Kernels

Nuno Vasconcelos
ECE Department, UCSD

Principal component analysis

» Dimensionality reduction:

« Last time, we saw that when the data lives in a subspace, it is
best to design our learning algorithms in this subspace

2D subspace in 3D T _ T
ubspace | Y, Zy = PAD

5 ﬁ ?
(f/// y;

» this can be done by computing the principal components
of the data

 principal components ¢, are the eigenvectors of =

 principal lengths A; are the eigenvalues of

Principal component analysis (learning)

» Given sample D = {x1,...,Xn}, z; € R%
e compute sample mean: i = = ¥ ;(x;)
e compute sample covariance: ¥ = %Zi(xi — o) (x; —)t

e compute eigenvalues and eigenvectors of 3

> = dAPL, A =diag(o?,...,02) dTd =1
e order eigenvalues o2 > ... > 02

e if, for a certain k, 0, << o1 eliminate the eigenvalues and
eigenvectors above k.

Principal component analysis

* Given principal compoenents ¢;,7 € 1,...,k and a test sample
T ={t1,...,tn}, tiERd

e subtract mean to each point tg =t;, — i

e project onto eigenvector space y; = At; where
T
1]
"]
T
Pk

e use 7' = {y1,...yn} to estimate class conditional densities
and do all further processing on y.

PCA by SVD

» we next saw that PCA can be computed by the SVD of
the data matrix directly

» given X with one example per column

* 1) create the centered data-matrix

X7 =(/ —1117))(7
/1
e 2) compute its SVD
X! =MIIN’

« 3) principal components are columns of N, eigenvalues are

A :nﬁ

Extensions

» Today we will talk about kernels

 turns out that any algorithm which depends on the data through
dot-products only, i.e. the matrix of elements

Xi X

can be kernelized
 this is usually beneficial, we will see why later
« for now we look at the question of whether PCA can be written in
the form above — —

» recall the data matrix is | |

Extensions

» Wwe saw that the centered-data matrix and the covariance
can be written as

Xc:)((/_illrj ZIEXCXCT

N n
» the eigenvector ¢, of eigenvalue 2, is
1 r 1 r
¢/’ — /7],/- XcXc ¢/ = /72,/- Xca/" 0[,- = Xc ¢/

» hence, the eigenvector matrix is

— —

_ _| @ a,

O=XT, TI= %ﬁd Aﬁd
| |

Extensions

» we next note that, from the eigenvector decomposition

>S=OAD o A=D'>D

» and
A=T"x/ (X X, \XF
m) °
(XX X
/1
> l.e.

%(XCTXC \x.”x,)=rAr’

Extensions

» in summary, we have
>=pAD’| |P=X.T
1

;(XCTXC | x.”x,)=rAr’

» this means that we can obtain PCA by
« 1) assembling n-1(X_.TX.)(X."X,)
e 2) computing its eigen-decomposition (A,I)
» PCA

 the principal components are then given by X_.I"
» the eigenvalues are given by A

Extensions

» What is interesting here is that we only need the matrix

» this is the matrix of dot-products of the centered data-
points

» notice that you don’t need the points themselves, only
their dot-products (similarities)

10

Extensions

» to compute PCA, we use the fact that

1 1
L 5)= h

» but if K. has eigendecomposition (A,I')

1 KK/ = LrATTTAr = A
n n n

» then, n1(X.TX,)(X."X,.) has eigendecomposition (A2,I)

Extensions

» INn summary, to get PCA

* 1) compute the dot-product matrix K

e 2) compute its eigen-decomposition (A,I)
» PCA

 the principal components are then given by ® = X_I'
» the eigenvalues are given by A?

» the projection of the data-points on the principal components is
given by

X' o=X"X T=KT

» this allows the computation of the eigenvalues and PCA
coefficients when we only have access to the dot-product
matrix K

12

The dot product form

» This turns out to be the case for many learning algorithms

» If you manipulate a little bit, you can write them in “dot
product form”

»(Definition: a learning algorithm is in dot product form if,
given a training set

D = {(Xp.y1), -os (XnaYn)}

it only depends on the points X; through their dot products
XX

» for example, let’'s look at k-means

13

Clustering

» \We saw that It iterates bewteen

« 1) classification:

i"(x) =argmin|x — 4 H2

e 2) re-estimation:

1 -
new 2 : (1)
! - H Xj
J

» note that

= = O =1, (x = 11;)
=x"x=2xT 1, + 1" 1,

Clustering

» and

_is 0
H; _n;)(j

» combining the two, we can write the top equation as a
function of the dot products x;'x;

T AR TR WAPTIEES Y LP L
J Jl

The kernel trick

'y
X2

» why is this interesting?
» consider transformation of the feature
space:

e Introduce a mapping
DX > Z
such that dim(2) > dim(X)

