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SUMMARY

An analysis of data on the duration times and waiting times for eruptions from the Old Faithful Geyser
reveals an interesting time series structure. A tentative physical model, derived from Rinehart, is out-
lined and a corresponding first-order Markov chain examined. It is shown that a second-order model is
necessary to explain the observed correlations in the data. A curious clustering effect is apparent in
the autocorrelation function when plotted over a large range of lags. Similar patterns are observed in
simulations from the fitted second-order model.
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1. Introduction and Preliminary Analysis

This paper describes an analysis of some data on the Old Faithful Geyser in
Yellowstone National Park, Wyoming, USA. The data consist of 299 pairs of
measurements, referring to the time interval between the starts of successive eruptions
w, and the duration of the subsequent eruption d,. Several similar data sets have been
collected by the Park Geologist, R. A. Hutchinson. Weisberg (1980) and Denby and
Pregibon (1987) analysed data collected in August 1978; Cook and Weisberg (1982)
and Silverman (1985) referred to data collected in October 1980. Some background
notes on the Old Faithful Geyser are provided by Rinehart (1969) and Birch and
Kennedy (1972).

This analysis deals with data which were collected continuously from August 1st
until August 15th, 1985. These data are listed in Table 1: because the unbroken
sequence required measurements to be taken at night, some duration times are
recorded as L (long), S (short) and M (medium). Other data sets do not contain a con-
tinuous stream of data, making it difficult to deal with time series features. A pre-
liminary analysis of the 1980 data produced results that are very similar to some of
those described in this paper.

tAddress for correspondence: Department of Statistics, University Gardens, University of Glasgow, Glasgow,
G12 8QW, UK.
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358 AZZALINI AND BOWMAN

TABLE 1
Duration d, and waiting time wt for the Old Faithful Geysert

d, w, d, w, dt w, dt w, d, w, dt w,
4:01 80 2:13 80 5:06 56 1:44 88 4:00 49 4:37 572:09 71 4:00 60 1:38 89 4:35 54 1:58 88 4:36 87L 57 1:46 92 4:17 51 1:42 85 4:46 51 4:15 72L 80 4:20 43 S 79 4:45 51 L 78 1:56 84L 75 2:11 89 L 58 1:50 96 S 85 4:59 47S 77 4:29 60 S 82 4:30 50 L 65 1:58 844:23 60 3:53 84 4:32 52 1:52 80 L 75 4:18 574:17 86 3:20 69 2:00 88 4:27 78 2:23 77 4:12 872:02 77 3:44 74 L 52 4:27 81 4:25 69 4:32 684:50 56 4:00 71 2:56 78 4:00 72 4:13 92 4:24 861:50 81 1:57 108 4:44 69 4:48 75 4:22 68 4:37 755:27 50 5:16 50 3:54 75 L 78 2:00 87 S 731:37 89 S 77 1:57 77 L 87 4:27 61 L 534:52 54 L 57 4:07 53 S 69 1:45 81 L 824:23 90 S 80 1:48 80 L 55 4:30 55 3:55 931:46 73 L 61 4:40 55 1:56 83 1:37 93 S 774:40 60 S 82 1:50 87 4:35 49 4:42 53 4:30 54S 83 L 48 4:42 53 2:00 82 2:34 84 1:48 964:44 65 3:32 81 2:07 85 3:42 57 3:42 70 4:00 484:13 82 2:10 73 4:47 61 2:52 84 4:14 73 2:45 891:54 84 4:30 62 1:49 93 4:50 57 1:56 93 4:44 634:58 54 2:01 79 4:06 54 3:27 84 4:21 50 3:58 84S 85 4:09 54 4:39 76 4:23 73 L 87 1:57 76L 58 4:12 80 L 80 1:48 78 L 77 4:58 62S 79 4:20 73 S 81 4:24 57 L 74 1:51 83L 57 1:56 81 L 59 2:29 79 4:13 72 4:48 502:50 88 4:39 62 L 86 4:31 57 4:00 82 L 854:30 68 3:49 81 4:13 78 2:06 90 4:08 74 L 784:04 76 4:02 71 4:08 71 4:21 62 1:53 80 L 783:43 78 4:10 79 3:56 77 4:22 87 4:28 49 L 813:31 74 4:40 81 3:45 76 1:47 78 1:57 91 L 784:28 85 1:49 74 4:25 94 4:55 52 4:13 53 L 762:13 75 L 59 2:28 75 1:49 98 1:43 86 L 744:53 65 M 81 4:10 50 L 48 4:27 49 S 812:36 76 L 66 3:48 83 L 78 4:15 79 L 664:09 58 S 87 4:19 82 L 79 3:58 89 1:56 842:12 91 4:27 53 3:52 72 3:52 65 4:23 87 4:20 484:46 50 2:03 80 4:41 77 1:51 84 1:58 76 1:40 931:50 87 4:15 50 1:42 75 4:42 50 4:27 59 4:46 474:36 48 1:55 87 4:58 65 2:01 83 4:16 80 1:57 872:16 93 4:40 51 4:16 79 4:28 60 1:55 89 4:41 514:08 54 1:44 82 4:35 72 1:52 80 4:25 45 1:56 78S 86 4:23 58 L 78 4:10 50 M 93 4:25 54L 53 1:46 81 L 77 1:54 88 L 72 2:08 87S 78 4:36 49 L 79 4:15 50 S 71 4:05 52L 52 1:52 92 L 75 3:15 84 L 54 2:04 851:53 83 4:27 50 1:59 78 4:13 74 3:17 79 L 584:16 60 1:38 88 4:36 64 1:53 76 1:50 74 L 882:05 87 5:02 62 0:50 80 4:59 65 4:37 65 S 794:28 49 1:49 93 4:55 49 1:51 89 1:50 78
T Read columnwise. Units are minutes:seconds, minutes. S means short, L means long and M means medium.
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SOME DATA ON THE OLD FAITHFUL GEYSER 359
In previous publications, regression models are fitted to data in the form of Fig. 1

