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Abstract 

Representative-based clustering algorithms form clusters by assigning objects to the closest cluster 
representative. On the one hand, they are quite popular due to their relative high speed and due to the 
fact that they are theoretically well understood. On the other hand, the clusters they can obtain are 
limited to spherical shapes and clustering results are also highly sensitive to initializations. In this 
paper,  a  novel  agglomerative  cluster  post-processing  technique  is  proposed,  which  merges 
neighboring  clusters  greedily  maximizing  a  given  objective  function  and uses  Gabriel  graphs  to 
determine which clusters are neighboring. Non-spherical shapes are approximated as the union of 
small spherical clusters that have been computed using a representative-based clustering algorithm. 
We claim that this technique leads to clusters of higher quality compared to running a representative 
clustering algorithm stand-alone. Empirical studies were conducted to support this claim; for both 
traditional and supervised clustering significant improvements in clustering quality were observed for 
most  datasets.  Moreover,  as  a  byproduct,  the paper also introduces and evaluates internal  cluster 
evaluation measures and sheds some light  on technical  issues  related to representative clustering 
algorithms in general.
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I. INTRODUCTION

Representative-based  clustering  algorithms  form  clusters  by  assigning  objects  to  the  closest  cluster 
representative.  K-means  is  the  most  popular  representative-based  clustering  algorithm;  it  uses  cluster 
centroids as representatives and iteratively updates clusters and centroids until no change in the clustering 
occurs. K-means is a relatively fast clustering algorithm with a complexity of O k⋅t⋅n with typically k,  t 
<< n. The clusters generated are always contiguous. However, when using K-means the number of clusters k 
has  to  be  known  in  advance,  and  K-means  is  very  sensitive  to  initializations  and  outliers.  Figure  1 
demonstrates  the  initialization  problem of  K-means.  The original  9Diamonds dataset  contains  9  natural 
clusters as shown in Figure 1 (a). However, if initial representatives of clusters are not properly chosen, it 
fails  to  identify  the  nine  natural  clusters,  as  illustrated  in  Figure  1  (b).  Another  problem of  K-means 
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clustering algorithm is that it cannot obtain clusters that have non-spherical shapes [1]: the shapes that can be 
obtained by representative-based clustering algorithms are limited to convex polygons.

(a) Original                          (b) K-means with k=9

Fig. 1.  Applying K-means to the 9Diamonds dataset.

In theory, agglomerative hierarchical clustering (AHC) is capable of detecting clusters of arbitrary shape. 
However, in practice, it performs a very narrow search, merging the two closest clusters without considering 
other merge candidates and therefore often misses high quality solutions. Moreover, its time complexity of 

)( 2nΟ  limits its application to small and medium-sized data sets.  Furthermore, clusters obtained by AHC 
are not necessarily contiguous, as illustrated in Fig. 2: a hierarchical clustering algorithm that uses average 
linkage2 would merge clusters C3 and C4, although the two clusters are not  neighboring.  This example 
motivates the need to disallow merging of non-neighboring clusters in agglomerative clustering. 

Fig. 2.  Merging elongated clusters

Fig. 3.  An illustration of Post-Processing technique

2 Average linkage uses the average distance between the members of two clusters as its distance function.
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This paper proposes a hybrid clustering technique that combines representative-based with agglomerative 
clustering trying to maximize the strong points of each approach. In particular, a novel agglomerative cluster 
post-processing technique is proposed, which merges neighboring clusters greedily maximizing a given fitness 
function and uses Gabriel graphs [2] to determine which clusters are neighboring. Non-spherical shapes are 
approximated as the union of small spherical clusters that have been computed using a representative-based 
clustering algorithm, as illustrated in Fig. 3. By using Gabriel graphs the agglomerative clustering algorithm 
conducts a much wider search which, we claim, results in clusters of higher quality. Moreover, the expensive, 
agglomerative clustering algorithm is only run for usually less than 500 iterations; therefore, the impact of its 
higher complexity on the overall run time is alleviated, particularly for very large data sets. Furthermore, the 
proposed post-processing technique is  highly generic in that  it  can be used with any representative-based 
clustering algorithm, with any proximity graph and with any cluster evaluation function. Figure 4 gives the 
pseudo code of the proposed post-processing technique.  

1. Run a representative-based clustering algorithm to 
create a large number of clusters.

2. Read the representatives of the obtained clusters.
3. Create a merge candidate relation using proximity 

graphs.
4. WHILE there are merge-candidates (Ci ,Cj) left 

BEGIN
Merge the pair of merge-candidates (Ci,Cj), that   
enhances fitness function q the most, into a new 
cluster C’
Update merge-candidates:
∀C Merge-Candidate(C’,C) ⇔ Merge-

   Candidate(Ci,C) ∨ Merge-Candidate(Cj,C) 
END

5. RETURN the best clustering X found.
Fig. 4.  Pseudo code of the Post-Processing Technique

The proposed post-processing technique merges neighboring clusters greedily: the pair of clusters whose 
merging maximizes an externally given  the  fitness function q is merged, and this process is continued until 
only one cluster is left. Finally, the best clustering is returned. Using cluster representatives that have been 
obtained by running a representative-based clustering algorithm as an input, a proximity graph is generated to 
determine which of the original clusters are neighboring and a merge-candidate relation is constructed from the 
proximity graph. When clusters are merged, this merge-candidate relation is updated incrementally without any 
need to regenerate proximity graphs. 

The remainder of  the paper  explains the  post-processing technique in  more detail.  We claim that  this 
technique leads to clusters of higher quality compared to running a representative-based clustering algorithm 
stand-alone.  Empirical  studies  were  conducted  to  support  this  claim;  for  both  traditional  and  supervised 
clustering  significant  improvements  in  clustering  quality  were  observed  for  most  data  sets.  The  paper  is 
organized  as  follows.  Section  2  describes our  post-processing  algorithm in more detail,  and  applies  it  to 
traditional  clustering  problems.  In  Section  3,  we  introduce  a  post-processing  framework  for  supervised 
clustering. Related work is reviewed in Section 4, and a conclusion is given in Section 5.

