

Computational Learning Theory

Computational Learning Theory

- Inductive Learning
 - Protocol
 - Error
- Probably Approximately Correct Learning
 - Consistency Filtering
 - Sample Complexity
 - Eg: Conjunction, Decision List
- Issues
 - Bound
 - Other Models

What General Laws constrain Inductive Learning?

- Sample Complexity
 - How many training examples are sufficient to learn target concept?
- Computational Complexity
 - Resources required to learn target concept?
- Want theory to relate:
 - Training examples
 - Quantity
 - Quality
 - How presented
 - Complexity of hypothesis/concept space
 - Accuracy of approx to target concept
 - Probability of successful learning

These results only useful wrt o(...)!

space
ept

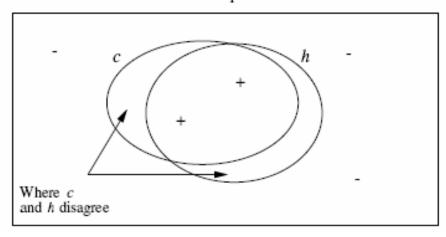
Protocol

| So | Col | Col | AseX | So | Col | AseX | Co

- Given:
 - set of examples X
 - fixed (unknown) distribution D over X
 - set of hypotheses H
 - set of possible target concepts C
- Learner observes sample $S = \{ \langle x_i, c(x_i) \rangle \}$
 - instances x_i drawn from distr. D
 - labeled by target concept c ∈ C
 (Learner does NOT know c(.), D)
- Learner outputs h ∈ H estimating c
 - h is evaluated by performance on subsequent instances drawn from D
- For now:
 - $C = H (so c \in H)$
 - Noise-free data

True Error of Hypothesis

Instance space X



Def'n: The true error of hypothesis h wrt

- target concept c
- distribution D
- probability that h will misclassify instance drawn from D

$$err_D(h) = Pr_{x \in D}[c(x) \neq h(x)]$$

Probably Approximately Correct

Goal:

PAC-Learner produces hypothesis $\hat{\mathbf{h}}$ that is approximately correct, $\text{err}_D(\hat{\mathbf{h}}) \approx 0$ with high probability $P(\text{err}_D(\hat{\mathbf{h}}) \approx 0) \approx 1$

- Double "hedging"
 - approximately
 - probably

Need both!

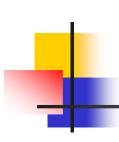
PAC-Learning

Learner L can draw labeled instance $\langle x, c(x) \rangle$ in unit time $x \in X$ drawn from distribution D labeled by target concept $c \in C$

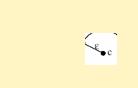
```
Def'n: Learner L PAC-learns class C (by H) if 
1. for any target concept c \in C, any distribution D, any \epsilon, \delta > 0, L returns h \in H s.t. w/ prob. \geq 1 - \delta, err<sub>D</sub>(h) < \epsilon 
2. L's run-time (and hence, sample complexity) is poly(|x|, size(c), 1/\epsilon, 1/\delta)
```

Sufficient:

```
    Only poly(...) training instances - |H| = 2<sup>poly()</sup>
    Only poly time / instance ...
    Often C = H
```



Simple Learning Algorithm: Consistency Filtering



- Draw $m_H(\epsilon, \delta)$ random (labeled) examples S_m
- Remove every hyp. that contradicts any $\langle x, y \rangle \in S_m$
- Return any remaining (consistent) hypothesis

Challenges:

- Q1: Sample size: $m_H(\epsilon, \delta)$
- Q2: Need to decide if h ∈ H is consistent w/ all S_m
 ... efficiently ...

Boolean Functions (≡ Concepts)

Eg:
$$h_{X_1 \vee \neg X_2}(X_1, X_2, X_3) = \begin{cases} 1 & \text{if } X_1 \vee \neg X_2 \\ 0 & \text{otherwise} \end{cases}$$

X_1	X_2	X_3	$h_{X_1 \vee \neg X_2}(X_1, X_2, X_3)$	
0	0	0	1	
0	0	1	1	
0	1	0	0 / (0.1.1) 0	
0	1	1	$h_{X_1 \vee \neg X_2}(0, 1, 1) = 0$	
1	0	U	1	
	0	1	1 7	
1	1	0	$h_{X_1 \vee \neg X_2}(1,1,0) = 1$	
	Τ		1	

Note: Hypothesis maps unlabeled-tuple to $\{0, 1\}$ Labeled-tuple is $\left\{\begin{array}{c} \textit{Consist} \\ \textit{InConsistent} \end{array}\right\}$ w/ hyp.

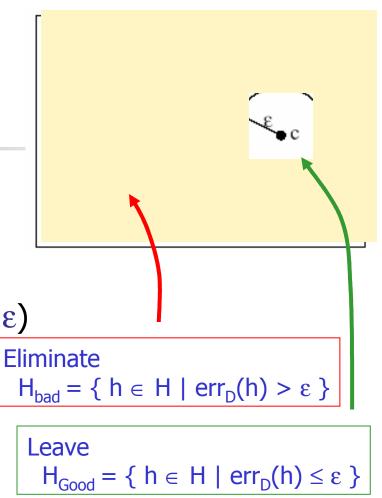
So
$$\langle \langle 0, 1, 1 \rangle, 1 \rangle$$
 is

InConsistent with
$$h_{X_1 \lor \lnot X_2}$$

Consistent with
$$h_{X_2 \vee X_3}$$

Bad Hypotheses

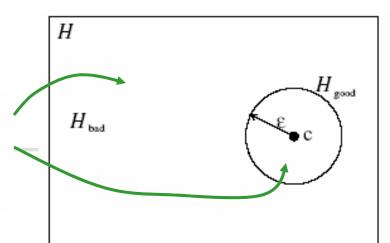
Idea: Find $m = m_H(\epsilon, \delta)$ s.t. after seeing m examples, every BAD hypothesis h (err_{D,c}(h) > ϵ) will be ELIMINATED with high probability ($\approx 1 - \delta$) leaving only good hypotheses



... then pick ANY of the remaining good $(err_{D,c}(h) < \epsilon)$ hyp's

Find m large number that very small chance that a "bad" hypothesis is consistent with m examples

$$\mathcal{H}_{bad} = \{ h \in \mathcal{H} \mid err_{\mathcal{D}}(h) > \epsilon \} / \mathcal{H}_{good} = \{ h \in \mathcal{H} \mid err_{\mathcal{D}}(h) \leq \epsilon \} < \mathcal{H}_{ote}$$
Note $|\mathcal{H}_{Bad}| \leq |\mathcal{H}|$