to predict w+ 1 from d,: groups A, B and C are described later. Some researchers show
how a cursory analysis of regression residuals may fail to detect the presence of two
separate clusters. For plotting and subsequent analysis, the codes L, S and M are
represented numerically as 4, 2 and 3 respectively.

We start by observing that the data consist of two interwoven time series, {d,} and
{w,}. Fig. 2 displays the first 100 observations of {dt} plotted against event number;
the remaining 199 values, and the plot of { wt}, behave similarly. These series exhibit
highly oscillatory behaviour, essentially alternating between two levels. A closer look
shows that a low level is always followed by a high level, and a high level is very often,
but not always, followed by a low level.

A simple consideration of the physical mechanism suggests that the relationship
between dt and wt is important: wt is the length of time taken to heat the water to be
expelled over the interval dt. Since the {wt} values are the interval times between the
starts of the eruptions, wt exceeds the actual waiting time. However, the difference is
unimportant as dt is considerably smaller than wt in magnitude. Fig. 3 plots dt versus
wt and shows clearly the existence of three separate clusters, A, B and C, correspond-
ing approximately with divisions at 3 and 68 on the dt and wt axes. There is now less
evidence of a relationship between d, and wt within each cluster. Also, a short waiting
time is always followed by a long eruption time but a long waiting time is followed by
short and long eruption times in roughly equal proportions. Consequently, to under-
stand the mechanism of the series we consider the joint behaviour of at least the three
variables (wt, dt, wt+ 1). Figs 1 and 3 display two of the possible bivariate plots. The
pattern of the third, wt+1 against wt, is virtually the same as Fig. 3. Happily, the
special nature of the groupings within these projections allows the three-dimensional
pattern to be identified, as in Fig. 4, where only three clouds (A, B, C) are evident.

