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The Main Idea

o Given a dataset X = {x1,...,xn}

@ Find a low-dimensional linear projection
@ Two possible formulations

e The variance in low-d is maximized
e The average projection cost is minimized

@ Both are equivalent

Instructor: Arindam Banerjee



Two viewpoints
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Maximum Variance Formulation

Consider X = {x1,...,xn}

With x; € RY, goal is to get a projection in R™, m < d
Consider m = 1, need a projection vector u; € R?
Each datapoint x; gets projected to u’x;

Mean of the projected data u{)’( where

1 N
:NZ_;""

Variance of the projected data

X

1
— (u!{ x, —u{ %)? = uf Su;

where 1
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Maximum Variance Formulation (Contd.)

Maximize ui’—Sul w.r.t. up

Need to have a constraint to prevent ||ui|| — oo
Normalization constraint ||ug||? =1

The Lagrangian for the problem

u! Sup + A\ (1 —ufup)

First order necessary condition

Sul = )\Ul

u; must be ‘largest’ eigenvector of S since

ulTSul =\

@ The eigenvector uj is called a principal component
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@ Subsequent principal components must be orthogonal to u;
o Maximize uj Sup s.t. ||up||?2 =1,up L ug
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Maximum Variance Formulation (Contd.)

Subsequent principal components must be orthogonal to uy
Maximize uJ Suy s.t. [|ua||> = 1,uz L ug
Turns out to be the second eigenvector, and so on

The top-m eigenvectors give the ‘best’ m-dimensional
projection
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Minimum Error Formulation

Consider a complete basis {u;} in RY

Each data point can be written as x,, = 27:1 Qpil;

Note that a,; = x,,Tu,- so that

X, = z(anu,-)u,-

Our goal is to obtain a lower dimensional subspace m < d

A generic representation of a low-d point
m d
X, = ZZ,,,’U,‘ + Z b;u;
i=1 i=m+1

@ Coefficients z,; depend on the data point x,

@ Free to choose z,;, bj, u; to get X, close to x,
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Minimum Error Formulation (Contd.)

@ The objective is to minimize

1N
S 112
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@ The objective is to minimize
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Minimum Error Formulation (Contd.)

@ The objective is to minimize

1 N
_ < 12
J= N n§—1 [[xn — Znl|

e Taking derivative w.r.t. z,; we get z,; = anuJ-,j =1,...,m
e Taking derivative w.r.t. b; we get b; = )_(Tuj-,j =m+1,....d
@ Then we have
d
Xn — )H(,7 = Z {(Xn — )_()Tu,-}u,-
i=m+1
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Minimum Error Formulation (Contd.)

@ The objective is to minimize

1 N
= D lIxn = R
n=1
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Minimum Error Formulation (Contd.)

@ The objective is to minimize

1 N
= D lIxn = R
n=1

e Taking derivative w.r.t. z,; we get z,; = anuJ-,j =1,...,m
e Taking derivative w.r.t. b; we get b; = )_(Tuj-,j =m+1,....d
@ Then we have
Z {(x u,}u,
i=m+1
@ Lies in the space orthogonal to the principal subspace
@ The distortion measure to be minimized
1on T ST, N2 c T
:NZ Z (xpui —x"uj)” = Z u; Su;
n=1i=m+1 i=m+1
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Minimum Error Formulation (Contd.)

@ The objective is to minimize

1N
S |12
= > 10— %
n=1
Taking derivative w.r.t. z,; we get z,; = anuJ-,j =1,...,m
Taking derivative w.r.t. b; we get b; = )_(Tuj-,j =m+1,....d
@ Then we have

Z {(x u,}u,
i=m+1
@ Lies in the space orthogonal to the principal subspace
@ The distortion measure to be minimized
1on T ST, N2 c T
:NZ Z(xnu,-—x u;)” = Z u; Su;
n=1i=m+1 i=m+1

@ Need orthonormality constraints on u; to prevent u; =0
solution
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Minimum Error Formulation (Contd.)