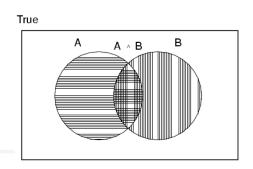


Sample Bounds – Derivation

- Let h_1 be ϵ -bad hypothesis ... err(h_1) > ϵ
 - \Rightarrow h₁ mis-labels example w/prob P(h₁(x) \neq c(x)) > ϵ
 - \Rightarrow h₁ correctly labels random example w/prob \leq (1 ϵ)
- As examples drawn INDEPENDENTLY $P(h_1 \text{ correctly labels } m \text{ examples }) \le (1 \varepsilon)^m$

Sample Bounds

Derivation II



- $\stackrel{\cdot}{=}$ Let h_2 be another ε -bad hypothesis
- What is probability that either h₁ or h₂ survive m random examples?

```
P(h_1 v h_2 survives)
= P(h_1 survives) + P(h_2 survives)
- P(h_1 \& h_2 survives)

≤ P(h_1 survives) + P(h_2 survives)
≤ 2 (1 -\epsilon)<sup>m</sup>
```

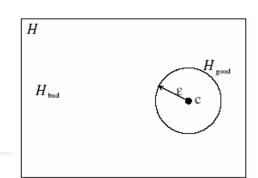
■ If $k \varepsilon$ -bad hypotheses $\{h_1, ..., h_k\}$: $P(h_1 v ... v h_k \text{ survives }) \le k (1 - ε)^m$

Sample Bounds – Derivation

- Let h_1 be ε -bad hypothesis ... err(h_1) > ε $\Rightarrow h_1$ mis-labels example w/prob $P(h_1(x) \neq c(x)) > \varepsilon$ $\Rightarrow h_1$ correctly labels random example w/prob $\leq (1 - \varepsilon)$
- As examples drawn INDEPENDENTLY $P(h_1 \text{ correctly labels m examples }) \leq (1 \epsilon)^m$
- Let h₂ be another ε-bad hypothesis
- What is probability that either h₁ or h₂ survive m random examples?

```
P(h_1 \ v \ h_2 \ survives )
= P(h_1 \ survives ) + P(h_2 \ survives ) - P(h_1 \ h_2 \ survives )
\leq P(h_1 \ survives ) + P(h_2 \ survives )
\leq 2 (1 - \epsilon)^m
```

Sample Bounds, con't



- Let $H_{bad} = \{ h \in H \mid err(h) > \epsilon \}$
- Probability that any $h \in H_{bad}$ survives is

P(any
$$h_b$$
 in H_{bad} is consistent with m exs.)
$$\leq |H_{bad}| (1 - \varepsilon)^m \leq |H| (1 - \varepsilon)^m$$

■ This is $\leq \delta$ if $|H| (1 - ε)^m \leq \delta$ \Rightarrow

$$m_H(\varepsilon, \delta) \ge \left(\log \frac{|H|}{\delta}\right) / -\log(1-\varepsilon) \ge \frac{1}{\varepsilon} \left(\log \frac{|H|}{\delta}\right)$$

- $m_H(\epsilon, \delta)$ is "Sample Complexity" of hypothesis space H
- Fact: For $0 \le \varepsilon \le 1$, $(1 \varepsilon) \le e^{-\varepsilon}$

- Hypothesis Space (expressiveness):
- Error Rate of Resulting Hypthesis: ε
 - $err_{D,c}(h) = P(h(x) \neq c(x)) \leq \varepsilon$
- Confidence of being ε -close:
 - P($err_{D,c}(h) \le ε$) > 1 δ
- Sample size: $m_H(\epsilon, \delta)$
- Any hypothesis consistent with

$$m_H(\varepsilon, \delta) = \frac{1}{\varepsilon} \left(\log \frac{|H|}{\delta} \right)$$

examples,

has error of at most ε , with prob $\leq 1 - \delta$

4

Boolean Function... Conjunctions

- Boolean Instance: $\langle x_1, \ldots, x_n \rangle$ $\langle 1, 0, 1, 1 \rangle$ for $\langle x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 1 \rangle$)
- Boolean Function: $f(\langle x_1, \ldots, x_n \rangle) \in \{0, 1\}$
- Conjunction (type of Boolean function)

$$f_{+-0-0+}(X) = x_1 \bar{x_2} \bar{x_4} x_6$$

$$= \begin{cases} 1 & \text{if } x_1(X) = t, \ x_2(X) = f, \ x_4(X) = f, \\ & \text{and } x_6(X) = t \\ 0 & \text{otherwise} \end{cases}$$

$$f_{+-0-0+}(\langle \underline{1}, \underline{0}, 1, \underline{0}, 0, \underline{1} \rangle) = 1$$

$$f_{+-0-0+}(\langle \underline{0}, \underline{0}, 1, \underline{0}, 0, \underline{1} \rangle) = 0$$

(Ie, must match each literal mentioned)

 Only 3ⁿ possible conjunctions out of 2^{2ⁿ} boolean functions!

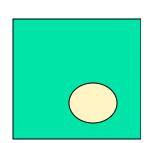
• \mathcal{H}_C = conjunctions of literals

$$|\mathcal{H}_C| = 3^n : \left(\begin{array}{c} \text{Each variable can be} \\ \circ \text{ included positively "x_i",} \\ \circ \text{ included negatively "x_i",} \\ \circ \text{ excluded} \end{array} \right)$$

$$\Rightarrow m_{\mathcal{H}_C}(\epsilon, \delta) = \frac{1}{\epsilon} \left[n \ln 3 + \ln \frac{1}{\delta} \right]$$

Alg: Collect
$$m_{\mathcal{H}_{\mathcal{C}}}(\epsilon, \delta) = \frac{1}{\epsilon} \left[n \ln 3 + \ln \frac{1}{\delta} \right]$$
 labeled samples Let $h = x_1 \, \bar{x}_1 \, x_2 \, \bar{x}_2 \, \cdots \, x_n \, \bar{x}_n$ For each $+$ -example $y = \bigwedge_i \pm_i x_i$ Remove from h any literal NOT included in y

	Current Hyp								
< < 1	0 1>+>	x_1	\bar{x}_1	x_2	\bar{x}_2	х3	\bar{x}_3	Never true True only for "101"	



True only for "10*"

- Just uses +-examples!
 - Finds "smallest" hypothesis (true for as few +examples as possible)
 - ... No mistakes on –examples
- As each step is efficient O(n), only poly(n, $1/\epsilon$, $1/\delta$) steps \Rightarrow algorithm is *efficient!*
- Does NOT explicitly build all 3ⁿ conjunctions, then throw some out...

