Kernels

Nuno Vasconcelos ECE Department, UCSD

Principal component analysis

- ► Dimensionality reduction:
 - Last time, we saw that when the data lives in a subspace, it is best to design our learning algorithms in this subspace

- this can be done by computing the principal components of the data
 - principal components ϕ_i are the eigenvectors of Σ
 - principal lengths λ_i are the eigenvalues of Σ

Principal component analysis (learning)

- ▶ Given sample $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}, \ x_i \in \mathcal{R}^d$
 - compute sample mean: $\hat{\mu} = \frac{1}{n} \sum_{i} (\mathbf{x}_i)$
 - compute sample covariance: $\hat{\Sigma} = \frac{1}{n} \sum_{i} (\mathbf{x}_i \hat{\mu}) (\mathbf{x}_i \hat{\mu})^T$
 - ullet compute eigenvalues and eigenvectors of $\hat{\Sigma}$

$$\hat{\Sigma} = \Phi \Lambda \Phi^T, \ \Lambda = diag(\sigma_1^2, \dots, \sigma_n^2) \ \Phi^T \Phi = I$$

- order eigenvalues $\sigma_1^2 > ... > \sigma_n^2$
- if, for a certain k, $\sigma_k << \sigma_1$ eliminate the eigenvalues and eigenvectors above k.

Principal component analysis

- Given principal components $\phi_i, i \in 1, ..., k$ and a test sample $\mathcal{T} = \{\mathbf{t}_1, ..., \mathbf{t}_n\}, \ t_i \in \mathcal{R}^d$
 - subtract mean to each point $\mathbf{t}_i' = \mathbf{t}_i \hat{\mu}$
 - ullet project onto eigenvector space $\mathbf{y}_i = \mathbf{A}\mathbf{t}_i'$ where

$$\mathbf{A} = \left[\begin{array}{c} \phi_1^T \\ \vdots \\ \phi_k^T \end{array} \right]$$

• use $T' = \{y_1, \dots y_n\}$ to estimate class conditional densities and do all further processing on \mathbf{y} .

PCA by SVD

- we next saw that PCA can be computed by the SVD of the data matrix directly
- given X with one example per column
 - 1) create the centered data-matrix

$$\boldsymbol{X}_{c}^{T} = \left(\boldsymbol{I} - \frac{1}{n} \boldsymbol{1} \boldsymbol{1}^{T}\right) \boldsymbol{X}^{T}$$

• 2) compute its SVD

$$X_c^T = M\Pi N^T$$

• 3) principal components are columns of N, eigenvalues are

$$\lambda_i = n \sqrt{\pi_i}$$

- ► Today we will talk about kernels
 - turns out that any algorithm which depends on the data through dot-products only, i.e. the matrix of elements

$$X_i^T X_j$$

can be kernelized

- this is usually beneficial, we will see why later
- for now we look at the question of whether PCA can be written in the form above
- ▶ recall the data matrix is

$$X = \begin{bmatrix} 1 & & & \\ x_1 & \dots & x_n \\ & & & \end{bmatrix}$$

we saw that the centered-data matrix and the covariance can be written as

$$X_c = X \left(I - \frac{1}{n} 1 1^T \right)$$

$$\Sigma = \frac{1}{n} X_c X_c^T$$

▶ the eigenvector ϕ_i of eigenvalue λ_i is

$$\phi_{i} = \frac{1}{n\lambda_{i}} X_{c} X_{c}^{T} \phi_{i} = \frac{1}{n\lambda_{i}} X_{c} \alpha_{i}, \quad \alpha_{i} = X_{c}^{T} \phi_{i}$$

▶ hence, the eigenvector matrix is

$$\Phi = X_c \Gamma, \qquad \Gamma = \begin{bmatrix} | & & | \\ \alpha_1 / n \lambda_d & \dots & \alpha_d / n \lambda_d \end{bmatrix}$$

we next note that, from the eigenvector decomposition

$$\Sigma = \Phi \Lambda \Phi^T \iff \Lambda = \Phi^T \Sigma \Phi$$

and

$$\Lambda = \Gamma^{T} X_{c}^{T} \left(\frac{1}{n} X_{c} X_{c}^{T} \right) X_{c} \Gamma$$
$$= \frac{1}{n} \Gamma^{T} \left(X_{c}^{T} X_{c} \right) \left(X_{c}^{T} X_{c} \right) \Gamma$$

▶ i.e.

$$\frac{1}{n} \left(X_c^T X_c \right) \left(X_c^T X_c \right) = \Gamma \Lambda \Gamma^T$$

