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20.1. Introduction

Convolutional neural networks (CNNs) – or convnets, for short – have in recent years
achieved results which were previously considered to be purely within the human
realm. In this chapter we introduce CNNs, and for this we first consider regular neural
networks, and how these methods are trained. After introducing the convolution, we
introduce CNNs. They are very similar to the regular neural networks as they are also
made up of neurons with learnable weights. But, in contrast to MLPs, CNNs make the
explicit assumption that inputs have specific structure like images. This allows encoding
this property into the architecture by sharing the weights for each location in the image
and having neurons respond only locally.
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Figure 20.1 Schematic version of neuron.

20.2. Neural networks

To understand convolutional neural networks, we need to take one step back and first
look into regular neural networks. Most concepts can readily be explained by using
these simpler networks. The initial development of these networks originates in the
work of Frank Rosenblatt on perceptrons and starts with the definition of a neuron.
Mathematically, a neuron is a nonlinearity applied to an affine function. The input
features x = (x1,x2, . . . ,xn) are passed through an affine function composed with a non-
linearity ϕ:

T(x) = ϕ
(∑

i

Wixi + b
)

= ϕ(W · x + b) (20.1)

with given weights W and bias b. Schematically this is represented in Fig. 20.1. A typical
nonlinearity, or activation function is the sigmoid defined by

σ(x) = 1
1 + e−x . (20.2)

There are many choices for such nonlinearities, and different choices will be given when
we discuss CNNs in Sect. 20.3.2.

Such a neural network can be modeled as a collection of neurons which are con-
nected in an acyclic graph. That is, the output of some of the neurons become inputs
to other neurons, and cycles where the output of a neuron maps back to an earlier
intermediate input are forbidden. Commonly such neurons are organized in layers of
neurons. Such a network consists of an input layer, one or more hidden layers, and an
output layer. In contrast to the hidden layers, the output layer usually does not have
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Figure 20.2 A 3-layer neural network with three inputs, two hidden layers of respectively 5 and 3 neu-
rons, and one output layer. Notice that in both cases there are connections between neurons across
layers, but not within a layer.

an activation function. Such networks are usually referred to as Multilinear Perceptron
(MLP) or less commonly as Artificial Neural Network (ANN). If we want to be more
explicit about the number of layers, we could refer to such a network as an N-layer
network where N counts the number of layers, excluding the input layer. An example
of this is given in Fig. 20.2. To use a neural network for prediction, we need to find
the proper values for the parameters (W ,b) and define a function to map the output
of the neural network to a prediction; this could, for instance, be a class (i.e., malignant
or benign) or a real value in the case of a regression problem. These parameters are the
so-called trainable parameters, and the number of these parameters serves as a metric for
the size (or capacity) of the neural network. In the example of Fig. 20.2, there are in
total 8 neurons, where the hidden layers have 3 · 5 and 5 · 3 weights, and 5 and 3 biases,
respectively. The output layer has 3 weights and 1 bias. In total this network has 27
learnable parameters. In modern neural network architectures, these numbers can run
into the millions.

As mentioned, the output layer most commonly does not have an activation function
because the output layer is often used to represent, for instance, class scores through a
softmax function, which we will discuss in more detail below or some other real-valued
target in the case of regression.

20.2.1 Loss function
Depending on a task, neural networks can be trained in a supervised or unsupervised
way. For the type of tasks most frequently encountered in medical imaging, we are typ-
ically working with discriminative models, meaning that we have two spaces of objects
X (“the inputs”) and Y (“the labels”) and we would like to learn a neural network fθ
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with parameters θ , the hypothesis, which outputs an object in Y given an object in X ,
or fθ : X → Y . To do this, we have a training set of size m at our disposal (X i,yi)

m
i=1

where X i is the input, for instance, an image, and yi is the corresponding label. To put
it differently, yi is the response we expect from the model gθ with X i as input.

Putting this more formally, we assume there is a joint probability distribution P(x,y)
over X × Y and that the training set consists out of m samples (X i,yi)

m
i=1 independently

drawn from P(x,y). In this formality, y is a random variable with conditional probability
P(y | x). To formulate the training problem, we assume there is a nonnegative real-valued
loss function L which can measure how far the prediction of the hypothesis ypred from
the real value y is. The risk associated with the hypothesis gθ is defined as the expectation
of the loss function

R(gθ ) = E(X,y)∼P(x,y) [L(gθ (X),y)]. (20.3)

The goal of learning is to find parameters θ such that R is minimal, that is, we want to
find θ∗ such that θ∗ = arg minθ∈Rm R(gθ ), where m is the number of parameters of the
neural network.

In general, the risk R(gθ ) cannot be computed because the distribution P(x,y) is
unknown. In this case we replace the expectation with the average over the training set
to obtain the empirical risk as an approximation to the expectation:

Remp(gθ ) = 1
m

m∑
i=1

L(gθ (X i),yi). (20.4)

The process of minimizing the empirical risk is called empirical risk minimization.