» if the algorithm only depends on the
data through dot-products [Ty
I

» then, in the transformed space, it

only depends on ¢T (Xi)¢(Xj)

16

The dot product implementation

» in the transformed space, the learning algorithms only
requires dot-products

Dx;)" Dx;)
» note that we no-longer need to store the @(x;)
» only the n? dot-product matrix

» interestingly, this holds even when @(x) is infinite
dimensional

» we get a reduction from infinity to n?!
» there is, however, still one problem:

« when dim[&(x)] is infinite the computation of the dot products
looks impossible

17

The “kernel trick”

» “Instead of defining defining &(x), computing &(x;) for
each i and @&(x)" &(x;) for each pair (i,j), simply define the
function

K(x,2)=D(x) ®(2)

and work with it directly.”
» K(X,z) Is called a dot-product kernel
» In fact, since we only use the kernel, why define @(x)?
» just define the kernel K(x,z) directly!
» In this way we never have to deal with the complexity of

A(X)...

» this is usually called the “kernel trick”

18

Questions

» | am confused!

» how do | know that if | pick a function K(x,z), it is
equivalent to &x)'d(z)?
* In general, it is not. We will talk about this later.

» if it IS, how do | know what @&(x) is?

* you may never know. E.g. the Gaussian kernel
K(x,z)=e °
IS very popular. It is not obvious what @&(x) is...

e on the positive side, we did not know how to choose @(x).
Choosing instead K(x,z) makes no difference.

» why Is it that using K(x,z) is easier/better?

« complexity. let’s look at an example.

19

Polynomial kernels

» still in ®9, consider the square of the dot product between
two vectors

= X, X, 2,2, + X X2 2y + oA X X 2,2+
+ X, X 2,2, + Xy X2 Z o+ oot Xy Xy 2,2, +

+ X X Z 2+ Xy Xy ZyZy+ oo+ Xy Xy 2 42,

20

Polynomial kernels

» can be written as

2
(X7 2 = (XX X XKoo s XX o X g X X g X g X g K g

CI)Y(X)T

» hence, we have
K(x,2)= (XTZ)Z =D(x) D(2)
with @: R >R

Xl

X

412,
4,2,

2124

Zy24
Zy2,

2944

_)(X1X1’X1X2""’Xlxd""’XdX11XdX2"”1XdXd)

D (2)

r

21

Polynomial kernels

» the point is that

* while @(x)"@(z) has complexity O(d?)

 direct computation of K(x,z) = (x"z)? has complexity O(d)
» direct evaluation is more efficient by a factor of d
» as d goes to infinity this makes the idea feasible

» BTW, you just met another kernel family

 this implements polynomials of second order
* In general, the family of polynomial kernels is defined as

K(x,z)= (1+ sz)k, kel

* | don’t even want to think about writing down @&(x) !

22

Kernel summary

1.

2.

3.

4.

D not easy to deal with in x; apply feature transformation @.x — 2,

such that dim(2) >> dim(X)

computing @&(x) too expensive:

e write your learning algorithm in dot-product form

- instead of @&(x;), we only need &(x)"&(x)) V;

instead of computing &(x;)' &(x;) v;, define the “dot-product kernel

K(x,2)=0(x) ®(2)

and compute K(x;,x;) ¥ directly
e note: the matrix ;
K _|:“'K(X/"Zj)'“:|

is called the “kernel” or Gram matrix
forget about @(x) and use K(x,z) from the start!

23

Question

» what is a good dot-product kernel?

« this is a difficult question (see Prof. Lenckriet’s work)

» INn practice, the usual recipe is:

* pick a kernel from a library of known kernels

* we have already met
o the linear kernel K(x,z) = x'z
* the Gaussian family

x—2ff
K(x,z)=e °

 the polynomial family

K(x,z)= (1+ sz)k, kell,2,-}

24

Dot-product kernels
» this may not be a bad idea

b

g

« we rip the benefits of a high-dimensional space without a price in
complexity

» the kernel simply adds a few parameters (o, k) learning it would
imply introducing many parameters (up to n?)

what if | need to check whether K(x,z) is a kernel?

