Principal Component Analysis

CSci 5525: Machine Learning

Instructor: Arindam Banerjee

Dec 3, 2008

• Given a dataset $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$

- Given a dataset $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$
- Find a low-dimensional linear projection

- Given a dataset $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$
- Find a low-dimensional linear projection
- Two possible formulations

- Given a dataset $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$
- Find a low-dimensional linear projection
- Two possible formulations
 - The variance in low-d is maximized

- Given a dataset $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$
- Find a low-dimensional linear projection
- Two possible formulations
 - The variance in low-d is maximized
 - The average projection cost is minimized

- Given a dataset $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$
- Find a low-dimensional linear projection
- Two possible formulations
 - The variance in low-d is maximized
 - The average projection cost is minimized
- Both are equivalent

Two viewpoints

• Consider $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$

- Consider $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$
- With $\mathbf{x}_i \in \mathbb{R}^d$, goal is to get a projection in $\mathbb{R}^m, m < d$

- Consider $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$
- With $\mathbf{x}_i \in \mathbb{R}^d$, goal is to get a projection in $\mathbb{R}^m, m < d$
- ullet Consider m=1, need a projection vector $\mathbf{u}_1 \in \mathbb{R}^d$

- Consider $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$
- With $\mathbf{x}_i \in \mathbb{R}^d$, goal is to get a projection in $\mathbb{R}^m, m < d$
- ullet Consider m=1, need a projection vector $oldsymbol{\mathbf{u}}_1 \in \mathbb{R}^d$
- Each datapoint \mathbf{x}_i gets projected to $\mathbf{u}^T \mathbf{x}_i$

- Consider $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$
- With $\mathbf{x}_i \in \mathbb{R}^d$, goal is to get a projection in $\mathbb{R}^m, m < d$
- ullet Consider m=1, need a projection vector $\mathbf{u}_1 \in \mathbb{R}^d$
- Each datapoint \mathbf{x}_i gets projected to $\mathbf{u}^T \mathbf{x}_i$
- ullet Mean of the projected data $oldsymbol{u}_1^Tar{oldsymbol{x}}$ where

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

- Consider $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$
- With $\mathbf{x}_i \in \mathbb{R}^d$, goal is to get a projection in $\mathbb{R}^m, m < d$
- Consider m=1, need a projection vector $\mathbf{u}_1 \in \mathbb{R}^d$
- Each datapoint \mathbf{x}_i gets projected to $\mathbf{u}^T \mathbf{x}_i$
- Mean of the projected data $\mathbf{u}_1^T \bar{\mathbf{x}}$ where

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

Variance of the projected data

$$\frac{1}{N} \sum_{n=1}^{N} (\mathbf{u}_{1}^{T} \mathbf{x}_{n} - \mathbf{u}_{1}^{T} \bar{\mathbf{x}})^{2} = \mathbf{u}_{1}^{T} S \mathbf{u}_{1}$$

where

$$S = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^T$$

• Maximize $\mathbf{u}_1^T S \mathbf{u}_1$ w.r.t. \mathbf{u}_1

- Maximize $\mathbf{u}_1^T S \mathbf{u}_1$ w.r.t. \mathbf{u}_1
- ullet Need to have a constraint to prevent $||\mathbf{u}_1|| o \infty$

- Maximize $\mathbf{u}_1^T S \mathbf{u}_1$ w.r.t. \mathbf{u}_1
- ullet Need to have a constraint to prevent $||\mathbf{u}_1|| o \infty$
- Normalization constraint $||\mathbf{u}_1||^2 = 1$

- Maximize $\mathbf{u}_1^T S \mathbf{u}_1$ w.r.t. \mathbf{u}_1
- ullet Need to have a constraint to prevent $||\mathbf{u}_1|| o \infty$
- Normalization constraint $||\mathbf{u}_1||^2 = 1$
- The Lagrangian for the problem

$$\mathbf{u}_1^T S \mathbf{u}_1 + \lambda_1 (1 - \mathbf{u}_1^T \mathbf{u}_1)$$

- Maximize $\mathbf{u}_1^T S \mathbf{u}_1$ w.r.t. \mathbf{u}_1
- ullet Need to have a constraint to prevent $||\mathbf{u}_1|| o \infty$
- Normalization constraint $||\mathbf{u}_1||^2 = 1$
- The Lagrangian for the problem