20.2.2 Backpropagation
Nearly all neural networks encountered in practice are almost-everywhere differentiable
with respect to parameters θ and are optimized with gradient-based optimization:

∇θRemp(gθ ) = [ ∂

∂θ1
,

∂

∂θ2
, . . . ,

∂

∂θM
]Remp(gθ ). (20.5)

Backpropagation is an algorithm that allows us to compute the gradients and apply
gradient-based optimization schemes such as gradient descent, which is explained in
more detail in Sect. 20.5.2.

The structure of a neural network allows for a very efficient computation of the
gradient by a process called backpropagation, which can be readily understood by applying
the chain rule.

For a bit more detail, consider a feedforward neural network, which accepts an
input x which is propagated through the network to produce an output y. This process
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is the forward propagation step and results in a scalar loss Remp. Computing the derivative
for such a network is straightforward, but numerically evaluating such an expression is
not only computationally expensive, it is also sensitive to numerical rounding errors,
especially for deeper networks. Using the backpropagation algorithm, we can evaluate
this derivative in a computationally efficient way with the additional advantage that the
computations can be reused in subsequent steps. Once we have the gradient, we can
apply an algorithm such as stochastic gradient descent (SGD) to compute updates to the
network weights.

To be able to understand backpropagation properly, we introduce the computation
graph language. A computation graph is a directed graph where on each node we have
an operation, and an operation is a function of one or more variables and returns either a
number, multiple numbers, or a tensor. The chain rule can now be used to compute the
derivatives of functions formed by composing other functions with known derivatives.
The backpropagation algorithms allows us to do this in a highly efficient manner.

Before we continue, let us recall the chain rule. For this let f and g be real-valued
functions. Suppose additionally that y = g(x) and z = f (g(x)) = f (y) (i.e., two operations
on the computation graph). The chain rule is now given by

dz
dx

= dz
dy

dy
dx

.

The generalization to higher dimensions is trivial. Suppose now that x ∈ Rn and y ∈ Rm,
g : Rn → Rm, and f : Rm → R. Then if y = g(x) and z = f (y), we have

∂z
∂xi

=
∑

j

∂z
∂yj

∂yj

∂xi
. (20.6)

Using the chain rule (20.6), the back propagation algorithm is readily explained.
Before we proceed, we fix some notation. Consider an MLP where the jth neuron in
the �th layer has weighted output (i.e., before the activation function ϕ) z�

j and activation
a�

j := ϕ(z�
j ). Similarly, the jth neuron in the layer � weights output of the kth neuron in

the (� − 1)th by w�
kj with corresponding bias b�

j .
As we intend to minimize the empirical risk function Remp through gradient opti-

mization, we are interested in the derivatives

∂Remp

∂w�
kj

and
∂Remp

∂b�
j

.

These derivatives can readily be computed using the chain rule (20.6):

∂Remp

∂w�
kj

=
∑

k

Remp

∂z�
k

∂z�
k

∂w�
kj

.
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As

z�
k :=

∑
j

w�
kja

�−1
j + b�

k, (20.7)

the last derivative is equal to a�−1
j when j = k and 0 otherwise, so,

∂Remp

∂w�
kj

= ∂Remp

∂z�
k

a�−1
j .

Using the chain rule again, we can see that

∂Remp

∂b�
j

= ∂Remp

∂z�
j

.

Using these, we can see how the backpropagation rule works by efficiently computing
ε�

j := ∂Remp/∂z�
j where we will refer to ε�

j as the error of the jth node in the �th layer.
The backpropagation algorithm is an efficient way to compute the error ε� iteratively

using error ε�+1, so we proceed by computing the error from the last layer L, again, using
the chain rule:

εL
j =

∑
k

∂Remp

∂aL
k

∂aL
k

∂zL
j
, (20.8)

and, when k �= L, the terms vanish and we obtain:

εL
j = ∂Remp

∂aL
j

∂aL
j

∂zL
j

= ∂Remp

∂aL
j

ϕ′(zL
j ).

If we can derive a rule to compute ε�
j from ε�+1

j efficiently, we are done. This rule can
be found, again, through the chain rule:

ε�
j = ∂Remp

∂z�
j

=
∑

k

∂Remp

∂z�+1
k

∂z�+1
k

∂z�
j

=
∑

k

ε�+1
k

∂z�+1
k

∂z�
j

.

Using (20.7) we can compute the last derivative as

∂z�+1
k

∂z�
j

= w�+1
kj ϕ′(z�

j ),
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so, the backpropagation rule becomes

ε�
j =

∑
k

ε�+1
j w�+1

kj ϕ′(z�
j ). (20.9)

In summary, to compute the derivatives of the empirical risk Remp with respect to the
weights and biases, it is sufficient to compute the error ε�. This can be done iteratively,
by first computing the error for the final layer by (20.8) and then proceeding to the
input by applying (20.9) for each layer consecutively.