Definition: a mapping

K: XX X —> 97 J) a
(Xiy) — k(X,Y) (D>O &
IS a dot-product kernel if and only if
QD) (0] -7{
k(xy) = <@(x), &(y)> 3L,

where @. X — #, (IS a vector space and <.,.> a dot-
product in %

25

Positive definite matrices

» recall that (e.g. Linear Algebra and Applications, Strang)

»(Definition: each of the following is a necessary and
sufficient condition for a real symmetric matrix A to be
(semi) positive definite:

) XTAx =20, Vx=0

ii) all eigenvalues of A satisfy 4, =0

i) all upper-left submatrices A, have non-negative determinant
IV) there is a matrix R with independent rows such that
A=R'R

» upper left submatrices:

&, 3, a,)
A1 =ap, Az — {a 1 a 2} As =8y, Ay, dyg
o o _a31 a; , a33_

26

Positive definite matrices

» property iv) is particularly interesting

e in 9, <x,x> = xTAx is a dot-product kernel if and only if A is
positive definite

« from iv) this holds if and only if there is R such that A = RTR
* hence

<x,y> = XTAy = (XR)(Ry) = &(x)Td(y)

@, Hd > Hd
X — RX

with

» 1.e. the dot-product kernel
k(x,z) = xTAz, (A positive definite)

» IS the standard dot-product in the range space of the
mapping &(x) = Rx

27

Positive definite kernels

» how do | extend this notion of positive definiteness to
functions?

» Definition: a function k(x,y) is a positive definite kernel on
Xxxif vland V{x,, ..., X}, Xie X, the Gram matrix

K = "'k(X/-,Xj)'“

IS positive definite.

» like in in $79, this allows us to check that we have a
positive definite kernel

Dot product kernels

» Theorem: k(X,y), X,y € X, is a dot-product kernel if and
only if it is a positive definite kernel

» In summary, to check whether a kernel is a dot product:
* check if the Gram matrix is positive definite
 for all possible sequences {Xq, ..., X}, X,;e X

» does the kernel have to be a dot-product kernel?

» not necessarily. For example, neural networks can be
seen as implementing kernels that are not of this type

» however:

* you loose the parallelism. what you know about the learning
machine may no longer hold after you kernelize

» dot-product kernels usually lead to convex learning problems.
Usually you loose this guarantee for non dot-product

29

Clustering
» so far, this is mostly theoretical
» how does it affect my algorithms?

» consider, for example, the k-means algorithm

e 1) classification:

i (x) =argmin|x — 4 H2

e 2) re-estimation:

1 :
new 2 : (1)
J

» can we kernelize the classification step?

30

Clustering

» well, we saw that

T AR TR W APTIEES WS LBk
/ Jl

» this can then be kernelized into

o= uff =000 @) T, olx)

S0l ol

Clustering

» furthermore, this can be done with relative efficiency

HX/(_:U/HZ T (D(Xk)r(D(Xk)_%;q)(xk)rq)(x}/))

Lol T ofap)

when all points are assigned

» the assignment of the point only
requires computing 2 r ()

— > Olx,) Olx;’)

n ; (k) (J)

for each cluster >

» this iIs a sum of entries of Gram
matrix

32

Clustering

» note, however, that we cannot explicitly compute

ol)=, S o)

» this is probably infinite dimensional...

» INn any case, if we define

e a Gram matrix KO) for each cluster (dot products between points
In cluster)

e and SO the scaled sum of the entries in this matrix

5= L5l o)

33

Clustering

» we obtain the kernel k-means algorithm

« 1) classification:

i"(x,)=argmin| K
/.

/)
,+5

ZCD x,)

F o)

e 2) re-estimation: update

5= L5l o)

» but we no longer have access to the prototype for each

cluster

34

Clustering

» with the right kernel this can work significantly better than
regular k-means

kernel
k-means k-means

.t

35

Clustering

» but for other applications, where the prototypes are
Important, this may be useless

» €.9g. compression

f [- i
| — e) -
P irdea | JR— I
- =_++_J. A index | |] T 14
) B index 1 ——] P l [l
— - 1 — inde
I_L.l — l } - : 7 - i
| | — —
: , o — _—_i — | :
| | : } — — ——— '
* 1 —— 1 |
| - ma 3 hﬂtﬂ oL Tbyies P 188 i: .- | i |
— oo ’ ey)
B B"
RGB PCA images Definad codabook Defined codebook pressed
RGB images

» We can try replacing the prototype by the closest vector,
but this is not necessarily optimal

36

PCA

» we saw that, to get PCA

| 1) compute the dot-product matrix K

| 2) compute its eigen-decomposition (A,I)
» PCA

 the principal components are then given by @ = X_I"

e | the eigenvalues are given by A?
* | the projection of the data-points on the principal components is

given by T
X'®=KT

» note that most of this holds when we kernelize, we only
have to change the matrix K from x;"x; to ¢(x;)" ¢(x)

 the only thing we can no longer access are the PCs @ = X_I~

37

Kernel methods

» most learning algorithms can be kernelized

« kernel PCA
* kernel LDA
* kernel ICA,
* etc.

» as In k-means, sometimes we loose some of the features
of the original algorithm

» but the performance is frequently better

» next week we will look at the canonical application, the
support vector machine

38

