
MOSAIC: Agglomerative Clustering
with Gabriel Graphs

Rachsuda Jiamthapthaksin Computer Science Department, University of Houston,
USA
Jiyeon Choo Computer Science Department, University of Houston, USA
Chun-sheng Chen Computer Science Department, University of Houston, USA
Oner Ulvi Celepcikay Computer Science Department, University of Houston, USA
Christian Giusti Department of Mathematics and Computer Science, University of
Udine, Italy
Christoph F. Eick Computer Science Department, University of Houston, USA

Abstract. Representative-based clustering algorithms are quite popular due to
their relative high speed and because of their sound theoretical foundation. On
the other hand, the clusters they can obtain are limited to convex shapes and
clustering results are also highly sensitive to initializations. This paper proposes
post-processing techniques to alleviate this problem. In particular, a novel
agglomerative clustering algorithm called MOSAIC is proposed which greedily
merges neighboring clusters maximizing an externally given fitness
function. MOSAIC uses Gabriel graphs to determine which clusters are
neighboring and approximates non-convex shapes as the unions of small clusters
that have been computed using a representative-based clustering algorithm. We
evaluate MOSAIC for traditional unsupervised clustering with k-means and
DBSCAN, and also for supervised clustering. The experimental results show that
the proposed post-processing techniques lead to clusters of higher quality
compared to running a representative clustering algorithm stand-alone.
Moreover, given a suitable fitness function, MOSAIC is able to detect arbitrary
shape clusters which are comparable to the ones generated by DBSCAN. In
addition, MOSAIC is capable of dealing with high dimensional data. We also
claim that MOSAIC can be employed as an effective post-processing clustering
algorithm to further improve the quality of clustering.

Keywords: Post-processing, hybrid clustering, finding clusters of arbitrary
shape, agglomerative clustering, using proximity graphs for clustering.

1 INTRODUCTION

Representative-based clustering algorithms form clusters by assigning objects to the closest
cluster representative. k-means is the most popular representative-based clustering algorithm:
it uses cluster centroids as representatives and iteratively updates clusters and centroids until
no change in the clustering occurs. k-means is a relatively fast clustering algorithm with a
complexity of)(ntkO ⋅⋅ , where n is the number of objects, k is the number of clusters, and t
is the number of iterations. The clusters generated are always contiguous. However, when
using k-means the proper number of clusters k has to be known in advance, and k-means is

very sensitive to initializations and outliers. Another problem of the k-means clustering
algorithm is that it cannot obtain clusters having non-convex shapes [1]: the shapes that can
be obtained by representative-based clustering algorithms are limited to convex polygons.

In theory, agglomerative hierarchical clustering (AHC) [2] is capable of detecting clusters
of arbitrary shape. However, in practice, it performs a very narrow search, merging the two
closest clusters without considering other merging candidates and therefore often misses high
quality solutions. Moreover, its time complexity is or worse. Finally, many variations
of AHC obtain non-contiguous clusters. [3]

)(2nO

(a) Input (b) Output

Fig. 1. An illustration of MOSAIC’s approach

This paper proposes a hybrid clustering technique that combines representative-based with
agglomerative clustering trying to maximize the strong points of each approach. A novel
agglomerative clustering algorithm called MOSAIC is proposed, which greedily merges
neighboring clusters maximizing a given fitness function and whose implementation uses
Gabriel graphs [4] to determine which clusters are neighboring. Non-convex shapes are
approximated as the union of small convex clusters that have been obtained by running a
representative-based clustering algorithm, as illustrated in Fig. 1. Creating mosaics in art is
the process of assembling small pieces to get a sophisticated design. Similarly, the proposed
MOSAIC algorithm pieces convex polygons together to obtain better clusters.

1. Run a representative-based clustering algorithm to create a
large number of clusters.

2. Read the representatives of the obtained clusters Ci.
3. Create a merge candidate relation using proximity graphs.
4. WHILE there are merge-candidates(Ci, Cj) left

BEGIN
Merge the pair of merge-candidates(Ci, Cj), that
enhances fitness function q the most, into a new
cluster C’.
Update merge-candidates:
Merge-Candidate(C’, C) ⇔
 Merge-Candidate(Ci, C) Merge-Candidate(C∨ j, C)

 END
RETURN the best clustering X found.

Fig. 2. Pseudo code for MOSAIC

Relying on proximity graphs the MOSAIC conducts a much wider search which leads in

clusters of higher quality. Moreover, the expensive, agglomerative clustering algorithm is
only run for usually less than 1,000 iterations; therefore, the impact of its high complexity on
the overall run time is alleviated, particularly for very large data sets. Furthermore, the
proposed post-processing technique is highly generic in that it can be used with any

representative-based clustering algorithm, with any proximity graph and with any cluster
evaluation function. Fig. 2 gives the pseudo code of the proposed MOSAIC algorithm.

In summary, MOSAIC merges pairs of neighboring clusters maximizing an externally
given fitness function q, and this process is continued until only one cluster is left. Finally, the
best clustering is determined and returned. Using cluster representatives obtained from a
representative-based clustering algorithm as an input, a proximity graph is generated to
determine which of the original clusters are neighboring and a merge-candidate relation is
constructed from this proximity graph. When clusters are merged, this merge-candidate
relation is updated incrementally without any need to regenerate proximity graphs.

The main contributions of this work are:
• It introduces a hybrid algorithm that combines strong features of representative-based

clustering and agglomerative clustering.
• The algorithm provides flexibility by enabling to plug-in any fitness functions and is not

restricted to any specific cluster evaluation measure.
• The algorithm conducts a much wider search, compared to traditional agglomerative

clustering algorithms, by considering neighboring clusters from a proximity graph as
merge candidates.

• It is beneficial to apply MOSAIC as a post-processing to identify clusters with complex
shapes, for instance a cluster residing in another cluster.

The organization of our paper is as follows: Section 2 describes MOSAIC in more detail,
and explains cluster evaluation measures used in traditional and supervised clustering. The
time complexity of MOSAIC is also analyzed. Section 3 reports the results of an experimental
evaluation of MOSAIC on traditional clustering and supervised clustering problems. Related
work is reviewed in Section 4, and a conclusion is given in Section 5 respectively.

