Kernel Methods

CSci 5525: Machine Learning

Instructor: Arindam Banerjee

October 22, 2008

• All important equations have dot-products

- All important equations have dot-products
 - ullet Dual is expressed in terms of $\mathbf{x}_i^T \mathbf{x}_j$

- All important equations have dot-products
 - Dual is expressed in terms of $\mathbf{x}_i^T \mathbf{x}_j$ The predictions are in terms of $\mathbf{x}_i^T \mathbf{x}$

- All important equations have dot-products
 - Dual is expressed in terms of $\mathbf{x}_i^T \mathbf{x}_j$ The predictions are in terms of $\mathbf{x}_i^T \mathbf{x}$
- How to get a non-linear classifier:

- All important equations have dot-products
 - Dual is expressed in terms of $\mathbf{x}_i^T \mathbf{x}_j$
 - The predictions are in terms of $\mathbf{x}_{i}^{T}\mathbf{x}$
- How to get a non-linear classifier:
 - Map ${f x}$ to some (higher dimensional) space $\Phi: \mathbb{R}^d \mapsto \mathcal{H}$

- All important equations have dot-products
 - Dual is expressed in terms of $\mathbf{x}_i^T \mathbf{x}_j$
 - The predictions are in terms of $\mathbf{x}_{i}^{T}\mathbf{x}$
- How to get a non-linear classifier:
 - Map **x** to some (higher dimensional) space $\Phi : \mathbb{R}^d \mapsto \mathcal{H}$
 - The derived feature vectors are $\Phi(\mathbf{x}_i), \forall i$

- All important equations have dot-products
 - Dual is expressed in terms of $\mathbf{x}_i^T \mathbf{x}_j$
 - The predictions are in terms of $\mathbf{x}_{i}^{T}\mathbf{x}$
- How to get a non-linear classifier:
 - Map \mathbf{x} to some (higher dimensional) space $\Phi: \mathbb{R}^d \mapsto \mathcal{H}$
 - The derived feature vectors are $\Phi(\mathbf{x}_i), \forall i$
 - The dot products are $\langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle$

- All important equations have dot-products
 - Dual is expressed in terms of $\mathbf{x}_i^T \mathbf{x}_j$
 - The predictions are in terms of $\mathbf{x}_{i}^{T}\mathbf{x}$
- How to get a non-linear classifier:
 - Map \mathbf{x} to some (higher dimensional) space $\Phi: \mathbb{R}^d \mapsto \mathcal{H}$
 - The derived feature vectors are $\Phi(\mathbf{x}_i), \forall i$
 - The dot products are $\langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle$
- Kernel function allows implicit calculation of dot-products

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle$$

- All important equations have dot-products
 - Dual is expressed in terms of $\mathbf{x}_i^T \mathbf{x}_j$
 - The predictions are in terms of $\mathbf{x}_{i}^{T}\mathbf{x}$
- How to get a non-linear classifier:
 - Map ${\bf x}$ to some (higher dimensional) space $\Phi: \mathbb{R}^d \mapsto \mathcal{H}$
 - The derived feature vectors are $\Phi(\mathbf{x}_i), \forall i$
 - The dot products are $\langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle$
- Kernel function allows implicit calculation of dot-products

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle$$

ullet Learn a linear max margin separator in ${\cal H}$

- All important equations have dot-products
 - Dual is expressed in terms of $\mathbf{x}_i^T \mathbf{x}_j$
 - The predictions are in terms of $\mathbf{x}_i^T \mathbf{x}$
- How to get a non-linear classifier:
 - Map ${f x}$ to some (higher dimensional) space $\Phi: \mathbb{R}^d \mapsto \mathcal{H}$
 - The derived feature vectors are $\Phi(\mathbf{x}_i), \forall i$
 - The dot products are $\langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle$
- Kernel function allows implicit calculation of dot-products

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle$$

- ullet Learn a linear max margin separator in ${\cal H}$
- The final prediction function

$$f(\mathbf{x}) = \sum_{i:\alpha_i>0} \alpha_i y_i \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}) \rangle + b = \sum_{i:\alpha_i>0} \alpha_i y_i k(\mathbf{x}_i, \mathbf{x}) + b$$

• Reduces non-linear SVM learning to linear SVM learning

- Reduces non-linear SVM learning to linear SVM learning
- What functions $k(\mathbf{x}_i, \mathbf{x}_j)$ are valid kernels?