II. POST-PROCESSING FOR TRADITIONAL CLUSTERING

In this section, first proximity graphs are introduced and their role in cluster post-processing is discussed. 
Next, internal cluster evaluation measures will be discussed that will serve as fitness functions for the post-
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processing algorithm. Finally, results of experimental studies will be discussed that evaluate the proposed 
post-processing algorithm. 

A. Using Gabriel Graphs for Determining Neighboring Clusters 
Different  proximity  graphs  represent  different  neighbor  relationships  for  a  set  of  objects.  There  are 

various kinds of proximity graphs [3], with Delaunay graphs [4] (DG) being the most popular ones. The 
Delaunay graph for a set of cluster representatives tells us which clusters of a representative-based clustering 
are neighboring and the shapes of  representative-based clusters are limited to Voronoi cells,  the dual to 
Delaunay graphs. Voronoi cells are always convex polygons, but there are convex shapes that are different 
from Voronoi cells.  

Delaunay triangulation (DT) [5] is the algorithm that constructs the Delaunay graphs for a set of objects. 
Unfortunately,  using DT for  high dimensional  datasets  is  impractical  since it  has  a  high complexity  of 
O nd /2 (when d>2), where  d is the number of dimensions of a data set. Therefore, the proposed post-

processing  algorithm uses  another  proximity  graph  called  Gabriel  graphs  (GG)  [2]  instead,  which  is  a 
subgraph of the DG. Two points are said to be Gabriel neighbors if their diametric sphere does not contain 
any other points. The pseudo code of an algorithm that constructs the GG for a given set of objects is given 
in Figure 5; its time complexity is O dn3  . Faster, approximate algorithms O dn2  to construct GG exist 
[6]. 

Let R = {r1, r2,…, rk}, be a set of cluster representatives
FOR each pair of representatives (ri, rj), 
  IF for each representative rp ,  the following inequality 
      ),(),(),( 22

pjpiji rrdrrdrrd +≤

      where p ≠ i, j and rp ∈  R, is true,
THEN ri and rj are neighboring. 

),( ji rrd  denotes the distance of representatives ri and rj.
Fig. 5.  Pseudo code for constructing Gabriel graphs.

Gabriel  graphs are known to provide good approximations  of  Delaunay graphs because a very high 
percentage of the edges of a Delaunay graph are preserved in the corresponding Gabriel graph. Our proposed 
post-processing  algorithm  constructs  the  Gabriel  graph  for  a  given  set  of  representatives,  e.g.  cluster 
centroids in the case of K-means, and then uses the Gabriel graph to construct a boolean merge-candidate 
relation that describes which of the initial clusters are neighboring. This merge candidate relation is then 
updated incrementally when clusters are merged.

B. Cluster Evaluation Measures for Traditional Clustering
The purpose of the cluster evaluation is to assess their quality. Cluster evaluation measures are classified 

into unsupervised, supervised and relative [7]. In this paper, we only consider internal evaluation measures. 
One of the popular methods for representative-based algorithms, such as K-means or K-medoids, is the Mean 
Square Error (MSE) that is defined as follows: 

MSE=∑o∈C i
d o , ri 

2

where d(o,ri) is the distance between object o and representative of cluster i, ri. 
Our post processing technique is similar to agglomerative hierarchical clustering algorithms in that it 

iteratively merges two candidates. However, it differs from a hierarchical clustering algorithm that it merges 
neighboring clusters that enhance a given fitness function the most, and does not blindly merge clusters that 
are closest to each other. Two fitness functions q1(X) and q2(X) that use cohesion, separation, and silhouette 
coefficient are introduced for this purpose in the following.
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The fitness function q1(X) combines the cohesion and separation. Cohesion measures the tightness of a 
cluster while separation measures how distinct or well-separated a cluster is from other clusters. The fitness 
function q1(X) is defined as:

Let 
O={o1,…,on} be the dataset to be clustered,
dij be the distance between objects oi and oj,

X ={C1,…,Ck} be a clustering of O with
Ci⊆O and Ci∩Cj=∅ for i≠j 
Intra(X) be the number of intra-cluster distances and 
Inter(X) be the number of inter-cluster distances in a clustering X. 

q1 X =
SeparationX 

Cohesion X 2−

where, 

Cohesion X =
Sumintra  X 

Intra X 
, Separation X =

Suminter X 
Inter X 

Sumintra  X =∑i<j, oi  and o j  belong to a same cluster
d ij

Suminter X =∑i<j, oi  and o j  belong to a different cluster
d ij

and

  




 −=+∀

2
)1()()( nnXIntraXInterX

Fitness function q2(X) uses the popular silhouette coefficient [8]; for each object oi belonging to cluster 
Ck its silhouette coefficient is defined as follows:

si=
a i−bi 

maxai , bi
where,

a i=minm 1
∣C m∣

∑ d ij
o j∈Cm

 , m≠k

bi=
1

∣C k∣
∑ d ij

o j∈C k

In the above formula, bi is average dissimilarity of an object oi to all other objects oj in the same cluster. ai 

is minimum of average dissimilarity of an object oi to all objects oj in another cluster (the closest cluster). To 
measure quality not for one object but entire clustering, we use average of silhouette over whole dataset. The 
fitness function q2(X) is defined as follows:

q2  X = 1
n∑i=1

n
s i

where n is the number of objects in a dataset. 
In our approach we directly use fitness functions q1(X) and q2(X) to determine which cluster is merged next.
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(a) Before merging                    (b) After merging

Fig. 6.  Swapping of distances when clusters are merged.

In general, it is computationally expensive to compute cohesion and separation from the scratch each time 
clusters are merged. As it turns out, cohesion and separation can be computed incrementally from their old 
value relying on the following formulas. Let X’ be the clustering that has been obtained by merging clusters 
Cp and  Cq in the clustering  X; in this case, the cohesion and separation of the new clustering  X’ can be 
computed incrementally by just maintaining 4 variables (see also Figure 6).