Fig. 1 is the projection of these clouds on to the (wt+1, dt) plane. The regression
effect at the upper level is enhanced by the superposition of clouds A and B which have
a slight relative shift. The regression effect of waiting time on previous duration time

100 I I I I , .
loo.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4
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w(t+1) + +80

x70 x 0x xx 000axwl x 0
X x

60I

60 . tf ~xx x
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Fig. 1. Waiting time wt+ 1 versus previous duration dt: +, group A; Li, group B; x, group C
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Fig. 2. Duration dt versus event number t
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Fig. 3. Duration dt versus previous waiting time wt

is greatly reduced for each group. A small effect persists but a formal assessment of its
significance is hindered by autocorrelation among the data.

2. Tentative Physical Model

The existence of two distinct patterns in a geyser's behaviour is rare. The following
description of a conceivable scheme is based on Rinehart (1969), pp. 571-573, and is
illustrated by Fig. 5 (Rinehart (1969), p. 572).

Stage 1. The tube is full of water which is heated by the surrounding rocks. The
water is heated above the normal boiling temperature because of increased pressure
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SOME DATA ON THE OLD FAITHFUL GEYSER 361

v(t+1)

c d (t)C~~~~~~~~~~~~~~~~~ ( t)

Fig. 4. Sketch of the three-dimensional configuration among {wt, d,, w,+1 }

due to the mass of water which is on top: the deeper the water the higher the tempera-
ture required for boiling. Moreover, 'whereas the water in the tube is superheated with
respect to the ambient boiling point at the mouth of the geyser, the water temperature
at depth is far below the boiling point curve that must be applied to a vertical column
of water'.

Stage 2. When the top water reaches the boiling temperature, it becomes steam
and moves towards the surface. The pressure at the bottom then drops rapidly to the
normal level and, by an induction effect, the bottom water rapidly becomes steam.
This cascading mechanism is repeated several times: as water is converted into steam,
the pressure on lower water is decreased, causing the production of more steam and
triggering the eruption.

Stage 3a. 'If at the time of cascading the temperature in the lower regions is lower
than might be expected, cascading stops short of the bottom and the play is short.'

Stage 3b. Alternatively, 'when the temperature is comparatively high at these
depths, cascading works itself down much farther and the play is long'.

Stage 4. The geyser tube is completely or partly empty, ready to be filled with new
water.

We do not discuss geological reasons for the fact that sometimes the cascading
effect works down to the bottom of the tube while at other times it stops earlier. We
simply note the phenomenon and discuss its consequences. Stages 3a and 3b are
associated with short and long waiting times for the next eruption. In stage 3a, the
system starts a new cycle partially filled with hot water so that the following heating
time is shorter; at the new eruption the entire tube will be emptied, since part of the
water had already been heated in the previous cycle.

This description suggests a two-state Markov chain as a model for the oscillations
between the high and low levels and implies that the variables dt and wt+I may be
regarded as equivalent indicators of the state of the system. This is corroborated by
Fig. 1, where low dt is associated with low wt+ ,1, and high dt with high wt+ 1: see also
Fig. 9 of Denby and Pregibon (1987), where plots of {dt} and {wt+1 } against event
number are superimposed. Finally, the cross-correlation between the two series is
found to be highly symmetrical about zero, implying that the series are 'in phase'.
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Fig. 5. Sketch of the conjectured geyser mechanism (from Rinehart (1969))