- Reduces non-linear SVM learning to linear SVM learning
- What functions $k(\mathbf{x}_i, \mathbf{x}_j)$ are valid kernels?
 - Iff $\forall g(\mathbf{x})$ such that $\int g(\mathbf{x})^2 d\mathbf{x} < \infty$,

$$\int k(\mathbf{x}_1,\mathbf{x}_2)g(\mathbf{x}_1)g(\mathbf{x}_2)d\mathbf{x}_1d\mathbf{x}_2 \geq 0$$

- Reduces non-linear SVM learning to linear SVM learning
- What functions $k(\mathbf{x}_i, \mathbf{x}_j)$ are valid kernels?
 - Iff $\forall g(\mathbf{x})$ such that $\int g(\mathbf{x})^2 d\mathbf{x} < \infty$,

$$\int k(\mathbf{x}_1,\mathbf{x}_2)g(\mathbf{x}_1)g(\mathbf{x}_2)d\mathbf{x}_1d\mathbf{x}_2 \geq 0$$

• The condition is known as Mercer's condition

- Reduces non-linear SVM learning to linear SVM learning
- What functions $k(\mathbf{x}_i, \mathbf{x}_j)$ are valid kernels?
 - Iff $\forall g(\mathbf{x})$ such that $\int g(\mathbf{x})^2 d\mathbf{x} < \infty$,

$$\int k(\mathbf{x}_1,\mathbf{x}_2)g(\mathbf{x}_1)g(\mathbf{x}_2)d\mathbf{x}_1d\mathbf{x}_2 \geq 0$$

- The condition is known as Mercer's condition
- Examples:

- Reduces non-linear SVM learning to linear SVM learning
- What functions $k(\mathbf{x}_i, \mathbf{x}_j)$ are valid kernels?
 - Iff $\forall g(\mathbf{x})$ such that $\int g(\mathbf{x})^2 d\mathbf{x} < \infty$,

$$\int k(\mathbf{x}_1,\mathbf{x}_2)g(\mathbf{x}_1)g(\mathbf{x}_2)d\mathbf{x}_1d\mathbf{x}_2 \geq 0$$

- The condition is known as Mercer's condition
- Examples:
 - Polynomial Kernel: $k(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^T \mathbf{x}_j + 1)^p$

- Reduces non-linear SVM learning to linear SVM learning
- What functions $k(\mathbf{x}_i, \mathbf{x}_j)$ are valid kernels?
 - Iff $\forall g(\mathbf{x})$ such that $\int g(\mathbf{x})^2 d\mathbf{x} < \infty$,

$$\int k(\mathbf{x}_1,\mathbf{x}_2)g(\mathbf{x}_1)g(\mathbf{x}_2)d\mathbf{x}_1d\mathbf{x}_2 \geq 0$$

- The condition is known as Mercer's condition
- Examples:
 - Polynomial Kernel: $k(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^T \mathbf{x}_j + 1)^p$
 - RBF Kernel: $k(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\|\mathbf{x}_i \mathbf{x}_j\|^2)$

- Reduces non-linear SVM learning to linear SVM learning
- What functions $k(\mathbf{x}_i, \mathbf{x}_j)$ are valid kernels?
 - Iff $\forall g(\mathbf{x})$ such that $\int g(\mathbf{x})^2 d\mathbf{x} < \infty$,

$$\int k(\mathbf{x}_1,\mathbf{x}_2)g(\mathbf{x}_1)g(\mathbf{x}_2)d\mathbf{x}_1d\mathbf{x}_2 \geq 0$$

- The condition is known as Mercer's condition
- Examples:
 - Polynomial Kernel: $k(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^T \mathbf{x}_j + 1)^p$
 - RBF Kernel: $k(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\|\mathbf{x}_i \mathbf{x}_j\|^2)$
- How to choose a kernel for a given application?

