Outline

- What is a well-defined learning problem?
- An example: learning to play checkers
- What questions should we ask about Machine Learning?

Why Machine Learning

- New kind of capability for computers
 - Database mining
 - * medical records \rightarrow medical knowledge
 - Self customizing programs
 - * learning newsreader
 - Applications we can't program by hand
 - * autonomous driving
 - * speech recognition
- Understand human learning and teaching
- Time is right
 - Recent progress in algorithms and theory
 - Growing flood of online data
 - Computational power is available
 - Budding industry

Rule and Decision Tree Learning

Data:

Patient103 time=1 Patient103 time=2 ··· Patient103 time=n

Age: 23

FirstPregnancy: no

Anemia: no Diabetes: no

PreviousPrematureBirth: no

Ultrasound: ?

Elective C-Section: ? Emergency C-Section: ?

. . .

Age: 23

FirstPregnancy: no

Anemia: no Diabetes: YES

PreviousPrematureBirth: no

Ultrasound: abnormal Elective C-Section: no

Emergency C-Section: ?

9-36611011. :

Age: 23

FirstPregnancy: no

Anemia: no Diabetes: no

PreviousPrematureBirth: no

Ultrasound: ?

Elective C-Section: no

Emergency C-Section: Yes

• • • •

Learned rule:

If No previous vaginal delivery, and
Abnormal 2nd Trimester Ultrasound, and
Malpresentation at admission, and
No Elective C-Section

Then Probability of Emergency C-Section is 0.6

Training set: 26/41 = .634

Test set: 12/20 = .600

Neural Network Learning

ALVINN [Pomerleau] drives 70 mph on highways

Relevant Disciplines

- Artificial intelligence
- Bayesian methods
- Computational complexity theory
- Control theory
- Information theory
- Philosophy
- Psychology and neurobiology
- Statistics

What is the Learning Problem?

Learning = Improving with experience at some task

- Improve over task T,
- \bullet with respect to performance measure P,
- based on experience E.

E.g., Learn to play checkers

- T: Play checkers
- P: % of games won in world tournament
- E: opportunity to play against self

Learning to Play Checkers

- \bullet T: Play checkers
- \bullet P: Percent of games won in world tournament
- What experience?
- What exactly should be learned?
- How shall it be represented?
- What specific algorithm to learn it?

Type of Training Experience

- Direct or indirect?
- Teacher or not?

A problem: is training experience representative of performance goal?

Choose the Target Function

- $ChooseMove: Board \rightarrow Move ??$
- $V: Board \rightarrow \Re$??
- ...

Possible Definition for Target Function V

- if b is a final board state that is won, then V(b) = 100
- if b is a final board state that is lost, then V(b) = -100
- if b is a final board state that is drawn, then V(b) = 0
- if b is a not a final state in the game, then V(b) = V(b'), where b' is the best final board state that can be achieved starting from b and playing optimally until the end of the game.

This gives correct values, but is not operational

Choose Representation for Target Function

- collection of rules?
- neural network?
- polynomial function of board features?
- ...

A Representation for Learned Function

$$\hat{V}(b) = w_0 + w_1 \cdot bp(b) + w_2 \cdot rp(b) + w_3 \cdot bk(b) + w_4 \cdot rk(b) + w_5 \cdot bt(b) + w_5 \cdot bt(b)$$

- bp(b): the number of black pieces on board b
- rp(b): the number of red pieces on board b
- bk(b): the number of black kings on board b
- rk(b): the number of red kings on board b
- bt(b): the number of red pieces threatened by black (i.e., which can be taken on black's next turn)
- rt(b): the number of black pieces threatened by red

Obtaining Training Examples

- V(b): the target function
- $\hat{V}(b)$: the learned function
- $V_{train}(b)$: the training value

One rule for estimating training values:

• $V_{train}(b) \leftarrow \hat{V}(Successor(b))$

Choose Weight Tuning Rule

LMS Weight update rule:

Do repeatedly:

- Select a training example b at random
 - 1. Compute the error(b) for this training example:

$$error(b) = V_{train}(b) - \hat{V}(b)$$

2. For each board feature f_i , update weight w_i as follows:

$$w_i \leftarrow w_i + c \cdot f_i \cdot error(b)$$

c is some small constant, say 0.5, to moderate the rate of learning

Design Choices

Some Issues in Machine Learning

- What algorithms can approximate functions well (and when)?
- How does number of training examples influence accuracy?
- How does complexity of hypothesis representation impact it?
- How does noisy data influence accuracy?
- What are the theoretical limits of learnability?
- How can prior knowledge of learner help?
- What clues can we get from biological learning systems?
- How can systems alter their own representations?