)(

),(
)'(

qp

qp

CCIntra(X)
CCd)Sumintra(X

XCohesion
⋅+

+
=

)(

),(
)'(

qp

qp

CCInter(X)
CCd)Suminter(X

XSeparation
⋅−

−
=

)()'( qp CCIntra(X)XIntra ⋅+=

)()'( qp CCInter(X)XInter ⋅−=

where d C p , Cq   is the sum of inter-cluster distances with respect to Cp and Cq. 

C. Complexity
The time complexity of the post-processing algorithm is the sum of the cost of K-means, constructing 

Gabriel  graphs  and  post-processing.  We  use  the  K-means  algorithm  supported  in  MATLAB  in  our 
implementation. K-means clustering algorithms run relatively efficient  in  O k⋅t⋅n time where  k is  the 
number of clusters,  t  is the number of iterations and  n is the number of objects. We use the function for 
Gabriel graphs bundled in the library of MATLAB [Strauss06] which has a cost of O dk 3  .  If distances, 
merge-candidates and fitness values after merging clusters are computed from scratch, the complexity of the 
post  processing  technique  is Ok 2⋅n2 .  We claim  that  this  complexity  can  be  improved  to  On2 by 
updating  cohesion  and  separation  or  silhouette  coefficients  in  an  incremental  way.  In  summary,  the 
complexity of the current implementation of the post-processing technique is Ok⋅n⋅tk 3n2 . Since n 
>>  t and  k,  we can approximate the two complexity functions, obtaining respectively  On2 .  For more 
details about incremental update of fitness function, see the Appendix 1. For instance, in our experiments the 
post-processing algorithm spends 367 seconds constructing Gabriel graphs and performing post processing 
for k=100.

D. Experiments
We conducted our experiments on a Dell Inspiron 600m laptop with a Intel(R) Pentium(R) M processor 

1.6GHz and 512 MB of RAM. The proposed post-processing algorithm was tested with the two different 
fitness  functions  q1(X)  and  q2(X)  for  eight  datasets  whose  properties  are  described  in  TABLE I.  The 
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experimental results of the post processing algorithm were compared to the results generated by the K-means 
clustering algorithm for the same number of clusters,  k. In particular, for each k we run K-means 10 times 
and then we compute the maximum and the average of the two fitness functions.
 

TABLE I
INFORMATION OF DATASETS

Dataset Number of 
objects

Number of 
dimensions

Number of 
classes

9Diamonds 3,000 2 9
Volcano 1,533 2 2
Binary Complex 8 2,551 2 8
Binary Complex 9 3,031 2 9
Earthquakes 1% 3,161 2 3
Arsenic 20% 2,385 2 2
Vehicle 8,469 19 4
Ionosphere 351 34 2
Diabetes 768 8 2

             (a) q1(X)                                                           (b) q2(X)

Fig. 7.  Evaluation graphs of clustering using q1(X) and q2(X)

Figure 7 depicts how separation, cohesion,  q1(X) and  q2(X) evolve in two run of the post processing 
algorithm for the 9Diamonds dataset; in Figure 7 (a) q1(X) was used as the fitness function and in Figure 7 
(b) q2(X) was used as the fitness function. As the number of clusters decreases, both separation and cohesion 
increase, a pattern we observed for many other data sets. q1(X) goes down all the time in both runs, whereas 
the Silhouette coefficient has the tendency to go up for small k values. As expected, both runs have highest 
silhouette coefficient  when  k reaches 9.  The visualization shown in Figure 9 and 10 provide the visual 
evidences with respect to high value of Silhouette coefficient in two datasets. For 9Diamonds dataset, the 
post-processing with q2(X) discovers the natural clusters (Figure 8 (b)) while the post-processing with q1(X) 
has some misclassification in the middle (Figure 8 (a)),  but does better than K-means whose result  was 
depicted in Figure 1 (b). For the Volcano dataset, K-means separates several natural chains. We captured a 
part of the Volcano dataset as shown in Figure 9 (a) to demonstrate this deficiency. In Figure 9 (b) the post-
processing with q1(X) obtains the perfect clustering: it captures all connected chains. In Figure 9 (c) the post-
processing with q2(X) fails to completely separate the upper chain from the left chain. 
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                     (a) q1(X)                                 (b) q2(X)

Fig. 8.  Post-processing results using q1(X) and q2(X) with k=9

    (a) K-means           (b) q1(X)               (c) q2(X) 

Fig. 9.  Comparison of experimental results of our post-processing with the K-means clustering algorithm

We conducted experiments of post-processing using q1(X) and q2(X) on 8 datasets. The post-processing 
using q1(X) is using Separation/Cohesion and has a tunable parameter, δ, to adjust the influence of each to 
the overall quality function. In order to evaluate the impact of δ, we have tested on 8 datasets with 5 different 

δ values setting; 0, 0.5, 1, 1.5, and 2. The experimental results of using  )2()(
)(

δ

δ

−XCohesion
XSeparation

 as the fitness 

function suggest that our post-processing algorithm performs best when δ is 1.5 and quite badly when δ is 2, 
suggesting that using solely separation as an evaluation function is not a good choice. We conducted a large 

number  of  experiments  using   )(
)(

XCohesion
XSeparation

 as  the  fitness  function  which  lead  to  significant 

improvements in cluster quality in 5 of the datasets tested. In the remaining of the chapter we assume  that 
q1(X) is always used with δ set to 1. Detailed results and visual representations of each experiment of q1(X) 
with different δ values can be found at [21].