Example

$$z_1 = x_1^2$$
, $z_2 = \sqrt{2}x_1x_2$, $z_3 = x_2^2$

• A kernel $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive semi-definite if

- ullet A kernel $k:\mathcal{X} imes\mathcal{X}\mapsto\mathbb{R}$ is positive semi-definite if
 - k is symmetric, i.e., $k(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_j, \mathbf{x}_i)$

- ullet A kernel $k:\mathcal{X}\times\mathcal{X}\mapsto\mathbb{R}$ is positive semi-definite if
 - k is symmetric, i.e., $k(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_j, \mathbf{x}_i)$
 - For $\{x_1, \ldots, x_n\}$, matrix $K(x_i, x_j)$ is positive semi-definite

- A kernel $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive semi-definite if
 - k is symmetric, i.e., $k(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_j, \mathbf{x}_i)$
 - For $\{x_1, \ldots, x_n\}$, matrix $K(x_i, x_j)$ is positive semi-definite
- Inner product space for kernel k

- A kernel $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive semi-definite if
 - k is symmetric, i.e., $k(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_j, \mathbf{x}_i)$
 - For $\{x_1, \ldots, x_n\}$, matrix $K(x_i, x_j)$ is positive semi-definite
- Inner product space for kernel k
 - The kernel feature map $\Phi(\mathbf{x}) = k(\cdot, \mathbf{x})$

- A kernel $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive semi-definite if
 - k is symmetric, i.e., $k(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_j, \mathbf{x}_i)$
 - For $\{x_1, \ldots, x_n\}$, matrix $K(x_i, x_j)$ is positive semi-definite
- Inner product space for kernel k
 - The kernel feature map $\Phi(\mathbf{x}) = k(\cdot, \mathbf{x})$
 - Each point x is now a function is some space

- A kernel $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive semi-definite if
 - k is symmetric, i.e., $k(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_j, \mathbf{x}_i)$
 - For $\{x_1, \ldots, x_n\}$, matrix $K(x_i, x_j)$ is positive semi-definite
- Inner product space for kernel k
 - The kernel feature map $\Phi(\mathbf{x}) = k(\cdot, \mathbf{x})$
 - Each point x is now a function is some space
 - The function measures its similarity will all other points

- A kernel $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive semi-definite if
 - k is symmetric, i.e., $k(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_j, \mathbf{x}_i)$
 - For $\{x_1, \ldots, x_n\}$, matrix $K(x_i, x_j)$ is positive semi-definite
- Inner product space for kernel k
 - The kernel feature map $\Phi(\mathbf{x}) = k(\cdot, \mathbf{x})$
 - Each point x is now a function is some space
 - The function measures its similarity will all other points
 - The vector space corresponding to the mapping

$$span\{\Phi(\mathbf{x}): \mathbf{x} \in \mathcal{X}\} = \{f(\cdot) = \sum_{i} \alpha_{i} k(\cdot, \mathbf{x}_{i}), \alpha_{i} \in \mathbb{R}\}$$

- A kernel $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive semi-definite if
 - k is symmetric, i.e., $k(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_j, \mathbf{x}_i)$
 - For $\{x_1, \ldots, x_n\}$, matrix $K(x_i, x_j)$ is positive semi-definite
- Inner product space for kernel k
 - The kernel feature map $\Phi(\mathbf{x}) = k(\cdot, \mathbf{x})$
 - Each point x is now a function is some space
 - The function measures its similarity will all other points
 - The vector space corresponding to the mapping

$$span\{\Phi(\mathbf{x}): \mathbf{x} \in \mathcal{X}\} = \{f(\cdot) = \sum_{i} \alpha_{i} k(\cdot, \mathbf{x}_{i}), \alpha_{i} \in \mathbb{R}\}$$

• For $f = \sum_{i} \alpha_{i} k(\cdot, \mathbf{x}_{i})$, $g = \sum_{j} \beta_{j} k(\cdot, \mathbf{x}_{j})$, define inner product

$$\langle f, g \rangle = \sum_{ij} \alpha_i \beta_j k(\mathbf{x}_i, \mathbf{x}_j)$$

- A kernel $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive semi-definite if
 - k is symmetric, i.e., $k(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_j, \mathbf{x}_i)$
 - For $\{x_1, \ldots, x_n\}$, matrix $K(x_i, x_j)$ is positive semi-definite
- Inner product space for kernel k
 - The kernel feature map $\Phi(\mathbf{x}) = k(\cdot, \mathbf{x})$
 - Each point x is now a function is some space
 - The function measures its similarity will all other points
 - The vector space corresponding to the mapping

$$span\{\Phi(\mathbf{x}): \mathbf{x} \in \mathcal{X}\} = \{f(\cdot) = \sum_{i} \alpha_{i} k(\cdot, \mathbf{x}_{i}), \alpha_{i} \in \mathbb{R}\}$$

