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1. Reasoning Under Uncertainty using Bayes’ Theorem

problem: the patient shows the symptoms Sy, ...,.5,, and no other
symptoms — what is the probability that the patient has the disease D;?

available data:
P(D;) := the a priori probability that the patient sufferes from disease
D;; the probability that the patient has the disease before any symptoms

have been observed.

N = PUSiIDi)

v P(S;)

of the symptom S; and the occurrence of the disease D;. For example:
Ai;j = 8 expresses that the symptom occurs 8 times more frequent if the
patient has the disease (in this case the symptom provides some positive
evidence for the disease). On the other hand, A;; = 0.125 expresses that
the symptom occurs 8 times less frequent together with the disease(in this
case the symptom provides some negative evidence for the occurrence of the
disease). Finally, A;; &= 1 expresses that the symptom S; does not provide

any evidence at all for the occurrence of the disease D;.

:= Estimates the relationship between the occurrence

solution: Under the conditional independence assumption (concerning
the symptoms involved in the reasoning process and concerning the symp-
toms assuming the disease is present) the probability of having the disease

D; when showing the symptoms S, ...,.5,, can be calculated as follows:
m
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Another formulation that facilitates calculations is the following:
logs(P(D;|S1, . Sn)) = loga(P(D2)) + 3 logs (Air)
k=1

remark: in most systems A;; is called the "new evidence multiplier”

P(Sle")) the odds-multiplier for rules in

— warning: do not mix up with P(S,[-D))

PROSPECTOR.
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2. Bayesian Reasoning in PROSPECTOR

2.1 PROSPECTOR Rules

Syntax: (r) if E then H with S=s1, N=ni

Semantics

e PROSPECTOR rules perform Bayesian reasoning relying on Bayes’
Theorem and the Conditional Independence Assumption.

e However, in contrast to classical statistical approaches, PROSPEC-
TOR rules perform computations on odds rather than on probabilities.

e Odds and probabilities are related as follows:
P(H)

o O(H) = =577

O(H
o P(H) = 0(151)4)-1

e The processing of a PROSPECTOR rule computes an odds-multiplier
based on the probability of P(E’). The odds-multipler indicates how
the currents odds of H (O(H)) change based on observing P(E’).

o If P(E")=0 the multiplier N is used; that is, O(H|E') = N x« O(H).
o If P(E')=1 the multiplier S is used; that is, O(H|E') = S« O(H).

e If 0 < P(E’) < 1 holds the multiplier of the rule is computed by
interpolating between S and N.
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2.2 More about S and N
syntaz: if E then (to degree S,N) H
S:= estimates the belief in the sufficiency of H for E. S is estimated by:
o PUEH)
~ P(E|-H)

S measures how strongly the presence E is related to the presence of
H; this is, how stongly the presense of H increases the probability of E.
N:= estimates the belief in the necessarity of H for E. N is estimated by:

_ P(-ElH)
= PEIH)
N measures, how strongly the presense of H increases the probability of

the absense of E(P(=E) ).

The following relationship must hold between the values given for S
and N:

S _ 1 — P(=E|H)
"~ 1— P(=E|-H)

. 1—N><P(—|E|—|H)
1 — P(=FE|=H)

special cases:
1) 0< 5_;&, < 1= S and N are legal combinations.
2) N>1e S5<1
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2.8 Thoughts on Interpolation
Interpolation can be done by

e interpolating between multipliers (the log-function and linear interpo-
lation approach)
e interpolating between probabilities (PROSPECTOR’s approach)

o case 1: The prior odds of a rule’s left-hand side are not known:
use 2-point interpolation function.

o case 2: The prior odds of a rules left hand side are known: 3-point
interpolation function. Main idea: If P(E’)=P(E) a rule if E then
H S=s1,N=n1 should have a multiplier of 1!

e but not by interpolating between odds.
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2.4 Steps of PROSPECTOR’s Rule Processing
(r) if E then H with S=s1,N=nil

Goal of PROSPECTOR’s rule processing: compute a rule’s odds
multiplier A,.

Steps:

1. Compute P(H|E) and P(H|-E).
2. Compute P(H|E’) based on P(E’) using PROSPECTOR’s 2-point or
3-point interpolation function.