20.3. Convolutional neural networks

Convolutional neural networks (CNNs), or convnets for short, are a special case of feed-
forward neural networks. They are very similar to the neural networks presented above
in the sense that they are made up of neurons with learnable weights and biases. The
essential difference is that the CNN architecture makes the implicit assumption that the
input are image-like, which allows us to encode certain properties in the architecture.
In particular, convolutions capture translation invariance (i.e., filters are independent of
the location).

This in turns makes the forward function more efficient, vastly reduces the number
of parameters, and therefore makes the network easier to optimize and less dependent
on the size of the data.

In contrast to regular neural networks, the layers of CNNs have neurons arranged in
a few dimensions: channels, width, height, and number of filters in the simplest 2D case.
A convolution neural network consists, just as an MLP, of a sequence of layers, where
every layer transforms the activations or outputs of the previous layer through another
differentiable function. There are several such layers employed in CNNs, and these will
be explained in subsequent sections, however, the most common building blocks which
you will encounter in most CNN architectures are: the convolution layer, pooling layer,
and fully connected layers. In essence, these layers are like feature extractors, dimension-
ality reduction and classification layers, respectively. These layers of a CNN are stacked
to form a full convolutional layer.

Before we proceed with an overview of the different layers, we pause a bit at the
convolution layer. Essentially, a convolution layer uses a convolutional kernel as a filter
for the input. Usually, there are many of such filters.

During a forward pass, a filter slides across the input volume and computes the
activation map of the filter at that point by computing the pointwise product of each
value and adding these to obtain the activation at the point. Such a sliding filter is
naturally implemented by a convolution and, as this is a linear operator, it can be written
as a dot-product for efficient implementation.
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Intuitively, this means that when training such a CNN, the network will learn filters
that capture some kind of visual information such as an edge, orientation, and eventually,
in a higher layer of the network, entire patterns. In each such convolution layer, we have
an entire set of such filters, each of which will produce a separate activation map. These
activation maps are stacked to obtain the output map or activation volume of this layer.

20.3.1 Convolutions
Mathematically, the convolution (x ∗ w)(a) of functions x and w is defined in all dimen-
sions as

(x ∗ w)(a) =
∫

x(t)w(a − t)da, (20.10)

where a is in Rn for any n � 1, and the integral is replaced by its higher-dimensional
variant. To understand the idea behind convolutions, it is interesting to pick the Gaus-
sian function w(a) = exp(−x2) as an example. If we were taking a photo with a camera
and shaking the camera a bit, the blurry picture would be the real picture x convolved
with a Gaussian function w.

In the terminology of convolutional neural networks, x is called the input, w is called
the filter or kernel, and the output is often referred to as activation, or feature map.

Note that we modeled the input and kernel in (20.10) as a continuous function.
Due to the discrete nature of image sensors, this will not be the case in practice and it
is more realistic to assume that parameter t is discrete. If we assume that this is the case,
then we can define the discrete convolution

(x ∗ w)(a) =
∑

a

x(t)w(t − a), (20.11)

where a runs over all values in the space, and can be in any dimension. In deep learn-
ing, usually x is a multidimensional array of data and the kernel w involves learnable
parameters and usually has finite support, that is, there are only finitely many values a
for which w(a) is nonzero. This means that we can implement (20.11) as a finite sum-
mation. The definition of (20.11) is independent of dimension, but in medical imaging
we will mainly be working with 2- or 3-dimensional convolutions:

(I ∗ K)(i, j) =
∑

m

∑
n

I(m,n)K(i − m, j − n), (20.12)

or

(I ∗ K)(i, j,k) =
∑

m

∑
n

∑
�

I(m,n, �)K(i − m, j − n,k − �). (20.13)
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The convolutions (20.10) and (20.11) are commutative, which means that I ∗K = K ∗ I ,
so that we can also write (20.12) as

(I ∗ K)(i, j) =
∑

m

∑
n

I(i − m, j − n)K(m,n). (20.14)

As K has finite support, this a priori infinite sum becomes finite. Some neural network
libraries also implement an operation called the cross-correlation, but from a deep learning
perspective these operations are equivalent, as one weight set can be directly translated
into the other.