• For $f = \sum_{i} \alpha_{i} k(\cdot, \mathbf{x}_{i})$, $g = \sum_{j} \beta_{j} k(\cdot, \mathbf{x}_{j})$, define inner product

$$\langle f, g \rangle = \sum_{ij} \alpha_i \beta_j k(\mathbf{x}_i, \mathbf{x}_j)$$

Symmetric, bilinear, positive semi-definite

- A kernel $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive semi-definite if
 - k is symmetric, i.e., $k(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_j, \mathbf{x}_i)$
 - For $\{x_1, \ldots, x_n\}$, matrix $K(x_i, x_j)$ is positive semi-definite
- Inner product space for kernel k
 - The kernel feature map $\Phi(\mathbf{x}) = k(\cdot, \mathbf{x})$
 - Each point x is now a function is some space
 - The function measures its similarity will all other points
 - The vector space corresponding to the mapping

$$span\{\Phi(\mathbf{x}): \mathbf{x} \in \mathcal{X}\} = \{f(\cdot) = \sum_{i} \alpha_{i} k(\cdot, \mathbf{x}_{i}), \alpha_{i} \in \mathbb{R}\}$$

• For $f = \sum_{i} \alpha_{i} k(\cdot, \mathbf{x}_{i})$, $g = \sum_{j} \beta_{j} k(\cdot, \mathbf{x}_{j})$, define inner product

$$\langle f, g \rangle = \sum_{ij} \alpha_i \beta_j k(\mathbf{x}_i, \mathbf{x}_j)$$

- Symmetric, bilinear, positive semi-definite
- Satisfies Cauchy-Schwartz inequality

• For any f in the vector space, the reproducing property

$$\langle k(\cdot, \mathbf{x}), f \rangle = \sum_{i} \alpha_{i} k(\mathbf{x}, \mathbf{x}_{i}) = f(\mathbf{x})$$

• For any f in the vector space, the reproducing property

$$\langle k(\cdot, \mathbf{x}), f \rangle = \sum_{i} \alpha_{i} k(\mathbf{x}, \mathbf{x}_{i}) = f(\mathbf{x})$$

ullet Consider $\mathcal{X} \in \mathbb{R}^d$, Hilbert space \mathcal{H} of functions $f: \mathcal{X} \mapsto \mathbb{R}$

For any f in the vector space, the reproducing property

$$\langle k(\cdot, \mathbf{x}), f \rangle = \sum_{i} \alpha_{i} k(\mathbf{x}, \mathbf{x}_{i}) = f(\mathbf{x})$$

- Consider $\mathcal{X} \in \mathbb{R}^d$, Hilbert space \mathcal{H} of functions $f: \mathcal{X} \mapsto \mathbb{R}$
- ullet \mathcal{H} is a Reproducing Kernel Hilbert Space if $\exists k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$

For any f in the vector space, the reproducing property

$$\langle k(\cdot, \mathbf{x}), f \rangle = \sum_{i} \alpha_{i} k(\mathbf{x}, \mathbf{x}_{i}) = f(\mathbf{x})$$

- Consider $\mathcal{X} \in \mathbb{R}^d$, Hilbert space \mathcal{H} of functions $f: \mathcal{X} \mapsto \mathbb{R}$
- ullet \mathcal{H} is a Reproducing Kernel Hilbert Space if $\exists k: \mathcal{X} imes \mathcal{X} \mapsto \mathbb{R}$
 - k has the reproducing property $\langle k(\cdot, \mathbf{x}), f \rangle = f(\mathbf{x})$

For any f in the vector space, the reproducing property

$$\langle k(\cdot, \mathbf{x}), f \rangle = \sum_{i} \alpha_{i} k(\mathbf{x}, \mathbf{x}_{i}) = f(\mathbf{x})$$

- Consider $\mathcal{X} \in \mathbb{R}^d$, Hilbert space \mathcal{H} of functions $f: \mathcal{X} \mapsto \mathbb{R}$
- \mathcal{H} is a Reproducing Kernel Hilbert Space if $\exists k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$
 - k has the reproducing property $\langle k(\cdot, \mathbf{x}), f \rangle = f(\mathbf{x})$
 - k spans \mathcal{H}