Figure  10  compares  the  maximum and  average  silhouette  coefficients  of  K-means  to  the  silhouette 
coefficient of post-processing technique that uses  q2(X) as the fitness function for some of the data sets 
tested; moreover, we also depict the  q1(X) values for the clusters that are created by the post-processing 
algorithm. In general, we observed four different patterns in the 8 datasets tested. In the first group that 
contains the Earthquakes 1%, Volcano, and Ionosphere datasets, the post-processing technique works well as 
it gives higher silhouette values than K-means in almost every iteration. In the second group (9Diamonds, 
Arsenic, and Diabetes dataset), our post-processing technique outperforms K-means at the beginning and at 
the end of the runs. For the Vehicle dataset, our post-processing technique slightly outperforms K-means 
until  k=50 and then outperforms K-means significantly. Finally for Binary Complex 8 dataset,  the post-
processing works well only for the initial generations.

For  Earthquakes  1%, Ionosphere,  Vehicle,  and Volcano dataset,  our  post-processing technique using 
q2(X) obtains silhouette coefficient values higher than average silhouette coefficient values of K-means in 
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most of iterations (except  1-2 iterations).  Moreover it  also obtains higher silhouette coefficient  than the 
maximum silhouette values of K-means in most of iterations (except under 15 iterations). For other datasets 
such as 9Diamonds, Arsenic 20%, Binary Complex 8, and Diabetes, our post-processing outperforms K-
means at the beginning of iterations and at the end of iterations. The complete experimental results are 
summarized  in  Figure  10  and  TABLE II,  respectively.  In  general  our  post-processing  algorithms  work 
efficiently in high-dimensional datasets such as Ionosphere, Diabetes, and Vehicle as discussed above.

TABLE II
ITERATIONS ON WHICH q2(X) OUTPERFORM K-MEANS CLUSTERING ALGORITHM

 Dataset q2(X) vs. K-Means Average q2(X) vs. K-means maximum
9Diamonds 100-60, 28-6, 4 100-86, 28-15, 13-11
Arsenic 20% 100-64,14-11 100-72,13
Binary Complex 8 100-67, 63-61, 21-16, 14-11,3 100-77
Diabetes 100-45,24-21,10-2 100-48, 6-2
Earthquakes 1% 100-3 100-19, 9-5
Ionosphere 100-3 100-5
Vehicle 100-7, 5-2 100-8, 3-2
Volcano 100-5, 3 100-13,10-8

To demonstrate the effectiveness of our post-processing algorithm, we construct the graphs for the first 15 
iterations as shown in Figure 11. The overall performance of the post-processing using q2(X) outperforms K-
means  clustering  for  all  datasets  in  every  iteration.  In  particular  the  silhouette  coefficient  of  the  post-
processing is always higher than the maximum silhouette coefficient of K-means clustering algorithm.
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Fig. 10.  Experimental results for the post-processing technique and K-means
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Fig. 11.  Comparison of experimental results of our algorithm to K-means clustering algorithm for 15 iterations

TABLE III
AVERAGE SILHOUETTE VALUES OF MAX OF K-MEANS AND q2(X) FOR THE FIRST 15 ITERATIONS (k=100-

85)

Dataset Average of 
max K-means

Average of 
q2(X)

9 Diamonds 0.37685 0.3808
Arsenic 20% 0.38308 0.38796
Binary complex 8 0.39224 0.39667
Diabetes 0.21748 0.22796
Earthquakes 1% 0.51505 0.55736
Ionosphere 0.28427 0.35076
Vehicle 0.2022 0.21374
Volcano 0.55951 0.57751

We also depicted the  average of maximum silhouette coefficient  of  K-means and average silhouette 
coefficient  of  q2(X)  for  the  first  15 iterations  in TABLE III.  This table shows that  our post-processing 
algorithm is much more efficient than K-means on datasets for the first 15 merges performed.

III. POST-PROCESSING FOR SUPERVISED CLUSTERING

A. Motivation
Supervised clustering is applied on classified examples with the aim of producing clusters that have high 

probability density with respect to individual classes. Moreover, in supervised clustering, we also like to keep the 
number of clusters small, and examples are assigned to clusters using a notion of closeness with respect to a 
given distance function. Figure 12 illustrates the differences between a traditional and a supervised clustering. Let 
us assume that the black examples and the white examples represent objects belonging to two different classes. A 
traditional  clustering algorithm would,  very likely,  identify the  four clusters depicted in Figure  12 (a).  This 
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clustering would not be very attractive in the case of supervised clustering because cluster A has low purity of 
50%, containing examples of two classes; moreover, the white examples are subdivided into two separate clusters 
B and C, although they are neighboring.

Fig. 12.  Differences between Traditional Clustering and Supervised Clustering.

A supervised clustering algorithm that maximizes class purity, on the other hand, would split cluster  A into 
two clusters  E and F (Figure 12 (b)). Another characteristic of supervised clustering is that it tries to keep the 
number  of  clusters  low.  Consequently,  clusters  B  and  C  would  be  merged  into  a  single  cluster  without 
compromising class purity while reducing the number of clusters.

B.Evaluation Measures and Algorithms
In  the  experiments,  we evaluate  our  post-processing  technique using  a  reward-based  fitness  function.  In 

particular, the quality q(X) of a clustering X is computed as the sum of the rewards obtained for each cluster c∈X. 
Cluster  rewards are computed as  the product  of  interestingness of  a cluster  and the size of  a  cluster.  More 
specifically, the evaluation function q(X) is defined as follows:
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where  hst and  cst are hotspot and coolspot purity thresholds and  purityY(c) is the percentage of examples in 
cluster c that belong to the class of interest Y.

In general, we are interested in finding larger clusters if larger clusters are at least equally interesting than 
smaller clusters. Consequently, our evaluation scheme uses a parameter  β with  β > 1; that is, fitness increases 
nonlinearly with cluster-size dependent on the value of β, favoring clusters c with more objects. Selecting larger 
values for the parameter β usually results in a smaller number of clusters in the best clustering X. The measure of 
interestingness i relies on a class of interest Y, and assigns rewards to regions in which the distribution of class Y 
significantly deviates from the prior probability of class Y in the whole dataset.