$$\mathbf{u}_1^T S \mathbf{u}_1 + \lambda_1 (1 - \mathbf{u}_1^T \mathbf{u}_1)$$

First order necessary condition

$$S\mathbf{u}_1 = \lambda \mathbf{u}_1$$

- Maximize $\mathbf{u}_1^T S \mathbf{u}_1$ w.r.t. \mathbf{u}_1
- ullet Need to have a constraint to prevent $||\mathbf{u}_1|| o \infty$
- Normalization constraint $||\mathbf{u}_1||^2 = 1$
- The Lagrangian for the problem

$$\mathbf{u}_1^T S \mathbf{u}_1 + \lambda_1 (1 - \mathbf{u}_1^T \mathbf{u}_1)$$

First order necessary condition

$$S\mathbf{u}_1 = \lambda \mathbf{u}_1$$

ullet u₁ must be 'largest' eigenvector of S since

$$\mathbf{u}_1^T S \mathbf{u}_1 = \lambda_1$$

- Maximize $\mathbf{u}_1^T S \mathbf{u}_1$ w.r.t. \mathbf{u}_1
- ullet Need to have a constraint to prevent $||\mathbf{u}_1|| o \infty$
- Normalization constraint $||\mathbf{u}_1||^2 = 1$
- The Lagrangian for the problem

$$\mathbf{u}_1^T S \mathbf{u}_1 + \lambda_1 (1 - \mathbf{u}_1^T \mathbf{u}_1)$$

First order necessary condition

$$S\mathbf{u}_1 = \lambda \mathbf{u}_1$$

ullet $oldsymbol{u}_1$ must be 'largest' eigenvector of S since

$$\mathbf{u}_1^T S \mathbf{u}_1 = \lambda_1$$

ullet The eigenvector $oldsymbol{u}_1$ is called a principal component

 \bullet Subsequent principal components must be orthogonal to \textbf{u}_1

- ullet Subsequent principal components must be orthogonal to $oldsymbol{u}_1$
- Maximize $\mathbf{u}_2^T S \mathbf{u}_2$ s.t. $||\mathbf{u}_2||^2 = 1, \mathbf{u}_2 \perp \mathbf{u}_1$

- ullet Subsequent principal components must be orthogonal to $oldsymbol{u}_1$
- ullet Maximize $oldsymbol{\mathsf{u}}_2^{\mathsf{T}} S oldsymbol{\mathsf{u}}_2$ s.t. $||oldsymbol{\mathsf{u}}_2||^2 = 1, oldsymbol{\mathsf{u}}_2 \perp oldsymbol{\mathsf{u}}_1$
- Turns out to be the second eigenvector, and so on

- ullet Subsequent principal components must be orthogonal to $oldsymbol{u}_1$
- Maximize $\mathbf{u}_2^T S \mathbf{u}_2$ s.t. $||\mathbf{u}_2||^2 = 1, \mathbf{u}_2 \perp \mathbf{u}_1$
- Turns out to be the second eigenvector, and so on
- The top-m eigenvectors give the 'best' m-dimensional projection

ullet Consider a complete basis $\{{f u}_i\}$ in \mathbb{R}^d

- ullet Consider a complete basis $\{{f u}_i\}$ in \mathbb{R}^d
- Each data point can be written as $\mathbf{x}_n = \sum_{i=1}^d \alpha_{ni} \mathbf{u}_i$

- ullet Consider a complete basis $\{{f u}_i\}$ in \mathbb{R}^d
- Each data point can be written as $\mathbf{x}_n = \sum_{i=1}^d \alpha_{ni} \mathbf{u}_i$
- Note that $\alpha_{ni} = \mathbf{x}_n^T \mathbf{u}_i$ so that

$$\mathbf{x}_n = \sum_{i=1}^d (\mathbf{x}_n^T \mathbf{u}_i) \mathbf{u}_i$$

- ullet Consider a complete basis $\{{f u}_i\}$ in \mathbb{R}^d
- Each data point can be written as $\mathbf{x}_n = \sum_{i=1}^d \alpha_{ni} \mathbf{u}_i$
- Note that $\alpha_{ni} = \mathbf{x}_n^T \mathbf{u}_i$ so that

