number of nodes and

a fixed value of average node degree. The results indicate

that the training time of AS-GAE increases almost linearly

as the number of nodes in the graph increases. Furthermore,

the training time of our framework in unsupervised learning

and weakly supervised learning settings are comparable and

grow at the same level.

N 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
Un 29.77 48.94 69.72 92.59 117.31 148.92 188.52 235.87 278.32 334.65
WS 31.46 53.89 77.51 101.22 130.21 163.54 206.54 256.31 300.45 362.42

TABLE V: The training time of AS-GAE respect to varying

number of nodes N . Un and WS is short for unsupervised

learning and weakly supervised learning. (Unit: second).
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VI. CONCLUSION

This paper focuses on the crucial problem of detecting

anomalous subgraphs from a given network under unsuper-

vised learning or weakly supervised learning settings. The

proposed framework deep Anomalous Subgraph Autoencoder

(AS-GAE) effectively addresses the unique challenges in

anomaly subgraph detection by utilizing a location-aware
graph autoencoder module to uncover the relative anomalous

areas, and then a supermodular graph anomalies quantifi-
cation module is applied to assign a reasonable anomaly

score for the subgraphs in the built residual graph according

to the reconstruction results of the autoencoder. Extensive

experimental results on both synthetic and real-world datasets

demonstrate the outstanding detection power of our model and

the effectiveness of each module in our proposed framework.
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