The parameter η determines how quickly the reward function grows to maximum reward of 1. If η is set to 1 
it grows linearly, if it is set to 2 a quadratic function would be used that grows significantly slower initially. In 
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general, if we are interested in giving higher rewards to purer clusters, it is desirable to choose large values for η: 
e.g. η=8. 

Let us assume a clustering X has to be evaluated with respect to a class of interest “Poor” that contains 1000 
examples. Suppose that the generated clustering X subdivides the dataset into three clusters c1, c2, c3 with the 
following characteristics.  |c1|  = 250, |c2|  = 200, |c3|  = 550; puritypoor(c1) = 130/250,  puritypoor(c2)  = 20/200, 
puritypoor(c3) = 50/550. Moreover, the following parameters used in the fitness function are as follows: β = 1.1, η
=1. A coolspot (cst=0.1) is defined as a cluster that contains less than 10% and a hotspot (hst=0.3) is a cluster that 
has more than 30% of instances of the class “Poor”. Due to the settings clusters that contain between 10% and 
30% instances of the class “Poor” do not receive any reward at all; therefore, no reward is given to cluster c2 in 
the example. The remaining clusters received rewards because the distribution of class “Poor” in the cluster is 
significantly higher or lower than the corresponding threshold. Consequently, the reward for the first cluster c1 is 
11/35 x (250)1.1 since puritypoor(c1) = 52% is greater than hotspot which is 30%, 11/35 is obtained by applying the 
function  purityy(c), thus we get  puritypoor(c1) = ((0.52-0.3)/(1-0.3)) * 1 = 11/35. Rewards of other clusters are 
computed similarly and the following overall reward for X is obtained:
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C. Supervised Clustering with Evolutionary Computing (SCEC)
SCEC [9] is a representative-based supervised clustering algorithm that employs evolutionary computing to 

seek  for  the  “optimal”  set  of  representatives  by  evolving  population  of  solutions  over  a  fixed  number  of 
generations. The size of the population is fixed to a predetermined number when running SCEC. The initial 
generation is created randomly. The subsequent generations are generated by applying three different genetic 
operators to members of the current generation that are selected based on the principles of survival of the fittest. 
Figure 13 presents a flowchart of the SCEC algorithm, whose key features include:

1.  Chromosomal  Representation:  A  solution  consists  of  a  set  of  representatives  that  are  a  subset  of  the 
examples to be clustered.
2. Genetic Operators:
Mutation: replaces a representative by a non-representative.
Crossover: take 2 “parent” solutions and creates an offspring as follows:

A. Include all representatives that occur in both parents in the offspring
B. Include representatives that occur in a single parent with a probability of 50%.

Copy: Copy a member of the current generation into the next generation.
3. Selection: K-tournament selection is used to select solutions for generating the next generation through 
mutation, crossover, and copying. K-tournament randomly selects  K solutions from the current population, 
and uses the solution with the highest q(X) value to be added to the mating pool for the breeding of the next 
generation.

4. Transformation of the Chromosomal Representation into Clusters and Evaluation:
A. Create clusters by assigning the remaining examples in the dataset to the closest representative.
B. Evaluate the so obtained clustering X using q.
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Fig. 13.  Key features of the SCEC algorithm

D. Datasets and Experiments
In order to study the performance of the post-processing technique, we  have  conducted experiments on a 

benchmark consisting of five spatial datasets and one high dimensional dataset that were described in section 2. 
Two separate experiments were conducted. The first experiment compared the SCEC and the SCEC with post-
processing.  The  second  experiment  compared  SCEC  with  post-processing  technique  with  three  supervised 
clustering algorithms: SCAH, SCHG and SCMRG. SCAH is an agglomerative, hierarchical supervised clustering 
algorithm,  SCHG is an agglomerative,  hierarchical  grid-based clustering method,  and SCMRG is a  divisive 
clustering  algorithm  that  employs  multi-resolution  grids.  More  details  descriptions  of  these  algorithms  and 
experimental results of the algorithms for 6 datasets can be found in [10].  

The common parameters for SCEC of both experiments are listed in TABLE IV. In the first experiment, we 
set  the fitness function parameters β=1.0001, and η=7. for SCEC to produce a large number of initial clusters. 
The post-processing algorithm used 4 different parameter settings: (β=1.0001, η=7), (β=1.01, η=6), (β=1.3, η=1),
 and (β=3, η=1). In  the  second  experiment,  we  compared  SCEC  with  post-processing,  SCAH,  SCHG,  and 
SCMRG algorithms with 3 evaluation function parameter settings: (β=1.01, η=6), (β=1.3, η=1), and (β=3, η=1). 
Αfter finishing the clustering for each algorithm, the value of evaluation function q(X), the purity and the number 
of clusters are reported.

TABLE IV
PARAMETERS FOR SCEC

Initial Crossover rate 0
Initial mutation rate 0.95
Copy rate 0.05
Population size 400
Number of generations 1500
K for tournament 2

Figure  14  are  the  visualization  of  clustering  results  of  Binary  Complex  8,  Binary  Complex  9,  Volcano 
(fraction), Earthquake (fraction) and Arsenic datasets. The clusters created by SCEC are shown on the left and the 
graphs; on the right are the results after applying our post-processing technique. These visualized results show 
that our post-processing technique is capable of merging neighboring clusters into larger continuous clusters. It is 
also capable of discovering arbitrary shape clusters.
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Fig. 14.  (a) Before applying Post-Processing technique (left) and (b)  After applying Post-Processing technique (right)
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The experimental results listed in TABLE V indicate that post-processing technique considerably improves the 
performance of SCEC. We can draw a conclusion from the comparison between SCEC and SCEC with post-
processing that the post-processing enhances or keeps the purity and the quality, and decreases the number of 
clusters on Binary Complex 8, Binary Complex 9, and Arsenic20% datasets for all parameter settings. For the 
Volcano,  Earthquake 1% and Diabetes  datasets,  the post-processing improves the  quality in  most  cases and 
reduces the number of clusters significantly when β is small. From a quantitative point of view, Table 5 shows 
that  the  post-processing technique improved average  purity  by  2.8%,  average cluster  quality  by 13.3% and 
decreased the average number of clusters by 51.4%.

