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Non-linear SVMs

@ All important equations have dot-products

o Dual is expressed in terms of x/ x;
o The predictions are in terms of x x

How to get a non-linear classifier:

o Map x to some (higher dimensional) space ® : RY s H
o The derived feature vectors are ®(x;), Vi
o The dot products are (®(x;), P(x;))

@ Kernel function allows implicit calculation of dot-products

k(xi,x;) = (®(x;), ®(x/))

Learn a linear max margin separator in H

The final prediction function

fx)= Y ayi®(x),®(x)) +b= >  aiyik(xi,x)+b

ia;>0 ira;>0
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The Kernel Trick

@ Reduces non-linear SVM learning to linear SVM learning

e What functions k(x;,x;) are valid kernels?
o Iff Vg(x) such that [ g(x)?dx < oo,

/k(xl,x2)g(x1)g(x2)dx1dx2 >0
e The condition is known as Mercer’s condition
@ Examples:
o Polynomial Kernel: k(x;,x;) = (x/x; + 1)°

o RBF Kernel: k(x;,x;) = exp(—||x; — x;||?)

@ How to choose a kernel for a given application?
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o k is symmetric, i.e., k(x;,%;) = k(xj, x/)
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@ Inner product space for kernel k
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Kernels and Inner Product Spaces

@ A kernel k: X x X — R is positive semi-definite if

o k is symmetric, i.e., k(x;,%;) = k(xj, x/)

o For {x1,...,x,}, matrix K(x;,x;) is positive semi-definite
@ Inner product space for kernel k

o The kernel feature map ®(x) = k(-, x)

e Each point x is now a function is some space
@ The function measures its similarity will all other points

e The vector space corresponding to the mapping

span{®(x) : x € X} = {f(") Zak i), € R}
o For f =Y, aik(-,x;), g = EJ- Bik(-,x;), define inner product
f g> = Za;ﬁjk(x,-,xj)
ij

e Symmetric, bilinear, positive semi-definite
e Satisfies Cauchy-Schwartz inequality
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Reproducing Kernel Hilbert Space

@ For any f in the vector space, the reproducing property

f) = Za,-k(xm,-) = f(x)

e Consider X € RY, Hilbert space H of functions f : X — R

@ H is a Reproducing Kernel Hilbert Space if 3k : X x X — R
o k has the reproducing property (k(-,x), f) = f(x)
o k spans H

@ It is necessary that k is symmetric and positive semi-definite

k=Y Myl = K(xix) Zwt xi)¥e(x;)

@ Two possible feature representations
o ®(x) = k(-,x) such that (k(-,x;), k(-,x;)) = k(x;, x;)
o ®(x) = (VA11(x), vV A2t02(x), . . .) with usual inner product
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The Representer Theorem

Let H be a reproducing kernel Hilbert space
k: X x X — R is a symmetric positive semi-definite function
For f € H, the norm ||f||3, = (f,f)

For any L : R" — R, any non-decreasing € : R — R, consider

e For some ay,...,a, € R, the minimum is achieved by

F(-)=>_ aik(x;-)
i=1

If Q is increasing, each minimizer has the above form
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Kernel Logistic Regression

@ The kernel trick can be applied elsewhere

e Several problems are in “dot product” form
e Extensions to non-vector data types using kernels

o Kernel Logistic Regression (KLR)
e Log-odds is linear in high-dimensional representation

log <,ZE(1)))3> = (w, ®(x)) + wo

o The regularized KLR minimizes
L= Mwl* = log P(yilx;)

e From the representer theorem

w = Za;d)(x,-) = log (ggé:g) = Za;k(x;,x) + wp

1

@ An efficient algorithm can be designed to learn ag, ..., a,
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Kernel Fisher Discriminant

@ Recall Fisher's Linear Discriminant

w’ Sgw
W) = oW
Sg = (my—m)(my—m)"
Swo= D> (xi—me)(xi—mi)T
k=1,2ieCy

@ Represent w in terms of mapped training points:

wo= > aig(x)
i=1

(w,(x)) = D> aiK(xi,x
i=1
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Kernel Fisher Discriminant (Contd.)

The corresponding Rayleigh coefficient

(@™p)? oMo

(o) = aTNa  aTNa
where
Hoo= pH2 = pH1
M = up’
_ 1 g
N = KKT = > |Clppf

k=1,2
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