$$\mathbf{x}_n = \sum_{i=1}^d (\mathbf{x}_n^T \mathbf{u}_i) \mathbf{u}_i$$

ullet Our goal is to obtain a lower dimensional subspace m < d

- ullet Consider a complete basis $\{{f u}_i\}$ in \mathbb{R}^d
- Each data point can be written as $\mathbf{x}_n = \sum_{i=1}^d \alpha_{ni} \mathbf{u}_i$
- Note that $\alpha_{ni} = \mathbf{x}_n^T \mathbf{u}_i$ so that

$$\mathbf{x}_n = \sum_{i=1}^d (\mathbf{x}_n^T \mathbf{u}_i) \mathbf{u}_i$$

- Our goal is to obtain a lower dimensional subspace m < d
- A generic representation of a low-d point

$$\tilde{\mathbf{x}}_n = \sum_{i=1}^m z_{ni} \mathbf{u}_i + \sum_{i=m+1}^d b_i \mathbf{u}_i$$

- ullet Consider a complete basis $\{{f u}_i\}$ in \mathbb{R}^d
- Each data point can be written as $\mathbf{x}_n = \sum_{i=1}^d \alpha_{ni} \mathbf{u}_i$
- Note that $\alpha_{ni} = \mathbf{x}_n^T \mathbf{u}_i$ so that

$$\mathbf{x}_n = \sum_{i=1}^d (\mathbf{x}_n^T \mathbf{u}_i) \mathbf{u}_i$$

- Our goal is to obtain a lower dimensional subspace m < d
- A generic representation of a low-d point

$$\tilde{\mathbf{x}}_n = \sum_{i=1}^m z_{ni} \mathbf{u}_i + \sum_{i=m+1}^d b_i \mathbf{u}_i$$

• Coefficients z_{ni} depend on the data point \mathbf{x}_n

- ullet Consider a complete basis $\{{f u}_i\}$ in \mathbb{R}^d
- Each data point can be written as $\mathbf{x}_n = \sum_{i=1}^d \alpha_{ni} \mathbf{u}_i$
- Note that $\alpha_{ni} = \mathbf{x}_n^T \mathbf{u}_i$ so that

$$\mathbf{x}_n = \sum_{i=1}^d (\mathbf{x}_n^T \mathbf{u}_i) \mathbf{u}_i$$

- Our goal is to obtain a lower dimensional subspace m < d
- A generic representation of a low-d point

$$\tilde{\mathbf{x}}_n = \sum_{i=1}^m z_{ni} \mathbf{u}_i + \sum_{i=m+1}^d b_i \mathbf{u}_i$$

- Coefficients z_{ni} depend on the data point \mathbf{x}_n
- Free to choose z_{ni} , b_i , \mathbf{u}_i to get $\tilde{\mathbf{x}}_n$ close to \mathbf{x}_n

• The objective is to minimize

$$J = \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{x}_n - \tilde{\mathbf{x}}_n||^2$$

• The objective is to minimize

$$J = \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{x}_n - \tilde{\mathbf{x}}_n||^2$$

ullet Taking derivative w.r.t. z_{ni} we get $z_{nj} = \mathbf{x}_n^T \mathbf{u}_j, j = 1, \dots, m$

The objective is to minimize

$$J = \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{x}_n - \tilde{\mathbf{x}}_n||^2$$

- Taking derivative w.r.t. z_{ni} we get $z_{nj} = \mathbf{x}_n^T \mathbf{u}_j, j = 1, \dots, m$
- Taking derivative w.r.t. b_j we get $b_j = \bar{\mathbf{x}}^T \mathbf{u}_j, j = m+1, \ldots, d$

• The objective is to minimize

$$J = \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{x}_n - \tilde{\mathbf{x}}_n||^2$$

- Taking derivative w.r.t. z_{ni} we get $z_{nj} = \mathbf{x}_n^T \mathbf{u}_j, j = 1, \dots, m$
- Taking derivative w.r.t. b_j we get $b_j = \bar{\mathbf{x}}^T \mathbf{u}_j, j = m+1, \ldots, d$
- Then we have

$$\mathbf{x}_n - \tilde{\mathbf{x}}_n = \sum_{i=m+1}^d \{ (\mathbf{x}_n - \bar{\mathbf{x}})^T \mathbf{u}_i \} \mathbf{u}_i$$