PAC-Learning k-CNF

- $CNF \equiv Conjunctive Normal Form$ $(x_1 \lor \bar{x}_2 \lor x_7) \land (x_2 \lor x_4 \lor \bar{x}_9) \land \dots \land (x_7 \lor \bar{x}_8 \lor \bar{x}_9)$
- ullet k-CNF \equiv CNF where each clause has $\leq k$ literals 1-CNF \equiv Conjunctions

• As
$$\exists O(\binom{n}{k}3^k)$$
 possible $\leq k$ -clauses, $\binom{n}{k} = O(n^k)$ $\exists H_{k-CNF}| = 2^{O(\binom{n}{k}3^k)}$ $\Rightarrow M_{\mathcal{H}_{k-CNF}} = O\left(\frac{1}{\epsilon}\left[(3n)^k + \ln\frac{1}{\delta}\right]\right)$

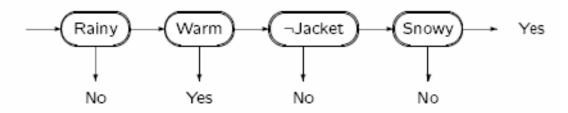
Alg: Consistency Filtering:

Let T= all $O(\binom{n}{k}3^k)$ possible k-clauses. After each +-example y, Remove from T all clauses INCONSISTENT w/ y Return $\bigwedge T$

- Similar for Disjunctions, k-DNF, . . .
- ? What about CNF $\equiv n$ -CNF ?

Decision Lists

- When to go for walk?
 - Vars: rainy, warm, jacket, snowy
 - Don't go for walk if rainy.
 Otherwise, go for walk if warm or if I jacket and it is snowy.



```
Def'n: A DL \equiv \text{list of "if-then rules"} where \left\{ \begin{array}{l} \text{condition} \equiv \text{a literal} \\ \text{consequent is} + \text{or} - \end{array} \right\}
```

(≡ decision tree with just one long path)

How many DLs?

```
4n possible "rules", each of form "\pm x_i \Rightarrow \pm" \Rightarrow (4n)! orderings, so |H_{DL}| \le (4n)! (Actually: \le n! 4<sup>n</sup>)
```

4

Example of Learning DL

- 1. When $x_1 = 0$, class is "B" Form $h = \langle \neg x_1 \mapsto B \rangle$ Eliminate i_2 , i_4
- 2. When $\mathbf{x}_2 = \mathbf{1}$, class is "A" Form $\mathbf{h} = \langle \neg \mathbf{x_1} \mapsto \mathbf{B}; \mathbf{x_2} \mapsto \mathbf{A} \rangle$ Eliminate \mathbf{i}_3 , \mathbf{i}_5
- 3. When $x_4 = 1$, class is "A" Form $h = \langle \neg x_1 \mapsto B; x_2 \mapsto A; x_4 \mapsto A \rangle$ Eliminate i_1
- 4. Always have class "B"

 Form $h = \langle \neg x_1 \mapsto B; x_2 \mapsto A; x_4 \mapsto A; t \mapsto B \rangle$ Eliminate rest (i_6)

•

PAC-Learning Decision Lists

```
Let: S = \text{set of}
           m_{DL} = O(\frac{1}{\epsilon}[n\ln(n) + \ln\frac{1}{\delta}])
       training instances
   h = \text{empty list}
   R = \text{all } 4n \text{ possible rules}
While S \neq \{\} do
    1. Find r \in R s.t.
             + consistent w/ S
             + r applies to > 1 s \in S
        (If none, halt w/ "Failure")
    2. h := h \circ r
            (Put rule at BOTTOM of hypothesis)
    3. S := S - \{s \mid s \text{ classified by } h\}
            (Throw out examples classified by current hypothesis)
```


Proof (PAC-Learn DL)

- Correctness#1: Enough data?
 Yes. ½ In | H_{DL} | δ
- Correctness#2: Consistency?
 If ∃ DL consistent w/data...
 - 1. $\exists \geq 1$ choice for step 1 (e.g., first rule in L satisfied by ≥ 1 example)
 - DL consistent w/ remaining data
 original DL!
- Efficiency:

Algorithm runs in poly time, since

- o each iteration requires poly time, and
- each iteration removes > 1 example (only poly examples)
- Generalization: k-DL
 - ...whose nodes each contain CONJUNCTION of < k literals

(So earlier DL

1-DL.)

Note: k-DL $\supset k$ -CNF, k-DNF, k-depth DecTree, . . .

-

Why Learning May Succeed

- Learner L produces classifier h = L(S) that does well on training data S Why?
 - 1. If x appears a lot
 - then x probably occurs in training data S
 - As h does well on S,
 h(x) is probably correct on x
 - 2. If example x appears rarely $(P(x) \approx 0)$

then h suffers only small penalty for being wrong.

- Assumption: Distribution is "stationary"
 - distr. for testing = distr. for training

Comments on Model

Simplify task:

$$m_H(\varepsilon, \delta) = \frac{1}{\varepsilon} \left(\log \frac{|H|}{\delta} \right)$$

- 1*. Assume $c \in H$, where H known
 - (Eg, lines, conjunctions, . . .)
- 2*. Noise free training data
- 3. Only require approximate correctness:
 - h is " ϵ -good": $P_x(h(x) \neq c(x)) < \epsilon$
- 4. Allow learner to (rarely) be completely off
 - If examples NOT representative, cannot do well.
 - P(h_1 is ε-good) ≤ 1 δ

Complicate task:

- 1. Learner must be computationally efficient
- 2. Over any instance distribution

Comments: Sample Complexity

$$m_H(\varepsilon, \delta) = \frac{1}{\varepsilon} \left(\log \frac{|H|}{\delta} \right)$$

- If k parameters, $\langle v_1, ..., v_k \rangle$
 - $\Rightarrow |H_k| \approx B^k$
 - \Rightarrow $m_{H_k} \approx log(B^k)/\epsilon \approx k/\epsilon$
- Too GENEROUS:
 - Based on pre-defined C = {c_{1, ...}} = H
 Where did this come from???
 - Assumes c ∈ H, noise-free
 - If err \neq 0, need O($1/\epsilon^2$...)

Why is Bound so Lousy!

- Assumes error of all ε-bad hypotheses ≈ ε
 (Typically most bad hypotheses are really bad ⇒ get thrown out much sooner)
- Uses P(A or B) ≤ P(A)+P(B).
 (If hypotheses are correlated, then if one inconsistent, others probably inconsistent too)
- Assumes |H_{bad}| = |H| ... see VCdimension
- WorstCase:
 - over all c ∈ C
 - over all distribution D over X
 - over all presentations of instances (drawn from D)
- Improvements
 - "Distribution Specific" learning Known single dist (ε-cover)
 Gaussian, . . .
 - Look at samples!

