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Principal component analysis
Dimensionality reduction:
• Last time, we saw that when the data lives in a subspace, it is 

best to design our learning algorithms in this subspace

2D subspace in 3D y2

φ

λ1λ2

φ1φ2

y1

this can be done by computing the principal components 
of the data

i i l t φ th i t f Σ
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• principal components φi are the eigenvectors of Σ
• principal lengths λi are the eigenvalues of Σ



Principal component analysis (learning)
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Principal component analysis

4



PCA by SVD
we next saw that PCA can be computed by the SVD of 
the data matrix directly
given X with one example per column
• 1) create the centered data-matrix
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• 2) compute its SVD
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• 3) principal components are columns of N, eigenvalues are

cX ΜΠΝ
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Extensions
Today we will talk about kernels
• turns out that any algorithm which depends on the data throughturns out that any algorithm which depends on the data through 

dot-products only, i.e. the matrix of elements

T xx
can be kernelized

ji xx

• this is usually beneficial, we will see why later
• for now we look at the question of whether PCA can be written in 

the form above
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Extensions
we saw that the centered-data matrix and the covariance 
can be written as
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the eigenvector φi of eigenvalue λi is
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hence, the eigenvector matrix is
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Extensions
we next note that, from the eigenvector decomposition

ΣΦΦ=Λ⇔ΦΛΦ=Σ TT

and
ΣΦΦ=Λ⇔ΦΛΦ=Σ
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Extensions
in summary, we have

TΦΛΦ=Σ Γ=Φ cX
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this means that we can obtain PCA by
• 1) assembling n-1(X TX )(X TX )

n

• 1) assembling n 1(Xc
TXc)(Xc

TXc)
• 2) computing its eigen-decomposition (Λ,Γ)

PCAC
• the principal components are then given by XcΓ

• the eigenvalues are given by Λ
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Extensions
what is interesting here is that we only need the matrix 
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this is the matrix of dot-products of the centered data-

( )
⎥
⎥
⎦⎢

⎢
⎣ M

KK nn

this is the matrix of dot-products of the centered data-
points
notice that you don’t need the points themselves, only 
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Extensions
to compute PCA, we use the fact that
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but if Kc has eigendecomposition (Λ,Γ) 
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h 1(X TX )(X TX ) h i d i i ( 2 )
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then, n-1(Xc
TXc)(Xc

TXc) has eigendecomposition (Λ2,Γ) 
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Extensions
in summary, to get PCA
• 1) compute the dot-product matrix K
• 2) compute its eigen-decomposition (Λ,Γ)

PCA
th i i l t th i b Φ X Γ• the principal components are then given by Φ = XcΓ

• the eigenvalues are given by Λ2

• the projection of the data-points on the principal components isthe projection of the data points on the principal components is 
given by

Γ=Γ=Φ  KXXX c
T

c
T

c

this allows the computation of the eigenvalues and PCA 
coefficients when we only have access to the dot-product

ccc
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coefficients when we only have access to the dot product 
matrix K



The dot product form
This turns out to be the case for many learning algorithms
If you manipulate a little bit you can write them in “dotIf you manipulate a little bit, you can write them in dot 
product form”

Definition: a learning algorithm is in dot product form if, 
given a training set 

D {( ) ( )}D = {(x1,y1), ..., (xn,yn)},
it only depends on the points Xi through their dot products

Xi
TXj.Xi Xj.

for example, let’s look at k-means
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Clustering
We saw that it iterates bewteen
• 1) classification:

2) re estimation:

2* minarg)( i
i
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• 2) re-estimation:
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Clustering
and 

∑ i )(1
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combining the two, we can write the top equation as a 
function of the dot products xi
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The kernel trick
why is this interesting?
consider transformation of the feature
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consider transformation of the feature
space:
• introduce a mapping
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Φ: X → Z
such that dim(Z) > dim(X)

if th l ith l d d th

x1

Φ

if the algorithm only depends on the
data through dot-products
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only depends on

x
o

o
o

o

o o
o

o o
o

o
x1

xn

( ) ( )
16

only depends on
x3

x2( ) ( )ji
T xx φφ



The dot product implementation
in the transformed space, the learning algorithms only 
requires dot-productsq p

