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Non-linear SVMs

All important equations have dot-products

Dual is expressed in terms of xT
i xj

The predictions are in terms of xT
i x

How to get a non-linear classifier:

Map x to some (higher dimensional) space Φ : Rd 7→ H
The derived feature vectors are Φ(xi ),∀i
The dot products are 〈Φ(xi ),Φ(xj)〉

Kernel function allows implicit calculation of dot-products

k(xi , xj) = 〈Φ(xi ),Φ(xj)〉

Learn a linear max margin separator in H
The final prediction function

f (x) =
∑

i :αi>0

αiyi 〈Φ(xi ),Φ(x)〉+ b =
∑

i :αi>0

αiyik(xi , x) + b
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The Kernel Trick

Reduces non-linear SVM learning to linear SVM learning

What functions k(xi , xj) are valid kernels?

Iff ∀g(x) such that
∫

g(x)2dx <∞,∫
k(x1, x2)g(x1)g(x2)dx1dx2 ≥ 0

The condition is known as Mercer’s condition

Examples:

Polynomial Kernel: k(xi , xj) = (xT
i xj + 1)p

RBF Kernel: k(xi , xj) = exp(−‖xi − xj‖2)

How to choose a kernel for a given application?
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Example

z1 = x2
1 , z2 =

√
2x1x2, z3 = x2

2
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Kernels and Inner Product Spaces

A kernel k : X × X 7→ R is positive semi-definite if

k is symmetric, i.e., k(xi , xj) = k(xj , xi )
For {x1, . . . , xn}, matrix K (xi , xj) is positive semi-definite

Inner product space for kernel k

The kernel feature map Φ(x) = k(·, x)

Each point x is now a function is some space
The function measures its similarity will all other points

The vector space corresponding to the mapping

span{Φ(x) : x ∈ X} = {f (·) =
∑

i

αik(·, xi ), αi ∈ R}

For f =
∑

i αik(·, xi ), g =
∑

j βjk(·, xj), define inner product

〈f , g〉 =
∑
ij

αiβjk(xi , xj)

Symmetric, bilinear, positive semi-definite
Satisfies Cauchy-Schwartz inequality

Instructor: Arindam Banerjee Kernel Methods
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Reproducing Kernel Hilbert Space

For any f in the vector space, the reproducing property

〈k(·, x), f 〉 =
∑

i

αik(x, xi ) = f (x)

Consider X ∈ Rd , Hilbert space H of functions f : X 7→ R
H is a Reproducing Kernel Hilbert Space if ∃k : X × X 7→ R

k has the reproducing property 〈k(·, x), f 〉 = f (x)
k spans H

It is necessary that k is symmetric and positive semi-definite

k =
∞∑

t=1

λtψtψ
T
t ⇒ K (xi , xj) =

∞∑
t=1

λtψt(xi )ψt(xj)

Two possible feature representations

Φ(x) = k(·, x) such that 〈k(·, xi ), k(·, xj)〉 = k(xi , xj)
Φ(x) = (

√
λ1ψ1(x),

√
λ2ψ2(x), . . .) with usual inner product

Instructor: Arindam Banerjee Kernel Methods



Reproducing Kernel Hilbert Space

For any f in the vector space, the reproducing property

〈k(·, x), f 〉 =
∑

i

αik(x, xi ) = f (x)

Consider X ∈ Rd , Hilbert space H of functions f : X 7→ R

H is a Reproducing Kernel Hilbert Space if ∃k : X × X 7→ R

k has the reproducing property 〈k(·, x), f 〉 = f (x)
k spans H

It is necessary that k is symmetric and positive semi-definite

k =
∞∑

t=1

λtψtψ
T
t ⇒ K (xi , xj) =

∞∑
t=1

λtψt(xi )ψt(xj)

Two possible feature representations

Φ(x) = k(·, x) such that 〈k(·, xi ), k(·, xj)〉 = k(xi , xj)
Φ(x) = (

√
λ1ψ1(x),

√
λ2ψ2(x), . . .) with usual inner product

Instructor: Arindam Banerjee Kernel Methods



Reproducing Kernel Hilbert Space

For any f in the vector space, the reproducing property

〈k(·, x), f 〉 =
∑

i

αik(x, xi ) = f (x)