⇒ Sequential PAC Learning

Fundamental Tradeoff in Machine Learning

$$m_H(\varepsilon, \delta) = \frac{1}{\varepsilon} \left(\log \frac{|H|}{\delta} \right)$$

- Larger H is more likely to include
 - (approx to) target f
 - but it requires more examples to learn
- w/few examples, cannot reliably find good hypothesis from large hypothesis space
- To learn effectively (ϵ) from small # of samples (m), only consider H where $|H| \approx e^{\epsilon m}$
- Restrict form of Boolean function to reduce size of hypotheses space.
 - Eg, for H_C = conjunctions of literals, $|H_C| = 3^n$, so only need poly number of examples!
 - Great if target concept is in H_C, but . . .

Issues

- Computational Complexity
- Sampling Issues:

	Finite	Countable	Uncountable
Realizable	$\frac{1}{\varepsilon} \ln \frac{ H }{\delta}$	Nested Class	VC dim
Agnostic	$O\left(\frac{1}{\varepsilon^2}\ln\frac{ H }{\delta}\right)$		VC dim

Learning = Estimation + Optimization

- 1. Acquire required relevant information by examining enough labeled samples
- 2. Find hypothesis $h \in H$ consistent with those samples
 - . . . often "smallest" hypothesis
- Spse H has 2^k hypotheses
 Each hypothesis requires k bits
 - $\Rightarrow \log |H| \approx |h| = k$
 - ⇒ SAMPLE COMPLEXITY not problematic
- But optimization often is. . . intractable!
 - Eg, consistency for 2term–DNF is NP-hard, . . .
- Perhaps find best hypothesis in F ⊃ H
 - 2-CNF ⊃ 2term-DNF
 - . . . easier optimization problem!

Extensions to this Model

- Ockham Algorithm: Can PAC-learn H iff
 - can "compress" samples
 - have efficient consistency-finding algorithm
- Data Efficient Learner

Gathers samples sequentially, autonomously decides when to stop & return hypothesis

- Exploiting other information
 - Prior background theory
 - Relevance
- Degradation of Training/Testing Information

```
\left\{ \begin{array}{c} \mathsf{Errors} \\ \mathsf{Omissions} \end{array} \right\} egin{array}{l} \mathsf{Training} \\ \mathsf{Testing} \end{array} \left\{ \begin{array}{c} \mathsf{Attribute} \ \mathsf{Value} \\ \mathsf{Class} \ \mathsf{Label} \end{array} \right\}
```


Other Learning Models

- Learning in the Limit [Recursion Theoretic]
 - Exact identification, no resource constraints
- On-Line learning
 - After seeing each unlabeled instance,
 - learner returns (proposed) label
 - Then correct label provided (learner penalized if wrong)
 - Q: Can learner converge, after making only k mistakes?
- Active Learners
 - Actively request useful information from environment
 - "Experiment"
- "Agnostic Learning"
 - What if target ¬[f ∈ H]?
 - Want to find CLOSEST hypotheses. . .
 - Typically NP-hard. . .
- Bayesian Approach: Model Averaging, . . .

Computational Learning Theory

- Inductive Learning is possible
 - With caveats: error, confidence
 - Depends on complexity of hypothesis space
- Probably Approximately Correct Learning
 - Consistency Filtering
 - Sample Complexity
 - Eg: Conjunctions, Decision_Lists
- Many other meaningful models

Terminology

- Labeled example: Example of form (x, f(x))
- Labeled sample: Set of { ⟨ x_i; f(x_i) ⟩ }
- **Classifier**: Discrete-valued function.

```
Possible values f(x) \in \{1, ..., K\} called "classes"; "class labels"
```

- Concept: Boolean function.
 - x s.t. f(x) = 1 called "positive examples"
 - x s.t. f(x) = 0 called "negative examples"
- Target function (target concept): "True function" f generating the labels
- Hypothesis: Proposed function h believed to be similar to f.
- Hypothesis Space: Space of all hypotheses that can, in principle, be output by a learning algorithm

Computational Learning Theory

- Framework/Protocols
- 1. Finite **#**, Realizable case
- 2. Finite \mathcal{H} , Unrealizable case
- 3. Infinite **#** (Vapnik-Chervonenkis Dimension)
- 4. Variable size Hypothesis Space
- Data-dependent Bounds (Max Margin)
- Topics:
 - Extensions to PAC
 - Other Learning Models
 - Occam Algorithms
- 6. Mistake Bound (Winnow)

Case 2: Finite \mathcal{H} , Unrealizable

- What if perfect classifier ∉ hyp. space ℋ?
 - either none exists (data inconsistent) or
 - hypothesis space is restricted
- Let: $h^* = \operatorname{argmin}_{h \in \mathcal{H}} \{ \operatorname{err}_{D}(h) \}$ be optimal $h \in \mathcal{H}$
- Want: \hat{h} s.t. $err_D(\hat{h}) \leq err_D(h) + \varepsilon$
- Alg:

```
Draw m = m(\epsilon, \delta) instances S
Return \hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}}_{h \in \mathcal{H}} \{ \underset{\text{core, over } S}{\operatorname{err}}_{S}(h) \}
```

```
(\underline{err}_{S}(h) = 1/m \sum_{x \in S} err(h, x) \text{ is EMPIRICAL score})
```

- Issues:
 - 1. How many instances?
 - Computational cost of argmin_{h∈ H} { err_S(h) }

Sample Complexity

Goal: Want enough instances that, w/prob $\geq 1 - \delta$

$$\hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} \{ \operatorname{\underline{err}}_{S}(h) \}$$
 is within ε of $h^* = \operatorname{argmin}_{h \in \mathcal{H}} \{ \operatorname{\underline{err}}_{D}(h) \}$

• Step1: Sufficient to estimate ALL h's to within $\varepsilon/2$.

$$|\operatorname{err}_{D}(h) - \operatorname{\underline{err}}_{S}(h)| \le \varepsilon/2$$

If so, then

$$\begin{aligned} & e_D(\hat{h}) - e_D(h^*) \\ & = e_D(\hat{h}) - \underline{e}_S(\hat{h}) + \underline{e}_S(\hat{h}) - \underline{e}_S(h^*) + \underline{e}_S(h^*) - \underline{e}_D(h^*) \\ & \le & \epsilon/2 + 0 + \epsilon/2 = \epsilon \end{aligned}$$