For any f in the vector space, the reproducing property

$$\langle k(\cdot, \mathbf{x}), f \rangle = \sum_{i} \alpha_{i} k(\mathbf{x}, \mathbf{x}_{i}) = f(\mathbf{x})$$

- Consider $\mathcal{X} \in \mathbb{R}^d$, Hilbert space \mathcal{H} of functions $f: \mathcal{X} \mapsto \mathbb{R}$
- ullet \mathcal{H} is a Reproducing Kernel Hilbert Space if $\exists k: \mathcal{X} imes \mathcal{X} \mapsto \mathbb{R}$
 - k has the reproducing property $\langle k(\cdot, \mathbf{x}), f \rangle = f(\mathbf{x})$
 - ullet k spans ${\cal H}$
- It is necessary that k is symmetric and positive semi-definite

$$k = \sum_{t=1}^{\infty} \lambda_t \psi_t \psi_t^T \quad \Rightarrow \quad K(\mathbf{x}_i, \mathbf{x}_j) = \sum_{t=1}^{\infty} \lambda_t \psi_t(\mathbf{x}_i) \psi_t(\mathbf{x}_j)$$

For any f in the vector space, the reproducing property

$$\langle k(\cdot, \mathbf{x}), f \rangle = \sum_{i} \alpha_{i} k(\mathbf{x}, \mathbf{x}_{i}) = f(\mathbf{x})$$

- ullet Consider $\mathcal{X} \in \mathbb{R}^d$, Hilbert space \mathcal{H} of functions $f: \mathcal{X} \mapsto \mathbb{R}$
- ullet \mathcal{H} is a Reproducing Kernel Hilbert Space if $\exists k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$
 - k has the reproducing property $\langle k(\cdot, \mathbf{x}), f \rangle = f(\mathbf{x})$
 - ullet k spans ${\cal H}$
- It is necessary that *k* is symmetric and positive semi-definite

$$k = \sum_{t=1}^{\infty} \lambda_t \psi_t \psi_t^{\mathsf{T}} \quad \Rightarrow \quad K(\mathbf{x}_i, \mathbf{x}_j) = \sum_{t=1}^{\infty} \lambda_t \psi_t(\mathbf{x}_i) \psi_t(\mathbf{x}_j)$$

• Two possible feature representations

For any f in the vector space, the reproducing property

$$\langle k(\cdot, \mathbf{x}), f \rangle = \sum_{i} \alpha_{i} k(\mathbf{x}, \mathbf{x}_{i}) = f(\mathbf{x})$$

- ullet Consider $\mathcal{X} \in \mathbb{R}^d$, Hilbert space \mathcal{H} of functions $f: \mathcal{X} \mapsto \mathbb{R}$
- ullet \mathcal{H} is a Reproducing Kernel Hilbert Space if $\exists k: \mathcal{X} imes \mathcal{X} \mapsto \mathbb{R}$
 - k has the reproducing property $\langle k(\cdot, \mathbf{x}), f \rangle = f(\mathbf{x})$
 - ullet k spans ${\cal H}$
- It is necessary that k is symmetric and positive semi-definite

$$k = \sum_{t=1}^{\infty} \lambda_t \psi_t \psi_t^T \quad \Rightarrow \quad K(\mathbf{x}_i, \mathbf{x}_j) = \sum_{t=1}^{\infty} \lambda_t \psi_t(\mathbf{x}_i) \psi_t(\mathbf{x}_j)$$

- Two possible feature representations
 - $\Phi(\mathbf{x}) = k(\cdot, \mathbf{x})$ such that $\langle k(\cdot, \mathbf{x}_i), k(\cdot, \mathbf{x}_i) \rangle = k(\mathbf{x}_i, \mathbf{x}_i)$

For any f in the vector space, the reproducing property

$$\langle k(\cdot, \mathbf{x}), f \rangle = \sum_{i} \alpha_{i} k(\mathbf{x}, \mathbf{x}_{i}) = f(\mathbf{x})$$