Convolutions as an infinitely strong priors

As a convolution is a linear transformation, it can be written in the form of w · x + b
and therefore as a fully connected layer. However, as the kernels are often much smaller
than the input, only a small number of inputs will interact with the output (the so-called
receptive field), and the weight tensor w will be very sparse. Additionally, the weight tensor
will contain many similar elements, caused by the fact that the kernel is applied to every
location in the input. This effect is referred to as weight sharing, and, together with the
sparsity, this not only means that we need to store fewer parameters, which improves
both the memory requirements and statistical efficiency, but additionally puts a prior on
the weights: we implicitly assume that a filter, such as an edge filter, can be relevant to
every part of the image and that most interactions between pixels are local. For most
images, this is definitely a reasonable assumption, but this can break down in the case of
other type of image data such a CT sinograms or MRI k-space where local information
in the imaging domain can translate to global information in the acquisition space.
Sometimes, we refer to this by saying that a convolution is an infinitely strong prior in
contrast to weaker priors such as �p-regularization discussed below.

Much research has gone into adapting convolutions and imposing new strong priors,
for instance, the group convolution [1] additionally enforces a certain symmetry group to
hold for the image. Further discussion of this topic is beyond the scope of this chapter.

Equivariance

Next to sparsity and weight sharing, convolutions put another prior on the kernel
weights in the form of translation equivariance, which to a translation (for instance,
shifting) of the convolution means that if we apply a translation to the image, and then
apply convolutions, we obtain the same result as first applying the convolution and then
translating the feature map. More specifically, an operator T is said to be equivariant
with respect to f if for each x we have T(f (x)) = f (T(x)). Translation equivariance is a
sensible assumption for images, as the features to detect an object in the image should
only depend on the object itself and not on its precise location.
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20.3.2 Nonlinearities
Nonlinearities are essential for neural network design: without nonlinearities a neural
network would compute a linear function of its input, which is too restrictive. The
choice of a nonlinearity can have a large impact on the training speed of a neural
network.
sigmoid This nonlinearity is defined as

σ(x) = 1
1 + e−x , x ∈ R. (20.15)

It is easy to show that σ(x) ∈ (0,1) for all x ∈ R. Furthermore, σ is monotone
increasing, lim

x→∞σ(x) = 1 and lim
x→−∞σ(x) = 0.

This makes the sigmoid nonlinearity suitable when the goal is to produce outputs
contained in the [0,1] range, such as probabilities or normalized images. One
can also show that lim

x→∞σ ′(x) = lim
x→−∞ σ ′(x) = 0. This fact implies that the sigmoid

nonlinearity may lead to vanishing gradients: when the input x to the sigmoid is far
from zero, the neuron will saturate and the gradient of σ(x) with respect to x will
be close to zero, which will make successive optimization hard. This is the reason
why sigmoid nonlinearities are rarely used in the intermediate layers of CNNs.

tanh The tanh nonlinearity is defined as

tanh(x) = ex − e−x

ex + e−x , x ∈ R. (20.16)

It is easy to show that tanh(x) ∈ (−1,1) for all x ∈ R. Furthermore, tanh is mono-
tone increasing, lim

x→∞ tanh(x) = 1 and lim
x→−∞ tanh(x) = −1. Similar to the sigmoid

nonlinearity, tanh can lead to vanishing gradients and is rarely used in intermediate
layers of CNNs.



Convolutional neural networks 491

ReLU This nonlinearity is defined as

ReLU(x) = max(0,x), x ∈R. (20.17)

It is easy to see that ReLU′(x) = 1 for x > 0 and that ReLU′(x) = 0 for x < 0.
ReLU nonlinearity generally leads to faster convergence compared to sigmoid
or tanh nonlinearities, and it typically works well in CNNs with properly cho-
sen weight initialization strategy and learning rate. Several modifications of ReLU
activation function such as Exponential Linear Units (ELUs) [2] have been pro-
posed.

softmax Softmax nonlinearity is more specialized compared to the general nonlinear-
ities listed above. It is defined as

softmax(x)i := exp(xi)
n∑

j=1
exp(xj)

, x ∈R
n,

and maps a vector x ∈ R
n to a probability vector of length n. The intuition be-

hind softmax is as follows: map x 
→ exp(x) gives an order-preserving bijection
between the set of real numbers R and the set of strictly positive real numbers
R>0, so that for any indexes i, j we have xi < xj if and only if exp(xi) < exp(xj).

Subsequent division by
n∑

j=1
exp(xj) normalizes the result, giving probability vec-

tor as the output. This nonlinearity is used, e.g., in classification tasks, after the
final fully connected layer with n outputs in a n-class classification problem. It
should be noted, however, that softmax outputs do not truly model prediction
uncertainty in the scenario of noisy labels (such as noisy organ segmentations in
medical imaging).

20.3.3 Pooling layers
The goal of a pooling layer is to produce a summary statistic of its input and to reduce
the spatial dimensions of the feature map (hopefully without losing essential informa-
tion). For this the max pooling layer reports the maximal values in each rectangular
neighborhood of each point (i, j) (or (i, j,k) for 3D data) of each input feature while
the average pooling layer reports the average values. Most common form of maxpooling
uses stride 2 together with kernel size 2, which corresponds to partitioning the feature
map spatially into a regular grid of square or cubic blocks with side 2 and taking max
or average over such blocks for each input feature.