-

Sample Complexity, con't

Goal: Want enough instances that, w/prob $\geq 1 - \delta$

```
\hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} \{ \operatorname{\underline{err}}_{S}(h) \} is within \varepsilon of h^* = \operatorname{argmin}_{h \in \mathcal{H}} \{ \operatorname{\underline{err}}_{D}(h) \}
```

■ Step2: Sufficient to estimate EACH h's to within $\varepsilon/2$ with prob $\geq 1 - \delta / |\mathcal{H}|$

```
If so, then
```

```
P(\exists h \in \mathcal{H} \mid err_{D}(h) - \underline{err}_{S}(h)| \leq \varepsilon/2)
\leq \sum_{h \in \mathcal{H}} P(err_{D}(h) - \underline{err}_{S}(h)| \leq \varepsilon/2)
\leq |\mathcal{H}| \delta / |\mathcal{H}| = \delta
```

• Step3: How many instances s.t. $P(err_D(h) - err_S(h)) \le \varepsilon/2 \le \delta / |\mathcal{H}|$?

Complexity of "Agnostic Learning"

- Sample Complexity: Good news!
- Hoeffding Inequality \Rightarrow Need only $m(\varepsilon, \delta) = \frac{2}{\varepsilon^2} \ln \frac{2|H|}{\delta}$ instances to estimate EACH h's to within $\varepsilon/2$

with prob $\geq 1 - \delta / |\mathcal{H}|$

 $P(err_D(h) - err_S(h)| \le \varepsilon/2)$ $\le 2 exp(-2 m (\varepsilon/2)^2) \le \delta / |\mathcal{H}|$

Computational Complexity: Bad news!

NP-hard to find

CONJUNCTION $h \in \mathcal{H}$ that is BEST FIT to DNF $c \in C$

(target space = DNF; hypothesis space = Conjunctions)

Note: Sample size typically poly;
 Hardness tends to be Consistency/Optimization

•

Case 3: ∞ Hypothesis Spaces ⇒ VC Dim

Learning an initial subinterval.

```
"Factory ok iff Temperature \leq a" for some (unknown) a \in [0, 100] \Rightarrow target concept is some initial interval C = H = \{ [0, a] \mid a \in [0, 100] \}
```

Observe M instances
Return [0, b],
where b is largest positive example seen.

Clearly poly time per example. How many examples? 100

a

Sample Complexity of Learning Initial Segment

- Approach#1: Use $m_H(\varepsilon, \delta) = \frac{1}{\varepsilon} \left(\log \frac{|H|}{\delta} \right)$ instances ? But \mathcal{H} is UNCOUNTABLE!
- Approach#2:
 - Let a_{ε} be real value < a s.t. $[a_{\varepsilon}, a]$ has probability ε P($[a_{\varepsilon}, a]$) = ε

• Alg succeeds *iff* it sees example in $[a_{\varepsilon}, a]$

P(failure) = P(none of M examples in $[a_{\epsilon}, a]$) = $(1 - \epsilon)^{M}$

So for P(failure) $\leq \delta$, need

$$M \ge \frac{1}{\varepsilon} \ln \frac{1}{\delta}$$

Uniform Convergence

- Simultaneously estimating all $\{ [a_{\varepsilon}, a] | a \in [0, 100] \}!$
- Q: Why possible?
- A: Only one "degree of freedom"
 - ⇒ each sample provides LOTS of information about many hypothesis
- Q: How much is a degree of freedom worth? Are they all worth the same?
- A: Look at "effective number" of concepts, as fn of number of data points seen.

 Only grows linearly....
- Number of "effective degrees of freedom": called "VC-dimension"

Shattering a Set of Instances

Hypothesis class # trivially fit

$$X = \{x_1, ..., x_k\}$$

if

 \forall labeling of examples in **X**, \exists h \in \mathcal{H} matching labeling

- k instances; | ℋ | ≥ 2^k
 Any subset of size k 1 is unconstrained!
- Defn: Set of points $\mathbf{X} = \{x_i\}$ is shattered by hypothesis class $\boldsymbol{\mathcal{H}}$ if

$$\forall$$
 S \subset X, \exists h_S \in \mathscr{H} s.t.

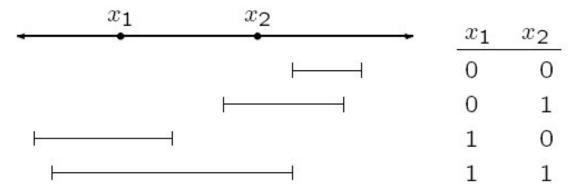
•
$$h_S(x) = 1 \quad \forall x \in S$$

•
$$h_S(x) = 0 \quad \forall \ x \notin S$$

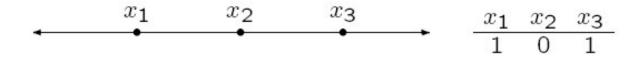
•

Example of Shattering

- $\mathcal{H} = \{ [a, b] | a < b \} = \text{intervals on real line}$
- Can shatter (any!) 2 points:



■ ∃ 3 points that can NOT be shattered:



Vapnik-Chervonenkis Dimension

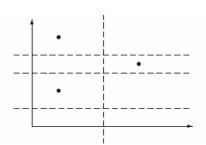
- Def'n: VCdim of concept class #
 - \equiv largest # of points shattered by \mathcal{H}
 - If arbitrarily large finite sets of X shattered by \mathcal{H} , then $VCdim(\mathcal{H}) = \infty$
 - $VCdim(\mathcal{H}) = d \Leftrightarrow$

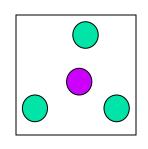
∃ set of d points that can be shattered, but no set of d+1 points can be shattered

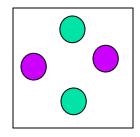
- Note: VCdim(ℋ) ≤ log₂ | ℋ |
- VCdim(\(\mathcal{H}\)) measures complexity of \(\mathcal{H}\)
 - ... how many distinctions can its elements exhibit

VC-dimension: Linear Separator

- $\mathcal{H}_{\mathcal{L}S2} = \{ [w_0, w_1, w_2] \in \Re^3 \}$
 - = linear separators in 2-D
- Trivial to fit (any non-linear!) 3 points







- But cannot shatter ANY set of 4 points
 - If one point inside convex hull of others, can not make outsides " –" and inside "+"
 - Otherwise, label alternatingly in cycle

$$\Rightarrow$$
 VC (\mathcal{H}_{LS2})=VC(LinearSeparator in 2Dim) = 3

4

Some VC Dims

- VCdim(LinearSeparator in k-Dim) = k +1
- Multi-layer perceptron network over n inputs of depth s:

```
d \le 2(n+1)s(1+\ln s)
```

- Exact value for sigmoid units is ?unknown?... probably slightly larger...
- Typically VCdim(model) ≈# of non-redundant tunable parameters

VCdim of . . .