TABLE V 
SCEC AND SCEC WITH POST-PROCESSING

Dataset Parameters SCEC Post-processing
Purity Quality Clusters Purity Quality Clusters

Binary 
Complex 8

β=1.0001, η=7 0.995 0.951 94 0.995 0.952 12
β=1.01,η=6 0.990 0.901 90 0.995 0.940 12
β=1.3, η=1 0.916 0.418 8 0.995 0.682 5
β=3 , η=1 0.886 0.050 4 0.995 0.115 5

Binary 
Complex 9

β=1.0001, η=7 0.998 0.989 80 0.998 0.989 9
β=1.01,η=6 0.998 0.937 98 0.998 0.973 9
β=1.3, η=1 0.937 0.339 22 0.998 0.607 8
β=3 , η=1 0.830 0.032 4 0.997 0.075 6

Volcano3

β=1.0001, η=7 0.790 0.332 402 0.780 0.332 230
β=1.01,η=6 0.780 0.322 402 0.780 0.316 230
β=1.3, η=1 0.789 0.068 372 0.787 0.110 176
β=3 , η=1 0.607 4.65E-4 7 0.786 0.002 117

Earthquake1
% 1

β=1.0001, η=7 0.903 0.610 400 0.884 0.610 147
β=1.01,η=6 0.895 0.575 404 0.884 0.599 147
β=1.3, η=1 0.846 0.272 5 0.858 0.412 76
β=3 , η=1 0.846 0.061 4 0.842 0.141 34

Arsenic 
20%1

β=1.0001, η=7 0.836 0.402 392 0.836 0.402 172
β=1.01,η=6 0.834 0.391 396 0.836 0.392 72
β=1.3, η=1 0.779 0.105 11 0.808 0.253 90
β=3 , η=1 0.774 0.021 6 0.779 0.065 41

Diabetes

β=1.0001, η=7 0.770 0.315 94 0.742 0.315 17
β=1.01,η=6 0.790 0.289 94 0.742 0.310 17
β=1.3, η=1 0.740 0.228 5 0.753 0.208 9
β=3 , η=1 0.726 0.050 2 0.764 0.018 9

Average 0.844 0.361 141.5 0.868 0.409 68.75

We  further  compare  the  SCEC  with  post-processing  to  SCAH,  SCHG,  and  SCMRG. The  same  set  of 
parameter  settings  of  β and  η were  applied to  each algorithm  with Binary  Complex 8,  Binary  Complex 9, 
Volcano, and Earthquake datasets.   The experimental results of the three supervised clustering algorithms have 
been reported in  [10].  Considering the quality of the clustering, our representative-based clustering algorithm, 
SCEC with post-processing, did not perform as well  as other algorithms for  β=1.01. SCHG had the highest 
quality value on Complex8 dataset and SCAH performed best on the other 5 datasets. However, if the evaluation 

3 The initial number of clusters for SCEC is 400
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function prefers the size of the cluster to be medium size or big, SCEC outperforms all other algorithms tested. 
For  β=1.3, SCEC with post-processing outperformed all other supervised clustering algorithms on all datasets 
except the volcano dataset  in terms of quality.  For  β=3, SCEC with post-processing has the best quality of 
clustering among all supervised clustering algorithm on all datasets.

IV. RELATED WORK 

In many domains, such as hot spot detection, region discovery and spatial data mining, it important to find 
regions that have arbitrary shapes. There is significant amount of research centering on this topic. Jiang [1] 
proposes spatial clustering techniques for generalization processes in GIS. The paper claims that hierarchical 
clustering  accompanied by tree-like  diagrams provides  a  powerful  tool  for  visualizing cluster  hierarchies  at 
different levels of detail. The paper also stresses the limitations of K-means clustering that cannot effectively 
detect network skeletons and claims that hierarchical clustering algorithms is suitable for this task. Heckel [11] 
proposes a  hierarchical  classification and visualization technique that  utilized the  hierarchical  clustering and 
classical techniques in statistics and computer visualization. It recursively splits the clusters in such a way that an 
eigenvector is used as the center of split clusters. It then applies a local reclassification scheme based on the 
Gabriel graph to improve the quality of the classification. Anders [12] developed an unsupervised graph-based 
clustering algorithm, called Hierarchical Parameter-free Graph CLustering (HPGCL) for spatial data analysis. 
Various proximity graphs are used to define coarse-to-fine hierarchical segmentation of a data. 

Density-based clustering methods [13, 14, 15, and 16] are considered to be efficient in discovering dense 
arbitrary shaped cluster, such as 9Diamonds. Sander et al. generalize DBSCAN to GDBSCAN: that can cluster 
point spatial objects as well as complex spatial objects. In real world spatial and biological applications, the 
information  in  datasets  are  sometimes  vague  and  uncertain.  Kriegel  and  Pfeifle  propose  a  fuzzy  distance 
functions to measure the similarity between fuzzy objects and enhance the DBSCAN algorithm to deal with the 
fuzzy objects. Hinneburg and Keim proposed the DenClue algorithm, a clustering method based on the density 
estimation techniques.  Although density-based algorithm are effective in detecting dense arbitrary shape cluster, 
they usually face problems with parameters tuning, with datasets having low or varying density, with varying size 
cluster sizes, and are not suitable for high dimensional datasets.

