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The Main Idea

Given a dataset X = {x1, . . . , xN}

Find a low-dimensional linear projection

Two possible formulations

The variance in low-d is maximized
The average projection cost is minimized

Both are equivalent
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Two viewpoints

x2

x1

xn

x̃n

u1
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Maximum Variance Formulation

Consider X = {x1, . . . , xN}

With xi ∈ Rd , goal is to get a projection in Rm,m < d

Consider m = 1, need a projection vector u1 ∈ Rd

Each datapoint xi gets projected to uTxi

Mean of the projected data uT
1 x̄ where

x̄ =
1

N

N∑
n=1

xn

Variance of the projected data

1

N

N∑
n=1

(uT
1 xn − uT

1 x̄)2 = uT
1 Su1

where
S =

1

N

N∑
n=1

(xn − x̄)(xn − x̄)T
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Maximum Variance Formulation (Contd.)

Maximize uT
1 Su1 w.r.t. u1

Need to have a constraint to prevent ||u1|| → ∞
Normalization constraint ||u1||2 = 1

The Lagrangian for the problem

uT
1 Su1 + λ1(1− uT

1 u1)

First order necessary condition

Su1 = λu1

u1 must be ‘largest’ eigenvector of S since

uT
1 Su1 = λ1

The eigenvector u1 is called a principal component
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Maximum Variance Formulation (Contd.)

Subsequent principal components must be orthogonal to u1

Maximize uT
2 Su2 s.t. ||u2||2 = 1,u2 ⊥ u1

Turns out to be the second eigenvector, and so on

The top-m eigenvectors give the ‘best’ m-dimensional
projection
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Minimum Error Formulation

Consider a complete basis {ui} in Rd

Each data point can be written as xn =
∑d

i=1 αniui

Note that αni = xT
n ui so that

xn =
d∑

i=1

(xT
n ui )ui

Our goal is to obtain a lower dimensional subspace m < d

A generic representation of a low-d point

x̃n =
m∑

i=1

zniui +
d∑

i=m+1

biui

Coefficients zni depend on the data point xn

Free to choose zni , bi ,ui to get x̃n close to xn
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Minimum Error Formulation (Contd.)

The objective is to minimize

J =
1

N

N∑
n=1

||xn − x̃n‖2

Taking derivative w.r.t. zni we get znj = xT
n uj , j = 1, . . . ,m

Taking derivative w.r.t. bj we get bj = x̄Tuj , j = m + 1, . . . , d

Then we have

xn − x̃n =
d∑

i=m+1

{(xn − x̄)Tui}ui

Lies in the space orthogonal to the principal subspace

The distortion measure to be minimized

J =
1

N

N∑
n=1

d∑
i=m+1

(xT
n ui − x̄Tui )

2 =
d∑

i=m+1

uT
i Sui

Need orthonormality constraints on ui to prevent ui = 0
solution
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Minimum Error Formulation (Contd.)

Consider special case d = 2,m = 1

The Lagrangian of the objective

L = uT
2 Su2 + λ2(1− uT

2 u2)

First order condition is Su2 = λ2u2

In general, the condition is Sui = λiui

Given by the eigenvectors corresponding to the smallest
(d −m) eigenvalues

So the principal space ui , i = 1, . . . ,m are the ‘largest’
eigenvectors

Instructor: Arindam Banerjee Principal Component Analysis
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Kernel PCA

In PCA, the principal components ui are given by

Sui = λiui

where

S =
1

N

N∑
n=1

xnx
T
n

Consider a feature mapping φ(x)

Want to implicitly perform PCA in the feature space

Assume the features have zero mean
∑

n φ(xn) = 0

Instructor: Arindam Banerjee Principal Component Analysis



Kernel PCA (Contd.)

The sample covariance matrix in the feature space

C =
1

N

N∑
n=1

φ(xn)φ(xn)
T

The eigenvectors are given by

Cvi = λivi

We want to avoid computing C explicitly
Note that the eigenvectors satisfy

1

N

N∑
n=1

φ(xn)
{

φ(xn)
Tvi

}
= λivi

Since the inner product is a scaler, we have

vi =
N∑

n=1

ainφ(xn)

Instructor: Arindam Banerjee Principal Component Analysis



Kernel PCA (Contd.)