2 POST-PROCESSING WITH MOSAIC

This section discusses MOSAIC in more detail. First, proximity graphs are introduced and
their role in agglomerative clustering is discussed. Next, cluster evaluation measures will be
discussed that will serve as fitness functions in the experimental evaluation. Finally,
MOSAIC’s complexity is discussed

2.1 Using Gabriel Graphs for Determining Neighboring Clusters
Different proximity graphs represent different neighbor relationships for a set of objects.
There are various kinds of proximity graphs [5], with Delaunay graphs [6] (DG) being the
most popular ones. The Delaunay graph generated from a set of cluster representatives tells us
which clusters of a representative-based clustering are neighboring and the shapes of these
clusters can be computed by using Voronoi cells, the dual to Delaunay graphs.

Delaunay triangulation (DT) [7] is the algorithm that constructs the Delaunay graphs for a
set of objects. Unfortunately, using DT for high dimensional datasets is impractical since it
has a high computational complexity of)(2

dnO (when d > 2), where d is the number of
dimensions of a data set and n is the number of graph vertices. Therefore, our implementation
of MOSAIC uses another proximity graph called Gabriel graphs (GG) [4] instead, which is a
sub-graph of the DG. Two points are said to be Gabriel neighbors if their diametric sphere
does not contain any other points. Gabriel graphs are known to provide good approximations
of Delaunay graphs because a very high percentage of the edges of a Delaunay graph are
preserved in the corresponding Gabriel graph [9]. Constructing GG has a time complexity of

but faster approximate algorithms (with time complexity) to construct GG)(3dnO)(2dnO

exist [8]. The pseudo code of an algorithm that constructs the GG for a given set of objects is
given in Fig. 3.

MOSAIC constructs the Gabriel graph for a given set of representatives, e.g. cluster
centroids in the case of k-means, and then uses the Gabriel graph to construct a boolean
merge-candidate relation that describes which of the initial clusters are neighboring. This
merge candidate relation is then updated incrementally when clusters are merged. The
illustration of the Gabriel graph construction in MOSAIC is shown in Fig. 4 in which clusters
that have been obtained by a representative algorithm are visualized using black polygons,
cluster representatives are depicted as red dots, and neighboring (e.g. Merge-Candidates) are
depicted as yellow segments.

Let R = {r1, r2,…, rn}, be a set of cluster representatives.

FOR each pair of representatives : 2),(Rrr ji ∈
 IF for each representative rk , the following inequality

holds

),(),(),(22
kjkiji rrdrrdrrd +≤

 where k ≠ i, j and Rrk ∈ ,
 THEN ri and rj are neighboring.

d(ri, rj) denotes the distance of representatives ri and rj.

Fig. 3. Pseudo code for constructing Gabriel graphs.

Fig. 4. Gabriel graph for clusters generated by a representative-based clustering algorithm

2.2 Cluster Evaluation Measures for Traditional Clustering
Many cluster evaluation measures have been proposed in the literature [2]. In this paper, we
use Cohesion, Separation, and Silhouettes [10] which are evaluation measures that have been
widely used to assess cluster quality. Cohesion measures the tightness of a cluster while
Separation measures how well-separated a cluster is from other clusters. The formula of
both evaluation measures are defined as:

Let
O={o1,…,on} be the dataset to be clustered,
dij be the distance between objects oi and oj,
X ={C1,…,Ck} be a clustering of O with
Ci⊆O and Ci∩Cj=∅ for i≠j
Intra(X) be the number of intra-cluster distances and
Inter(X) be the number of inter-cluster distances in a clustering X,

)(
)()(

XIntra
XntraSumiXCohesion =

)(
)()(

XInter
XnterSumiXSeparation =

where,

∑ <
=

clustersamethetobelongoandoji ji
ji

dXntraSumi
, ,)(

∑ <
=

clustersdifferenttobelongoandoji ji
ji

dXnterSumi
, ,)(

On the other hand, Silhouettes is a popular cluster evaluation technique that takes both
cohesion and separation into consideration. The definition of a Silhouette Coefficient si
for each object oi belonging to cluster Ck is as follows:

),max(
)(

ii

ii
i ba

ba
s

−
= (1)

where,

 ai = kmd
C

mj Co
ij

m
m ≠⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∈

,1min and (2)

 bi = ∑

∈ kj Co
ij

k

d
C
1 . (3)

In the formula (1), bi is average dissimilarity of an object oi to all other objects oj in the

same cluster. ai is minimum of average dissimilarity of an object oi to all objects oj in another
cluster (the closest cluster). To measure quality not for one object but entire clustering, we use
Average of Silhouettes over whole dataset. The fitness function q(X) is defined as
follows:

 ∑
=

=
n

i
is

n
Xq

1

1)((4)

where n is the number of objects in a dataset and X is the dataset partition. We simply call the
fitness function, Silhouettes through the rest of the paper.

2.3 A Cluster Evaluation Measure for Supervised Clustering
Due to the fact that MOSAIC supports plug-in fitness functions, it can be used as a supervised
clustering algorithm. In general, supervised clustering is applied to classified examples with
the aim of producing clusters that have high probability density with respect to individual
classes. Moreover, in supervised clustering, we also like to keep the number of clusters small,
and examples are assigned to clusters using a notion of closeness with respect to a given
distance function. Fig. 5 illustrates the differences between a traditional and a supervised
clustering. Let us assume that the black examples and the white examples represent objects
belonging to two different classes. A traditional clustering algorithm would, very likely,
identify the four clusters depicted in Fig. 5 (a). This clustering would not be very attractive in

the case of supervised clustering because cluster A has low purity of 50%, containing
examples of two classes; moreover, the white examples are subdivided into two separate
clusters B and C, although they are neighboring.

Fig. 5. Differences between traditional clustering and supervised clustering.

A supervised clustering algorithm that maximizes class purity, on the other hand, would

split cluster A into two clusters E and F (Fig. 5 (b)). Another characteristic of supervised
clustering is that it tries to keep the number of clusters low. Consequently, clusters B and C
would be merged into a single cluster without compromising class purity while reducing the
number of clusters.

