Instructors

UNIVERSITY of

HOUSTON

Fabio Gonzalez UNIVERSIDAD Full Professor UNIVERSIDAD National University of Colombia UNIVERSIDAD Visiting Professor at UH Email: fagonzalezo@unal.edu.co Office: PGH 598 Office: PGH 598
Thamar Solorio Associate Professor University of Houston Email: thamar.solorio@gmail.com Office: PGH 584

Intro to DL

Backpropagation

$$w'_{(x1)1} = w_{(x1)1} + \eta \delta_1 \frac{df_1(e)}{de} x_1$$

$$w'_{(x2)1} = w_{(x2)1} + \eta \delta_1 \frac{df_1(e)}{de} x_2$$

$$w'_{(x2)1} = w_{(x2)1} + \eta \delta_1 \frac{df_1(e)}{de} x_2$$

$$letters to nature$$
Nature 323, 533 - 536 (09 October 1986):
Learning representations
by back-propagating error
David E. Rumelhart*, Geoffrey E

 $w'_{(x2)1} = w_{(x2)1} + \eta \,\delta_1 \frac{df_1(e)}{de} x_2$ etters to nature

lature 323, 533 - 536 (09 October 1986); doi:10.1038/323533a0

earning representations. y back-propagating errors

avid E. Rumelhart*, Geoffrey E. Hinton† & Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California San Diego, La Jolla, California 92093, USA † Department of Computer Science, Carnegie-Mellon Universit Pittsburgh, Philadelphia 15213, USA

Source: http://home.agh.edu.pl/~vlsi/Al/backp t en/backprop.html UNIVERSITY of HOUSTON

nature

1 earning)ee

Deep learning boom

Technology

By Dann FACEBOOK TAPS 'DEEP LEARNING' GIANT FOR NEW AI

ents 🤇

2928 <

GOOGLE HIRES I

HELPED SUPERC

MACHINE LEARN

DRIVING

Acc

Here's How Deep

rch Giant Ian Behind Brain"

Deep Learning is Born

Neural Computation 18, 1527-1554 (2006)

© 2006 Massachusetts Institute of Technology

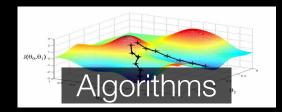
2000 top-level units

A Fast Learning Algori ¹⁵²⁸

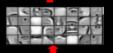
Geoffrey E. Hinton hinton@cs.toronto.edu Simon Osindero osindero@cs.toronto.edu Department of Computer Scien

Yee-Whye Teh tehyw@comp.nus.edu.sg Department of Computer Scien 10 label unit This could be t top level of another sensor pathway