The original data are discretized to low-high form by division at 3 and 68 on the
original scales, associating the numerical values 0 and 1 to low and high respectively
for convenience. Denoting by {D,} and { W, } the two discretized processes, the (i, j)th
entry of the Markov transition matrix PD of {D, } gives

pr{Dt =jJDt_= i} (i=0,1; 1=0,1)
and similarly for { Wt }. Standard estimation of the transition matrices leads to

~~~~ 1 1

(0557 0.443) 0W= 36 0.464)
while the relative frequencies of high states are

pD=0-.41, pw =0.651
for {Dt} and { Wt} respectively. These matrices and frequencies are clearly similar.

Such a discretization of the data ignores some information. However, the alterna-
tion between the two levels is the most important feature and the variation within
groups is comparatively small, as the summary statistics in Table 2 show.

In view of these remarks and the equivalence between {dt) and {wt , we con-
centrate on the discretized process {Dt}.

3. Second-order Model

A check on the adequacy of the model can be obtained by comparing the observed
autocorrelations with those obtained under the Markov assumption. The first eight
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SOME DATA ON THE OLD FAITHFUL GEYSER 363
TABLE 2
Summary statistics for {d,} and {wt} {dj} {w,}

Mean Standard deviation Mean Standard deviation

Pooled groups 3.460 1.154 72.174 13.916Low group 1.977 0.275 55.020 5.618High group 4.262 0.413 81.056 6.763

terms of the observed autocorrelation function (ACF) and partial autocorrelation
function (PACF) for the {Dt} process are as follows:lag 1 2 3 4 5 6 7 8
ACF -0.538 0.478 -0.346 0.318 -0.256 0.208 -0.161 0.136
PACF -0.538 0.266 -0.021 0.075 -0.021 -0.009 0.010 0.006

The ACF clearly does not show the geometric decay which would be expected under a
Markov model. Moreover, while the PACF after lag 1 should be close to zero, the
second term of the PACF is high when compared with the usual standard error for an
autoregressive series (0.058).

The ACF and PACF given above point towards a second-order Markov chain. An
estimate of the corresponding transition matrix for {Dt} is

(O, 1) (1, 0) (1, 1)(0, 1) 0 0.689 0.311 (1)(1,0) 1 0 0
(1, 1) 0 0.388 0.612

where the three states correspond to (low, high), (high, low) and (high, high), and the
(low, low) state cannot occur. This confirms that the first-order model is inadequate.
If a third-order Markov chain is fitted, the estimates produced are consistent with a
second-order model.

Under the assumption of a second-order Markov chain with transition matrix (1), a
standard computation of the stationary probabilities for the (0, 1), (1, 0) and (1, 1)
states gives 0.357, 0.357 and 0.286, so that the stationary probability of the high state
is 0.357 + 0.286 = 0.643 as before, but now there is a much closer agreement with the
autocorrelation pattern: computation of the first eight terms of the theoretical ACF
under model (1) gives

-0.558 0.515 -0.368 0.300 -0.227 0.179 -0.137 0.108
which are in close agreement with the observed terms.

However, the first few terms of the ACF and PACF reveal only part of the picture.
A plot of the ACF of the original discretized data over a much wider range is given in
Fig. 6, from which it is clear that the correlations do not go to zero at high lags. There
is a clear recurrent clustering effect. A very similar picture is obtained from the { WtJ
process.

To check the fitted model, several series of length 299 were simulated from the
fitted second-order Markov chain. The random number generator of Wichmann and
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Fig. 6. Autocorrelation function of {Dt}
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Fig. 7. Autocorrelation function of data simulated from the fitted second-order Markov chain
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SOME DATA ON THE OLD FAITHFUL GEYSER 365
Hill (1982) was used. The ACF of one of these series (Fig. 7) is qualitatively similar to
that of the observed {D,} process. The simulations showed great variability in the
number, locations and widths of the clusters. It was necessary to increase the length of
the simulated series to 5000 before the clusters disappeared, leaving only the first 20
terms decreasing regularly to zero. The presence of these clusters in the observed ACF
therefore does not provide convincing evidence of a failure of the model, as it is con-
sistent with fluctuations which arise from sampling errors.

The tentative physical model explains several features of the data but does not
explain the patterns of the ACF and PACF. These are consistent with a second-order
Markov chain, which requires a more sophisticated geological interpretation.
Although the oscillations of the ACF are consistent with a second-order Markov
chain model, only the analysis of a much longer series of data may rule out the exis-
tence of more complex patterns.
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