3. Compute O(H|E'") by converting P(H|E") to odds.

O(H|E'
4. Compute A, := é(JH) )

Remark: PROSPECTOR's interpolation approach is more compli-
cated than the log-interpolation approach (to be discussed later) which di-
rectly computes a rule’s multiplier based on P(E") by interpolating between

S and N.
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2.5 Multiplier Computation in PROSPECTOR

We assume that the a priori probabilities P(FE), P(H) are given. Fur-
thermore, additional(a posteriori) observations E’ have been made. Using
the inference techniques of PROSPECTOR we compute P(H|E A E') for a
rule

(r) if E then H with S=s1,N=nil

as follows:
We calculate from the a priori data:
_ _P(H)
O(H) = t=prm

PROSPECTOR works with odds and not probabilities.
O(H|E)=Sx0O(H)
O(H|-E)=N xO(H)

o e OUH|E)
PIH\E) = 5tem+1

_ _O(H|-E)
P(H|=E) = 5am=m+1

A 2-Pownt Interpolation Function to Compute P(H|E')

P(H|E') = P(H|E) x P(E|E') + P(H|-E) x P(=E|E') =

P(H|E) x P(E")+ P(H|-FE) x (1 - P(FE"))

In the above formula we estimate P(E’) by the evidence we have got so
far for E for the current case; that is, P(E’) denotes the a posteriori prob-

ability for E — in contrast to P(E) which denotes the a priori probability
of E.
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A 3-Point Interpolation Function to compute P(H|E')

We can compute P(H|E’) depending on P(E’) using the following 3-
point interpolation function f:

f:10,1] = [0,1]

[ P(H|=E) + 5z x (P(H) - P(H|=E)) « < P(E
| PUHIE) = =557 x (P(H|E) = P(H))  P(E)

f guarantees the consistency of the inferred probability with the a priori
probabilities; this is

f(P(E)) = P(H)

f(0) = P(H|-E)

f(1) = P(H|E)
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2.6 Evidence Combination in PROSPECTOR

Consider, the following rules provide evidence for a hypothesis H.

of Ey then H S =s1; N =mn,

vf B, then H S = s,,; N =n,,
O(H|...) can be computed as follows:

1) Compute
A = % fori=1,m.
2) Compute
O(H|EyA...NE,)=0(H) x [[
=1

remark: \; is similar to the "new evidence multipliers” in Bayes’s the-
orem.
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2.7 Example: Rule Processing in PROSPECTOR

Consider the following rule set is given:

(R1) If A then B S=10,N=0
(R2) If B then C S=5,N=0.01
(R3) If D then C S=4,N=0.5

The a priori probabilities are: P(B)=0.3; P(C)=0.01.
Moreover, the following a posteriori probabilities have

been observed: P(A’)=0.9; P(D")=0.2

O(A)=9

O(B)= 0.43

O(C)= 0.01

O(D’)= 0.25

O(B|A) = 10 % O(B) = 10 % 0.43 = 4.3
OB|-A)=0x0(B) =0
O(B|A") =0(B') =27

Ari(B) = &5 =6.27

see (*1)

O(C|B) = 5 O(C) = 0.05
O(C|~B) = 0.01 x O(C) = 0.0001
O(C|B') = 0.03284

Ar2(C) = 3.3

see (*2)
O(C|D)=4%x0(C)=0.04
O(C|~D) = 0.5 % O(C) = 0.005
O(C|D’') = 0.0118

Aps(C) = 1.18

see (*3)

O(C|B'AD') = O(C") = O(C) % Ao (C) % Aa(C) ~
(0.01% 3.3 1.18) = 0.039
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O(B’) _o7

1-0.73

" — —
P(C|B') = 0.048 — —— =

x (0.048 — 0.01) = 0.0318

O(C|B') = 0.033

(*3)
P(D') =0.2
P(C|D) = 224 — 0.0384
P(C|=D) = 0.005
P(C|D') = 0.2 % 0.038 + 0.8 % 0.005 = 0.0116
O(C|D') = 0.0118
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2.8 Other Interpolation Functions

The linear multiplier and the log-interpolation perform interpolation
based on odds-multipliers rather than based on probabilities. If compared
with PROSPECTOR’s approach to interpolation, multiplier interpolation
is much simpler in terms of computational cost.

The Log-Interpolation Function
Assume we have the following PROSPECTOR-style rule rl is given:

(r1) If A then X S=si1,N=nl

The log-interpolation function computes rl’s multiplier A, based on

)\1“1 — Olog10 (s1)xP(A")+logio(nl)*(1—P(A"))

The log-interpolation function should be used if no prior odds for the
left-hand hand side condiditions are available, which is frequently the case
in pragmatic applications of the Bayesian approach in which S and N ap-
proximate weights, rather than real probabilities.