• The objective is to minimize

$$J = \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{x}_n - \tilde{\mathbf{x}}_n||^2$$

- Taking derivative w.r.t. z_{ni} we get $z_{nj} = \mathbf{x}_n^T \mathbf{u}_j, j = 1, \dots, m$
- Taking derivative w.r.t. b_j we get $b_j = \bar{\mathbf{x}}^T \mathbf{u}_j, j = m+1, \ldots, d$
- Then we have

$$\mathbf{x}_n - \tilde{\mathbf{x}}_n = \sum_{i=m+1}^a \{ (\mathbf{x}_n - \bar{\mathbf{x}})^T \mathbf{u}_i \} \mathbf{u}_i$$

Lies in the space orthogonal to the principal subspace

• The objective is to minimize

$$J = \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{x}_n - \tilde{\mathbf{x}}_n||^2$$

- Taking derivative w.r.t. z_{ni} we get $z_{nj} = \mathbf{x}_n^T \mathbf{u}_j, j = 1, \dots, m$
- Taking derivative w.r.t. b_j we get $b_j = \bar{\mathbf{x}}^T \mathbf{u}_j, j = m+1, \ldots, d$
- Then we have

$$\mathbf{x}_n - \tilde{\mathbf{x}}_n = \sum_{i=m+1}^{a} \{ (\mathbf{x}_n - \bar{\mathbf{x}})^T \mathbf{u}_i \} \mathbf{u}_i$$

- Lies in the space orthogonal to the principal subspace
- The distortion measure to be minimized

$$J = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=m+1}^{d} (\mathbf{x}_{n}^{T} \mathbf{u}_{i} - \bar{\mathbf{x}}^{T} \mathbf{u}_{i})^{2} = \sum_{i=m+1}^{d} \mathbf{u}_{i}^{T} S \mathbf{u}_{i}$$

• The objective is to minimize

$$J = \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{x}_n - \tilde{\mathbf{x}}_n||^2$$

- Taking derivative w.r.t. z_{ni} we get $z_{nj} = \mathbf{x}_n^T \mathbf{u}_j, j = 1, \dots, m$
- Taking derivative w.r.t. b_j we get $b_j = \bar{\mathbf{x}}^T \mathbf{u}_j, j = m+1, \ldots, d$
- Then we have

$$\mathbf{x}_n - \tilde{\mathbf{x}}_n = \sum_{i=m+1}^{a} \{ (\mathbf{x}_n - \bar{\mathbf{x}})^T \mathbf{u}_i \} \mathbf{u}_i$$

- Lies in the space orthogonal to the principal subspace
- The distortion measure to be minimized

$$J = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=m+1}^{d} (\mathbf{x}_{n}^{T} \mathbf{u}_{i} - \bar{\mathbf{x}}^{T} \mathbf{u}_{i})^{2} = \sum_{i=m+1}^{d} \mathbf{u}_{i}^{T} S \mathbf{u}_{i}$$

• Need orthonormality constraints on \mathbf{u}_i to prevent $\mathbf{u}_i = 0$ solution

• Consider special case d = 2, m = 1

- Consider special case d = 2, m = 1
- The Lagrangian of the objective

$$L = \mathbf{u}_2^T S \mathbf{u}_2 + \lambda_2 (1 - \mathbf{u}_2^T \mathbf{u}_2)$$

- Consider special case d = 2, m = 1
- The Lagrangian of the objective

$$L = \mathbf{u}_2^T S \mathbf{u}_2 + \lambda_2 (1 - \mathbf{u}_2^T \mathbf{u}_2)$$

• First order condition is $S\mathbf{u}_2 = \lambda_2\mathbf{u}_2$

- Consider special case d = 2, m = 1
- The Lagrangian of the objective

$$L = \mathbf{u}_2^T S \mathbf{u}_2 + \lambda_2 (1 - \mathbf{u}_2^T \mathbf{u}_2)$$

- First order condition is $S\mathbf{u}_2 = \lambda_2\mathbf{u}_2$
- In general, the condition is $S\mathbf{u}_i = \lambda_i \mathbf{u}_i$