- ullet Consider $\mathcal{X} \in \mathbb{R}^d$, Hilbert space \mathcal{H} of functions $f: \mathcal{X} \mapsto \mathbb{R}$
- ullet \mathcal{H} is a Reproducing Kernel Hilbert Space if $\exists k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$
 - k has the reproducing property $\langle k(\cdot, \mathbf{x}), f \rangle = f(\mathbf{x})$
 - k spans ${\cal H}$
- It is necessary that *k* is symmetric and positive semi-definite

$$k = \sum_{t=1}^{\infty} \lambda_t \psi_t \psi_t^T \quad \Rightarrow \quad K(\mathbf{x}_i, \mathbf{x}_j) = \sum_{t=1}^{\infty} \lambda_t \psi_t(\mathbf{x}_i) \psi_t(\mathbf{x}_j)$$

- Two possible feature representations
 - $\Phi(\mathbf{x}) = k(\cdot, \mathbf{x})$ such that $\langle k(\cdot, \mathbf{x}_i), k(\cdot, \mathbf{x}_i) \rangle = k(\mathbf{x}_i, \mathbf{x}_i)$
 - $\Phi(\mathbf{x}) = (\sqrt{\lambda_1}\psi_1(\mathbf{x}), \sqrt{\lambda_2}\psi_2(\mathbf{x}), \ldots)$ with usual inner product

ullet Let ${\mathcal H}$ be a reproducing kernel Hilbert space

- \bullet Let ${\mathcal H}$ be a reproducing kernel Hilbert space
- $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a symmetric positive semi-definite function

- ullet Let ${\mathcal H}$ be a reproducing kernel Hilbert space
- $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a symmetric positive semi-definite function
- For $f \in \mathcal{H}$, the norm $||f||_{\mathcal{H}}^2 = \langle f, f \rangle$

- ullet Let ${\mathcal H}$ be a reproducing kernel Hilbert space
- $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a symmetric positive semi-definite function
- For $f \in \mathcal{H}$, the norm $||f||_{\mathcal{H}}^2 = \langle f, f \rangle$
- For any $L: \mathbb{R}^n \mapsto \mathbb{R}$, any non-decreasing $\Omega: \mathbb{R} \mapsto \mathbb{R}$, consider

$$\min_{f \in \mathcal{H}} \left\{ \Omega(\|f\|_{\mathcal{H}}^2) + L(f(\mathbf{x}_1), \dots, f(\mathbf{x}_n)) \right\}$$

- ullet Let ${\cal H}$ be a reproducing kernel Hilbert space
- $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a symmetric positive semi-definite function
- For $f \in \mathcal{H}$, the norm $||f||_{\mathcal{H}}^2 = \langle f, f \rangle$
- For any $L: \mathbb{R}^n \mapsto \mathbb{R}$, any non-decreasing $\Omega: \mathbb{R} \mapsto \mathbb{R}$, consider

$$\min_{f \in \mathcal{H}} \left\{ \Omega(\|f\|_{\mathcal{H}}^2) + L(f(\mathbf{x}_1), \dots, f(\mathbf{x}_n)) \right\}$$

• For some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, the minimum is achieved by

$$f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \cdot)$$

- ullet Let ${\mathcal H}$ be a reproducing kernel Hilbert space
- $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a symmetric positive semi-definite function
- For $f \in \mathcal{H}$, the norm $||f||_{\mathcal{H}}^2 = \langle f, f \rangle$
- For any $L: \mathbb{R}^n \mapsto \mathbb{R}$, any non-decreasing $\Omega: \mathbb{R} \mapsto \mathbb{R}$, consider

$$\min_{f \in \mathcal{H}} \left\{ \Omega(\|f\|_{\mathcal{H}}^2) + L(f(\mathbf{x}_1), \dots, f(\mathbf{x}_n)) \right\}$$

• For some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, the minimum is achieved by

$$f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \cdot)$$

ullet If Ω is increasing, each minimizer has the above form

• The kernel trick can be applied elsewhere

- The kernel trick can be applied elsewhere
 - Several problems are in "dot product" form

- The kernel trick can be applied elsewhere
 - Several problems are in "dot product" form
 - Extensions to non-vector data types using kernels

- The kernel trick can be applied elsewhere
 - Several problems are in "dot product" form
 - Extensions to non-vector data types using kernels
- Kernel Logistic Regression (KLR)