The Linear Interpolation Function

The linear odds multiplier interpolation function computes rl’s multi-

plier A,1, based on P(A’) as follows:

A = s1% P(A") 4+ nlx(1— P(A")
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2.9 PROSPECTOR and Bayes’ Theorem

O(D|Sy A ... A S,) =

P(D|Si N... A Sy)
P(~DI|S; A...NS,)

Using Bayes’s Theorem we receive:

n) .
P(S1|~D) P(Sn|~D)
P(~D) x ZED) * pis S
Tattor P(Sj|D) _ P(D|Sa) R S
UDJ.116 P(SJ) _— P(D) YvuoU 1uUuuvuvlvuy
P(D|Sy1)
P(D)
O(D) P(~D|Sl)
P(~D)
O(D\|S O(D|S,
o(D)  2DI5) (DIS.)

The last formula is identical with PROSPECTOR’s formula for combi-
nation; that is, PROSPECTOR’s combination formula is based on Bayes’
Theorem: More precisely, it is odds-based reformulation of the probability
based definition of Bayes’ Theorem.
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3. The Conditional Independence Assumption
Applying Bayes’ theorem the a posterori probability of a disease D);
can be computed as follows:

P(D]) * P(Sl VANPTRIVAN Sn|D])
P(SiAN...ASy)

Assuming that we have a diagnostic problem that involves 50 diseases
and 500 symptoms, more than

50 % 2°00 ~ 10150
conditional probabilities are needed for a dignostic expert system of this
size. However, frequently, the following simplified formula is used instead,
which relies on the conditional independence assumption:

P(Dj) % P(S1|Dj) % ...% P(S,|Dj)
P(S1) % ...% P(S,)

With the second formula only appoximately 25000 conditional probabili-
ties are needed; it sacrifices precision in order to reduce the enourmous
knowledge acquisition costs in diagnostic expert systems. In general, if the
conditional independence assumption is not valid, computation errors will
occur, especially if small probabilities are involved.

P(D]|Sl A Sn) ~

Final Remarks:

o In summary, we frequently have to tolerate tmprecision by making as-
sumptions (such as the conditional independence assumption) in the
design of a system in order to make it feasible to get such a system
running, only spending a limited amount of time and money.

e Bayesian approaches that rely on the conditional independence as-
sumption are nowadays called naive Bayesian approaches in the liter-
ature. More complicated approaches, such as Bayesian networks (that
were introduced by Judea Pearl) and influence networks, that do not
rely on the condition independence assumption have been introduced

in the last decade in the literature.
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4. Automating Decision Making using Bayesian Rules
This can be done

e in the true spirit of Bayesian approaches. This requires that prior
odds, and conditional probabilities are known for the task to be solved.
In this case, S and N and prior odds can be directly computed from
statistical data.

e pragmatically — in the spirit of soft computing. Frequently, prior odds
and conditional probabilities are not known, or too expensive to obtain.
In the pragmatic approach, odds multipliers approximate weights a
particular piece of evidence carries for a particular decision candidate,
but not precise probabilities.

Remark: Most real world expert systems that employ Bayesian tech-
niques relying on the pragmatic approach.
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5. Bayesian versus Fuzzy Approaches

e Bayesian approaches rely on probabilities in their theories. Probabilities
cope with randomness in our world and enable us to make predictions
with which frequency events occur in the future.

o Fuzzy set theory relies on possibilities. Possibilities cope with the de-
gree an object belongs to a particular class / set — possibilities are
used to describe the semantics of terms in a terminology, measuring to
which extend an object matches the description of a particular term.
Possibilities approximate the meaning of terms, and they have nothing

~ to do with the frequency a particular object or event occurs in reality.

e Some approaches try to combine Bayesian reasoning with fuzzy sets by
sibilities are be interpreted probabilistically by the underlying Bayesian
rules; that is, possibilities are directly converted into probabilities and
decision making by evidence combination is provided under the um-
brella of Bayes” Theorem and the Conditional Independence Assump-
tion. The scholarship committee rule-set is a good example of a rule-set
that uses fuzzy sets on the left-hand side of Bayesian, PROSPECTOR-
style rules.
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6. Application to the A-B-C Example in PROSPECTOR

A PROSPECTOR-Ruleset
decision candidates: D1, D2, D3

(r1) if A then D1 with S = s, N =ny
(r2) if C then D1 S = s9, N = no
(r3) if B then D2 S = s3, N = ng

solutions parameters: ny,ng, ng, s1, s2, s3, O(D1),0(D2),0(D3).

Choose the 9 parameters so that the following 5 equations are
satisfied:

Equations:
( )81 &+ 59 &+ O(Dl) > S3 &+ O(DQ)
(1V)0(D3) > n = 0(D)

In the case of PROSPECTOR & := x.