There is significant research centering on hybrid clustering. Lin and Zhong [17 and 18] propose a hybrid 
clustering algorithm that combines representative-based clustering and hierarchical clustering methods which are 
similar to our approach. However they employ the different merging criteria and merge clusters greedily by 
considering only single pair of merging clusters. On the other hand, our approach uses Gabriel graph to construct 
the  clusters  neighboring.  The benefit  is  that  the  post-processing  can  consider  more  merging  candidates  and 
consequently maximizes the fitness function for merging clusters. We also investigate other researches in hybrid 
clustering approaches that are also different from our approach. Surdeanu [19] extracts the top-ranking initial 
clusters  candidates  from  a  hierarchical  agglomerative  clustering  algorithm  and  then  input  to  Expectation 
Maximization (EM) algorithm. Fern [20] uses K-means and random subsampling to generate cluster ensembles 
and merge them by using bipartite graph partitioning. 

V. CONCLUSION

This paper proposes a novel clustering approach that approximates arbitrary-shape clusters through unions of 
small  spherical  clusters.  Gabriel  graphs  are  used  to  identify  neighboring  clusters.  Using  proximity  graphs 
increases  the  number  of  merge  candidates  considerably  over  traditional  agglomerative  algorithms  that  only 
consider “closest” clusters for merging, resulting in clusters of higher quality.  The proposed post-processing 
technique is quite general and can be used with any representative-based clustering algorithm, proximity graph, 
and  internal  cluster  evaluation  measure.  Furthermore,  it  is  scalable  since  the  merging  is  conducted  in  an 
incremental fashion, and the running of the expensive, agglomerative algorithms is limited to less than a few 
hundred iterations. Moreover, as a by-product, the paper also contributes a formula to compute cluster separation 
and cohesion incrementally.

Our  proposed  post  processing  technique  has  also  some  similarity  agglomerative  grid-based  clustering 
algorithms; both approaches employ micro-clusters which are grid-cells in their approach and convex polygons in 
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our  approach  and  greedily  merge  neighboring  clusters.  However,  our  approach  has  much  more  general  by 
supporting more shapes and by allowing convex polygons of different sizes. On the other hand, for a given grid 
structure it easy to determine which clusters are neighboring, which is not the case in our approach.

We conducted two sets of experiments to evaluate our post-processing technique: one for traditional clustering 
algorithms  and  another  for  supervised  clustering  algorithms.  The  experimental  results  of  using  silhouette 
coefficients as the fitness function showed that our post-processing technique always obtains higher silhouette 
coefficients in the first 15 iterations than the maximum silhouette value observed in 10 runs of K-means for all 
data sets. After 15 iterations, the results of the post-processing technique continued to improve for five of the 
eight  data  sets  tested.   We  also  presented  visual  evidence  that  our  post-processing  approach  discovers  the 
“natural” clusters in 9Diamonds and Earthquakes datasets which K-means mostly fails to discover.  We also 
observed a gap between the average silhouette coefficient and the maximum silhouette coefficient for different 
runs  of  K-means.  This  suggests  that  K-means  should  be  run  multiple  times  (i.e.  50  times)  in  order  to  get 
reasonable clustering results. 

The experimental results of applying our post-processing technique to the results of a Supervised Clustering 
with Evolutionary Computing algorithm (SCEC) showed significant improvement over the stand-alone version of 
SCEC. For the benchmark tested, the post-processing technique improved purity by 2.8% and cluster quality by 
13.3% and decreased the number of clusters by 51.4%. We also compared these results with the performance of 
other supervised clustering algorithms. When the objective is to obtain medium or large size clusters, the post-
processing technique outperformed the other supervised clustering algorithms significantly. In general, the post 
processing technique showed quite significant improvement for supervised clustering; our explanation for this 
fact is that the class-label provides a quite strong feedback (that usually is not found in traditional clustering) that 
makes it easier for the clustering algorithm to make correct merging decisions. 

In  future  research,  we plan  to  investigate  internal  cluster  evaluation measures  that  are  more suitable  for 
evaluating clusters with non-spherical shapes. Furthermore, as mentioned in Section 2, the time complexity of the 
current  post-processing  implementation  is  On2 by  using  q1(x) or  q2(x) function. We plan  to  investigate 
approximate Gabriel Graph algorithm and to derive formulas for computing Silhouette coefficients incrementally 
to reduce this time complexity to Ok 2 . 
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APPENDIX 1: INCREMENTAL UPDATE OF THE INVESTIGATED CLUSTER EVALUATION MEASURE. 

A. Incremental Update of Cohesion and Separation.
 In this section, a detailed description about the technique that can be used for incrementally updating the q1(x) 
function will be provided:
Let us suppose to use two matrices A and B with dimensions k x k (where k is the number of clusters and thus of 
nodes of the Gabriel Graph).  
Let A be:  Ai , j=∑ol∈C i

∑om∈C j
d ol , om and B be Bi , j=∑ol∈C i

∑om∈C j
1 where ol and om are objects of 

the dataset and Ci and Cj are clusters. 
It is clear that if i≠ j then Ai , j is the sum of the distances of all the pairs of objects between clusters Ci  and Cj. 
If i= j  then  Ai ,i is the sum of the distances of all the pairs of objects inside the  i-th cluster.  Bi , j stores the 
number of pairs of objects between the i-th and j-th clusters. 
The time complexity for the computation of matrices A and B is O n2 , because we need to sum all the possible 
pairs of objects in our dataset (n is the number of objects). 
Using A and B, it is simple to compute cohesion and separation, in fact the values:

Coh0=Sumintra 0
Intra 0

=
∑1≤i≤ k

Ai ,i

∑1≤i≤ k
Bi ,i

and Sep0= Suminter 0
Inter 0

=
∑1≤i≤k ∑1≤ j≠i≤k

Ai , j

∑1≤i≤k ∑1≤ j≠i≤k
B i , j

are cohesion and separation at the step number 0, that is before starting the merging process. Obviously, the 
complexity is O k 2 .
During the merging process, it is very easy to update cohesion and separation values, in fact, at each generic step 
p :
Sumintra p=Sumintra  p−1Ai , j ,
Suminter  p=Suminter  p−1−Ai , j , 
Intra  p=Intra  p−1Bi , j  ,
Inter  p=Inter  p−1−Bi , j

if  we  are  merging  respectively  cluster  i-th  with  cluster  j-th.  And cohesion  and  separation  are  computed  as 
follows:

Coh p =Sumintra  p
Intra  p

Sep p=Suminter  p
Inter  p

 ( time complexity O(1) ).