In the experiments, we evaluate our post-processing technique using a reward-based
fitness function. In particular, the quality q(X) of a clustering X is computed as the sum of the
rewards obtained for each cluster c∈X. Cluster rewards are computed as the product of
interestingness of a cluster and the size of a cluster. More specifically, the evaluation
function q(X) is defined as follows:

∑∑
∈∈

×
==

XcXc n
cci

cwardXq β

β)()(
)(Re)(

with the interestingness i(c) of a cluster c be defined as follows:

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

<⎟
⎠
⎞

⎜
⎝
⎛ −

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

=

otherwise

cstpurityif
cst

cpuritycst

hstpurityif
hst

hstcpurity

ci Y
Y

Y
Y

0

)((

)1(
))((

)(
η

η

where hst and cst are hotspot and coolspot purity thresholds and purityY(c) is the percentage
of examples in cluster c that belong to the class of interest Y.

In general, we are interested in finding larger clusters if larger clusters are at least equally
interesting than smaller clusters. Consequently, our evaluation scheme uses a parameter β
with β > 1; that is, fitness increases nonlinearly with cluster-size dependent on the value of β,
favoring clusters c with more objects. Selecting larger values for the parameter β usually
results in a smaller number of clusters in the best clustering X. The measure of interestingness
i relies on a class of interest Y, and assigns rewards to regions in which the distribution of
class Y significantly deviates from the prior probability of class Y in the whole dataset.

The parameter η determines how quickly the reward function grows to maximum reward
of 1. If η is set to 1 it grows linearly, if it is set to 2, a quadratic function would be used that

grows significantly slower initially. In general, if we are interested in giving higher rewards to
purer clusters, it is desirable to choose large values for η: e.g. η=8.

To clarify the reward-based fitness function, we generate an example to illustrate the
calculation as follow: Let us assume a clustering X has to be evaluated with respect to a class
of interest “Poor” that contains 1,000 examples. Suppose that the generated clustering X
subdivides the dataset into three clusters c1, c2, c3 with the following characteristics. |c1| = 250,
|c2| = 200, |c3| = 550; purityPoor(c1) = 130/250, purityPoor(c2) = 20/200, purityPoor(c3) = 50/550.
Moreover, the following parameters used in the fitness function are as follows: β = 1.1, η=1.
A coolspot (cst=0.1) is defined as a cluster that contains less than 10% and a hotspot (hst=0.3)
is a cluster that has more than 30% of instances of the class “Poor”. Due to the settings
clusters that contain between 10% and 30% instances of the class “Poor” do not receive any
reward at all; therefore, no reward is given to cluster c2 in the example. The remaining
clusters received rewards because the distribution of class “Poor” in the cluster is significantly
higher or lower than the corresponding threshold. Consequently, the reward for the first
cluster c1 is 11/35 × (250)1.1 since purityPoor(c1) = 52% is greater than hotspot which is 30%,
11/35 is obtained by applying the function purityY(c), thus we get purityPoor(c1) = ((0.52-
0.3)/(1-0.3)) × 1 = 11/35. Rewards of other clusters are computed similarly and the following
overall reward for X is obtained:

115.0
000,1

550
11
10250

35
11

)(1.1

1.11.1

=
×++×

=XqPoor

2.4 Complexity
The time complexity of our proposed hybrid clustering algorithm depends on two factors: the
complexity of the representative-based clustering algorithm and the complexity of the
MOSAIC algorithm itself. Analyzing MOSAIC’s complexity, we already discussed that the
cost for constructing the Gabriel Graph over an n-element dataset with k representatives is
equal to . After that, we have to merge the k vertices of the Gabriel Graph. Basically,
a Delaunay Graph is a planar graph; since a Gabriel Graph is a connected subset of a
Delaunay Graph, we have that the number e of edges of our GG is k-1 ≤ e ≤ 3k-6. This means
that the number of edges e in the graph is always linear with respect to the number of vertices
of the graph: . The merge-candidates are given by the edges of the Gabriel Graph;
this means that, at each time, we have merge-candidates. In each iteration, the number

k of vertices (i.e. the number of representatives) is decreased by one. Thus, at the ith
iteration, merge-candidates have to be evaluated, which adds up to fitness
function evaluations:

)(3kO

)(kOe =
)(kO

)(ikO −)(2kO
(1)2()1()++−+− ΚkOkO . Putting this all together, we obtain a

time complexity for MOSAIC algorithm equal to: ()))((23 XqOkkO ⋅+ where
is the time complexity of the fitness function. A lower complexity for MOSAIC

can be obtained if the fitness of a particular clustering can be computed incrementally during
the merging stages based on results of previous fitness computations

))((XqO

.

2.5 Incremental Update of Silhouette Function
In this section, a detailed description about the technique that can be used for incrementally
updating the Silhouette function will be provided:
The silhouette function is computed by using the following values for each object : ki Co ∈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑ ∈≠ mj Co ji

m
kmi d

C
a ,

1min (1) and ∑ ∈
=

kj Co ji
k

i d
C

b ,
1

 (2)

where di,j is the Euclidean distance between objects i-th and j-th.
Thus, at each merging step p, for each object oi, we should compute each possible

∑ ∈
=

mj Co ji
m

mi d
C

a ,,
1

 (3) and then find out the minimum amongst them.

Since the procedure merges only two clusters at a time, not all the values ai and bi will be

changed at each computational step p. If we analyze deeper the way the silhouette values
change, we are able to detect two main cases, each one can be decomposed in two sub-cases:

1. Object oi belongs to a cluster that has just been merged with another cluster.
2. Object oi does not belong to a cluster that has been merged with another cluster

during the computational step p.

Case 1:
This case is applied when the object ki Co ∈ that we are taking into account belongs to a
cluster which has just been merged by the merging procedure. This case must be divided in
two sub-cases:

a. The cluster Ck has not been merged with the cluster that minimized the eq. (1) at the
step p–1. Since the value of ai is computed only by using objects belonging to
external clusters, the cluster minimizing the eq. (1) remains the same, therefore, in
this case , where p is the current step of computation.)1()(−= papa ii

b. The cluster Ck has been merged with the cluster that minimized the eq. (1) at the step
p–1. The value of ai is computed using objects belonging to external clusters, but in
this case the cluster minimizing the eq. (1) cannot remain the same, because it has just
been merged with the cluster Ck. This means that at step p, the index of the cluster
that minimizes eq. (1) is the second best value for the eq. (1) at the previous step:

))1(()(−= pabestecondspa ii .