- H_{int} = { intervals of real line }
- $H_{box} = \{axis-parallel boxes in 2-D\}$
- H_{md} = {monotone disjunctions (n features)}
- H_{all} = {all functions on n features }

How does VCdim measure Complexity?

- Def'n: $\mathfrak{H}[m]$ = maximum number of ways to split m points using concepts in \mathfrak{H}
- For $m \le VCdim(\mathfrak{H})$, $\mathfrak{H}[m] = 2^m$ For $m \ge VCdim(\mathfrak{H})$, . . .
- Theorem: $\mathfrak{H}[m] = O(m^{VCdim(\mathfrak{H})})$
 - Ie, only C[m] "different" concepts in 5
 wrt any set of m examples.
- \Rightarrow ? Replace $\ln(|\mathfrak{H}|)$ by $\ln(\mathfrak{H}[m])$ in PAC bounds

YES (kinda)! . . . but NOT OBVIOUS, since different data \Rightarrow different concepts

Theorem 1: Given class C, for any distribution D, target concept in C, given a sample size:

$$\frac{1}{\epsilon} \left(4 \log_2 \left(\frac{2}{\delta} \right) + 8 \text{VCdim}(\mathcal{C}) \log_2 \left(\frac{13}{\epsilon} \right) \right)$$

then with prob $\geq 1-\delta$, any consistent $h \in C$ has error $\leq \epsilon$.

Theorem 2: If |C| ≤ 2, then for any learning alg A,
 ∃ distribution D over X, distribution over C s.t. expected error of A is > ε if A sees sample of size under

Comments on VC Dimension

VCdim provides good measure of complexity of class:

Upper/Lower (worst case) bounds:

$$\widetilde{\Theta}(VC\dim(C))$$

- Does this mean. . .
 - ... can't learn classes of infinite VCdimension?
 - A: No: just use poly dependence on size(c)
 - ... complicated hypotheses are bad?
 - A: No. Just need a lot of data to learn complicated concept classes...

Proof of Theorem#2 (Sketch)

■ Theorem 2: ... need at least $m = \frac{VCdim(C) - 1}{8\epsilon}$

```
(#examples needed for uniform convergence . . . for all bad h \in C to look bad . . . )
```

Proof: Consider d = VCdim(C) points $\{x_1, x_2, ..., x_d\}$ that can be shattered by target concepts $\{c_i\}_{i=1}^{2^k}$

- Define distribution D:
 - $1 4\varepsilon$ on x_1
 - $4\varepsilon / (d-1)$ on each other
- Given m instances, expect to see only ½ of { x₂, ..., x_d } so E[#notSeen] ≥ (d 1) / 2
- As can only do 50/50 on instances NOT seen, expected error is #notSeen $\frac{1}{2}$ 4 ϵ / (d 1) = ϵ

Summary of Training vs Test Error

- $egin{array}{lll} \bullet & \epsilon &= \mbox{"true" error of hyp h} \ & \epsilon^* &= \mbox{minimum true error of any member of \mathcal{H}} \ & \epsilon_T &= \mbox{"training set" error of hyp h} \end{array}$
- After m examples, w/ probability $\geq 1 \delta$, ...
 - Finite Hypothesis Class; "Realizable"

$$\epsilon \leq \frac{1}{m} \left[\ln |\mathcal{H}| + \ln \frac{1}{\delta} \right]$$

- Finite Hypothesis Class; "UnRealizable"

$$\epsilon \leq \epsilon^* + \sqrt{\frac{1}{2m} \left[\ln |\mathcal{H}| + \ln \frac{1}{\delta} \right]}$$

 $-d = VCdim(\mathcal{H})$

$$\epsilon \leq 2\epsilon_T + \frac{4}{m} \left[d \log \frac{2e \, m}{d} + \ln \frac{4}{\delta} \right]$$

Case 4: Why SINGLE Hypothesis Space?

- Large 5 is likely to include (approx to) target c but . . .
- w/few examples, cannot reliably find good hypothesis from large hypothesis space
- That is...
 - Underfitting: Every $h \in \mathfrak{H}$ has high \mathfrak{E}_T ⇒ consider larger hypothesis space $\mathfrak{H}' \supset \mathfrak{H}$
 - Overfitting: Many $h \in \mathfrak{H}$ have $\varepsilon_T \approx 0$ \Rightarrow consider smaller $\mathfrak{H}'' \subset \mathfrak{H}$ to get lower d
- \Rightarrow To learn effectively (> 1 ε) from m instances, only consider \mathfrak{H} s.t. $|\mathfrak{H}| \approx e^{\epsilon m}$

How Learning Algorithms Manage This Tradeoff

S1: Start with small hypothesis space \mathcal{H}_1

S2: Grow hypothesis space $\mathcal{H}_1 \subset \mathcal{H}_2 \subset \mathcal{H}_3 \subset \dots$ until finding a good (nearly consistent) hypothesis

```
Eg1 \mathcal{H}_1 = "leaf", then \mathcal{H}_2 = "one DecTree node", then \mathcal{H}_3 = "two DecTree nodes", then ...

Eg2 \mathcal{H}_1 = "constants", then \mathcal{H}_2 = "linear functions", then \mathcal{H}_3 = "quadratic functions", then ...
```

Approaches

- 1. Easy: $\bigcup_i \mathcal{H}_i$ countable, and realizable
- 2. General: Structural Risk Minimization
- 3. "Occam Algorithms"

#4a: Dealing w/∞ Set of Hypotheses

```
    Incremental algorithms:

                     \mathcal{H}_1 \subset \mathcal{H}_2 \subset \ldots \subset \mathcal{H}_n \subset \ldots
                1 - DNF \subset 2 - DNF \subset 3 - DNF \subset \dots
 Assume: m(\mathcal{H}_i, \epsilon, \delta) instances sufficient to PAC(\epsilon, \delta)-learn \mathcal{H}_i
Alg? Assume target in H<sub>1</sub>
               Draw m(\mathcal{H}_1, \epsilon, \delta)
                                              ) instances
               Stop if find good h_1 \in \mathcal{H}_1
               Otherwise...
         Assume target in H<sub>2</sub>
               Draw m(\mathcal{H}_2, \ \epsilon, \delta)
                                               ) more instances
               Stop if find good h_2 \in \mathcal{H}_2
               Otherwise...
         Assume target in \mathcal{H}_i
               Draw m(\mathcal{H}_i, \ \epsilon, \ \delta) ) more instances
               Stop if find good h_i \in \mathcal{H}_i
               Otherwise...
```

58

4

Correct Algorithm?