Consider special case d =2, m =1

The Lagrangian of the objective

L=u] Suz + (1 — uj up)

First order condition is Suy = Auo

In general, the condition is Su; = A\ju;

Given by the eigenvectors corresponding to the smallest
(d — m) eigenvalues

So the principal space u;,i = 1,..., m are the ‘largest’
eigenvectors
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Kernel PCA

@ In PCA, the principal components u; are given by
Su,- = )\,-u,-
where

1 N
5=y x
n—=

o Consider a feature mapping ¢(x)
@ Want to implicitly perform PCA in the feature space
@ Assume the features have zero mean > ¢(x,) =0
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Kernel PCA (Contd.)

@ The sample covariance matrix in the feature space

1Y .
C= N nz:l &(xn)P(xn)

@ The eigenvectors are given by
CV,’ = )\,'V,'

@ We want to avoid computing C explicitly
@ Note that the eigenvectors satisfy

1Y ol
2 90 o) i = A

@ Since the inner product is a scaler, we have

N
Vi = Z aind(xn)
n=1
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Kernel PCA (Contd.)

@ Substituting back into the eigenvalue equation

1Y : S
2 xn)0(xn) T D aim(xm) = Ai D @in(x2)
n=1 m=1 n=1
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@ Substituting back into the eigenvalue equation

1Y : S
2 xn)0(xn) T D aim(xm) = Ai D @in(x2)
n=1 m=1 n=1

e Multiplying both sides by ¢(x;) and using
K(Xn,Xm) = ¢(xn) T d(xm), we have

N N N

1

N Z K(x/,%n) Z aimK (Xn, Xm) = A Z ainK (%7, %n)
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Kernel PCA (Contd.)

@ Substituting back into the eigenvalue equation

;N N N
N Z ¢(Xn)¢(xn)7— Z aim(b(xm) =\ Z ain¢(xn)
n=1 m=1 n=1
e Multiplying both sides by ¢(x;) and using
K(Xn, Xm) = ¢(xn) T d(xm), we have

N N N
1
N Z K(x/,%n) Z aimK (Xn, Xm) = A Z ainK (%7, %n)
n=1 m=1 n=1
@ In matrix notation, we have
K?a; = \/NKa,
@ Except for eigenvectors with 0 eigenvalues, we can solve

Ka,- = )\,-Na,-
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Kernel PCA (Contd.)

@ Since the original v; are normalized, we have
1= V,-TV,' = a,-TKa,- = )\,-Na,-Ta,-
@ Gives a normalization condition for a;
o Compute a; by solving the eigenvalue decomposition

@ The ‘projection’ of a point is given by

N N
yi(x) = ¢(xi) Tvi = > aind(xn) "6 (xn) = > ainK(x, Xn)
n=1 n=1
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lllustration of Kernel PCA (Feature Space)
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lllustration of Kernel PCA (Data Space)

1'2“

Instructor: Arindam Banerjee



Dimensionality of Projection

Original x; € RY, feature ¢(x;) € RP

Possibly D >> d so that the number of principal components
can be greater than d

However, the number of nonzero eigenvalues cannot exceed N

The covariance matrix C has rank at most N, even if D >> d

Kernel PCA involves eigenvalue decomposition of a N x N
matrix
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Kernel PCA: Non-zero Mean

The features need not have zero mean

Note that the features cannot be explicitly centered

The centralized data would be of the form

1 N
Bxn) = Blxs) = 75 D 0(x1)
=1

The corresponding gram matrix

K=K-1yK — Kly + 1yK1ly

@ Use K in the basic kernel PCA formulation
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Kernel PCA on Artificial Data

Eigenvalue=21.72 Eigermialue=21 65 Eigervalue=4 11 Eigenvalue=3.93

Eigenvalue=3.68 Eigervalue=3.08 Eigervalue=2 B0 Eigenvalue=2.53
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Kernel PCA Properties

o Computes eigenvalue decomposition of N x N matrix
e Standard PCA computes it for d x d
o For large datasets N >> d, Kernel PCA is more expensive
@ Standard PCA gives projection to a low dimensional principal
subspace

l
Ky = Z(anu,-)u,-
i=1

@ Kernel PCA cannot do this

o ¢(x) forms a d-dimensional manifold in R
o PCA projection ¢ of ¢(x) need not be in the manifold
e May not have a pre-image X in the data space
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