Case 2:
This case is applied when the object ki Co ∈ that we are taking into account doesn’t belong
to one of the two clusters which have just been merged together by the merging procedure.
Even this case must be divided in two sub-cases similarly to the case 1:

a. Let Cl and Cr be the two clusters that have just been merged and let q be the index of
the cluster that minimized eq. (1) at step p–1 with q ≠ l, r. In this case, the index of
the cluster that minimizes the eq. (1) at step p must be chosen between index q (the
previous best) and the index of the new cluster (l+r), thus:

())(),1(min)(, papapa rliii +−= but it’s easy to prove that:

 ())1()(),1(min)(, −=−= + papapapa irliii .

b. Let Cl and Cr be the two clusters that have just been merged and let l or r the index of
the cluster that minimized eq. (1) at step p–1. In this case, the cluster that minimized
the eq. (1) at the previous step does not exist anymore, thus the index that minimizes
the equation must be chosen between the previous second best value and the new
cluster C(l+r):

())(),1(min)(, papabestecondspa rliii +−=

It is clear that this is the only case we have a computational complexity that is
different from O(1). Thus, in order to compute the complexity, we have to estimate
the number of times this case occurs.

Now it remains to compute incrementally the value of bi at each step p. In order to
maintain such a value updated, without recomputing it every time, we can compute two
matrices (n×k), where n is the number of objects and k the number of clusters such as:

()∑ ∈
=

jm Co miji dA ,, and

()∑ ∈
=

jm CojiB 1, .

If at step p, clusters Cl and Cr have been merged together, we can recompute all the new

values of bi (for each), simply by computingrlCi +∈
rili

rili

BB
AA

,,

,,

+
+

.

In the end, an update of the two matrices has to be performed in order to manage the new
situation. Since cluster Cl and cluster Cr have been merged together and have become a single
cluster Cl+r, we have to compute:

rilirli AAA ,,, +=+ for each object oi.

The same update has to be performed on the matrix B. This operation takes time equal to
where n is the cardinality of the set of objects o)(nO i.

If we analyze the computational complexity, it is simple to see that the computation of ai
during MOSAIC’s execution takes time)(mnkO ⋅⋅ , where k is the number of clusters, n the
number of objects in the dataset and m the computational cost of the case 2b at each step p
(this is the worst case because not always we have to perform the case 2b). For the
computation of bi, the greatest cost is due to the initialization of matrices A and B, which
takes time equal to because all the distances between all the possible couples of objects
must be computed.

)(2nO

Summarizing, the computational complexity of the Silhouette fitness function by using an
incremental technique reduces to:

)()(2nOmnkO +⋅⋅ .
At this time we are exploring the possibility to compute q(X) locally, in order to reduce the
intrinsic computational complexity introduced by this fitness function.

3 EXPERIMENTS

We set up experiments that evaluate MOSAIC for traditional clustering and supervised
clustering. In the traditional clustering experiment, clustering results generated by MOSAIC
are compared with ones generated by DBSCAN and k-means. In the supervised clustering
section, we demonstrate how MOSAIC is effective in discovering arbitrary shape clustering;
MOSAIC is used as a post-processing algorithm to agglomerate initial clusters generated by
Supervised Clustering with Evolutionary Computing algorithm (SCEC).

3.1 Experiments on Traditional Clustering
We compare MOSAIC using the Silhouettes fitness function with DBSCAN and k-means1.
Due to space limitations we are only able to present a few results; a more detailed

1 In general, we would have preferred to compare our algorithm also with CHAMELEON and DENCLUE.

However, we sadly have to report that executable versions of these two algorithms no longer exist.

experimental evaluation can be found in [3]. We conduct our experiments on a Dell Inspiron
600m laptop with a Intel(R) Pentium(R) M 1.6GHz processor with 512 MB of RAM. We set
up three experiments that use the following datasets: an artificial dataset called
9Diamonds[11] consisting of 3,000 objects with 9 natural clusters, Volcano[11] containing
1,533 objects, Diabetes[12] containing 768 objects, Ionosphere[12] containing 351 objects,
and Vehicle[12] containing 8,469 objects.

Experiment 1: The experiment analyses Cohesion, Separation and Silhouettes over a
MOSAIC run. The goal of this experiment is to understand how fitness with respect to the
three fitness functions changes as MOSAIC merges clusters.

Fig. 6. Evaluation Graphs of Clustering Using Cohesion, Separation and
Silhouettes

Discussion: Figure 6 depicts how Separation, Cohesion and Silhouettes evolve in one run of
the post-processing algorithm for the 9Diamonds dataset. The top graph of the figure shows
that as the number of clusters decreases, both Separation and Cohesion increase; the same
pattern was observed for many other data sets. In other words, there is the trade off between
the size of clusters, and Cohesion and Separation. In addition, Separation and Cohesion have
the tendency increase more quickly for small k values. On the other hand, we observed [3],
that the Silhouettes curve takes many different forms for different datasets. As shown in the
bottom graph of the figure, the experimental result depicts a highest value of the Silhouette
function when k reaches 9, which is number of natural clusters in the dataset.

Experiment 2: The experiment compares the clustering results generated by running k-means
with k=9 with MOSAIC for the 9Diamonds dataset.

Discussion: As shown in Fig. 7 (a), k-means is not able to discover the natural clusters.
MOSAIC, on the other hand, is able to discover the natural clusters by iteratively merging the
sub-clusters that have been depicted in Fig. 7 (b) by maximizing the Silhouettes fitness
function: the clustering with the highest fitness value is displayed in Fig. 7 (c).

-2 -1 0 1 2 3 4

-1

0

1

2

3

4

5

-2 -1 0 1 2 3 4
-1

0

1

2

3

4

5

(a) Clusters
created by k-
means with

k = 9

(b) MOSAIC
clusters’ input
generated by k-
means with k =

100

(c) MOSAIC output (d) DBSCAN with
MinPts = 35 and

ε = 0.05

Fig. 7. Experimental results for the 9Diamonds dataset

Experiment 3: The experiment compares the clustering results generated by MOSAIC and
DBSCAN for two two-dimensional datasets: 9Diamonds and Volcano.