▶ in summary, we have

$$\sum = \Phi \Lambda \Phi^{T} \qquad \Phi = X_{c} \Gamma$$

$$\frac{1}{n} (X_{c}^{T} X_{c}) (X_{c}^{T} X_{c}) = \Gamma \Lambda \Gamma^{T}$$

- ▶ this means that we can obtain PCA by
 - 1) assembling n⁻¹(X_c^TX_c)(X_c^TX_c)
 - 2) computing its eigen-decomposition (Λ, Γ)
- ► PCA
 - the principal components are then given by $X_c\Gamma$
 - the eigenvalues are given by Λ

▶ what is interesting here is that we only need the matrix

$$K_{c} = X_{c}^{T} X_{c} = \begin{bmatrix} - & X_{1}^{c} & - \\ & \vdots & \\ - & X_{n}^{c} & - \end{bmatrix} \begin{bmatrix} | & & | \\ X_{1}^{c} & \dots & X_{n}^{c} \\ | & & | \end{bmatrix}$$
$$= \begin{bmatrix} \vdots & & \\ \dots & (X_{n}^{c})^{T} X_{n}^{c} & \dots \\ \vdots & & \end{bmatrix}$$

- this is the matrix of dot-products of the centered datapoints
- notice that you don't need the points themselves, only their dot-products (similarities)

▶ to compute PCA, we use the fact that

$$\frac{1}{n} \left(X_c^T X_c \right) \left(X_c^T X_c \right) = \frac{1}{n} K_c K_c^T$$

▶ but if K_c has eigendecomposition (Λ,Γ)

$$\frac{1}{n}K_cK_c^T = \frac{1}{n}\Gamma\Lambda\Gamma^T\Gamma\Lambda\Gamma^T = \frac{1}{n}\Gamma\Lambda^2\Gamma^T$$

▶ then, $n^{-1}(X_c^TX_c)(X_c^TX_c)$ has eigendecomposition (Λ^2,Γ)

- ▶ in summary, to get PCA
 - 1) compute the dot-product matrix K
 - 2) compute its eigen-decomposition (Λ,Γ)
- ► PCA
 - the principal components are then given by $\Phi = X_c\Gamma$
 - the eigenvalues are given by Λ^2
 - the projection of the data-points on the principal components is given by

$$X_c^T \Phi = X_c^T X_c \Gamma = K \Gamma$$

► this allows the computation of the eigenvalues and PCA coefficients when we only have access to the dot-product matrix K

The dot product form

- ► This turns out to be the case for many learning algorithms
- ► If you manipulate a little bit, you can write them in "dot product form"
- ► **Definition:** a learning algorithm is in dot product form if, given a training set

$$D = \{(x_1, y_1), ..., (x_n, y_n)\},\$$

it only depends on the points X_i through their dot products $X_i^T X_j$.

▶ for example, let's look at k-means

- ▶ We saw that it iterates bewteen
 - 1) classification:

$$i^*(x) = \underset{i}{\arg\min} ||x - \mu_i||^2$$

• 2) re-estimation:

$$\mu_i^{new} = \frac{1}{n} \sum_j x_j^{(i)}$$

note that

$$||x - \mu_i||^2 = (x - \mu_i)^T (x - \mu_i)$$
$$= x^T x - 2x^T \mu_i + \mu_i^T \mu_i$$

and

$$\mu_i = \frac{1}{n} \sum_j X_j^{(i)}$$

combining the two, we can write the top equation as a function of the dot products x_i^Tx_i

$$\|X_k - \mu_i\|^2 = X_k^T X_k - \frac{2}{n} \sum_j X_k^T X_j^{(i)} + \frac{1}{n^2} \sum_{jl} X_j^{(i)T} X_l^{(i)}$$

The kernel trick

- why is this interesting?
- consider transformation of the feature space:
 - introduce a mapping

$$\Phi: X \to Z$$
 such that $dim(Z) > dim(X)$

▶ if the algorithm only depends on the data through dot-products $\chi_{i}^{T} \chi_{i}$

• then, in the transformed space, it only depends on $\int_{\Delta^T(u)} du$

The dot product implementation

▶ in the transformed space, the learning algorithms only requires dot-products

$$\Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_i)$$

- ▶ note that we no-longer need to store the $\Phi(x_i)$
- ▶ only the *n*² dot-product matrix
- ▶ interestingly, this holds even when $\Phi(x)$ is infinite dimensional
- we get a reduction from infinity to n^2 !
- ▶ there is, however, still one problem:
 - when $dim[\Phi(x_j)]$ is infinite the computation of the dot products looks impossible

The "kernel trick"

• "instead of defining defining $\Phi(x)$, computing $\Phi(x_i)$ for each i and $\Phi(x_i)^T \Phi(x_j)$ for each pair (i,j), simply define the function

 $K(X,Z) = \Phi(X)^T \Phi(Z)$

and work with it directly."