While pooling operations are common building blocks of CNNs when the aim is to
reduce the feature map spatial dimension, it should be noted that one can achieve similar
goal by using, e.g., 3 × 3 convolutions with stride 2 if working with 2D data. In this
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case one can also simultaneously double the number of filters to reduce information loss
while at the same time aggregating higher level features. This downsampling strategy is
used, e.g., in ResNet [3] architecture.

20.3.4 Fully connected layers
Fully connected layer with n input dimensions and m output dimensions is defined as
follows. The layer output is determined by the following parameters: the weight matrix
W ∈ Mm,n(R) having m rows and n columns, and the bias vector b ∈ R

m. Given input
vector x ∈ R

n, the output of a fully-connected layer FC with activation function f is
defined as

FC(x) := f (Wx + b) ∈R
m. (20.18)

In the formula above, Wx is the matrix product and the function f is applied compo-
nentwise.

Fully connected layers are used as final layers in classification problems, where a few
(most often one or two) fully-connected layers are attached on top of a CNN. For this,
the CNN output is flattened and viewed as a single vector. Another example would be
various autoencoder architectures, where FC layers are often attached to the latent code
in both encoder and decoder paths of the network. When working with convolutional
neural network it is helpful to realize that for a feature map with n channels one can
apply a convolution filter with kernel size 1 and m output channels, which would be
equivalent to applying a same fully-connected layer with m outputs to each point in the
feature map.

20.4. CNN architectures for classification

Convolutional neural networks were originally introduced more than 20 years ago with
the development of the LeNet CNN architecture [4,5]. Originally, the applications of
CNNs were limited to relatively simple problems like handwritten digit recognition,
but in the recent years CNN-based approaches have become dominant in image clas-
sification, object localization, and image segmentation tasks. This popularity can be
attributed to two major factors: availability of computational resources (mostly GPUs)
and data, on the one hand, and improvements in CNN architectures, on the other.
Today CNN architectures have been developed that are quite successful in the tasks
of image classification, object localization and image/instance segmentation. Below we
will discuss a few noteworthy CNN architectures for image classification problems.

A neural network needs to have enough expressive power, depending on the task, to
perform well. A naive approach towards increasing the capacity is increasing the num-
ber of filters in convolutional layers and the depth of the network. This approach was
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taken in the AlexNet [6] architecture, which was the first architecture that popularized
CNNs in computer vision by winning the ImageNet ILSVRC challenge [7] in 2012.
It featured 5 convolutional layers and only feed-forward connections with the total of
60M trainable parameters. Shortly after it was outperformed by
• ZF Net [8] in 2013;
• GoogLeNet [9], the winning solution for the 2014 version of the challenge;
• VGG16/VGG19 [10], which scored the second-best in this challenge but showed

better single-net performance and was conceptually simpler.
VGG19 features 19 trainable layers connected in a feed-forward fashion, of which 16
layers are convolutional and relies on 3×3 convolutions with stride 1 and ReLU activa-
tions. Convolutional layers are gathered in 2 blocks of 2 layers for the first convolutional
blocks and in 3 blocks of 4 layers for the last convolutional blocks. Maxpooling is
performed in between the convolutional blocks, and the number of features in con-
volutional blocks doubles after each maxpooling operation. An important difference
between AlexNet and VGG (as well as more modern architectures) is how large effec-
tive receptive field size is created: AlexNet used 11 × 11 filters in its initial layer while
VGG uses stacks of 3 × 3 filters, and it can be easily shown that this is more parameter-
efficient way of increasing receptive field size. Compared to VGG19, GoogLeNet has
much less trainable parameters (4M for 22 layers vs. 140M for 19 layers of VGG19)
which is due to the introduction of the so-called inception module, which is a deviation
from the standard feedforward pattern, and helps to improve parameter efficiency.

