COSC 6368 (Spring 2006)

Assignment 1: Heuristic Search (First Draft)

Deadlines: problem 4: March 7; other problems Feb. 23, 2006

Weight: 32 *’s at the moment

Last updated: Feb. 7, 2006, noon

1) Breadth and Depth Search w=2

Compare depth-first and breadth-first search. What are the advantages of each search strategy?

2) Rushhour Problem Part I w=4

[image: image1.jpg]

a) Familiarize yourself with the Rushhour Problem (see links below). In a next step describe the Rush-hour problem as a state-space search problem relying on the CMU version of the problem. Give a precise definition of a states of the Rush-hour problems. Next specify goal conditions, and the operators. Operators should be specified as "schemas" that indicate for a given state, when the operator is legal (i.e., a set of constraints on when the operator can be applied to an arbitrary state) and the description of the successor state after the operator is applied. In other words, each operator should be specified in a way that it would easily implemented in a program to solve this problem.

b) Now assume beam search with k=3 is applied to the Rush-hour problem assuming the CMU version of the problem; moreover, assume that, in addition to the red car C0, there is only one additional car C1 (one square car) and two additional (2 square) trucks T0, and T1. Define a state evaluation function for the Rush-hour problem involving these four vehicles. Give a trace of using beam search with your chosen evaluation function for the second and third test case, specified in the CMU specification of the problem (stop after 7 or more node expansions)

Links: http://homepages.cwi.nl/~tromp/orimaze.html
http://www.puzzles.com/products/rushhour.htm
http://www.sciencenews.org/articles/20020817/bob10.asp
http://www.cs.cmu.edu/~reids/planning/homework/Homework1.pdf (CMU version of Rushhour; used for problem2 but not for problem4!!)

http://gamerival.grab.com/index.cfm?play=6389B19F&fromint=1 (contains an interactive interface to solve Rushhour problems yourself)

3) Heuristic Search for the 16-Queen Problem w=6
Assume you intend to use bestfirst-search for the 16-queen problem. Give a description of the initial state, goal test, and operators you propose to use when solving the problem. What state evaluation function would you use? Explain why you selected the presented function. Submit the search tree for the first 6 state expansions that your bestfirst-search algorithm would make for a run of your hypothetical system. Are there any additional heuristics you would employ when solving the the 16-queen problem?

4) Rushhour Part II --- Programming Problem w=15

Give an implementation for the Rushhour problem that employs a search strategy and heuristics of your own preference. Be prepared to demo your program. Write a 2-3 report describing the program you developed. Also be prepared to demo your program.

However, this time we use the 6x6 version of the problem with cars occupying 2 squares and trucks occupying 3 squares, the red car is always positioned in the third row facing east/west and solving the problem is equivalent to reaching square 18 with the red car, (the red car exits the parking lot driving east). Moreover, we assume that the squares are numberd as follows:

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18 (exit row

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

5) A* and RBFS w=3
Apply the A* algorithm to the 8-puzzle problem listed below assuming that the Manhattan state evaluation function is used. How does the search tree look like and what states does the open list contain after 4 node expansions? Now, assume RBFS is used for the same problem. How does the search tree that RBFS generates look like after 4 expansions?

Example Problem: 1 2 3 * 1 3

 4 5 6 4 2 6

 7 8 * 7 5 8

Compare A* and RDFS for the example and in general. What are the advantages of each approach?

6) Games w=2

a) Assume you have two versions of a game playing program; one uses the minimax procedure whereas the second version uses the  procedure. Will both versions select the same moves? Give reasons for your answer!

b) Why does search in game playing programs always proceed forward from the current position rather than backward from the goal?

In the illustrations below, the red car that needs to exit the parking lot is C0 (if it occupies a single block) and C0 C0 (if it occupies two blocks). An E-W facing car is either C1 or C1 C1, and an E-W facing truck is T1 T1 or T1 T1 T1, again depending on whether you solve problem 2 or 4. G is the goal position.
======================================

For problem 2, second part, use the case where C0 faces E-W and starts on square 06, C1 faces E-W and starts on square 16, T0 faces N-S and starts on squares 08-12 and T1 faces E-W and starts on squares 03-04.

	
	
	T1
	T1

	
	C0
	
	T0G

	
	
	
	T0

	
	
	
	C1

As another test case, use the case where C0 faces E-W and starts on square 06, C1 faces N-S and starts on square 16, T0 faces E-W and starts on squares 03-04 and T1 faces N-S and starts on squares 02-06.