- The kernel trick can be applied elsewhere
 - Several problems are in "dot product" form
 - Extensions to non-vector data types using kernels
- Kernel Logistic Regression (KLR)
 - Log-odds is linear in high-dimensional representation

$$\log\left(\frac{P(1|\mathbf{x})}{P(0|\mathbf{x})}\right) = \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle + w_0$$

- The kernel trick can be applied elsewhere
 - Several problems are in "dot product" form
 - Extensions to non-vector data types using kernels
- Kernel Logistic Regression (KLR)
 - Log-odds is linear in high-dimensional representation

$$\log\left(\frac{P(1|\mathbf{x})}{P(0|\mathbf{x})}\right) = \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle + w_0$$

The regularized KLR minimizes

$$L = \lambda \|\mathbf{w}\|^2 - \sum_i \log P(y_i|\mathbf{x}_i)$$

- The kernel trick can be applied elsewhere
 - Several problems are in "dot product" form
 - Extensions to non-vector data types using kernels
- Kernel Logistic Regression (KLR)
 - Log-odds is linear in high-dimensional representation

$$\log\left(\frac{P(1|\mathbf{x})}{P(0|\mathbf{x})}\right) = \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle + w_0$$

The regularized KLR minimizes

$$L = \lambda \|\mathbf{w}\|^2 - \sum_{i} \log P(y_i|\mathbf{x}_i)$$

From the representer theorem

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \quad \Rightarrow \quad \log \left(\frac{P(1|\mathbf{x})}{P(0|\mathbf{x})} \right) = \sum_{i} \alpha_{i} k(\mathbf{x}_{i}, \mathbf{x}) + w_{0}$$

- The kernel trick can be applied elsewhere
 - Several problems are in "dot product" form
 - Extensions to non-vector data types using kernels
- Kernel Logistic Regression (KLR)
 - Log-odds is linear in high-dimensional representation

$$\log\left(\frac{P(1|\mathbf{x})}{P(0|\mathbf{x})}\right) = \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle + w_0$$

The regularized KLR minimizes

$$L = \lambda \|\mathbf{w}\|^2 - \sum_i \log P(y_i|\mathbf{x}_i)$$

• From the representer theorem

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \quad \Rightarrow \quad \log \left(\frac{P(1|\mathbf{x})}{P(0|\mathbf{x})} \right) = \sum_{i} \alpha_{i} k(\mathbf{x}_{i}, \mathbf{x}) + w_{0}$$

• An efficient algorithm can be designed to learn $\alpha_1, \ldots, \alpha_n$

Kernel Fisher Discriminant

Recall Fisher's Linear Discriminant

$$J(\mathbf{w}) = \frac{\mathbf{w}^T S_B \mathbf{w}}{\mathbf{w}^T S_W \mathbf{w}}$$

$$S_B = (m_2 - m_1)(m_2 - m_1)^T$$

$$S_W = \sum_{k=1,2} \sum_{i \in C_k} (\mathbf{x}_i - m_k)(\mathbf{x}_i - m_k)^T$$

Kernel Fisher Discriminant

Recall Fisher's Linear Discriminant

$$J(\mathbf{w}) = \frac{\mathbf{w}^T S_B \mathbf{w}}{\mathbf{w}^T S_W \mathbf{w}}$$

$$S_B = (m_2 - m_1)(m_2 - m_1)^T$$

$$S_W = \sum_{k=1,2} \sum_{i \in C_k} (\mathbf{x}_i - m_k)(\mathbf{x}_i - m_k)^T$$

• Represent w in terms of mapped training points:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_{i} \phi(\mathbf{x}_{i})$$
$$\langle \mathbf{w}, \phi(\mathbf{x}) \rangle = \sum_{i=1}^{n} \alpha_{i} K(\mathbf{x}_{i}, x)$$

Kernel Fisher Discriminant (Contd.)

The corresponding Rayleigh coefficient

$$J(\alpha) = \frac{(\alpha^T \mu)^2}{\alpha^T N \alpha} = \frac{\alpha^T M \alpha}{\alpha^T N \alpha}$$

where

$$\mu = \mu_2 - \mu_1$$

$$M = \mu \mu^T$$

$$\mu_k = \frac{1}{|C_k|} K \mathbf{1}_k$$

$$N = KK^T - \sum_{k=1,2} |C_k| \mu_k \mu_k^T$$