However, all the architectures above still largely rely on feedforward information
flow similar to the original LeNet-5 [4,5], while the benefits of these architectures
mostly stem from their depth. Making the feedforward architectures even deeper leads
to a number of challenges in addition to increased number of parameters. The first
obstacle is the problem of vanishing/exploding gradients [11,23,12]. This can be largely
addressed by normalized weight initialization and intermediate normalization layers,
such as Batch Normalization [13]. Yet another obstacle is the performance degradation
problem [3]: as the depth of a feedforward neural network increases, both testing and
training accuracies get saturated and degrade afterwards. Such performance degradation
is not explained by overfitting, and indicates that such networks are generally harder
to optimize. Alternative CNN architectures have been suggested to deal with these
shortcomings. A common feature of such architectures is the use of skip connections,
which carry over information directly from earlier layers into the later layers without
passing through intermediate convolutional layers. This, supposedly, helps in general to
prevent information from “washing out”. This general idea has been implemented in a
number of ways.
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ResNet [3] architecture, which was the basis for the
winning solution in ILSVRC 2015 challenge [7], deals
with the aforementioned issues by introducing residual
blocks. Suppose that we are considering a residual block
with two convolutional layers. In such a block the original
input x goes through the first convolutional layer (typically
a 3 × 3 convolution), after that Batch Normalization is ap-
plied and then the ReLU nonlinearity follows. The result
is fed into the next convolutional layer, after which Batch
Normalization is performed. This gives the output F(x), to
which x is added pointwise and then ReLU nonlinearity is
applied. The output of the block hence equals ReLU(F(x)+x). In general, ResNets are
build out of a varying number of such residual blocks with 2–3 convolutional layers in
each block. In particular, it is interesting to note that, according to [3], using only a sin-
gle convolutional layer in a residual block did not give any advantages compared to the
plain feedforward architecture without residual connections. For feature map downsam-
pling, convolutions with stride 2 are used, while the number of feature maps is doubled
at the same time. This architecture choice allows training networks with more than a
100 layers and no performance degradation, as is shown in [3]. ResNet-based architec-
tures are often used up to this day, and several extensions were proposed as well [14].
Furthermore, ResNet is often used as a CNN feature extractor for object detection and
instance segmentation, e.g., in Mask R-CNN [15].

A more recent development is the DenseNet architecture [16], which is build from a
collection of dense blocks, with “transition layers” (1 × 1 convolutions and 2 × 2 average
pooling) to reduce the size of the feature maps in between. The main insight is that
each such dense block consist of a few “convolutional layers”, which, depending on a
DenseNet variant, are either a stack of a 3×3 convolutional layer, Batch Normalization
layer, and ReLU nonlinearity, or, alternatively, contain an initial 1 × 1 convolutional
layer with Batch Normalization and ReLU nonlinearity to reduce the number of input
features. Each such “convolutional layer” provides its output features to all successive
convolutional layers in the block, leading to a “dense” connectivity pattern. The output
of a dense block is the stack of all resulting feature maps and the input features, and
as a result the successive dense blocks have access to these features and don’t need to
relearn them. This architecture achieves comparable or better performance on ILSVRC
as compared to a ResNet architecture while also using significantly less parameters. For
more details, we refer to [16].



Convolutional neural networks 495

20.5. Practical methodology

20.5.1 Data standardization and augmentation
Prior to feeding the data to the neural network for training, some preprocessing is
usually done. Many beginners fail to obtain reasonable results not because of the archi-
tectures or methods or lack of regularization, but instead because they simply did not
normalize and visually inspect their data. Two most important forms of pre-processing
are data standardization and dataset augmentation. There are a few data standardization
techniques common in imaging.
• Mean subtraction. During mean subtraction, the mean of every channel is com-

puted over the training dataset, and these means are subtracted channelwise from
both the training and the testing data.

• Scaling. Scaling amounts to computing channelwise standard deviations across the
training dataset, and dividing the input data channelwise by these values so as to
obtain a distribution with standard deviation equal to 1 in each channel. In place of
division by standard deviation one can divide, e.g., by 95-percentile of the absolute
value of a channel.

• Specialized methods. In addition to these generic methods, there are also some
specialized standardization methods for medical imaging tasks, e.g., in chest X-ray
one has to work with images coming from different vendors, furthermore, X-ray
tubes might be deteriorating. In [17] local energy-based normalization was inves-
tigated for chest X-ray images, and it was shown that this normalization technique
improves model performance on supervised computer-aided detection tasks. For
another example, when working with hematoxylin and eosin (H&E) stained histo-
logical slides, one can observe variations in color and intensity in samples coming
from different laboratories and performed on different days of the week. These
variations can potentially reduce the effectiveness of quantitative image analysis.
A normalization algorithm specifically designed to tackle this problem was sug-
gested in [18], where it was also shown that it improves the performance for a
few computer-aided detection tasks on these slide images. Finally, in certain sce-
narios (e.g., working directly with raw sinogram data for CT or Digital Breast
Tomosynthesis [19]) it is reasonable to take log-transform of the input data as an
extra preprocessing step.
Neural networks are known to benefit from large amounts of training data, and it

is a common practice to artificially enlarge an existing dataset by adding data to it in a
process called “augmentation”. We distinguish between train-time augmentation and test-
time augmentation, and concentrate on the first for now (which is also more common).
In case of train-time augmentation, the goal is to provide a larger training dataset to the
algorithm. In a supervised learning scenario, we are given a dataset D consisting of pairs
(xj,yj) of a training sample xj ∈ R

d and the corresponding label yj. Given the dataset D,
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one should design transformations T1,T2, . . . ,Tn : Rd → R
d which are label-preserving