	
	T1
	T0
	T0

	C0
	T1
	C1
	G

	
	
	
	

	
	
	
	

======================================

For problem 4, Rushhour Part II, here are some test cases for which to run your solutions. They go from easy to complicated:

1) Start with an extended version of the first part of this problem - with one car C0 needing to be moved from start to exit and one car C1 and a truck T0 obstructing the way. The positions of all the cars are described below:

C0 - blocks 13-14 facing E-W

C1 - blocks 12-18 facing N-S

T0 - blocks 21-22-23 facing E-W

	
	
	
	
	
	

	
	
	
	
	
	C1

	C0
	C0
	
	
	
	C1G

	
	
	T0
	T0
	T0

2) This time, use two cars and two trucks:

C0 - blocks 14-15 facing E-W

C1 - blocks 29-30 facing E-W

T0 - blocks 10-16-22 facing N-S

T1 - blocks 06-12-18 facing N-S

	
	
	
	
	
	T1

	
	
	
	T0
	
	T1

	
	C0
	C0
	T0
	
	T1G

	
	
	
	T0
	
	

	
	
	
	
	C1
	C1

3) Once more, with two cars and two trucks:

C0 - blocks 13-14 facing E-W

C1 - blocks 33-34 facing E-W

T0 - blocks 10-11-12 facing E-W

T1 - blocks 16-22-28 facing N-S

	
	
	
	
	
	

	
	
	
	T0
	T0
	T0

	C0
	C0
	
	T1
	
	G

	
	
	
	T1
	
	

	
	
	
	T1
	
	

	
	
	C1
	C1

4) Again, only two cars and trucks:

C0 - blocks 13-14 facing E-W

C1 - blocks 10-16 facing N-S

T0 - blocks 03-09-15 facing N-S

T1 - blocks 04-05-06 facing E-W

	
	
	T0
	T1
	T1
	T1

	
	
	T0
	C1
	
	

	C0
	C0
	T0
	C1
	
	G

5) Rush hour! More cars come in the parking lot!

C0 - blocks 14-15 facing E-W

C1 - blocks 20-21 facing E-W

C2 – blocks 33-34 facing E-W

C3 – blocks 26-32 facing N-S

T0 - blocks 24-30-36 facing N-S

T1 - blocks 04-10-16 facing N-S

	
	
	
	T1
	
	

	
	
	
	T1
	
	

	
	C0
	C0
	T1
	
	G

	
	C1
	C1
	
	
	T0

	
	C3
	
	
	
	T0

	
	C3
	C2
	C2
	
	T0

6) Rush hour! More trucks come in the parking lot!

C0 - blocks 14-15 facing E-W

C1 - blocks 02-03 facing E-W

C2 – blocks 21-27 facing N-S

C3 – blocks 30-36 facing N-S

T0 - blocks 01-07-13 facing N-S

T1 - blocks 04-10-16 facing N-S

T2 - blocks 22-23-24 facing E-W

T3 - blocks 33-34-35 facing E-W

	T0
	C1
	C1
	T1
	
	

	T0
	
	
	T1
	
	

	T0
	C0
	C0
	T1
	
	G

	
	
	C2
	T2
	T2
	T2

	
	
	C2
	
	
	C3

	
	
	T3
	T3
	T3
	C3

7) 3-4 rush hour!

C0 - blocks 14-15 facing E-W

C1 - blocks 01-02 facing E-W

C2 – blocks 03-09 facing N-S

T0 - blocks 07-13-19 facing N-S

T1 - blocks 20-21-22 facing E-W

T2 - blocks 34-35-36 facing E-W

T3 - blocks 04-10-16 facing N-S

	C1
	C1
	C2
	T3
	
	

	T0
	
	C2
	T3
	
	

	T0
	C0
	C0
	T3
	
	G

	T0
	T1
	T1
	T1
	
	

	
	
	
	
	
	

	
	
	
	T2
	T2
	T2

8) Rush hour!