Discussion: To use DBSCAN, we have to choose values for two parameters: MinPts and ε.
One challenge of this experiment is to find proper values for those parameters. First, we use
the procedure that has been proposed in the original paper [13] to select values for MinPts and
ε. Unfortunately, this procedure does not work very well: DBSCAN just creates a single
cluster for both datasets tested. Therefore, we created an interactive procedure to generate
parameters for DBSCAN; we initially randomly generate a few parameter settings, visualize
clustering results generated by DBSCAN for the different parameter settings, obtain feedback
from the user about clustering quality, and then generate further parameter settings based on
the user’s feedback. After a couple of iterations, the parameters selected by the second
procedure lead to much better results. We observe that ε values that produce better clustering
results are much smaller than those suggested by analyzing the sorted k-dist graph. Fig. 7 (d)
depicts one of the best clustering results obtained for DBSCAN for the 9Diamonds dataset.
MOSAIC correctly clusters the dataset while DBSCAN reports a small number of outliers in
the left corner of the bottom left cluster.

(a) MOSAIC

(b) DBSCAN with MinPts = 5 and ε = 0.02

Fig. 8. Experimental results of MOSAIC and DBSCAN on Volcano dataset

Volcano is a real world dataset that contains chain-like patterns with various densities. In
general, DBSCAN and MOSAIC produce results of similar quality for this dataset. Fig. 8
depicts a typical result of this comparison: MOSAIC does a better job in identifying the long
chains in the left half of the display (Fig. 8 (a)), whereas DBSCAN correctly identifies the

long chain in the upper right of the display (Fig. 8. (b)). DBSCAN and MOSAIC both fail to
identify all chain patterns.

Experiment 4: This experiment compares MOSAIC and k-means on three high dimensional
datasets: Vehicle, Ionosphere, and Diabetes. The quality of clustering results is compared
using the Silhouettes cluster evaluation measure. MOSAIC’s input are 100 clusters that have
been created by running k-means. Next, MOSAIC is run and its Silhouette values are
averaged over its 98 iterations. These Silhouette values are compared with the average
Silhouette values obtained by running k-means with k = 2,…,99. Table 1 summarizes the
findings of that experiment.

Table 1. Information for the high dimensional datasets and experimental results

Dataset Number
of objects

Number of
dimensions

Average Silhouette
coefficient of k-means

Average Silhouette
coefficient of MOSAIC

Vehicle 8,469 19 0.20013 0.37157
Ionosphere 351 34 0.2395 0.26899
Diabetes 768 8 0.23357 0.24373

Discussion: MOSAIC outperforms k-means quite significantly for the Vehicle dataset and we
see minor improvements for the Ionosphere and Diabetes datasets.

3.2 Supervised Clustering Experiments
In traditional clustering section, k-means is used to generate initial clusters for MOSAIC. In
this section, we also run a supervised clustering algorithm, namely SCEC, to generate a set of
small input clusters for MOSAIC. SCEC [14] is a representative-based supervised clustering
algorithm that employs evolutionary computing to seek for the “optimal” set of
representatives by evolving population of solutions over a fixed number of generations. The
size of the population is fixed to a predetermined number when running SCEC. The initial
generation is created randomly. The subsequent generations are generated by applying three
different genetic operators: Mutation, Crossover, and Copy, to members of the current
generation that are selected based on the principles of survival of the fittest. Figure 9 shows a
flowchart of the SCEC algorithm, whose key features include:

1. Chromosomal Representation: A solution consists of a set of representatives that are a
subset of the examples to be clustered.

2. Genetic Operators:
 Mutation: replaces a representative by a non-representative.

Crossover: take 2 “parent” solutions and creates an offspring as follows:
A. Include all representatives that occur in both parents in the offspring
B. Include representatives that occur in a single parent with a probability of 50%.
Copy: Copy a member of the current generation into the next generation.

3. Selection: K-tournament selection is used to select solutions for generating the next
generation through mutation, crossover, and copying. K-tournament randomly selects
K solutions from the current population, and uses the solution with the highest q(X)
value to be added to the mating pool for the breeding of the next generation.

4. Transformation of the Chromosomal Representation into Clusters and Evaluation:
A. Create clusters by assigning the remaining examples in the dataset to the closest

representative.
B. Evaluate the so obtained clustering X using q(X).

Fig. 9. Key features of the SCEC algorithm

We set up two experiments that use the following datasets: an artificial dataset called

Binary Complex 8 [11] consisting of 2,551 objects, Binary Complex 9 [11] containing
3,031objects, Earthquakes 1% [11] containing 3,161 objects, Volcano [11] containing 1,533
objects, Arsenic 20% [11] containing 2,385 objects and Diabetes [12] containing 768
objects. All of the tested datasets contain objects belonging to two different classes except
Earthquakes1% which contains 3 classes. The common parameters for SCEC of both
experiments are listed in Table 2. In this paper the experiments on supervised clustering focus
on discovering large size of high purity clusters. So we use the reward-based fitness function
whose interestingness is the purity function as discussed in Section 2.3. The parameters
settings for the fitness function are as follows: β=1.0001 and η=7—the parameters are chosen
to instruct SCEC to produce a large number of initial clusters.

Table 2. Parameters for SCEC

Dataset Number of objects

Initial crossover rate 0
Initial mutation rate 0.95
Copy rate 0.05
Population size 400
Number of generations 1,500
K for tournament 2

Experiment 5: The experiment evaluates post-processing SCEC clusters with MOSAIC for
discovering arbitrary shape clusters for three two-dimensional datasets: Binary Complex 8,
Binary Complex 9, and Earthquake (with sampling rate 1 percent) datasets. For MOSAIC we
set β=1.3 and η=1 for Earthquakes dataset and β=3 and η=1 for the other datasets.