G. Hinton, S. Osindero, and Y.-W. Teh



object models



object parts Feature

[Honglak

UNIV

pixels HOUSTON

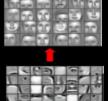
FULL CONNECT

4M

Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops

4Mflop

Tricks **Neural Networks: Tricks of the Trade** Second Edition D Springer ONAL

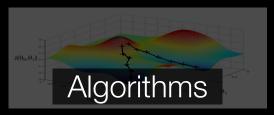


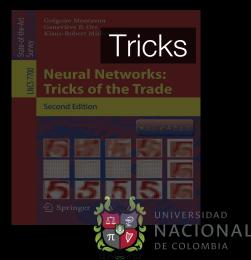
object models

[Honglak

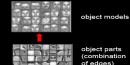
object parts Feature

UNIV



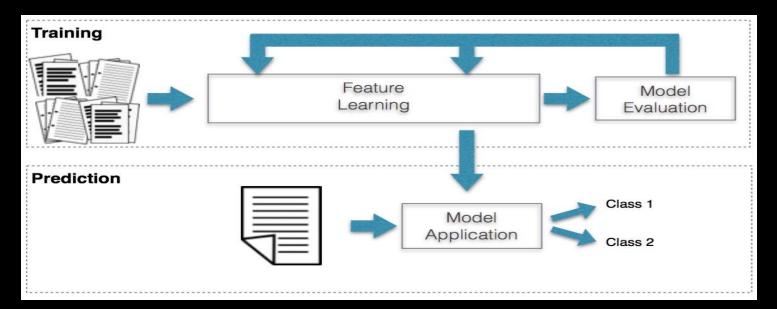


Feature learning



edges

[Honglak

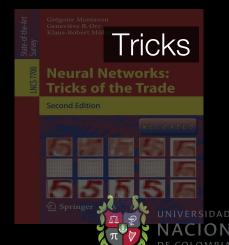


Data

Feature

learning

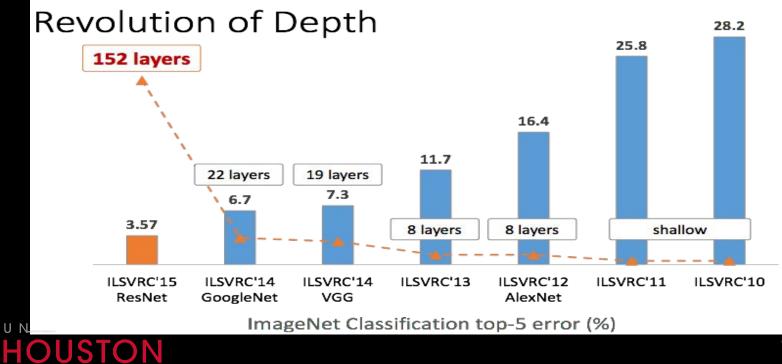
edaes



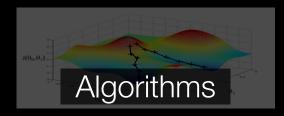
Honglak

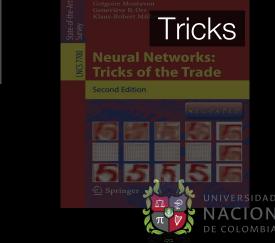
Deep -> Bigger

Microsoft Research



UN



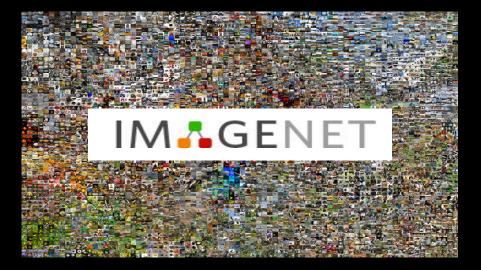


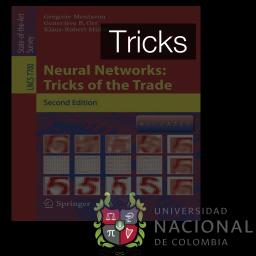
Feature

learning

Data...

- Images annotated with WordNet concepts
- Concepts: 21,841
- Images: 14,197,122
- Bounding box annotations: 1,034,908
- Crowdsourcing





UNIVERS HOUSTON

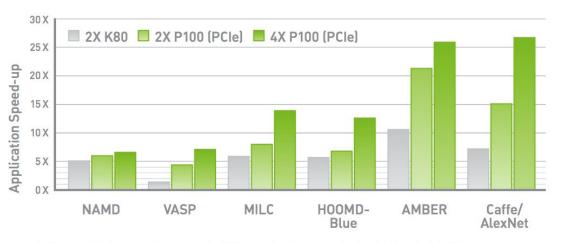
HPC

-

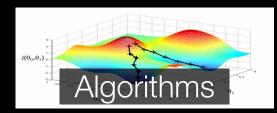
SPECIFICATIONS

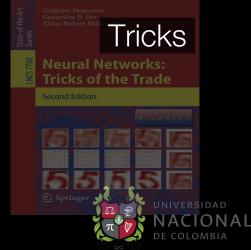
GPU Architecture	NVIDIA Pascal
NVIDIA CUDA® Cores	3584
Double-Precision Performance	4.7 TeraFLOPS
Single-Precision Performance	9.3 TeraFLOPS
Half-Precision Performance	18.7 TeraFLOPS
GPU Memory	16GB CoWoS HBM2 at 732 GB/s or
	12GB CoWoS HBM2 at 549 GB/s
System Interface	PCIe Gen3
Max Power Consumption	250 W
ECC	Yes
Thermal Solution	Passive
Form Factor	PCIe Full Height/Length

NVIDIA Tesla P100 for PCIe Performance



Dual CPU server, Intel E5-2698 v3 @ 2.3 GHz, 256 GB System Memory, Pre-Production Tesla P100





Algorithms

- Backpropagation
- Backpropagation through time
- Online learning (stochastic gradient descent)

• Softmax

HOUSTON

01

Feature

learning

HOUSTON



Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops 4M FULL CONNECT 4Millon 16M FULL 4096/ReLU 16M 37M FULL 4096/ReLU 37M 442K CONV 3x3/ReLU 25/5m 7 AM 1.3M CONV 3x3/ReLU 25/5m 7 AM 1.3M CONV 3x3/ReLU 25/5m 223M MAX POOLING 2x2sub LOCAL CONTRAST NORM 307K CONV 11x11/ReLU 25/5m 223M MAX POOL 105 2x2sub LOCAL CONTRAST NORM 35K CONV 11x11/ReLU 96/5m 105M

[Hongla

Tricks

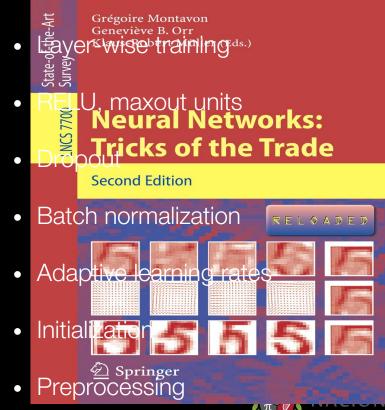
- DL is mainly an engineering problem
- DL networks are hard to train

ERSIT

HOUS

01

• Several tricks product of years of experience



DE COLOMBIA

Applications

- Computer vision:
 - Image: annotation, detection, segmentation, captioning
 - Video: object tracking, action recognition, segmentation
- Speech recognition and synthesis
- Text: language modeling, word/text representation, text classification, translation

• Biomedical image analysis