in a sense that for every sample (xj,yj) ∈ D and every transformation Ti the resulting
vector Tixj still looks like a sample from D with label yj. Multiple transformations can
be additionally stacked, resulting in greater number of new samples. The resulting new
samples with labels assigned to them in this way are added to the training dataset and
optimization as usual is performed. In case of the test-time augmentation the goal is to
improve test-time performance of the model as follows. For a predictive model f , given
a test sample x ∈ R

d, one computes the model predictions f (x), f (T1x), . . . , f (Tnx) for
different augmenting transformations and aggregates these predictions in a certain way
(e.g., by averaging softmax-output from classification layer [6]). In general, choice of
the augmenting transformation depends on the dataset, but there are a few common
strategies for data augmentation in imaging tasks:
• Flipping. Image x is mirrored in one or two dimensions, yielding one or two

additional samples. Flipping in horizontal dimension is commonly done, e.g., on the
ImageNet dataset [6], while on medical imaging datasets flipping in both dimensions
is sometimes used.

• Random cropping and scaling. Image x of dimensions W × H is cropped to a
random region [x1,x2] × [y1,y2] ⊆ [0,W ] × [0,H], and the result is interpolated to
obtain original pixel dimensions if necessary. The size of the cropped region should
still be large enough to preserve enough global context for correct label assignment.

• Random rotation. An image x is rotated by some random angle ϕ (often limited
to the set ϕ ∈ [π/2,π,3π/2]). This transformation is useful, e.g., in pathology, where
rotation invariance of samples is observed; however, it is not widely used on datasets
like ImageNet.

• Gamma transform. A grayscale image x is mapped to image xγ for γ > 0, where
γ = 1 corresponds to identity mapping. This transformation in effect adjusts the
contrast of an image.

• Color augmentations. Individual color channels of the image are altered in order
to capture certain invariance of classification with respect to variation in factors
such as intensity of illumination or its color. This can be done, e.g., by adding small
random offsets to individual channel values; an alternative scheme based on PCA
can be found in [6].

20.5.2 Optimizers and learning rate
As discussed above, the optimization goal when training neural networks is minimiza-
tion of the empirical risk Remp. This is done by, firstly, computing the gradient ∇θRemp

of the risk on a minibatch of training data with respect to the neural network param-
eters θ using backpropagation, and, secondly, updating the neural network weights θ

accordingly. This update in its most basic form of stochastic gradient descent is given by the
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formula

θ := θ − η · ∇θRemp,

where η > 0 is the hyperparameter called the learning rate. A common extension of this
algorithm is the addition of momentum, which in theory should accelerate the con-
vergence of the algorithm on flat parts of the loss surface. In this case, the algorithm
remembers the previous update direction and combines it with the newly computed
gradient to determine the new update direction:

δθ := α · δθ − η · ∇θRemp,

θ := θ + δθ.

More recent variations to stochastic gradient descent are adaptive methods such as RM-
SProp and Adam [20], which extends RMSProp by adding momentum for the gradient
updates. All these methods (SGD, RMSProp, Adam) are implemented in deep learning
frameworks such as Tensorflow and PyTorch. Adam, in particular, is a popular choice
once a good starting learning rate is picked. However, one should note that there is
some recent research (see, e.g., [21]) suggesting that adaptive methods such as Adam
and RMSProp may lead to poorer generalization and that properly tuned SGD with
momentum is a safer option.

Choice of a proper learning rate is still driven largely by trial and error up to this
date, including learning rate for adaptive optimizers such as Adam. This choice de-
pends heavily on the neural network architecture, with architectures such as ResNet
and DenseNet including Batch Normalization known to work well with relatively large
learning rates in the order of 10−1, and the batch size, with larger batches allowing
for higher learning rate and faster convergence. In general, it makes sense to pick the
batch size as large as possible given the network architecture and image size, and then
to choose the largest possible learning rate which allows for stable learning. If the er-
ror keeps oscillating (instead of steadily decreasing), it is advised to reduce the initial
learning rate. Furthermore, it is common to use learning rate schedule, i.e., to change
the learning rate during training depending on the current number of epochs and/or
validation error. For instance, one can reduce the learning rate by a factor of 10 two
times when the epoch count exceeds 50% and 75% of the total epoch budget; or one
can choose to decrease the learning rate once the mean error on validation dataset stops
decreasing in the process of training.

20.5.3 Weight initialization and pretrained networks
It is easy to see that if two neurons (or convolutional filters) in the same place of a
computational graph have exactly the same bias and weights, then they will always
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get exactly the same gradients, and hence will never be able to learn distinct features,
and this would result in losing some expressive power of the network. The connec-
tion between random initialization and expressive power of the network was explicitly
examined in [22].