- \blacktriangleright K(x,z) is called a dot-product kernel
- ▶ in fact, since we only use the kernel, why define $\Phi(x)$?
- ightharpoonup just define the kernel K(x,z) directly!
- ▶ in this way we never have to deal with the complexity of $\Phi(x)$...
- this is usually called the "kernel trick"

Questions

- ▶ I am confused!
- ▶ how do I know that if I pick a function K(x,z), it is equivalent to $\Phi(x)^T \Phi(z)$?
 - in general, it is not. We will talk about this later.
- ▶ if it is, how do I know what $\Phi(x)$ is?
 - you may never know. E.g. the Gaussian kernel

$$K(x,z) = e^{-\frac{\|x-z\|^2}{\sigma}}$$

is very popular. It is not obvious what $\Phi(x)$ is...

- on the positive side, we did not know how to choose $\Phi(x)$. Choosing instead K(x,z) makes no difference.
- \blacktriangleright why is it that using K(x,z) is easier/better?
 - complexity. let's look at an example.

Polynomial kernels

ightharpoonup still in \mathbb{R}^d , consider the square of the dot product between two vectors

$$(X^{T}Z)^{2} = \left(\sum_{i=1}^{d} X_{i}Z_{i}\right)^{2} = \left(\sum_{i=1}^{d} X_{i}Z_{i}\right) \left(\sum_{j=1}^{d} X_{j}Z_{j}\right) =$$

$$= \sum_{i=1}^{d} \sum_{j=1}^{d} X_{i}X_{j}Z_{i}Z_{j}$$

$$= X_{1}X_{1}Z_{1}Z_{1} + X_{1}X_{2}Z_{1}Z_{2} + \dots + X_{1}X_{d}Z_{1}Z_{d} +$$

$$+ X_{2}X_{1}Z_{2}Z_{1} + X_{2}X_{2}Z_{2}Z_{2} + \dots + X_{2}X_{d}Z_{2}Z_{d} +$$

$$\vdots$$

$$+ X_{d}X_{1}Z_{d}Z_{1} + X_{d}X_{2}Z_{d}Z_{2} + \dots + X_{d}X_{d}Z_{d}Z_{d}$$

Polynomial kernels

can be written as

Polynomial kernels
can be written as
$$(x^{T}z)^{2} = \underbrace{[x_{1}x_{1}, x_{1}x_{2}, ..., x_{1}x_{d}, ..., x_{d}x_{1}, x_{d}x_{2}, ..., x_{d}x_{d}, ...]}_{\Phi(x)^{T}} \begin{bmatrix} z_{1}z_{1} \\ z_{1}z_{2} \\ \vdots \\ z_{1}z_{d} \\ \vdots \\ z_{d}z_{1} \\ z_{d}z_{2} \\ \vdots \\ z_{d}z_{d} \end{bmatrix}$$
whence, we have
$$K(x, z) = (x^{T}z)^{2} = \Phi(x)^{T}\Phi(z)$$
with $\Phi: \Re^{d} \to \Re^{d^{2}}$

$$\begin{bmatrix} x_{1} \\ \vdots \\ x_{d}x_{1}, x_{1}x_{2}, ..., x_{1}x_{d}, ..., x_{d}x_{1}, x_{d}x_{2}, ..., x_{d}x_{d} \end{bmatrix}^{T}$$

hence, we have

$$K(X,Z) = (X^T Z)^2 = \Phi(X)^T \Phi(Z)$$

$$\begin{pmatrix} X_1 \\ \vdots \\ X_d \end{pmatrix} \rightarrow \begin{pmatrix} X_1 X_1, X_1 X_2, \dots, X_1 X_d, \dots, X_d X_1, X_d X_2, \dots, X_d X_d \end{pmatrix}^T$$

$$\begin{bmatrix} Z_1 Z_1 \\ Z_1 Z_2 \\ \vdots \\ Z_1 Z_d \\ \vdots \\ Z_d Z_1 \\ Z_d Z_2 \\ \vdots \\ Z_d Z_d \end{bmatrix}$$

Polynomial kernels

- ▶ the point is that
 - while $\Phi(x)^T \Phi(z)$ has complexity $O(d^2)$
 - direct computation of $K(x,z) = (x^Tz)^2$ has complexity O(d)
- direct evaluation is more efficient by a factor of d
- ▶ as *d* goes to infinity this makes the idea feasible
- ► BTW, you just met another kernel family
 - this implements polynomials of second order
 - in general, the family of polynomial kernels is defined as

$$K(X,Z) = (1 + X^T Z)^k, \quad k \in \{1,2,\cdots\}$$

• I don't even want to think about writing down $\Phi(x)$!