- Q: Suppose find "good" h_k at iteration k. What is prob of making mistake?
- A: P(mistake) = $\sum_{i=1..k}$ P(mistake @ iteration i) $\leq \sum_{i=1..k} \delta \leq k \delta$
- \Rightarrow Need to use δ_i s.t. $\sum_{i=1..k} \delta_i \leq \delta$ for any k
- Eg: $\delta_i = \delta/2^i$
 - Note: P(mistake) $\leq \sum_{i=1..k} \delta_i = \delta \sum_{i=1..k} \frac{1}{2} = \delta$
- Takes k bits to identify member of 2k-size hypothesis space
 - takes k bits just to express such a hypothesis
- \Rightarrow reasonable to allow learning alg'm time poly in $1/\epsilon$, $1/\delta$ and SIZE OF HYPOTHESIS

#4b: Structural Risk Minimization

Consider

- nested series: $\mathfrak{H}_1 \subset \mathfrak{H}_2 \subset \ldots \subset \mathfrak{H}_k \subset \ldots$
- with VCdim: $d_1 \le d_2 \le ... \le d_k \le ...$
- training errors: $\varepsilon_1 \geq \varepsilon_2 \geq \ldots \geq \varepsilon_k \geq \ldots$

• Choose $h_k \in \mathfrak{H}_k$ that minimizes

$$\epsilon \leq 2\epsilon^k + \frac{4}{m} \left[d_k \log \frac{2e\,m}{d_k} + \ln \frac{4}{\delta} \right]$$

Structural Risk Minimization

For $h \in \mathcal{H}$

L(h) Probability of miss-classification

 $\hat{L}_n(h)$ Empirical fraction of miss-classifications

Vapnik and Chervonenkis 1971: For any distribution with prob. $1 - \delta$, $\forall h \in \mathcal{H}$,

$$L(h) < \underbrace{\hat{L}_n(h)}_{\text{emp. error}} + c \sqrt{\frac{\text{VCdim}(\mathcal{H})\log n + \log \frac{1}{\delta}}{n}}_{\text{complexity penalty}}$$

An Improved VC Bound II

Canonical hyper-plane:

$$\min_{1 \le i \le n} |\mathbf{w}^{\top} \mathbf{x}_i + b| = 1$$

(No loss of generality)

Improved VC Bound (Vapnik 95) VC dimension of set of canonical hyper-planes such that

$$\|\mathbf{w}\| \le A$$

 $\mathbf{x}_i \in \text{Ball of radius } L$

is

$$VCdim \le \min(A^2L^2, d) + 1$$

Observe: Constraints reduce VC-dim bound

Canonical hyper-planes with mini-

mal norm yields best bound

Suggestion: Use hyper-plane with minimal

norm

Case 5: Data Dependent Bounds

- So far, bounds on depend only on
 - **■ E**_T
 - quantities computed prior to seeing S
 (eg, size of 5)
 - \Rightarrow "worst case" as must work for all but δ of possible training sets
- Data dependent bounds consider how h fits data
 - If S is not worst case training set
 - ⇒ tighter error bound!

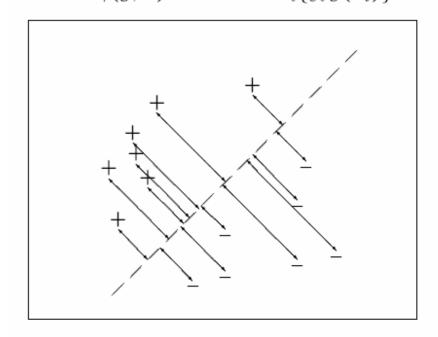
Margin Bounds

• g(x) is real-valued function "thresholded at 0" to produce h(x):

$$g(x) > 0 \Rightarrow h(x) = +1$$

 $g(x) < 0 \Rightarrow h(x) = -1$

• Margin of h(x) wrt S is $\gamma(g,S) = \min_i \{y_i g(x_i)\}$

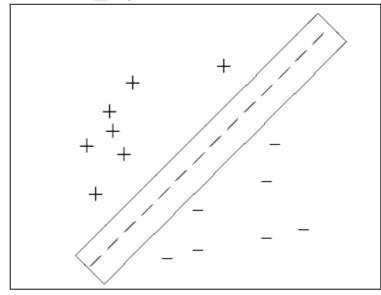


4

Margin Bounds: Key Intuition

Let $G = \{g(x)\}$ = set of real-valued functions that can be thresholded at 0 to give h(x).

• Consider "thickening" each $g \in G$... must correctly classify every point w/ margin $\geq \gamma$



fat shattering dimension: fat_γ(G)

 ≡ VCdim of these "fat" separators

Note $fat_{\gamma}(G) \leq VCdim(G)$

Noise Free Margin Bound

- Spse find $g \in G$ with margin $\gamma = \gamma(g, S)$ for a training set of size m
- Then, with probability $1-\delta$

$$\epsilon \leq \frac{2}{m} \left[d \log \frac{2e \, m}{d \gamma} \log \frac{32m}{\gamma^2} + \log \frac{4}{\delta} \right]$$

 $d = \operatorname{fat}_{\gamma/8}(G)$ with margin $\gamma/8$

Note fat.(G) kinda-like VCdim(G)!

Soft Margin Classification (2)

• Error rate of linear separator with unit weight vector and margin γ on training data lying in a sphere of radius R is, with probability $\geq 1 - \delta$,

$$\epsilon \le \frac{C}{m} \left[\frac{R^2 + \|\xi\|^2}{\gamma^2} \log^2 m + \log \frac{1}{\delta} \right]$$

(constant C)

- ⇒ we should
 - maximize margin γ
 - minimize slack $\|\xi\|^2$

... see support vector machines!

