e What is a well-defined learning problem?

Learning?
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e New kind of capability for computers
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— Self customizing programs

* autonomous driving

% speech recognition

e Time is right

— Recent progress in algorithms and theory

— Growing flood of online data

— Computational power is available

— Budding industry
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Patient103 o - Patient103 ., »  Patient103 4men
Age: 23 Age: 23 Age: 23

FirstPregnancy: no FirstPregnancy: no FirstPregnancy: no
Anemia: no Anemia: no Anemia: no

Diabetes: no Diabetes: YES Diabetes: no
PreviousPrematureBirth: no PreviousPrematureBirth: no PreviousPrematureBirth: no
Ultrasound: ? Ultrasound: abnormal Ultrasound: ?

Elective C-Section: ? Elective C—Section: no Elective C-Section: no
Emergency C-Section: ? Emergency C-Section: ? Emergency C-Section: Yes

Learned rule:
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If No previous vaginal delivery, and
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ive C-Section
Then Probability of Emergency C-Section is 0.6

Training set: 26/41 = .634
Test set: 12/20 = .600
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e Artificial intelligence

e Bayesian methods

e Information theory

e Philosophy

e Statistics
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Learning = Improving with experience at some task
e Improve over task T,
e with respect to performance measure P,

e based on experience E.
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E.g., Learn to play checkers

e P: % of games won in world tournament

e F: opportunity to play against self



g to Play Checkers
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Play checkers
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e What exactly should be learned?
e What specific algorithm to learn it?

e How shall it be represented?
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performance goal?






Possible Definition for Target Func-
tion V
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e if b is a final board state that is lost, then
V(b) = —100
e if b is a final board state that is drawn, then

e if b is a not a final state in the game, then
V(b) = V(b'), where V' is the best final board
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playm optimally until the end of the game.

This gives correct values, but is not operational
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Choose Representation for Target

Function

e collection of rules?
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A Representation for Learned Func-
tion

V(b = w210 n(bYLa106-rn(BYL20--BE(BYLan . -rk(h) -
e hn(b): the nuimber of black nieces on board b
U.t.l \U/ VAL ALWALLLREA N L /4 A AN AN -tJ-LU\JUU ./ A4LL A AL A A\
e rp(b): the number of red pieces on board b

e b/:(b): the number of black kings on board b
): the number of red kings on board b
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black (i.e., which can be taken on black’s next
turn)

.T

r
° bt(b) the number Of red pieces threatened ]’\y

e rt(b): the number of black pieces threatened by
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e V(b)) the tarcet function
v \U/ 3 VAL U LAUL OUU A ALALN UL/ ALL
e V(b) : the learned function

® Virain(b): the training value

One rule for estimating training values:

o Vivain(b) = V(Successor(b))
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LMS

b

Wrain<b> - V<b>

w; + w; + ¢ f; - error(b)

error(b)

2. For each board feature f;, update weight w, as
follows:

e Select a training example b at random

rate of learning
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Determine
Type of training experience

games against
. table of correct
games against moves

self
Determine
Target Function

board board\k

— move — value

Determine
Representation of
learned function

Wnial

Determine
Learning algorithm

linear\L

programming

artificial neural
network

linear function
of six features

gradient
descent

| Completed design |
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e What algorithms can approximate functions well
(and when)?

e How does number of training examples influence
accuracy?’

e How does complexity of hypothesis
representation impact it?

e How does noisy data influence accuracy?
e What are the theoretical limits of learnability?
e How can prior knowledge of learner help?

e What clues can we get from biological learning
systems?

e How can systems alter their own
representations?
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