Discussion: The datasets contain clusters of varying in shape, density and distribution. We
claim that MOSAIC is capable of merging neighboring clusters into larger continuous clusters
while maintaining purity. The high purity and arbitrary shape clusters discovered by
MOSAIC are displayed in Fig. 10. The clusters created by SCEC are shown on the middle
panel and the clusters on the right are generated by MOSAIC. For Binary Complex 8
MOSAIC can merge the three red elongated clusters which belong to the same class. It can
also agglomerate the two blue elongated shapes belonging the same class. The green, black
and yellow clusters are not further merged because there is no neighboring edge of Gabriel
Graph connecting them. For Binary Complex 9, MOSAIC can merge the two cyan circles,
merge the red ellipse cluster and a red C-shape cluster, merge the green elongated and half of
another green C-shape cluster, and merge the remaining half of blue C-shape cluster and the
blue question mark shape cluster. The 2 halves of C-shape cluster in green and blue are not
merged together because there exists an intervening cluster, generated by SCEC, with a
different majority class (the tiny red part at the middle of the 2 halves of C-shape cluster is

agglomerated to the red C-shape cluster). Since Gabriel Graph only creates edges from the
flawed cluster to them, MOSAIC does not merge because it is required to merges one half
with the red C-shape cluster resulted in decreasing fitness value. For Earthquakes1% dataset,
MOSAIC is able to form chain-like clusters. The clustering result on the rightmost is very
comparable to original clusters residing on the leftmost. It also should be emphasized that
MOSAIC can be employed as a post-processing clustering algorithm for any representative
clustering algorithm to enhance the clustering result.

Datasets Original Clusters Clusters generated by

SCEC
MOSAIC result

Binary Complex 8

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450
Binary Complex 8

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450
SCEC No.of clusters =94

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450
Post-processing for SCEC No.of clusters =5

Binary Complex 9

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

500
Binary Complex 9

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

500
SCEC No.of clusters =80

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

500
Post-processing No.of clusters =6

Earthquakes 1%

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Earthquakes 1%

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SCEC No.of clusters =400

Fig. 10. Experimental results of SCEC and MOSAIC on Binary Complex 8, Binary Complex 9

and Earthquakes 1% datasets

Experiment 6: The empirical study conducts a qualitative analysis of MOSAIC and SCEC
for different fitness parameter settings. We perform the qualitative analysis of the benefits of
MOSAIC as a post-processing clustering algorithm for SCEC clusters, in terms of quality of
cluster q(X), the purity of clusters, and the number of clusters. The same fitness function used
in Experiment 5 is also used in MOSAIC with 4 different parameter settings: (β=1.0001,η=7),
(β=1.01, η=6) , (β=1.3, η=1), (β=3, η=1).

Discussion: The experimental results listed in Table 3 indicate that post-processing technique
considerably improves the quality of SCEC clusters. We can draw a conclusion from the
comparison between SCEC and MOSAIC that MOSAIC enhances or keeps the purity and the
quality, and decreases the number of clusters on Binary Complex 8, Binary Complex 9, and
Arsenic20% datasets for all parameter settings. For the Volcano, Earthquake 1% and Diabetes
datasets, the post-processing improves the quality in most cases and reduces the number of
clusters significantly when β is small. In general, the experimental results also convince us
the use of parameter β in clustering tasks; larger values for the parameter β usually results in a
smaller number of clusters in the best clustering. From a quantitative point of view, Table 3
shows that the post-processing technique improves average purity by 2.8%, average cluster
quality by 13.3% and decreases the average number of clusters by 51.4%.

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Post-processing No.of clusters =76

Table 3. The qualitative and quantitative analysis of SCEC and MOSAIC

SCEC MOSAIC Dataset Parameters

Purity Quality Clusters Purity Quality Clusters
β=1.0001, η=7 0.995 0.951 94 0.995 0.952 12
β=1.01,η=6 0.990 0.901 90 0.995 0.940 12
β=1.3, η=1 0.916 0.418 8 0.995 0.682 5

Binary
Complex 8

β=3 , η=1 0.886 0.050 4 0.995 0.115 5
β=1.0001, η=7 0.998 0.989 80 0.998 0.989 9
β=1.01,η=6 0.998 0.937 98 0.998 0.973 9
β=1.3, η=1 0.937 0.339 22 0.998 0.607 8

Binary
Complex 9

β=3 , η=1 0.830 0.032 4 0.997 0.075 6
β=1.0001, η=7 0.790 0.332 402 0.780 0.332 230
β=1.01,η=6 0.780 0.322 402 0.780 0.316 230
β=1.3, η=1 0.789 0.068 372 0.787 0.110 176

Volcano

β=3 , η=1 0.607 4.65E-4 7 0.786 0.002 117
β=1.0001, η=7 0.903 0.610 400 0.884 0.610 147
β=1.01,η=6 0.895 0.575 404 0.884 0.599 147
β=1.3, η=1 0.846 0.272 5 0.858 0.412 76

Earth-
quake1%

β=3 , η=1 0.846 0.061 4 0.842 0.141 34
β=1.0001, η=7 0.836 0.402 392 0.836 0.402 172
β=1.01,η=6 0.834 0.391 396 0.836 0.392 72
β=1.3, η=1 0.779 0.105 11 0.808 0.253 90

Arsenic
20%

β=3 , η=1 0.774 0.021 6 0.779 0.065 41
β=1.0001, η=7 0.770 0.315 94 0.742 0.315 17
β=1.01,η=6 0.790 0.289 94 0.742 0.310 17
β=1.3, η=1 0.740 0.228 5 0.753 0.208 9

Diabetes

β=3 , η=1 0.726 0.050 2 0.764 0.018 9
Average 0.844 0.361 141.5 0.868 0.409 68.75

4 RELATED WORK

Discovering arbitrary shape clusters is very important in many domains, such as hot spot
detection, region discovery and spatial data mining. Jiang [1] proposes spatial clustering
techniques that employ hierarchical clustering accompanied by tree-like diagrams and claims
that this is a beneficiary for visualizing cluster hierarchies at different levels of detail. Anders
[15] developed an unsupervised graph-based clustering algorithm, called Hierarchical
Parameter-free Graph Clustering (HPGCL) for spatial data analysis.