Kernel summary

- 1. D not easy to deal with in X, apply feature transformation $\Phi: X \to Z$, such that dim(Z) >> dim(X)
- 2. computing $\Phi(x)$ too expensive:
 - write your learning algorithm in dot-product form
 - instead of $\Phi(x_i)$, we only need $\Phi(x_i)^T \Phi(x_i) \ \forall_{ij}$
- 3. instead of computing $\Phi(x_i)^T \Phi(x_i) \forall_{ij}$, define the "dot-product kernel"

$$K(X,Z) = \Phi(X)^T \Phi(Z)$$

and compute $K(x_i, x_i) \forall_{ii}$ directly

note: the matrix

$$K = \begin{bmatrix} \vdots \\ \cdots K(X_i, Z_j) \cdots \\ \vdots \end{bmatrix}$$

is called the "kernel" or Gram matrix

4. forget about $\Phi(x)$ and use K(x,z) from the start!

Question

- what is a good dot-product kernel?
 - this is a difficult question (see Prof. Lenckriet's work)
- ▶ in practice, the usual recipe is:
 - pick a kernel from a library of known kernels
 - we have already met
 - the linear kernel $K(x,z) = x^T z$
 - the Gaussian family

$$K(X,Z) = e^{-\frac{\|X-Z\|^2}{\sigma}}$$

the polynomial family

$$K(X,Z) = (1 + X^T Z)^k, \quad k \in \{1,2,\cdots\}$$

Dot-product kernels

- this may not be a bad idea
 - we rip the benefits of a high-dimensional space without a price in complexity
 - the kernel simply adds a few parameters (σ, k) learning it would imply introducing many parameters (up to n²)
- \blacktriangleright what if I need to check whether K(x,z) is a kernel?
- Definition: a mapping

$$k: X \times X \to \mathcal{R}$$

 $(x,y) \to k(x,y)$

is a dot-product kernel if and only if

$$k(x,y) = \langle \Phi(x), \Phi(y) \rangle$$

where $\Phi: X \to \mathcal{H}$, \mathcal{H} is a vector space and <...> a dot-product in \mathcal{H}

Positive definite matrices

- ► recall that (e.g. Linear Algebra and Applications, Strang)
- ▶ **Definition:** each of the following is a necessary and sufficient condition for a real symmetric matrix *A* to be (semi) positive definite:
 - i) $x^T A x \ge 0$, $\forall x \ne 0$
 - ii) all eigenvalues of A satisfy $\lambda_i \geq 0$
 - iii) all upper-left submatrices A_k have non-negative determinant
 - iv) there is a matrix R with independent rows such that $A = R^T R$
- upper left submatrices:

$$A_{1} = a_{1,1} \qquad A_{2} = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} \qquad A_{3} = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix} \qquad \cdots$$

Positive definite matrices

- property iv) is particularly interesting
 - in \mathcal{R}^d , $\langle x, x \rangle = x^T A x$ is a dot-product kernel if and only if A is positive definite
 - from iv) this holds if and only if there is R such that $A = R^T R$
 - hence

$$\langle x,y \rangle = x^T A y = (xR)^T (Ry) = \Phi(x)^T \Phi(y)$$
 with $\Phi: \mathcal{R}^d \to \mathcal{R}^d$ $x \to Rx$

▶ i.e. the dot-product kernel

$$k(x,z) = x^T A z$$
, (A positive definite)

▶ is the standard dot-product in the range space of the mapping $\Phi(x) = Rx$

Positive definite kernels

- how do I extend this notion of positive definiteness to functions?
- Definition: a function k(x,y) is a positive definite kernel on $X \times X$ if $\forall I$ and $\forall \{x_1, ..., x_i\}, x_i \in X$, the Gram matrix

$$K = \begin{bmatrix} \vdots \\ \cdots k(x_i, x_j) \cdots \\ \vdots \end{bmatrix}$$

is positive definite.