To “break the symmetry” when cold-starting the neural network training it is a
common practice to initialize the weights randomly with zero mean and variance de-
pending on the “input size” of the neuron [23,24], while biases are still initialized by
zeros. The initialization strategy [24], which is more recent and was particularly de-
rived for ReLU activations, suggests to initialize the weights by a zero-mean Gaussian

distribution whose standard deviation equals
√

2
n , where n is determined as follows:

• When initializing a fully-connected layer, n equals the number of input features of
a layer;

• When initializing, e.g., a two-dimensional convolutional layer of dimension k × k
with m input feature maps, n equals the product k2 · m.

Most practical initialization strategies such as He initialization are already implemented
in deep learning frameworks such as PyTorch and Tensorflow.

A second option to training from cold start is to use a pretrained convolutional net-
work, stack fully connected layers with randomly initialized weights atop for a particular
classification task, and then fine-tune the resulting network on a particular dataset. This
strategy is motivated by the heuristic that the ImageNet dataset is fairly generic, hence
convolutional features learned on ImageNet should be useful for other imaging datasets
as well. Pretrained networks such as VGG, ResNet, and DenseNet variants are easy
to find online. When fine-tuning a pretrained CNN for a particular classification task,
it often makes sense to choose a lower learning rate for updates of the convolutional
feature extraction layers and a higher learning rate for the final classification layers.

20.5.4 Regularization
Regularization, generally speaking, is a wide range of ML techniques aimed at reducing
overfitting of the models while maintaining theoretical expressive power.
• L1/L2 regularization. These regularization methods are one of the most well-

known regularization methods originating in classical machine learning theory in
connection with maximum a posteriori (MAP) estimates for Laplace and Gaussian
priors, respectively [25]. So suppose now that we have a neural network with pa-
rameters θ and loss function L(θ). In case of L2 regularization, the term λ2

2 · ‖θ‖2
2 is

added to the loss function; in case of L1 regularization, the term λ1 · ‖θ‖1 is added
instead; λ1, λ2 are hyperparameters. Intuitively speaking, L2 regularization encour-
ages the network to use all of its inputs a little, rather than some of the inputs a
lot, while L1 regularization encourages the network to learn sparse weight vectors
(which can be used, e.g., for feature selection tasks). Also L1/L2 regularization is
often already implemented in deep learning frameworks and is easy to use (e.g., in
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PyTorch L2 regularization is added by passing a nonzero parameter λ2 to an opti-
mizer), however, one should note that there are regularization methods specifically
designed for neural networks which can be more effective.

• Max norm constraints. Another form of regularization is enforcing an absolute
upper bound ‖θ‖2 � c on the norm of the weight. In practice, this corresponds to
performing the parameter update as usual, and then scaling the resulting θ back
to the ball {x : ‖x‖2 � c} of radius c. As a consequence, this form of regularization
prevents weights from exploding.

• Dropout. Introduced in [26], dropout is a very powerful and simple regularization
method for neural networks. While training, dropout is implemented by keeping a
neuron active with some probability p ∈ (0,1) (which is a hyperparameter that can
be different for different layers) while also dividing the output activation by p, and
setting it to zero otherwise. During inference, all neurons are kept active and no scal-
ing is applied. Very often probabilities p are chosen in a way that early convolutional
layers are kept intact with probabilities close or equal to 1, while the probability
of keeping neuron active goes down for deeper layers. Activation scaling during
training time in this procedure is introduced in order to keep mean activations the
same as during inference time, while saving computation cost at inference time.
Dropout is implemented as a layer in frameworks such as PyTorch and Tensorflow
and it is straightforward to add it to a model. Dropout is included in many classical
NN architectures for classification and segmentation, see, e.g., [16] and [27]. An
interesting recent development is the work [28], where it was shown that dropout
training in deep neural networks can be viewed as a form of approximate Bayesian
inference.

20.6. Future challenges

Despite the enormous success of CNNs in computer vision, in general, and in med-
ical imaging, in particular, in recent years, there remain important challenges as well.
Firstly, there is a well-known problem of the lack of interpretability of predictions. For
example, in an image classification problem a neural network can produce accurate pre-
dictions, but the internal CNN features remain a black box and do not reveal much
information. In medical imaging, however, we would like to know what image features
are responsible for the prediction. Some work is done in this direction, e.g., there are
a few approaches to the visualization of saliency maps [29]. Furthermore, we would be
interested in image features that have clear clinical interpretation, but extracting those
in an unsupervised manner is challenging.

Secondly, there is often a problem of domain shift, which emerges when a neural
network is trained on a dataset from one domain and then it is applied to a related, but
different domain. Some examples would be when
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• We make a model for object detection in urban scenes and train it on scenes gener-
ated in a computer game, then try to apply it on real-life scenes [30];

• We have multiple vendors for, e.g., mammography scanners, which apply some
amount of vendor-specific processing so that resulting images look different [31].

In general, developing models that are robust to variations in acquisition equipment
remains challenging.

Thirdly, the neural networks remain data-hungry, and there is ongoing work on
improving the parameter efficiency [1].
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