In theory, agglomerative hierarchical clustering (AHC) is capable of detecting clusters of
arbitrary shape. However, in practice, it performs a very narrow search, merging the two
closest clusters without considering other merge candidates and therefore often misses high
quality solutions. Moreover, its time complexity equal to or worse limits its application
to small and medium-sized data sets. Furthermore, clusters obtained by AHC are not
necessarily contiguous, as illustrated in Fig. 11: a hierarchical clustering algorithm that uses
average linkage

)(2nO

2 would merge clusters C3 and C4, although the two clusters are not
neighboring. This example emphasizes the need to disallow merging of non-neighboring
clusters in agglomerative clustering. Gao et al. [16] make use of Delaunay triangulation to

2 Average linkage uses the average distance between the members of two clusters as its distance function.

identify the neighboring distance among instances before identifying clusters using Minimum
Spanning Tree. Proximity graphs are also used in divisive clustering. Amoeba [17] is a
divisive clustering approach that operates on proximity graphs; after constructing a Delaunay
graph for all instances, the algorithm recursively divides a cluster into sub-clusters by
removing Delaunay edges whose distance exceed global mean distance.

Fig. 11. Merging elongated clusters

Density-based clustering methods [13, 18, 19, and 20] have been found to be efficient for
discovering dense arbitrary shaped clusters, such as the ones in the 9Diamonds dataset. The
main drawbacks of density-based clustering algorithms are their need for parameters tuning,
and their usually poor performance for datasets with varying density. Moreover, they do not
seem to be suitable for high dimensional data. To alleviate one of those drawbacks, Duan et
al. [21] propose LDBSCAN which relies on local density measures to handle varying density
in datasets.

There has been significant research centering on hybrid clustering. CURE is a hybrid
clustering algorithm that integrates a partitioning algorithm with an agglomerative
hierarchical algorithm [22]. CURE iteratively merges the two clusters that have the closest
pair of representatives, and updates mean and a set of representative points. CHAMELEON
[23] provides a sophisticated two-phased clustering algorithm. In the first phase, it uses a
multilevel graph partitioning algorithm to create an initial set of clusters and in the second
phase it iteratively merges clusters maximizing relative inter-connectivity and relative
closeness. MOSAIC also relies on two-phase clustering but it has a major advantage over
CHAMELEON and CURE by being able to plug-in any fitness function and not being
restricted to evaluate clusters based on inter-connectivity and closeness. Lin et al. and Zhong
et al. [24 and 25] propose hybrid clustering algorithms that combine representative-based
clustering and agglomerative clustering methods. However they employ different merging
criteria and perform a narrow search that only considers a single pair of merge candidates.
Surdeanu et al. [26] proposes a hybrid clustering approach that combines agglomerative
clustering algorithm with the Expectation Maximization (EM) algorithm.

Contrast to traditional clustering, a family of supervised clustering algorithms has been
proposed by Eick et al. [14, 27, 28] that allow for plug-in fitness functions. The family of
supervised clustering algorithms consists of agglomerative-based, grid-based, representative-
based and density-based clustering algorithms. They are mainly used in region discovery [29,
30, 31].

5 CONCLUSION

This paper proposes a novel approach that approximates arbitrary-shape clusters through
unions of small convex polygons that have been obtained by running a representative-based
clustering algorithm. An agglomerative clustering algorithm called MOSAIC is introduced

that greedily merges neighboring clusters maximizing an externally given fitness function.
Gabriel graphs are used to determine which clusters are neighboring. We claim that using
proximity graphs increases the number of merge candidates considerably over traditional
agglomerative clustering algorithms that only consider “closest” clusters for merging,
resulting in clusters of higher quality. MOSAIC is quite general and can be used with any
representative-based clustering algorithm, any proximity graph, and any fitness function.
Moreover, we claim that MOSAIC can be effectively applied to higher dimensional data.

MOSAIC also has some similarity with agglomerative grid-based clustering algorithms;
both approaches employ micro-clusters which are grid-cells in their approach and convex
polygons in our approach and greedily merge neighboring clusters. However, our approach is
much more general by supporting more variety of shapes and it allows for convex polygons of
different sizes. On the other hand, for a given grid structure it is easy to determine which
clusters are neighboring, which is not the case for our approach.

We conducted experiments whose results suggest that using MOSAIC in conjunction with
k-means can significantly improve cluster quality. Using Silhouettes function as a fitness
function we also compared MOSAIC with DBSCAN; both algorithms obtained results of
similar quality for most datasets tested. However, before using DBSCAN we had to spend
significant efforts for parameter tuning which is not the case when using MOSAIC which
only requires a single input parameter: the fitness function. Based on our initial experimental
results, we do not believe that the Silhouettes function is the best possible fitness function to
find arbitrary shape clusters. Consequently, in our current research we investigate to find
more suitable fitness functions for this purpose.

The supervised clustering experiments reveal another advantage of applying MOSAIC as a
post-processing algorithm to results of supervised clustering algorithms. The proposed post-
processing technique considerably improves the quality of SCEC clusters. The experimental
results show that MOSAIC is able to obtain complex shape clusters in both artificial and real
world datasets. Specifically it can identify chain-like clusters in the Earthquake dataset and
clusters residing in another cluster in the Binary Complex 9 dataset. Such kinds of complex
shape clusters are hardly identified by traditional clustering algorithms.

6 ACKNOWLEDGEMENT

This research was supported in part by a grant from the Environmental Institute of Houston
(EIH).

7 REFERENCES

1. Jiang, B. (2004). Spatial Clustering for Mining Knowledge in Support of Generalization

Processes in GIS, ICA Workshop on Generalisation and Multiple representation.
2. Tan, M., Steinbach, M., & Kumar, V. (2005). (1st Ed.), Introduction to Data Mining.

Addison Wesley.
3. Choo, J. (2007). Using Proximity Graphs to Enhance Representative-based Clustering

Algorithms, Master Thesis, Department of Computer Science, University of Houston, TX.
4. Gabriel, K.R., & Sokal R.R. (1969). A New Statistical Approach to Geographic Variation

Analysis, Systematic Zoology, Vol. 18 (pp. 259-278).
5. Toussaint, G. (1980). The Relative Neighborhood Graph of A Finite Planar Set, in Int.

Conf. Pattern Recognition, Vol. 12 (pp. 261-268).
6. Kirkpatrick, D. (1980). A note on Delaunay and Optimal Triangulations, Information

Processing Letters, Vol. 10 (pp. 127-128).