Φ(xj)TΦ(xi)

note that we no-longer need to store the Φ(xj)note that we no longer need to store the Φ(xj)
only the n2 dot-product matrix
interestingly, this holds even when Φ(x) is infiniteinterestingly, this holds even when Φ(x) is infinite 
dimensional 
we get a reduction from infinity to n2!
there is, however, still one problem:
• when dim[Φ(xj)] is infinite the computation of the dot products 

looks impossible
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The “kernel trick”
“instead of defining defining Φ(x), computing Φ(xi) for 
each i and Φ(xi)TΦ(xj) for each pair (i,j), simply define the ( i) ( j) p ( ,j), p y
function

)()(),( zxzxK T ΦΦ=

and work with it directly.”
K(x,z) is called a dot-product kernel
in fact, since we only use the kernel, why define Φ(x)?
just define the kernel K(x,z) directly!
in this way we never have to deal with the complexity of  
Φ(x)...
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this is usually called the “kernel trick”



Questions
I am confused!
how do I know that if I pick a function K(x,z), it is p ( , ),
equivalent to Φ(x)TΦ(z)?
• in general, it is not. We will talk about this later.

if it is, how do I know what Φ(x) is?
• you may never know. E.g. the Gaussian kernel

2zx−

is very popular. It is not obvious what Φ(x) is...

σ),(
x

ezxK
−

=

• on the positive side, we did not know how to choose Φ(x).
Choosing instead K(x,z) makes no difference. 

why is it that using K(x,z) is easier/better?
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• complexity. let’s look at an example.



Polynomial kernels
still in Rd, consider the square of the dot product between 
two vectors
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Polynomial kernels 11zz
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Polynomial kernels
the point is that
• while Φ(x)TΦ(z) has complexity O(d2)• while Φ(x) Φ(z) has complexity O(d )
• direct computation of K(x,z) = (xTz)2 has complexity O(d)

direct evaluation is more efficient by a factor of dy
as d goes to infinity this makes the idea feasible
BTW, you just met another kernel family, y j y
• this implements polynomials of second order
• in general, the family of polynomial kernels is defined as

I d ’t t t thi k b t iti d Φ( ) !

( ) { }L,2,1,1),( ∈+= kzxzxK kT    

22

• I don’t even want to think about writing down Φ(x) !



Kernel summary
1. D not easy to deal with in X, apply feature transformation Φ:X → Z, 

such that dim(Z) >> dim(X)

2. computing Φ(x) too expensive:
• write your learning algorithm in dot-product form
• instead of Φ(xi) we only need Φ(xi)TΦ(xj) ∀ijinstead of Φ(xi), we only need Φ(xi) Φ(xj) ∀ij

3. instead of computing Φ(xi)TΦ(xj) ∀ij, define the “dot-product kernel”

)()(),( zxzxK T ΦΦ=

and compute K(xi,xj) ∀ij directly
• note: the matrix 
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4. forget about Φ(x) and use K(x,z) from the start!



Question
what is a good dot-product kernel?
• this is a difficult question (see Prof Lenckriet’s work)this is a difficult question (see Prof. Lenckriet s work)

in practice, the usual recipe is:
• pick a kernel from a library of known kernelsp y
• we have already met

• the linear kernel K(x,z) = xTz
• the Gaussian family
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• the polynomial family

)(

( ) { }L,2,1,1),( ∈+= kzxzxK kT
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Dot-product kernels
this may not be a bad idea
• we rip the benefits of a high-dimensional space without a price in 

complexitycomplexity
• the kernel simply adds a few parameters (σ, k) learning it would 

imply introducing many parameters (up to n2)

what if I need to check whether K(x,z) is a kernel? 
Definition: a mapping

k xx
x2 Xk: X x X → ℜ

(x,y) → k(x,y)
is a dot product kernel if and only if
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is a dot-product kernel if and only if

k(x,y) = <Φ(x),Φ(y)>
where Φ: X → H H is a vector space and < > a dot
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where Φ: X → H, H is a vector space and <.,.> a dot-
product in H



Positive definite matrices
recall that (e.g. Linear Algebra and Applications, Strang)

Definition: each of the following is a necessary andDefinition: each of the following is a necessary and 
sufficient condition for a real symmetric matrix A to be 
(semi) positive definite:

i) TA ≥ 0 0i)   xTAx ≥ 0, ∀ x ≠ 0 
ii)  all eigenvalues of A satisfy λi ≥ 0
iii) all upper-left submatrices Ak have non-negative determinant
i ) there is a matri R ith independent ro s s ch thativ) there is a matrix R with independent rows such that