Consider X ∈ Rd , Hilbert space H of functions f : X 7→ R
H is a Reproducing Kernel Hilbert Space if ∃k : X × X 7→ R

k has the reproducing property 〈k(·, x), f 〉 = f (x)
k spans H

It is necessary that k is symmetric and positive semi-definite

k =
∞∑

t=1

λtψtψ
T
t ⇒ K (xi , xj) =

∞∑
t=1

λtψt(xi )ψt(xj)

Two possible feature representations

Φ(x) = k(·, x) such that 〈k(·, xi ), k(·, xj)〉 = k(xi , xj)
Φ(x) = (

√
λ1ψ1(x),

√
λ2ψ2(x), . . .) with usual inner product

Instructor: Arindam Banerjee Kernel Methods



Reproducing Kernel Hilbert Space

For any f in the vector space, the reproducing property

〈k(·, x), f 〉 =
∑

i

αik(x, xi ) = f (x)

Consider X ∈ Rd , Hilbert space H of functions f : X 7→ R
H is a Reproducing Kernel Hilbert Space if ∃k : X × X 7→ R

k has the reproducing property 〈k(·, x), f 〉 = f (x)

k spans H
It is necessary that k is symmetric and positive semi-definite

k =
∞∑

t=1

λtψtψ
T
t ⇒ K (xi , xj) =

∞∑
t=1

λtψt(xi )ψt(xj)

Two possible feature representations

Φ(x) = k(·, x) such that 〈k(·, xi ), k(·, xj)〉 = k(xi , xj)
Φ(x) = (

√
λ1ψ1(x),

√
λ2ψ2(x), . . .) with usual inner product

Instructor: Arindam Banerjee Kernel Methods



Reproducing Kernel Hilbert Space

For any f in the vector space, the reproducing property

〈k(·, x), f 〉 =
∑

i

αik(x, xi ) = f (x)

Consider X ∈ Rd , Hilbert space H of functions f : X 7→ R
H is a Reproducing Kernel Hilbert Space if ∃k : X × X 7→ R

k has the reproducing property 〈k(·, x), f 〉 = f (x)
k spans H

It is necessary that k is symmetric and positive semi-definite

k =
∞∑

t=1

λtψtψ
T
t ⇒ K (xi , xj) =

∞∑
t=1

λtψt(xi )ψt(xj)

Two possible feature representations

Φ(x) = k(·, x) such that 〈k(·, xi ), k(·, xj)〉 = k(xi , xj)
Φ(x) = (

√
λ1ψ1(x),

√
λ2ψ2(x), . . .) with usual inner product

Instructor: Arindam Banerjee Kernel Methods



Reproducing Kernel Hilbert Space

For any f in the vector space, the reproducing property

〈k(·, x), f 〉 =
∑

i

αik(x, xi ) = f (x)

Consider X ∈ Rd , Hilbert space H of functions f : X 7→ R
H is a Reproducing Kernel Hilbert Space if ∃k : X × X 7→ R

k has the reproducing property 〈k(·, x), f 〉 = f (x)
k spans H

It is necessary that k is symmetric and positive semi-definite

k =
∞∑

t=1

λtψtψ
T
t ⇒ K (xi , xj) =

∞∑
t=1

λtψt(xi )ψt(xj)

Two possible feature representations

Φ(x) = k(·, x) such that 〈k(·, xi ), k(·, xj)〉 = k(xi , xj)
Φ(x) = (

√
λ1ψ1(x),

√
λ2ψ2(x), . . .) with usual inner product

Instructor: Arindam Banerjee Kernel Methods



Reproducing Kernel Hilbert Space

For any f in the vector space, the reproducing property

〈k(·, x), f 〉 =
∑

i

αik(x, xi ) = f (x)

Consider X ∈ Rd , Hilbert space H of functions f : X 7→ R
H is a Reproducing Kernel Hilbert Space if ∃k : X × X 7→ R

k has the reproducing property 〈k(·, x), f 〉 = f (x)
k spans H

It is necessary that k is symmetric and positive semi-definite

k =
∞∑

t=1

λtψtψ
T
t ⇒ K (xi , xj) =

∞∑
t=1

λtψt(xi )ψt(xj)

Two possible feature representations

Φ(x) = k(·, x) such that 〈k(·, xi ), k(·, xj)〉 = k(xi , xj)
Φ(x) = (

√
λ1ψ1(x),

√
λ2ψ2(x), . . .) with usual inner product

Instructor: Arindam Banerjee Kernel Methods



Reproducing Kernel Hilbert Space

For any f in the vector space, the reproducing property

〈k(·, x), f 〉 =
∑

i

αik(x, xi ) = f (x)