C0 - blocks 13-14 facing E-W

C1 - blocks 04-10 facing N-S

C2 – blocks 11-12 facing E-W

C3 – blocks 22-23 facing E-W

C4 – blocks 20-26 facing N-S

C5 – blocks 33-34 facing E-W

T0 - blocks 01-02-03 facing E-W

T1 - blocks 09-15-21 facing N-S

T2 - blocks 27-28-29 facing E-W

T3 - blocks 24-30-36 facing N-S

	T0
	T0
	T0
	C1
	
	

	
	
	T1
	C1
	C2
	C2

	C0
	C0
	T1
	
	
	G

	
	C4
	T1
	C3
	C3
	T3

	
	C4
	T2
	T2
	T2
	T3

	
	
	C5
	C5
	
	T3

9) 6-4 rush hour!

C0 - blocks 14-15 facing E-W

C1 - blocks 01-02 facing E-W

C2 – blocks 03-09 facing N-S

C3 - blocks 31-32 facing E-W

C4 - blocks 24-30 facing N-S

C5 – blocks 06-12 facing N-S

T0 - blocks 07-13-19 facing N-S

T1 - blocks 20-21-22 facing E-W

T2 - blocks 34-35-36 facing E-W

T3 - blocks 04-10-16 facing N-S

	C1
	C1
	C2
	T3
	
	C5

	T0
	
	C2
	T3
	
	C5

	T0
	C0
	C0
	T3
	
	G

	T0
	T1
	T1
	T1
	
	C4

	
	
	
	
	
	C4

	C3
	C3
	
	T2
	T2
	T2

10) More rush hour!

C0 - blocks 14-15 facing E-W

C1 - blocks 02-03 facing E-W

C2 – blocks 25-26 facing E-W

C3 – blocks 21-27 facing N-S

C4 – blocks 30-36 facing N-S

T0 - blocks 33-34-35 facing E-W

T1 - blocks 01-07-13 facing N-S

T2 - blocks 22-23-24 facing E-W

T3 - blocks 04-10-16 facing N-S

	T1
	C1
	C1
	T3
	
	

	T1
	
	
	T3
	
	

	T1
	C0
	C0
	T3
	
	G

	
	
	C3
	T2
	T2
	T2

	C2
	C2
	C3
	
	
	C4

	
	
	T0
	T0
	T0
	C4

11) Evening rush hour! Some cars leave…

C0 - blocks 14-15 facing E-W

C1 - blocks 01-02 facing E-W

C2 – blocks 03-09 facing N-S

T0 - blocks 07-13-19 facing N-S

T1 - blocks 04-10-16 facing N-S

T2 - blocks 20-21-22 facing E-W

T3 - blocks 34-35-36 facing E-W

	C1
	C1
	C2
	T1
	
	

	T0
	
	C2
	T1
	
	

	T0
	C0
	C0
	T1
	
	G

	T0
	T2
	T2
	T2
	
	

	
	
	
	
	
	

	
	
	
	T3
	T3
	T3

12) Ultimate rush hour!

C0 - blocks 14-15 facing E-W

C1 - blocks 01-02 facing E-W

C2 – blocks 10-16 facing N-S

C3 – blocks 11-12 facing E-W

C4 – blocks 13-19 facing N-S

C5 – blocks 22-23 facing E-W

C6 – blocks 25-26 facing E-W

T0 - blocks 04-05-06 facing E-W

T1 - blocks 34-35-36 facing E-W

T2 - blocks 18-24-30 facing N-S

T3 - blocks 21-27-33 facing N-S

	C1
	C1
	
	T0
	T0
	T0

	
	
	
	C2
	C3
	C3

	C4
	C0
	C0
	C2
	
	T2G

	C4
	
	T3
	C5
	C5
	T2

	C6
	C6
	T3
	
	
	T2

	
	
	T3
	T1
	T1
	T1

13) Of course, ideally, the programme should be able to run with any arbitrary input, and according to some criterion (a sufficiently high number of iterations, for instance), be able to conclude that there is no solution possible!

======================================

For problem 4, students will be graded according to whether they solve the Full Version of the problems, or the partial versions. The three versions are defined below:

1) Full version – The programme should be able to accept any input. In other words, all test cases 1 through 13 should be solvable.

2) 6-4 version – The programme should give an elegant solution to cases 1 through 12 which have 6 cars and 4 trucks.

3) 3-4 version – This version solves the test cases containing 3 cars and 4 trucks (cases 1 through 7).

Note that even if a lower version runs perfectly and a higher version fails, more credit may be given than if the programme tries to accomplish too much and doesn’t achieve good performance for the simpler test cases.