The sample covariance matrix in the feature space

C =
1

N

N∑
n=1

φ(xn)φ(xn)
T

The eigenvectors are given by

Cvi = λivi

We want to avoid computing C explicitly
Note that the eigenvectors satisfy

1

N

N∑
n=1

φ(xn)
{

φ(xn)
Tvi

}
= λivi

Since the inner product is a scaler, we have

vi =
N∑

n=1

ainφ(xn)

Instructor: Arindam Banerjee Principal Component Analysis



Kernel PCA (Contd.)

The sample covariance matrix in the feature space

C =
1

N

N∑
n=1

φ(xn)φ(xn)
T

The eigenvectors are given by

Cvi = λivi

We want to avoid computing C explicitly

Note that the eigenvectors satisfy

1

N

N∑
n=1

φ(xn)
{

φ(xn)
Tvi

}
= λivi

Since the inner product is a scaler, we have

vi =
N∑

n=1

ainφ(xn)

Instructor: Arindam Banerjee Principal Component Analysis



Kernel PCA (Contd.)

The sample covariance matrix in the feature space

C =
1

N

N∑
n=1

φ(xn)φ(xn)
T

The eigenvectors are given by

Cvi = λivi

We want to avoid computing C explicitly
Note that the eigenvectors satisfy

1

N

N∑
n=1

φ(xn)
{

φ(xn)
Tvi

}
= λivi

Since the inner product is a scaler, we have

vi =
N∑

n=1

ainφ(xn)
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Kernel PCA (Contd.)

Substituting back into the eigenvalue equation

1

N

N∑
n=1

φ(xn)φ(xn)
T

N∑
m=1

aimφ(xm) = λi

N∑
n=1

ainφ(xn)

Multiplying both sides by φ(xl) and using
K (xn, xm) = φ(xn)

Tφ(xm), we have

1

N

N∑
n=1

K (xl , xn)
N∑

m=1

aimK (xn, xm) = λi

N∑
n=1

ainK (xl , xn)

In matrix notation, we have

K 2ai = λiNKai

Except for eigenvectors with 0 eigenvalues, we can solve

Kai = λiNai

Instructor: Arindam Banerjee Principal Component Analysis
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Kernel PCA (Contd.)

Since the original vi are normalized, we have

1 = vT
i vi = aT

i Kai = λiNaT
i ai

Gives a normalization condition for ai

Compute ai by solving the eigenvalue decomposition

The ‘projection’ of a point is given by

yi (x) = φ(xi )
Tvi =

N∑
n=1

ainφ(xn)
Tφ(xn) =

N∑
n=1

ainK (x, xn)
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Illustration of Kernel PCA (Feature Space)

φ2

φ1
v1
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Illustration of Kernel PCA (Data Space)

x1

x2
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Dimensionality of Projection

Original xi ∈ Rd , feature φ(xi ) ∈ RD

Possibly D >> d so that the number of principal components
can be greater than d

However, the number of nonzero eigenvalues cannot exceed N

The covariance matrix C has rank at most N, even if D >> d

Kernel PCA involves eigenvalue decomposition of a N × N
matrix
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Kernel PCA: Non-zero Mean

The features need not have zero mean

Note that the features cannot be explicitly centered

The centralized data would be of the form

φ̃(xn) = φ(xn)−
1

N

N∑
l=1

φ(xl)

The corresponding gram matrix

K̃ = K − 1NK − K1N + 1NK1N

Use K̃ in the basic kernel PCA formulation
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Kernel PCA on Artificial Data
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Kernel PCA Properties

Computes eigenvalue decomposition of N × N matrix

Standard PCA computes it for d × d
For large datasets N >> d , Kernel PCA is more expensive

Standard PCA gives projection to a low dimensional principal
subspace

x̂n =
∑̀
i=1

(xT
n ui )ui

Kernel PCA cannot do this

φ(x) forms a d-dimensional manifold in RD

PCA projection φ̂ of φ(x) need not be in the manifold
May not have a pre-image x̂ in the data space

Instructor: Arindam Banerjee Principal Component Analysis