A = RTR

l ft b t iupper left submatrices:
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Positive definite matrices
property iv) is particularly interesting
• in ℜ d <x x> = xTAx is a dot-product kernel if and only if A is• in ℜ , <x,x> = x Ax is a dot-product kernel if and only if A is 

positive definite
• from iv) this holds if and only if there is R such that A = RTR
• hence

<x,y> = xTAy = (xR)T(Ry)  = Φ(x)TΦ(y)
with

Φ: ℜ d → ℜ d

x   → Rx

i.e. the dot-product kernelp

k(x,z) = xTAz,   (A positive definite)
is the standard dot-product in the range space of the
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is the standard dot product in the range space of the 
mapping Φ(x) = Rx



Positive definite kernels
how do I extend this notion of positive definiteness to 
functions?
Definition: a function k(x,y) is a positive definite kernel on 
X xX if ∀ l and ∀ {x1, ..., xl}, xi∈ X, the Gram matrix

⎥
⎥
⎤

⎢
⎢
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= LL

M

),( ji xxkK

is positive definite.

⎥
⎥
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⎢
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),( ji

p
like in in ℜ d, this allows us to check that we have a 
positive definite kernel
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Dot product kernels
Theorem: k(x,y), x,y∈ X, is a dot-product kernel if and 
only if it is a positive definite kernely p
in summary, to check whether a kernel is a dot product:
• check if the Gram matrix is positive definite 
• for all possible sequences {x1, ..., xl}, xi∈ X

does the kernel have to be a dot-product kernel?
not necessarily. For example, neural networks can be 
seen as implementing kernels that are not of this type
hhowever:
• you loose the parallelism. what you know about the learning 

machine may no longer hold after you kernelize
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• dot-product kernels usually lead to convex learning problems. 
Usually you loose this guarantee for non dot-product



Clustering
so far, this is mostly theoretical
how does it affect my algorithms?
consider, for example, the k-means algorithm
• 1) classification:

2) ti ti

2* minarg)( i
i

xxi µ−=

• 2) re-estimation:

∑= i
j

new
i x )(1µ

can we kernelize the classification step?

∑
j

jn
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Clustering
well, we saw that
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Clustering
furthermore, this can be done with relative efficiency

( ) ( ) ( ) ( )∑ ΦΦΦΦ= iTT xxxxx )(2 2µ ( ) ( ) ( ) ( )
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the assignment of the point only 
requires computing

kth diagonal entry of Gram matrix computed once per cluster
when all points are assigned

( )2requires computing 
for each cluster
this is a sum of entries of Gram

( ) ( )∑ ΦΦ
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i
j

T
k xx
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)(2
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this is a sum of entries of Gram
matrix



Clustering
note, however, that we cannot explicitly compute

1

thi i b bl i fi it di i l

( ) ( )∑Φ=Φ
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i
ji x

n
)(1µ

this is probably infinite dimensional...
in any case, if we define 

a Gram matrix K(i) for each cluster (dot products between points• a Gram matrix K(i) for each cluster (dot products between points 
in cluster)

• and S(i) the scaled sum of the entries in this matrix
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Clustering
we obtain the kernel k-means algorithm
• 1) classification:1) classification:
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• 2) re-estimation: update
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but we no longer have access to the prototype for each 
cluster

jln
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Clustering
with the right kernel this can work significantly better than 
regular k-meansg

k-means
kernel

k-means

Φ
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Clustering
but for other applications, where the prototypes are 
important, this may be uselessp , y
e.g. compression

we can try replacing the prototype by the closest vector, 
but this is not necessarily optimal
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PCA
we saw that, to get PCA
• 1) compute the dot-product matrix K
• 2) compute its eigen-decomposition (Λ,Γ)

PCA
th i i l t th i b Φ X Γ• the principal components are then given by Φ = XcΓ

• the eigenvalues are given by Λ2

• the projection of the data-points on the principal components isthe projection of the data points on the principal components is 
given by

Γ=Φ  KX T
c

note that most of this holds when we kernelize, we only 
have to change the matrix K from xi

Txj to φ(xi)Tφ(xj)
th l thi l th PC X
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• the only thing we can no longer access are the PCs Φ = XcΓ



Kernel methods
most learning algorithms can be kernelized
• kernel PCAkernel PCA
• kernel LDA
• kernel ICA,
• etc.

as in k-means, sometimes we loose some of the features 
of the original algorithmof the original algorithm
but the performance is frequently better
next week we will look at the canonical application thenext week we will look at the canonical application, the 
support vector machine
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