▶ like in in \mathcal{R}^d , this allows us to check that we have a positive definite kernel

Dot product kernels

- ► Theorem: k(x,y), $x,y \in X$, is a dot-product kernel if and only if it is a positive definite kernel
- ▶ in summary, to check whether a kernel is a dot product:
 - check if the Gram matrix is positive definite
 - for all possible sequences $\{x_1, ..., x_i\}, x_i \in X$
- does the kernel have to be a dot-product kernel?
- not necessarily. For example, neural networks can be seen as implementing kernels that are not of this type
- however:
 - you loose the parallelism. what you know about the learning machine may no longer hold after you kernelize
 - dot-product kernels usually lead to convex learning problems.
 Usually you loose this guarantee for non dot-product

- ▶ so far, this is mostly theoretical
- how does it affect my algorithms?
- consider, for example, the k-means algorithm
 - 1) classification:

$$i^*(x) = \arg\min_{i} ||x - \mu_i||^2$$

• 2) re-estimation:

$$\mu_i^{new} = \frac{1}{n} \sum_j x_j^{(i)}$$

► can we kernelize the classification step?

▶ well, we saw that

$$\|X_k - \mu_i\|^2 = X_k^T X_k - \frac{2}{n} \sum_j X_k^T X_j^{(i)} + \frac{1}{n^2} \sum_{jl} X_j^{(i)T} X_l^{(i)}$$

▶ this can then be kernelized into

$$\|x_{k} - \mu_{i}\|^{2} = \Phi(x_{k})^{T} \Phi(x_{k}) - \frac{2}{n} \sum_{j} \Phi(x_{k})^{T} \Phi(x_{j}^{(i)})$$
$$+ \frac{1}{n^{2}} \sum_{j} \Phi(x_{j}^{(i)})^{T} \Phi(x_{j}^{(i)})$$

▶ furthermore, this can be done with relative efficiency

$$\|x_{k} - \mu_{i}\|^{2} = \Phi(x_{k})^{T} \Phi(x_{k}) - \frac{2}{n} \sum_{j} \Phi(x_{k})^{T} \Phi(x_{j}^{(j)})$$

$$+ \frac{1}{n^{2}} \sum_{jj} \Phi(x_{j}^{(j)})^{T} \Phi(x_{j}^{(j)})$$

kth diagonal entry of Gram matrix

- the assignment of the point only requires computing for each cluster
- this is a sum of entries of Gram matrix

computed once per cluster when all points are assigned

$$\frac{2}{n} \sum_{j} \Phi(\mathbf{x}_{k})^{T} \Phi(\mathbf{x}_{j}^{(i)})$$

▶ note, however, that we cannot explicitly compute

$$\Phi(\mu_i) = \frac{1}{n} \sum_{j} \Phi(x_j^{(i)})$$

- ▶ this is probably infinite dimensional...
- ▶ in any case, if we define
 - a Gram matrix K⁽ⁱ⁾ for each cluster (dot products between points in cluster)
 - and $S^{(i)}$ the scaled sum of the entries in this matrix

$$S^{(i)} = \frac{1}{n^2} \sum_{jl} \Phi(x_j^{(i)})^T \Phi(x_l^{(i)})$$

- we obtain the kernel k-means algorithm
 - 1) classification:

$$i^*(x_i) = \arg\min_{i} \left[K_{i,i} + S^{(i)} - \frac{2}{n} \sum_{j} \Phi(x_i)^T \Phi(x_j^{(i)}) \right]$$

• 2) re-estimation: update

$$S^{(i)} = \frac{1}{n^2} \sum_{jl} \Phi(x_j^{(i)})^T \Phi(x_l^{(i)})$$

but we no longer have access to the prototype for each cluster

▶ with the right kernel this can work significantly better than regular k-means

- ▶ but for other applications, where the prototypes are important, this may be useless
- ▶ e.g. compression

we can try replacing the prototype by the closest vector, but this is not necessarily optimal

PCA

- ▶ we saw that, to get PCA
 - 1) compute the dot-product matrix K
 - 2) compute its eigen-decomposition (Λ, Γ)
- ► PCA
 - the principal components are then given by $\Phi = X_c \Gamma$
 - the eigenvalues are given by Λ²
 - the projection of the data-points on the principal components is given by

$$X_c^T \Phi = K \Gamma$$

- ▶ note that most of this holds when we kernelize, we only have to change the matrix K from $x_i^T x_j$ to $\phi(x_i)^T \phi(x_j)$
 - the only thing we can no longer access are the PCs $\Phi = X_c \Gamma$

Kernel methods

- most learning algorithms can be kernelized
 - kernel PCA
 - kernel LDA
 - kernel ICA,
 - etc.
- ▶ as in k-means, sometimes we loose some of the features of the original algorithm
- ▶ but the performance is frequently better
- next week we will look at the canonical application, the support vector machine

Any Questions