7. Okabe, A., Boots, B., & Sugihara, K. (1992). Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams. Wiley, New York .

8. Bhattacharya, B., Poulsen, R., & Toussaint, G. (1981). Application of Proximity Graphs to
Editing Nearest Neighbor Decision Rule, Int. Sym. on Information Theory.

9. Asano, T., Ibaraki, T., Imai, H., & Nishizeki, T. (1990). Algorithms, Lecture Notes in
Computer Science, Springer-Verlag (pp. 70-71), New York Berlin Heidelberg.

10. Rousseeuw, P.J. (1987). Silhouettes: A Graphical Aid to The Interpretation and
Validation of Cluster Analysis, Int. J. Computational and Applied Mathematics, Vol. 20.
(pp. 53-65).

11. Data Mining and Machine Learning Group website, University of Houston, Texas (2007),
http://www.tlc2.uh.edu/dmmlg/Datasets

12. UCI Machine Learning Repository (2007),
http://www.ics.uci.edu/~mlearn/MLRepository.html

13. Ester, M., Kriegel, H.P., Sander, J., & Xu, X. (1996). Density-Based Spatial Clustering of
Applications with Noise, Int. Conf. Knowledge Discovery and Data Mining.

14. C. Eick, N. Zeidat, & Z. Zhao (2004). Supervised Clustering --- Algorithms and Benefits,
Int. Conf. Tools with AI (ICTAI).

15. Anders, K.H. (2003). A Hierarchical Graph-Clustering Approach to Find Groups of
Objects. Technical Paper, ICA Commission on Map Generalization, 5th Workshop on
Progress in Automated Map Generalization.

16. Gao, D., Peuquet, D., & Gahegan, M. (2002). Opening the Black Box: Interactive
Hierarchical Clustering for Multivariate Spatial Patterns, 10th ACM Int. Symposium on
Advances in geographic information systems (pp. 131-136).

17. Estivill-Castro, V. & Lee, I. (2000). Amoeba: Hierarchical Clustering Based On Spatial
Proximity Using Delaunaty Diagram., 9th International Symposium on Spatial Data
Handling, (pp. 7a.26-7a.41).

18. Sander, J., Ester, M., Kriegel, & H.P. Xu, X. (1998). Density-Based Clustering in Spatial
Databases: The Algorithm GDBSCAN and its Applications, Int. Conf. Data Mining and
Knowledge Discovery (pp. 169-194).

19. Kriegel, H.P., & Pfeifle, M. (2005). Density-Based Clustering of Uncertain Data. Int.
Conf. Knowledge Discovery in Data Mining (pp. 672-677).

20. Hinneburg, A., & Keim, D. (1998). An Efficient Approach to Clustering in Large
Multimedia Databases with Noise, Int. Conf. Knowledge Discovery in Data Mining.

21. Duan, L., Xu, L., Guo, F., Lee, J., & Yan, B. (2007). A Local-Density Based Spatial
Clustering Algorithm with Noise, Information Systems Vol. 32, (pp. 978-986).

22. Guha, S., Rastogi, R., & Shim, K. (1998). CURE: An Efficient Clustering Algorithm for
Large Databases, Int. Conf. ACM SIGMOD on Management of data (pp. 73-84).

23. Karypis, G., Han, E.H., & Kumar, V. (1999). CHAMELEON: A Hierarchical Clustering
Algorithm Using Dynamic Modeling, IEEE Computer Vol. 32 (pp. 68-75).

24. Lin, C., & Chen, M. (2002). A Robust and Efficient Clustering Algorithm based on
Cohesion Self-Merging, Int. Conf. 8th ACM SIGKDD on Knowledge Discovery and Data
Mining (pp. 582-587).

25. Zhong, S., & Ghosh, J. (2003). A Unified Framework for Model-based Clustering. Int. J.
Machine Learning Research, Vol.4 (pp. 1001-1037).

26. Surdeanu, M., Turmo, J. & Ageno, A. (2005). A Hybrid Unsupervised Approach for
Document Clustering, Int. Conf. 11h ACM SIGKDD on Knowledge Discovery in Data
Mining (pp. 685-690).

27. Eick, C.F., Vaezian, B., Jiang, D., & Wang, J. (2006). Discovery of Interesting Regions in
Spatial Datasets Using Supervised Clustering, 10th European Conf. on Principles and
Practice of Knowledge Discovery in Databases, Vol. 4213 (pp. 127-138).

28. Jiang, D., Eick, C.F., & Chen, C.S. (2007). On Supervised Density Estimation
Techniques and Their Application to Clustering, 15th ACM Int. Symposium on Advances
in Geographic Information Systems.

29. Ding, W., Eick, C.F., Wang, J., & Yuan, X. (2006). A Framework for Regional
Association Rule Mining in Spatial Datasets, 6th IEEE Int. Conf. on Data Mining (pp.
851-856).

30. Ding, W., Eick, C.F., Yuan, X., Wang, J., & Nicot, J.-P. (2007). On Regional Association
Rule Scoping, Int. Workshop on Spatial and Spatio-Temporal Data Mining (pp.595-600).

31. Ding, W., Jiamthapthaksin, R., Parmar, R., Jiang, D., Stepinski, T., & Eick, C.F. (2008).
Towards Region Discovery in Spatial Datasets, Pacific-Asia Conf. on Knowledge
Discovery and Data Mining.

http://www.cs.uh.edu/%7Eceick/kdd/EVJW06.pdf
http://www.cs.uh.edu/%7Eceick/kdd/EVJW06.pdf
http://www.cs.uh.edu/%7Eceick/kdd/JEC07.pdf
http://www.cs.uh.edu/%7Eceick/kdd/JEC07.pdf
http://www.cs.uh.edu/%7Eceick/kdd/DEWY06-sh.pdf
http://www.cs.uh.edu/%7Eceick/kdd/DEWY06-sh.pdf
http://www.cs.uh.edu/%7Eceick/kdd/DEYWN07.pdf
http://www.cs.uh.edu/%7Eceick/kdd/DEYWN07.pdf
http://www.cs.uh.edu/%7Eceick/kdd/DJPJSE07.pdf