Consider X ∈ Rd , Hilbert space H of functions f : X 7→ R
H is a Reproducing Kernel Hilbert Space if ∃k : X × X 7→ R

k has the reproducing property 〈k(·, x), f 〉 = f (x)
k spans H

It is necessary that k is symmetric and positive semi-definite

k =
∞∑

t=1

λtψtψ
T
t ⇒ K (xi , xj) =

∞∑
t=1

λtψt(xi )ψt(xj)

Two possible feature representations

Φ(x) = k(·, x) such that 〈k(·, xi ), k(·, xj)〉 = k(xi , xj)

Φ(x) = (
√
λ1ψ1(x),

√
λ2ψ2(x), . . .) with usual inner product

Instructor: Arindam Banerjee Kernel Methods



Reproducing Kernel Hilbert Space

For any f in the vector space, the reproducing property

〈k(·, x), f 〉 =
∑

i

αik(x, xi ) = f (x)

Consider X ∈ Rd , Hilbert space H of functions f : X 7→ R
H is a Reproducing Kernel Hilbert Space if ∃k : X × X 7→ R

k has the reproducing property 〈k(·, x), f 〉 = f (x)
k spans H

It is necessary that k is symmetric and positive semi-definite

k =
∞∑

t=1

λtψtψ
T
t ⇒ K (xi , xj) =

∞∑
t=1

λtψt(xi )ψt(xj)

Two possible feature representations

Φ(x) = k(·, x) such that 〈k(·, xi ), k(·, xj)〉 = k(xi , xj)
Φ(x) = (

√
λ1ψ1(x),

√
λ2ψ2(x), . . .) with usual inner product

Instructor: Arindam Banerjee Kernel Methods



The Representer Theorem

Let H be a reproducing kernel Hilbert space

k : X × X 7→ R is a symmetric positive semi-definite function

For f ∈ H, the norm ‖f ‖2
H = 〈f , f 〉

For any L : Rn 7→ R, any non-decreasing Ω : R 7→ R, consider

min
f ∈H

{Ω(‖f ‖2
H) + L(f (x1), . . . , f (xn))}

For some α1, . . . , αn ∈ R, the minimum is achieved by

f (·) =
n∑

i=1

αik(xi , ·)

If Ω is increasing, each minimizer has the above form

Instructor: Arindam Banerjee Kernel Methods
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Kernel Logistic Regression

The kernel trick can be applied elsewhere

Several problems are in “dot product” form
Extensions to non-vector data types using kernels

Kernel Logistic Regression (KLR)

Log-odds is linear in high-dimensional representation

log

(
P(1|x)
P(0|x)

)
= 〈w,Φ(x)〉+ w0

The regularized KLR minimizes

L = λ‖w‖2 −
∑

i

log P(yi |xi )

From the representer theorem

w =
∑

i

αiΦ(xi ) ⇒ log

(
P(1|x)
P(0|x)

)
=

∑
i

αik(xi , x) + w0

An efficient algorithm can be designed to learn α1, . . . , αn

Instructor: Arindam Banerjee Kernel Methods



Kernel Logistic Regression

The kernel trick can be applied elsewhere

Several problems are in “dot product” form

Extensions to non-vector data types using kernels

Kernel Logistic Regression (KLR)

Log-odds is linear in high-dimensional representation

log

(
P(1|x)
P(0|x)

)
= 〈w,Φ(x)〉+ w0

The regularized KLR minimizes

L = λ‖w‖2 −
∑

i

log P(yi |xi )

From the representer theorem

w =
∑

i

αiΦ(xi ) ⇒ log

(
P(1|x)
P(0|x)

)
=

∑
i

αik(xi , x) + w0

An efficient algorithm can be designed to learn α1, . . . , αn

Instructor: Arindam Banerjee Kernel Methods



Kernel Logistic Regression

The kernel trick can be applied elsewhere

Several problems are in “dot product” form
Extensions to non-vector data types using kernels

Kernel Logistic Regression (KLR)

Log-odds is linear in high-dimensional representation

log

(
P(1|x)
P(0|x)

)
= 〈w,Φ(x)〉+ w0

The regularized KLR minimizes

L = λ‖w‖2 −
∑

i

log P(yi |xi )

From the representer theorem

w =
∑

i

αiΦ(xi ) ⇒ log

(
P(1|x)
P(0|x)

