
Md. Mahin, Theodoros Tavoulareas and Christoph F. Eick

COSC 4368: Fundamentals of Artificial Intelligence Spring 2021
Problem Set1 (Individual Tasks[footnoteRef:1] Centering on Search) [1: Collaboration with other students is not allowed!]

Seventh Draft
[image:]
Fig. 1: Finding a Needle in a Large Haystack with Intelligent Search

Submission Deadlines: see course website:
Submission Site: Task 1 and 2 need to be submitted in MS Teams 4368-Class and Task 3 has been submitted in Kritik.
Last Updated: February 22, 2021 at 11p
Weight: 34-42% of the points available for the 3 problem sets! Task weight: T1=12%, T2=35%, T3=53%
Comment: Points allocated to each of the 3 tasks are tentative and subject to change. A typo in equation C8 has been corrected!

1. Applying Various Search Strategies to a State Space Theodoros

Assume that you have the following search graph, where S is the start node and G1 and G2 are goal nodes. Arcs are labeled with the cost of traversing them and the estimated cost to a goal is reported inside nodes. Apply the search strategies listed below to the search graph:, (a) indicate which goal state is reached if any, (b) list, in order, the states expanded, and (c) show the final contents of the OPEN and CLOSED lists. (Recall that a state is expanded when it is removed from the OPEN list.) When there is a tie with respect to which node has to be expanded next, nodes should be expanded in alphabetical order. The used search strategies include;
1. breadth-first
2. depth-first
3. best-first (using f = h)
4. A* (using f = g + h)
5. SMA* (using f=g+h and limiting the open-list to just 3 elements)
[image:]

General Pseudocode for Depth/Breath/Best First Search
 OPEN = { startNode } // Nodes under consideration.
 CLOSED = { } // Nodes we're done with.

 while OPEN is not empty
 {
 remove an item from OPEN based on search strategy used
 - call it X

 if goalState?(X) return the solution found

 otherwise // Expand node X.
 {
 1) add X to CLOSED
 2) generate the immediate neighbors (ie, children of X)
 3) eliminate those children already in OPEN or CLOSED
 4) add REMAINING children to OPEN
 }
 }
 return FAILURE // Failed if OPEN exhausted without a goal being found.
General Pseudocode for SMA*/A*Search
 OPEN = { startNode } // Nodes under consideration.
 CLOSED = { } // Nodes we're done with.

 while OPEN is not empty
 {
 remove an item from OPEN based on search strategy used
 - call it X

 if goalState?(X) return the solution found

 otherwise // Expand node X.
 {
 1) add X to CLOSED
 2) generate the immediate neighbors (ie, children of X)
 3) add all children to OPEN
 }
 }
 return FAILURE // Failed if OPEN exhausted without a goal being found.
Submission Guidelines:
The solution needs to be as follow:

	GOAL Reached first
	

	Expanded states
	

	OPEN List
	

	CLOSE List
	

Failure to follow above instruction will lead to point deductions

2) On Probabilistic Search Algorithms: Implementing and Experimenting with Randomized Hill Climbing Theodoros
	Implement Randomized Hill Climbing and apply it to a minimization problem involving the following function f:

f(x,y) = [1 + (x + y +1)2(19 - 14x + 3x2 -14y + 6xy +3y2)][30 + (2x - 3y)2(18 -32x + 12x2 + 4y - 36xy + 27y2)], where -2 ≤ x,y ≤ 2

Your procedure should be called RHC and have the following input parameters:
· sp: is the starting point[footnoteRef:2] of the Randomized Hill Climbing run [2: 	 A vector (x,y) with x,y in [-2, 2]]

· p the number of neighbors of the current solution that will be generated
· z neighborhood size; for example if z is set to z=0.5 p neighbors for the current solution s are generated by adding vectors v=(z1,z2) with z1 and z2 being random numbers in [-0.5,+0.5] uniformly distributed
· seed which is an integer that will be used as the seed[footnoteRef:3] for the random generator you employ in your implementation. [3: 	 If you run RHC with the same values for sp, p, z and seed it will always return the same solution; if you run is with the same values for sp, p, z and a different seed, it likely will return a different solution and the number of solutions searched is almost always different.]

RHC returns a vector (x,y) the value of f(x,y) and the number solutions that were generated during the run of RHC.

Run your randomized hill climbing procedure RHC twice[footnoteRef:4] for the following parameters: [4: 	 Make sure you use a different seed for your random generator to get a different sequence of random numbers for the 2 runs!]

sp = (0.4, -0.5), (-0.5, 0.3), (1, -2) and (0,0)
p = 30 and 120
z = 0.03 and 0.1
For each of the 32 runs report:
a. the best solution (x,y) found and its value for f
b. number of solutions generated during the run[footnoteRef:5]. [5: Count the number of times function f is called during the search!]