This operation has to be performed once for each edge of the graph. Since the graph is a Gabriel Graph (thus is a 
connected planar graph), the number of edges is  k−1≤e≤3k−6 . This means that the number of edges  e is 
linear  with  respect  to  the  number  of  nodes,  that  is  e≃O k  .  Since  at  the  generic  step  p,  the  number  of 
remaining nodes is k-p, such an operation has to be performed O k− p  times for each step p. 

Once computed cohesion and separation, we have to update matrices  A and  B,  in order to manage the new 
situation. Since cluster Ci and cluster Cj have been merged together and now they have become a single cluster 
C i j  , we have to compute:
Ai j , i j =Ai ,iA j , jAi , j

and, for each other cluster l, we have to compute 
Ai j , l=Ai ,lA j ,l . 

The same update has to be performed on B. This operation takes time equal to O k− p .

 In conclusion, we have to perform the following operations:
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● Compute the matrices A and B: O n2 .
● Compute for the first time Cohesion, Separation, Sumintra, Suminter, etc. : O k 2 .
● Execute  O k  merging steps (one for each cluster), where each step has a time complexity equal to 

O k− pO k− p where p is the number of the current step.

In the end, we obtain a total complexity equal to O n2k2≃O n2 because n >> k. 

B. Incremental Update of Silhouette Function.
In this section, a detailed description about the technique that can be used for incrementally updating the q2(x) 
function will be provided:
The silhouette function is computed using the following values:

a i=min
m≠k  1

∣Cm∣
∑o j∈C m

d i , j  (1) and bi= 1
∣C k∣

∑o j∈Ck
d i , j  (2) 

for each object  oi∈C k , where di,j is the euclidean distance between objects i-th and j-th.

Thus, at each merging step p, for each object oi, we should compute each possible a i ,m= 1
∣Cm∣

∑o j∈C m
d i , j  (3) 

and then find out the minimum amongst them.
Since the procedure merges  only two cluster  at  a  time,  not  all  the value  ai and  bi will  be  changed at  each 
computational step p. If we analyze deeper the way the silhouette values change, we are able to detect two main 
cases, each one can be decomposed in two sub-cases:

1. Object oi belongs to a cluster that has just been merged with another cluster.
2. Object oi does not belong to a cluster that has been merged with another cluster during the computational 

step p.

Case 1:
This case is applied when the object oi∈C k  that we are taking into account belongs to a cluster which has just 
been merged by the merging procedure. This case must be divided in two sub-cases:

a. in the first sub-case , the cluster Ck has not been merged with the cluster that minimized the eq. (1) at the 
step p-1. Since the value of ai is computed only using objects belonging to external clusters, the cluster 
minimizing the eq. (1) remain the same, therefore, in this case a i p=a i p−1 , where p is the current 
step of computation.

b. In the second sub-case, the cluster Ck has been merged with the cluster that minimized the eq. (1) at the 
step  p-1. The value of  ai is computed using objects belonging to external clusters, but in this case the 
cluster minimizing the eq. (1) cannot remain the same, because it has just been merged with the cluster 
Ck. This means that at step p, the cluster index that minimizes eq. (1) is the second best value for the eq. 
(1) at the previous step: 

a i p=second best a i p−1 .

Case 2:
This case is applied when the object oi∈C k  that we are taking into account doesn't belong to the two clusters 
which have just been merged together by the merging procedure. Even this case must be divided in two sub-cases 
similar to case 1:
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a. Let  Cl and  Cr be the two clusters that have just been merged and let  q the index of the cluster that 
minimized eq. (1) at step p-1. In this case, the index of the cluster that minimizes the eq. (1) at step p 
must be chosen between index q (the previous best) and the index of the new cluster (l+r), thus:

a i p=min ai  p−1 , a i , lr  p  but it's easy to prove that:
a i p=min ai  p−1 , a i , lr  p=ai  p−1 .

b. Let Cl and Cr be the two clusters that have just been merged and let l  or r the index of the cluster that 
minimized eq. (1) at step p-1. In this case, the cluster that minimized the eq. (1) at the previous step does 
not exist  anymore, thus the index that minimizes the equation must be chosen between the previous 
second best value and the new cluster C(l+r):

a i p=min second best a i p−1 , a i ,lr p .
It is clear that this is the only case we have a computational complexity that is different from O(1). Thus, in order 
to compute the complexity, we have to estimate the number of times this case occurs.

Now it remains to compute incrementally the value of bi at each step p. In order to maintain such a value updated, 
without recomputing it every time, we can use the same method as in the incremental update of cohesion and 
separation functions. Thus, we must compute two matrices  n x  k, where  n is the number of objects and  k the 
number of clusters such as:
Ai , j=∑om∈C j

d oi , om  and

Bi , j=∑om∈C j
1 .

If at step p, clusters Cl and Cr have been merged together, we can recompute all the new values of bi (for each 

i∈C l r ), simply by computing 
Ai ,lAi ,r

Bi ,lBi ,r
. 

In the end, like in the appendix A, an update of the matrices has to be performed.
If we analyze the computational complexity, it is simple to see that for the computation of  ai during the post-
processing is equal to Ok 2⋅n⋅m , where k is the number of clusters, n the number of objects in the dataset and 
m the computational cost of the case 2b at each step p. For the computation of bi, the greatest cost is due to the 
initialization of matrices  A and  B, which takes time equal to  On2 because all the distances between all the 
possible couples of objects must be computed. 
Summarizing, the computational complexity of post-process technique is Ok 2⋅n⋅mn2≃O n2 because n >> 
k and m. 
At this time we are exploring the possibility to compute q1(x) and q2(x) locally, in order to reduce the intrinsic 
computational complexity introduced by these two fitness functions.
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