)
=

∑
i

αik(xi , x) + w0

An efficient algorithm can be designed to learn α1, . . . , αn

Instructor: Arindam Banerjee Kernel Methods



Kernel Logistic Regression

The kernel trick can be applied elsewhere

Several problems are in “dot product” form
Extensions to non-vector data types using kernels

Kernel Logistic Regression (KLR)

Log-odds is linear in high-dimensional representation

log

(
P(1|x)
P(0|x)

)
= 〈w,Φ(x)〉+ w0

The regularized KLR minimizes

L = λ‖w‖2 −
∑

i

log P(yi |xi )

From the representer theorem

w =
∑

i

αiΦ(xi ) ⇒ log

(
P(1|x)
P(0|x)

)
=

∑
i

αik(xi , x) + w0

An efficient algorithm can be designed to learn α1, . . . , αn

Instructor: Arindam Banerjee Kernel Methods



Kernel Logistic Regression

The kernel trick can be applied elsewhere

Several problems are in “dot product” form
Extensions to non-vector data types using kernels

Kernel Logistic Regression (KLR)

Log-odds is linear in high-dimensional representation

log

(
P(1|x)
P(0|x)

)
= 〈w,Φ(x)〉+ w0

The regularized KLR minimizes

L = λ‖w‖2 −
∑

i

log P(yi |xi )

From the representer theorem

w =
∑

i

αiΦ(xi ) ⇒ log

(
P(1|x)
P(0|x)

)
=

∑
i

αik(xi , x) + w0

An efficient algorithm can be designed to learn α1, . . . , αn

Instructor: Arindam Banerjee Kernel Methods



Kernel Logistic Regression

The kernel trick can be applied elsewhere

Several problems are in “dot product” form
Extensions to non-vector data types using kernels

Kernel Logistic Regression (KLR)

Log-odds is linear in high-dimensional representation

log

(
P(1|x)
P(0|x)

)
= 〈w,Φ(x)〉+ w0

The regularized KLR minimizes

L = λ‖w‖2 −
∑

i

log P(yi |xi )

From the representer theorem

w =
∑

i

αiΦ(xi ) ⇒ log

(
P(1|x)
P(0|x)

)
=

∑
i

αik(xi , x) + w0

An efficient algorithm can be designed to learn α1, . . . , αn

Instructor: Arindam Banerjee Kernel Methods



Kernel Logistic Regression

The kernel trick can be applied elsewhere

Several problems are in “dot product” form
Extensions to non-vector data types using kernels

Kernel Logistic Regression (KLR)

Log-odds is linear in high-dimensional representation

log

(
P(1|x)
P(0|x)

)
= 〈w,Φ(x)〉+ w0

The regularized KLR minimizes

L = λ‖w‖2 −
∑

i

log P(yi |xi )

From the representer theorem

w =
∑

i

αiΦ(xi ) ⇒ log

(
P(1|x)
P(0|x)

)
=

∑
i

αik(xi , x) + w0

An efficient algorithm can be designed to learn α1, . . . , αn

Instructor: Arindam Banerjee Kernel Methods



Kernel Logistic Regression

The kernel trick can be applied elsewhere

Several problems are in “dot product” form
Extensions to non-vector data types using kernels

Kernel Logistic Regression (KLR)

Log-odds is linear in high-dimensional representation

log

(
P(1|x)
P(0|x)

)
= 〈w,Φ(x)〉+ w0

The regularized KLR minimizes

L = λ‖w‖2 −
∑

i

log P(yi |xi )

From the representer theorem

w =
∑

i

αiΦ(xi ) ⇒ log

(
P(1|x)
P(0|x)

)
=

∑
i

αik(xi , x) + w0

An efficient algorithm can be designed to learn α1, . . . , αn

Instructor: Arindam Banerjee Kernel Methods



Kernel Fisher Discriminant

Recall Fisher’s Linear Discriminant

J(w) =
wTSBw

wTSww

SB = (m2 −m1)(m2 −m1)
T

SW =
∑

k=1,2

∑
i∈Ck

(xi −mk)(xi −mk)T

Represent w in terms of mapped training points:

w =
n∑

i=1

αiφ(xi )

〈w, φ(x)〉 =
n∑

i=1

αiK (xi , x)
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Kernel Fisher Discriminant (Contd.)

The corresponding Rayleigh coefficient

J(α) =
(αTµ)2

αTNα
=
αTMα

αTNα

where

µ = µ2 − µ1

M = µµT

µk =
1

|Ck |
K1k

N = KKT −
∑

k=1,2

|Ck |µkµ
T
k
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