Summarize your results in 4 tables; one for each p and z combination[footnoteRef:6]. Interpret[footnoteRef:7]the obtained results evaluating solution quality, algorithm speed, impact of sp, p, and z on solution quality and algorithm speed. Do you believe with other values for p and r better results could be accomplished? At last, assess if RHC did a good, medium or bad job in computing a (local) minimum for f. [6: 	(30, 0.03), (120, 0.1), (30, 0.1), (120, 0.03)] [7: 	 At least 25% of the available points will be allocated to interpreting the results.]

Submission Guidelines:

	

p=30 & z=0.03
	Run1
	Run2

	
	#sol se#sol searched
S s

	 sol
	 f(sol)
	#sol
searched
	Bes sol
	F f(sol)

	(2.9, (0.4, -0.5)
	
	
	
	
	
	

	(-2.5((-0.5, 0.3)
	
	
	
	
	
	

	((4.2 (1, -2)
	
	
	
	
	
	

	(0,0) ((0,0)
	
	
	
	
	
	

You should summarize your results in 4 tables formatted as the above, for each of the 4 combination of p & z. Don’t forget to summarize the results of the 33th run and to provide the other information asked for in the project specification!

Failure to follow above instruction will lead to point deductions

3) Solving Discrete Constraint Satisfaction Problems peer-reviewed Mahin

Write a program which finds solution to the following 3 hierarchically organized[footnoteRef:8] constraint satisfaction problems, involving 15 variables {A,B,C,…,N,O} which can take integer values in {1,…,50}. [8: A solution of the higher numbered problem also represents a solution of the lower numbered problem!]

a. Problem A: Find a solution to the constraint satisfaction problem involving the six variables A, B, C, D, E and F and constraints C1,…,C4:
· (C1) A=B+C+E+F
· (C2) D=E+F+21
· (C3) D**2=E*E*A + 417
· (C4) E+F<A
b. Problem B: Find a solution to the constraint satisfaction problem involving ten variables A,…,J which satisfy constrains C1,…,C9:
· (C5) H*J+E*12=(G+I)**2
· [bookmark: _Hlk63094990](C6) A+D=(F-G)**21
· (C7) 4*J=G**2+39
· (C8) (I-G)**9=(F-H)**3
· (C9) (G-C)**2= F*C*C 1
c. Problem C: Find a solution to the constraint satisfaction problem involving 15 variables A,…,O which satisfy constrains C1,..,C15:
· (C10) 2*M=K**2 6
· (C11) (N-O)**3 + 7= (F-I)*N
· (C12) N**2=M**2 + 291
· (C13) O**2=G*H*I*B + 133
· (C14) M+O=K**2 10
· (C15) L**3 + I=(L+B)*K

Remark: In the above equations the letters ‘I’ and ‘O’ where put into bold face to avoid to be mistaken as numbers 0 or 1. Moreover, the letter ‘J’ looks somewhat similar than the letter ‘I’ but to better distinguish the two letter ‘J’ is never in bold face.

Your program should contain a counter nva (“number of variable assignments) that counts the number of times an initial integer value is assigned to a variable or the the assigned integer to the particular variable is changed; in addition to outputting the solution to the CSV also report the value of this variable at the end of the run, and an interface to call your program for CSP Problems A, B, or C. Your program should return the solution or “no solution exists” and the value of nva after the program terminates. Moreover, terminate the search as soon as you found a solution—do not search for additional solutions.
Remark: To guarantee the anonymity of the peer reviewing, the source code and report you submit should not contain your names or other information that could be used to identify your identity. Moreover, this task will need to be submitted via Kritik and not Blackboard.

Submit a report which
· Gives a brief description of the strategy you used to solve the CSP
· Provides Pseudo Code of your CSP solver
· Explains the Pseudo Code in a paragraph
· Describes strategies (if you employed any) you employed to reduce the runtime of your program, measured by the final value of the variable nva.
· If you conducted a mathematical pre-analysis to eliminate variables, to obtain additional ‘<’ constraints to reduce search complexity or came up with other problem complexity reduction strategies based on such a pre-analysis, describe the results of the pre-analysis you conducted, and how the results of this pre-analysis were used for reducing the search complexity.
· If your program takes advantage of the hierarchical structure of the three CSP problems also explain how this was done.
· If the program you developed is generic in the sense that its code could be reused to solve constraint satisfactions which have a similar structure but different constraints, include a paragraph presenting evidence why your program has this property and what you did to make your program ‘generic’…

Moreover, submit the Source Code for the implementation in a separate file and instructions on how to run your code in a Readme File. Attach the Readme file as an appendix to your report.

Notes on grading:
· Sophisticated approaches that lead to lower complexities in solving the respective CSPs—measured by the final value of the variable nva—will get 10-15% higher scores compared to programs that use brute force approaches.
· Serious penalties will be assessed if the value of the variable nva is not properly computed.

7

image2.PNG
KEY

X cost of travetsing
thisarcis X

estimated cost 1o

image1.jpg