- Consider special case d = 2, m = 1
- The Lagrangian of the objective

$$L = \mathbf{u}_2^T S \mathbf{u}_2 + \lambda_2 (1 - \mathbf{u}_2^T \mathbf{u}_2)$$

- First order condition is $S\mathbf{u}_2 = \lambda_2\mathbf{u}_2$
- In general, the condition is $S\mathbf{u}_i = \lambda_i \mathbf{u}_i$
- Given by the eigenvectors corresponding to the smallest (d-m) eigenvalues

- Consider special case d = 2, m = 1
- The Lagrangian of the objective

$$L = \mathbf{u}_2^T S \mathbf{u}_2 + \lambda_2 (1 - \mathbf{u}_2^T \mathbf{u}_2)$$

- First order condition is $S\mathbf{u}_2 = \lambda_2\mathbf{u}_2$
- In general, the condition is $S\mathbf{u}_i = \lambda_i \mathbf{u}_i$
- Given by the eigenvectors corresponding to the smallest (d-m) eigenvalues
- So the principal space $\mathbf{u}_i, i = 1, \dots, m$ are the 'largest' eigenvectors

Kernel PCA

ullet In PCA, the principal components $oldsymbol{u}_i$ are given by

$$S\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

where

$$S = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^T$$

- Consider a feature mapping $\phi(\mathbf{x})$
- Want to implicitly perform PCA in the feature space
- Assume the features have zero mean $\sum_n \phi(\mathbf{x}_n) = 0$

The sample covariance matrix in the feature space

$$C = \frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^{T}$$

The sample covariance matrix in the feature space

$$C = \frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^{T}$$

The eigenvectors are given by

$$C\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

The sample covariance matrix in the feature space

$$C = \frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^{T}$$

The eigenvectors are given by

$$C\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

We want to avoid computing C explicitly

The sample covariance matrix in the feature space

$$C = \frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^{T}$$

The eigenvectors are given by

$$C\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

- We want to avoid computing C explicitly
- Note that the eigenvectors satisfy

$$\frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \left\{ \phi(\mathbf{x}_n)^T \mathbf{v}_i \right\} = \lambda_i \mathbf{v}_i$$

The sample covariance matrix in the feature space

$$C = \frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^{T}$$

• The eigenvectors are given by

$$C\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

- We want to avoid computing C explicitly
- Note that the eigenvectors satisfy

$$\frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \left\{ \phi(\mathbf{x}_n)^{\mathsf{T}} \mathbf{v}_i \right\} = \lambda_i \mathbf{v}_i$$

Since the inner product is a scaler, we have

$$v_i = \sum_{n=1}^N a_{in} \phi(\mathbf{x}_n)$$

Substituting back into the eigenvalue equation

$$\frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T \sum_{m=1}^{N} a_{im} \phi(\mathbf{x}_m) = \lambda_i \sum_{n=1}^{N} a_{in} \phi(\mathbf{x}_n)$$

Substituting back into the eigenvalue equation

$$\frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T \sum_{m=1}^{N} a_{im} \phi(\mathbf{x}_m) = \lambda_i \sum_{n=1}^{N} a_{in} \phi(\mathbf{x}_n)$$

• Multiplying both sides by $\phi(\mathbf{x}_l)$ and using $K(\mathbf{x}_n, \mathbf{x}_m) = \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_m)$, we have

$$\frac{1}{N}\sum_{n=1}^{N}K(\mathbf{x}_{l},\mathbf{x}_{n})\sum_{m=1}^{N}a_{im}K(\mathbf{x}_{n},\mathbf{x}_{m})=\lambda_{i}\sum_{n=1}^{N}a_{in}K(\mathbf{x}_{l},\mathbf{x}_{n})$$

Substituting back into the eigenvalue equation

$$\frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T \sum_{m=1}^{N} a_{im} \phi(\mathbf{x}_m) = \lambda_i \sum_{n=1}^{N} a_{in} \phi(\mathbf{x}_n)$$

• Multiplying both sides by $\phi(\mathbf{x}_l)$ and using $K(\mathbf{x}_n, \mathbf{x}_m) = \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_m)$, we have

$$\frac{1}{N}\sum_{n=1}^{N}K(\mathbf{x}_{l},\mathbf{x}_{n})\sum_{m=1}^{N}a_{im}K(\mathbf{x}_{n},\mathbf{x}_{m})=\lambda_{i}\sum_{n=1}^{N}a_{in}K(\mathbf{x}_{l},\mathbf{x}_{n})$$