Fat Shattering for Linear Separators: Noise-Free

Spse support for $P(\mathbf{x})$ within sphere of radius R $\|\mathbf{x}\| \le R$

$$G = \{ g | g(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} \& ||w|| = 1 \}$$

Then $fat_{\gamma}(G) = \left(\frac{R}{\gamma}\right)^2$

$$\Rightarrow \quad \epsilon \quad \leq \quad \frac{2}{m} \left[\frac{64R^2}{\gamma^2} \log \frac{em\gamma}{8R^2} \log \frac{32m}{\gamma^2} + \log \frac{4}{\delta} \right] \\ \in \quad \tilde{O}\left(\frac{R^2}{m\gamma^2}\right)$$

 \Rightarrow For fixed R, m:

seek g that maximizes γ !

maximum margin classifier

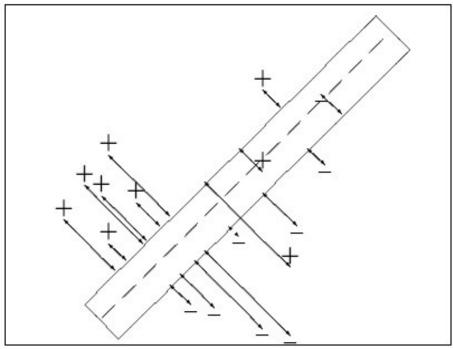
• Even with kernel $K(\cdot,\cdot)$... where $\|\mathbf{x}\| = \sqrt{K(\mathbf{x},\mathbf{x})}$

Soft Margin Classification

- Extension of margin analysis:
 When data is not linearly separable:
- $\xi_i = \max\{0, \ \gamma y_i, g(\mathbf{x}_i)\}$ "margin slack variable" for $\langle \mathbf{x}_i, y_i \rangle$

Note: $\xi_i > \gamma \implies \mathbf{x}_i$ misclassified by h

• $\xi = \langle \xi_1, \dots, \xi_m \rangle$ "margin slack vector for h on S"



Irrelevant Features

- Consider learning CD(n) = disjunction of n features "List-then-Eliminate" makes O(n) mistakes
 - PAC-learning: O($n/\epsilon \log(1/\delta)$)
- Spse n is HUGE
 - Words in text
 - Boolean combination of "atomic" features
 - Features extracted in 480x560 image
 - . . . but only r<< n features "relevant"
 - Eg: concept $x_4 \vee \neg x_{91} \vee \neg x_{203} \vee x_{907}$
- ∃ learning alg that makes O(r ln n) mistakes! "Winnow"

Winnow Algorithm

- Initialize weights w₁, ..., w_n to 1
- Do until bored:
 - Given example $\mathbf{x} = [x_1, ..., x_n]$, If $w_1x_1 + w_2x_2 + ... + w_nx_n \ge n$ output 1 otherwise 0
 - If mistake:
 - (a) If predicts 0 on 1-example, then
 for each x_i = 1, set w_i := w_i x 2
 - (b) If predicts 1 on 0-example, then
 for each x_i = 1, set w_i := w_i / 2

Winnow's Effectiveness

Theorem Winnow MB-learns CD(n), making at most 2+3r(1+lg n) mistakes when target concept is disjunction of r var's.

Proof: 1. Any mistake made on 1-example must double

- ≥1 weights in target function (the relevant weights),
- & mistake on 0-example will not halve these weights.
- Each "relevant" weight can be doubled ≤ 1+lg n times, since only weights ≤ n can be doubled.

(Never double any weight $w_i > n$ as that weight alone \Rightarrow class is 1)

- \Rightarrow Winnow makes $\leq r(1+\lg n)$ mistakes on 1-examples
- 2. Negative examples?
- Let sw_t be sum of weights $\sum w_i = n$, at time t. Initially $sw_0 = n$.

Each mistake on 1-example increases sw by $\leq n$

(. . . before doubling, we know $w_1x_1 + w_2x_2 + ... + w_nx_n < n$)

Each mistake on 0-example decreases sw by $\geq n/2$

(. . . before halving, we know $w_1x_1 + w_2x_2 + ... + w_nx_n \ge n$)

- As sw ≥ 0, number of mistakes made on 0-examples
 ≤ 2+ 2number of mistakes made on 1-examples.
- So total # of mistakes is $r(1+\ln n) + [2+2r(1+\lg n)]$

Incorporating Winnow Into PAC Model

- Given a MB(M)-learner, can PAC(ε , δ)-learn
 - Return any h_i that makes $\frac{1}{\epsilon} \log(\frac{M}{\delta})$ correct predictions
 - Requires $m = \frac{M}{\epsilon} \log(\frac{M}{\delta}) = \frac{r \log(n)}{\epsilon} \log(\frac{r \log(n)}{\delta})$ instances
- Better PAC-learner: $O(\frac{1}{\epsilon}[r\log(n) + \log(\frac{1}{\delta})])$
 - 1. Draw $m_1 = 4/\epsilon \max \{ M, 2 \ln(2/\delta) \}$ instances, S_1
 - 2. Run Winnow (a MB-learner) on S_1 , generating \leq M hypotheses $H = \{ h_1, ..., h_M \}$
 - 3. Draw $m_2 = O(8/\epsilon \log(2M/\delta))$ more instances S_2
 - 4. Use S₂ to find best hypothesis, h* in H
 - 5. Return h*
 - Why: Most ϵ -bad hypotheses have error $>> \epsilon$ \Rightarrow reveal "badness" in $< \frac{1}{\epsilon} \log(\frac{M}{\delta})$ instances

Proof

- m₁ guarantees that ≥ 1 of H is good
 m₂ distinguishes good h* from bad members of H.
- After m₁ instances, ≥ 1 of H has error ≤ ε/2
 PROOF: Spse first k − 1 hyp's all have error > ε/2, and hk had error ≤ ε/2
 What is prob that hk occurs after m₁ instances?

Worst if k = M and each $err_D(h_i) = \varepsilon/2$ Chernoff bounds $\Rightarrow \delta/2$:

- Consider flipping (sequence of M) $\varepsilon/2$ weighted coins
- (each "head" \equiv error)
- After m_1 flips, expect $m_1 \times \epsilon/2 \le 2M$ "heads"
- Prob of getting under M (≤ ½ exp. number) heads ≤ P(Y_M ≤ (1 − ½) ϵ /2) ≤ exp(− M ϵ /2 ½)/2) ≤ exp(− M ϵ /8) ≤ δ

Proof (II)

```
Use m_2, select h^* w/ err_S(h^*) \leq 3/4 \epsilon

With prob \geq 1 - \delta/2 err_D(h^*) \leq \epsilon

PROOF: Need to show err_S(h_i)

[average # mistakes made by h_i over m_2 samples]

is within 3/4 of \mu_i = err_D(h_i)

P(err_S(h_i) < err_D(h_i) \times (1 - 1/4)) \leq exp(-(m_2 \epsilon 1/4)/2) \leq \delta / (2M)

So prob ANY h_i \in H is off by < 3/4 is under \delta /2

m_1 is leading term

\Rightarrow O(-1/\epsilon) [r \log(n) + \log(1/\delta)]
```

- Best known bound for learning r of n disjuncts!
- Note: Might NOT find 0 error r-disjunction. . .