• In matrix notation, we have

$$K^2$$
a_i = $\lambda_i NK$ **a**_i

Substituting back into the eigenvalue equation

$$\frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T \sum_{m=1}^{N} a_{im} \phi(\mathbf{x}_m) = \lambda_i \sum_{n=1}^{N} a_{in} \phi(\mathbf{x}_n)$$

• Multiplying both sides by $\phi(\mathbf{x}_l)$ and using $K(\mathbf{x}_n, \mathbf{x}_m) = \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_m)$, we have

$$\frac{1}{N}\sum_{n=1}^{N}K(\mathbf{x}_{l},\mathbf{x}_{n})\sum_{m=1}^{N}a_{im}K(\mathbf{x}_{n},\mathbf{x}_{m})=\lambda_{i}\sum_{n=1}^{N}a_{in}K(\mathbf{x}_{l},\mathbf{x}_{n})$$

• In matrix notation, we have

$$K^2$$
a_i = $\lambda_i NK$ **a**_i

Except for eigenvectors with 0 eigenvalues, we can solve

$$K\mathbf{a}_i = \lambda_i N\mathbf{a}_i$$

• Since the original \mathbf{v}_i are normalized, we have

$$1 = \mathbf{v}_i^T \mathbf{v}_i = \mathbf{a}_i^T K \mathbf{a}_i = \lambda_i N \mathbf{a}_i^T \mathbf{a}_i$$

- ullet Gives a normalization condition for $oldsymbol{a}_i$
- Compute a_i by solving the eigenvalue decomposition
- The 'projection' of a point is given by

$$y_i(\mathbf{x}) = \phi(\mathbf{x}_i)^T \mathbf{v}_i = \sum_{n=1}^N a_{in} \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_n) = \sum_{n=1}^N a_{in} K(\mathbf{x}, \mathbf{x}_n)$$

Illustration of Kernel PCA (Feature Space)

Illustration of Kernel PCA (Data Space)

Dimensionality of Projection

- Original $\mathbf{x}_i \in \mathbb{R}^d$, feature $\phi(\mathbf{x}_i) \in \mathbb{R}^D$
- Possibly D>>d so that the number of principal components can be greater than d
- ullet However, the number of nonzero eigenvalues cannot exceed N
- ullet The covariance matrix C has rank at most N, even if D>>d
- Kernel PCA involves eigenvalue decomposition of a N × N matrix

Kernel PCA: Non-zero Mean

- The features need not have zero mean
- Note that the features cannot be explicitly centered
- The centralized data would be of the form

$$\tilde{\phi}(\mathbf{x}_n) = \phi(\mathbf{x}_n) - \frac{1}{N} \sum_{l=1}^{N} \phi(\mathbf{x}_l)$$

The corresponding gram matrix

$$\tilde{K} = K - 1_N K - K 1_N + 1_N K 1_N$$

• Use \tilde{K} in the basic kernel PCA formulation

Kernel PCA on Artificial Data

Eigenvalue=21.72

Eigenvalue=21.65

Eigenvalue=4.11

Eigenvalue=3.93

Eigenvalue=3.66

Eigenvalue=3.09

Eigenvalue=2.60

Eigenvalue=2.53

Kernel PCA Properties

- Computes eigenvalue decomposition of $N \times N$ matrix
 - Standard PCA computes it for $d \times d$
 - For large datasets N >> d, Kernel PCA is more expensive
- Standard PCA gives projection to a low dimensional principal subspace

$$\hat{\mathbf{x}}_n = \sum_{i=1}^{\ell} (\mathbf{x}_n^T \mathbf{u}_i) \mathbf{u}_i$$

- Kernel PCA cannot do this
 - $\phi(\mathbf{x})$ forms a d-dimensional manifold in \mathbb{R}^D
 - ullet PCA projection $\hat{\phi}$ of $\phi(\mathbf{x})$ need not be in the manifold
 - \bullet May not have a pre-image $\hat{\boldsymbol{x}}$ in the data space

